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Abstract

In this study, an introduction to ensemble Kalman filtering techniques relevant to

environmental state estimation problems is presented. The historical evolution of such

methods is discussed mainly in the context of numerical weather prediction with major

emphasis given to theoretical formulations and to innovations that allow for operational

viability. In an effort to provide insight into the workings of different schemes, the

discussion is accompanied by a limited but illustrative set of original visualizations

obtained from the application of such schemes to a toy model.

Ensemble Kalman filters conventionally update the state having taken into account

only the ensemblemean and covariance thereby implicitlymaking the analysis Gaussian.

Issues may arise when such a scheme is applied to practical problems likely to be

dominated by highly nonlinear and inherently non-Gaussian processes since neglect

of higher order information may lead to a meaningful degradation in analysis quality.

Of interest is how the significance of such degradation can be reduced when data

assimilation schemes employ an ensemble Kalman filter (EnKF) variant capable of

non-Gaussian support. The potential improvement in model initialization due to use

of a non-Gaussian assimilation scheme is further motivated by a high level description

of earth system predictability derived from land surface state characterizations, the

component of focus in this text being soil moisture.
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Part I
Overview of Ensemble Kalman Filtering

Data assimilation is the process whereby observations of a system are combined with

a priori information, such as a forecast output by an approximativemodel of that system’s

dynamics, so as to determine a more accurate state, the estimation of which takes into

account the relative uncertainty in the model forecast and observations. It is worthwhile

to review how this state estimation problem can be approached using ensemble Kalman

filtering methods.

The following literature review of ensemble Kalman filtering schemes will be bol-

stered by a number of original examples highlighting their application to the Lorenz-63

(L63) model, a 3-variable model that exhibits chaotic behavior. Please see the appendix

for experimental details.

1 Developmental Provocation

As follows are the forecast and analysis steps for the Kalman Filter (Kalman, 1960)

x f
k+1 =Mk+1xa

k (1.1)

P f
k+1 =Mk+1Pa

kMT
k+1 +Qk+1 (1.2)

Kk+1 = P f
k+1HT (HP f

k+1HT + Rk+1)
−1 (1.3)

xa
k+1 = x f

k+1 +Kk+1(yk+1 −Hx f
k+1) (1.4)

Pa
k+1 = (I −Kk+1H)P f

k+1 (1.5)

Following the convention of Ide et al. (1997), let x be the model state vector and P be

the covariance matrix of the error in the estimate x, which are each propagated forward

in time from some previous analysis point according to the process model, M; let Q

be the model-error covariance matrix; let y be the vector containing the observations to

be assimilated and H be the observation operator, which predicts the model-equivalent
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of the observations via a mapping of the state vector x to observation space; let R be

the observation-error covariance matrix and K be the Kalman Gain (i.e., the influence

matrix); the f and a superscripts refer to forecast and analysis quantities, respectively;

lastly, k represents the model time step, of which the explicit denotation is hereafter

mostly avoided for convenience.

The Kalman filter is optimal in a least-squares sense only in the case of linear

operators and Gaussian-distributed system errors. For problems characterized by minor

deviations from such assumptions, the extended Kalman filter (EKF) has been shown

to be a relatively more capable analysis technique (Evensen, 1992). The forecast and

analysis equations for the EKF are identical to those of the standard Kalman filter

but with the added constraint that the model and observation operators, M and H , if

nonlinear, first be expanded (via Taylor Series) about some reference solution, usually

taken to be the previous analysis state.

The linearization makes it such that the EKF accounts for the error statistics only

up to second order (mean and covariances), which can result in a loss of information

content when considering complex non-Gaussian distributions. Neglect of higher-order

moments of the background error covariance matrix, given model-dependent contribu-

tions from nonlinear effects, may lead to unphysical error growth and ultimately filter

divergence (Burgers et al., 1998) (for divergence prevention, see 4.1.2: Inflation). One

such result is given by Evensen (1992), who having carried out experiments with the

EKF used in conjunction with a multi-layer QG ocean model, noted that the presence of

nonlinear small-scale instabilities in the approximated background-error covariance evo-

lution equation resulted in poor state estimates. Miller et al. (1994) achieved moderate

improvements in EKF performance when third- and fourth-order moment closure equa-

tions were used with the L63 model, but it was questioned whether such improvements

merit the associated increase in computational expense.

In the context of numerical weather prediction (NWP), neither the Kalman filter nor

its extension is an appropriate analysis scheme. The unsuitability stems in part from the

necessity to simulate highly nonlinear processes and non-Gaussian-distributed variables
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such as those of relevance to the characterization of aerosols, rainfall, sea ice, and

land surface states (Bishop, 2016); also posing as a hindrance to successful operational

implementation is the size of the state vector x (∼ O(107) in current operational NWP

models), which makes the nxn-dim background-error covariance matrix too large to be

held in computer memory, let alone evolved in time according to Eq.(1.5).

Amore computationally feasible filtering technique for handling high-dimensionality

is the reduced-rank Kalman filter (RRKF; Verlaan and Heemink (1997)), which for

some initial system state x f
0 , the associated error-covariance matrix is approximated as

P f
0 ' D f

0 D f ,T
0 , where D f

0 is an nxm matrix with columns equal to the leading m principal

axes of P f
0 . The equations for the RRKF are similar to that for the standard Kalman

filter expressed above with the only variation being the necessary decomposition of

the background-error covariance matrix. The effectiveness of the RRKF depends on

how well the error-covariance matrix is represented by a limited (ideally m << n)

number of modes. Still problematic, though, is the assumption of linear error growth

implied by the use of the tangent-linear model in the forecast step (Eq.(1.2)). A reduced-

rank filter that is better able to account for nonlinearity in models is the Ensemble

Kalman filter (EnKF), a Monte Carlo approximation to the deterministic EKF. Using the

members of an ensemble of model states/forecasts to approximate the second moment

of the background-error probability density function (pdf), the EnKF avoids the explicit

forecasting of the full-rank background-error covariance matrix, thus making the EnKF

especially attractive given that it circumvents the computation of the model operator’s

tangent-linear and adjoint.

At the highest level, there are two styles of EnKF: (i) stochastic and (ii) deterministic.
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2 The Stochastic (Perturbed Observation) EnKF

(Burgers et al., 1998)

Given an ensemble of model forecasts, xi, i = 1, 2, ...m, the update equation for the

mean state at the analysis step is

xa
= x f

+K(y −Hx f
) (2.1)

and that for the ith member of the ensemble is

xa
i = x f

i +K(y −Hx f
i ) (2.2)

where K, the Kalman Gain, is given by

K = P f HT (HP f HT + R)−1 (2.3)

The background-error covariance matrix, instead of being represented explicitly by a

full-rank matrix as in the standard Kalman filter or in the EKF, is now being diagnosed

as the sample covariance of the forecast ensemble according to

P f =
1

m − 1

m∑
i=1
(x f − x f

)(x f − x f
)T (2.4)

where x f represents the ensemble mean. Subtracting Eq.(2.1) from Eq.(2.2) and nor-

malizing the result by 1√
m−1

yields normalized deviations of the analysis that can be

represented by

Xa = X f +K(0 −HX f
i ) = (In −KH)X f

i (2.5)

where In is the nxn identity matrix and X f ,a is the augmented matrix of dimension nxm

whereby each column is given by the normalized deviation of an ensemble member’s

state from the ensemblemean value (i.e. 1√
m−1

[
x f ,a

1 − x f ,a , x f ,a
2 − x f ,a , . . . , x f ,a

m − x f ,a
]
).

The expectation of the outer product of Eq.(2.5) with itself yields the low-order ensemble
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approximation to the analysis-error covariance matrix

Pa = XaXT
a = (In −KH)X f XT

f (In −KH)T (2.6)

= (In −KH)P f (In −KH)T

which assumes that background and observation errors are uncorrelated with each other.

Of note for comparison is the analysis-error covariance matrix equation derived in the

formulation of the standard Kalman filter

Pa = (In −KH)P f (In −KH)T +KRKT (2.7)

again assuming background and observation errors are not correlated with each other.

The analysis-error covariance matrix determined from the ensemble in Eq.(2.6) does not

directly take into account the observation-error information, leading to a built-in under-

estimation of the analysis-error covariance that makes the EnKF more likely to diverge

(i.e. ignore observations in subsequent cycles) due to an increasingly overconfident

background.

The stochastic variant of the EnKF handles this issue by giving each member in the

ensemble a unique observation vector, yi = y + wi with which to perform it’s analysis,

where wi is a vector belonging to the pdf distributed as N(0,R). The observation

deviation is now

Y f
i =

Hx f
i − yi −Hx f

+ y
√

m − 1
(2.8)

and Eq.(2.5) now becomes

Xa
i = X f

i −KY f
i = (In −KH)X f

i +K
yi − y
√

m − 1
(2.9)

With the expression for the analysis deviations as given in Eq.(2.9), computation of

the analysis-error covariance matrix yields a result identical to that given by Eq.(2.7)

11



thereby ensuring that for increasingly larger ensembles sizes, the analysis-error covari-

ance matrix determined by the filter will tend to the correct value.

3 The Deterministic EnKF

The method of perturbing the observation vector, as in the stochastic variant of the

EnKF, acts to introduce an extra source of sampling error in the analysis related to

the estimation of the correct observation-error statistics. The deterministic EnKF also

ensures that Eq.(2.7) holds asymptotically for larger ensemble sizes, but does so without

the generation of an ensemble of observations. Firstly, the following expression becomes

convenient

xa
= x f

+ X f w (3.1)

whereby the analysis increment is defined as a linear combination of the forecast per-

turbations, as is effectively the case for the stochastic EnKF, but here is parameterized

in the ensemble subspace by a vector w. By setting Eq.(3.1) equal to Eq.(2.1), it can be

found that

w = S f ,T (S f S f ,T + R)−1δ (3.2)

where S f = HX f and δ = y − Hx f . Once the mean analysis state is calculated, it

becomes necessary to determine the posterior ensemble. If K is as given in Eq.(2.3),

then Pa in Eq.(2.7) can be rewritten as

Pa = (In −KH)P f (3.3)

whereby the square root formulation for the error-covariance matrices allows for

XaXa,T = X f (Im − S f ,T (S f S f ,T + R)−1S f )X f ,T (3.4)
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and, finally

Xa = X f (Im − S f ,T (S f S f ,T + R)−1S f )
1
2 U (3.5)

= X f T
1
2 U

= X f W

where T = (Im − S f ,T (S f S f ,T + R)−1S f )
1
2 , U is some mxm orthogonal matrix (i.e.

UUT = Im), and W is the right transformation matrix of the forecast perturbation

ensemble X f . The analysis state for each ensemble member can then be determined

by adding xa as given in Eq.(3.1) to each column in the appropriately scaled analysis

perturbation matrix Xa.

3.1 Popular Deterministic EnKF Variants

The only constraint on the matrix U in Eq.(3.5) is that it be orthogonal, meaning

that it is non-unique. This makes it possible for the coexistence of many different forms

of the deterministic EnKF, all of which are equivalent given that Eq.(3.5) is ultimately

satisfied.

3.1.1 Ensemble transform Kalman filter (ETKF)

(Bishop et al., 2001)

One such variant is the ETKF. The analysis-error covariance equation as given in

Eq.(3.3) can be expanded to read as

Pa = P f − P f HT (HP f HT + R)−1 (3.6)

which after having made the substitution H̃ = R− 1
2 H now becomes

Pa = P f − P f H̃T (H̃P f H̃T + Ip)
−1H̃P f (3.7)

Among the most computationally expensive components of an EnKF algorithm
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are those involving matrix inversions. From Eq.(3.6) and Eq.(3.7), it is clear that such

inversions are performed mainly in the observation space. The ETKF is formulated such

that any inversions are instead handled in a subspace of significantly lower dimension,

allowing for relatively less computational demand associated with the algorithm. The

ETKF accomplishes this by taking advantage of the rank-deficiency of the ensemble

(in high-dimensional problems), which has a subspace spanned by at most (m − 1)

linearly independent vectors (since
∑m

i=1 X f ,a = 0). In accordance with Eq.(3.5), the

analysis must be a linear combination of the forecast perturbations. If an eigenvalue

decomposition of (H̃P f H̃T +Ip)
−1 is calculated, it can be seen that at most only (m−1) of

the eigenvectors of (H̃P f H̃T +Ip)
−1 (or equivalently H̃P f H̃T ) can even be represented in

the ensemble subspace. This necessary subset can be determined by taking the following

eigenvalue decomposition

X f ,T H̃T H̃X f = CΓCT (3.8)

by which the transformation matrix from Eq.(3.5) can now be written as

W = C(Γ + Im)
− 1

2 (3.9)

where the orthonormal eigenvectors of X f ,T H̃T H̃X f make up the columns of C, and Γ,

a diagonal matrix, has as its entries the corresponding eigenvalues.

3.1.2 Local ensemble transform Kalman filter (LETKF)

(Hunt et al., 2007)

The form of W was not made explicit by Bishop et al. (2001), whereas the LETKF, a

popular derivative of the ETKF, specifies the right transformation matrix as a symmetric

square root via the following eigenvalue decomposition

(WWT )−1 = UΣ−
1
2 UT (3.10)
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which guarantees that the analysis perturbations are centered about the mean analysis

state (i.e. Xa1 = 0 where 1 = (1, 1, ..., 1)T ) with the added benefit being generally

superior filter performance compared to when W is formulated differently. An attempt

at explaining the latter point can be made by considering that ‖ W − Im ‖F is at a

minimum for when W is a symmetric square root; ‖ · ‖F is the Frobenius norm defined

for some axb-dimensional matrix G as ‖ G ‖F=
(∑a

i=1
∑b

j=1 | qi, j |
2
) 1

2 . Consequently,

in the ensemble subspace, a forecast ensemble member is minimally adjusted by the

analysis, mitigating the severity with which physical balance properties in the state may

be violated as a result of the update. Hunt et al. (2007) also suggest the mitigation

of sampling error via localization and inflation, both of which are elaborated on more

generally in later sections of this text.

3.1.3 Other deterministic EnKF variants

Other deterministic EnKFs exist - the singular evolutive interpolated Kalman filter

(SEIK) of Pham (2001); the ensemble adjustment Kalman filter (EAKF) of Anderson

(2001), which involves applying a left transformation matrix to the forecast perturbation

ensemble instead of a right transformation matrix as specified in Eq.(3.5); the ensemble

square root filter (EnSRF) of Whitaker and Hamill (2002), the introduction of which is

accompanied by a framework that outlines the computationally efficient serial processing

of observations. Again, each variant is mathematically equivalent to the other given that

the analysis-error covariance of the ensemble tends asymptotically to the correct value

for larger ensemble sizes. The difference between any two of the methods is restricted

primarily to algorithmic implementation (Tippett et al., 2003).

4 Addressing Various Sources of System Error

4.1 Localization & Inflation

In an atmospheric or oceanic context, the number of members used in the EnKF

is usually much smaller than the dimension of the model state. The rank-deficiency
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associated with the ensemble approximations of the background- and analysis-error

covariance matrices results in spurious long-range correlations. Two methods used to

mitigate the negative effects of such correlations on filter performance are localization

and inflation.

4.1.1 Localization

The premise behind localization is that, for a given timescale, the states of two

spatially distinct points separated by some distance r within a system are better approx-

imated as being independent from one another with increasing r . The exploitation of

this tendency allows for the analysis to be spatially localized.

One variant of localization is R localization (domain localization) where the R

matrix or its inverse is multiplied by a distance-dependent function such that, given

some analysis point in the model space, the errors associated with increasingly distant

observations tend toward infinity. One such cutoff function is theGaspari-Cohn function,

a fifth-order piecewise rational function that resembles a Gaussian distribution but has

compact support (observations outside some prescribed localization length scale are

ignored during the analysis) (Gaspari and Cohn, 1999).

A second approach is B localization (Schur localization), which directly modifies

the ensemble approximation to the background-error covariance matrix such that B now

becomes ρ◦B, where ◦ denotes the Schur (pointwise) product, and ρ is some short-range

correlation matrix.

In their experiments with the Simplified Parameterizations, Primitive Equation Dy-

namics (SPEEDY) global atmospheric model, Greybush et al. (2011) found that B

localization has an optimal length scale greater than that for R localization; but R lo-

calization produced more balanced analyses at all length scales. The latter finding is

of note because an unbalanced analysis used to initialize an atmospheric model, for

example, will create spurious inertial-gravity waves that act to speed up dissipation of

the memory that the model has of any assimilated observations, negatively impacting
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the accuracy of subsequent forecasts.

There are techniques such as low-pass filters and nonlinear normalmode initialization

that can be used to impose balance, but it is best that data assimilation be tasked with the

production of physically appropriate levels of balance in the analysis, given that the use

of such extra-analysis applications do not guarantee an optimal state estimate (Greybush

et al., 2011).

Adaptive Localization The aforementioned forms of localization require the a priori

specification of a localization function. For high-dimensional and multivariate systems,

a physically appropriate general set of functions and parameters may not be readily

available. A form of adaptive localization proposed by Anderson (2007) employs a

hierarchical EnKF inwhich the regression coefficient (scalar coefficient of the innovation

vector in the update equation) between an observation of some variable at a fixed

location and all state variables of the model is given via a distribution sampled by a long

assimilation of multiple ensembles. Aided by the spread of the resulting distributions,

empirically-determined regression coefficients can be provided to conventional filter

configurations. Bishop and Hodyss (2009) take the ensemble correlations and raise

them to a power (ECO-RAP) so as to dampen the magnitude of small correlations while

making those of larger correlations more pronounced. Lei and Anderson (2013) perform

a short series of observing system simulation experiments (OSSEs) that employ the

desired observation network configuration to derive a spatially varying set of empirical

localization functions that minimize the mean-square error of observations from the true

solution; assuming the OSSE is configured well, the empirical localization functions

should be appropriate for assimilating real observations.

The use of adaptive methods, a small subset of which have beenmentioned, indirectly

takes into account the flow-dependent dynamical information that the ensemble provides,

explaining the associated improvement in filter performance when compared to the B-

and R-localization (nonadaptive) variants discussed earlier.
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4.1.2 Inflation

The localization of the analysis takes advantage of the lower dimensionality of local

spaces (Pham, 2001), but still present are sampling errors due to finite ensemble size

that encourage the divergence of the filter, whereby the observations are ignored leading

to a model state no longer deterministically representative of the real system. The spread

of the ensemble distribution can be increased, or inflated, to account for errors poorly

sampled, if at all, by the ensemble.

Multiplicative inflation involves increasing the amplitude of the ensemble spread

about its mean value, and can be represented by the following transformation

xa
i −→ xa

i + λ
(
xa

i − xa) (4.11)

applied to each member of the ensemble, where λ is some tunable parameter. Additive

inflation involves adding noise to each ensemble member in a form similar to

x f
i −→ x f

i + εi (4.12)

where ε is of covariance Q (not necessarily the model error). Multiplicative inflation

tends to be too aggressive for regions in the control space for which there is a sparse

set of observations while additive inflation has been shown to decrease the ability of B

to capture the flow-dependent errors-of-the-day (Kalnay, 2003). Whitaker and Hamill

(2012) proposed the Relax-To-Prior-Spread (RTPS) method, a form of multiplicative

inflation that inflates the posterior distribution by an amount proportional to that by

which the prior is reduced due to the assimilation of observations

σa −→ (1 − α)σa + ασb (4.13)

where α is some tunable parameter and σb ≡

√
[1/(m − 1)]

∑n
i=1 x′b2

i and σa ≡√
[1/(m − 1)]

∑n
i=1 x′a2

i are the prior and posterior ensemble standard deviations, respec-

tively. This is in contrast to the Relax-To-Prior-Perturbation (RTPP) method outlined in
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Eq.(4.11). Whitaker and Hamill (2012) incorporated the RTPS and RTPP methods in

experiments with a 2-level primitive equations spectral model and the serial ensemble

square root filter (EnSRF) of Whitaker and Hamill (2002); assimilated were simulated

radiosonde measurements in conjunction with the gaussian-like polynomial function of

Gaspari and Cohn (1999) for B localization; for optimal inflation parameter values, it

was concluded that the RTPSmethod yieldedmore accurate analyses than those obtained

using the RTPP method when the dominant form of error present in the assimilation

system was sampling error (due to use of a finite ensemble); for the scenario in which

model error dominated sampling error, the RTPP method performed better than the

RTPS method; if the error contributions by the model and ensemble were comparable

to one another, then the analysis error was minimized by employing a combination of

both methods; the results imply that it is worth considering if errors can be further com-

partmentalized whereby each component is treated uniquely so as to improve on current

ensemble filtering schemes. In the case of model error, for example, one could manage

model error due to convection with one method and model error due to boundary layer

physics with another, and so on (see 4.2: A Word on Model Error).

Adaptive inflation Just as for localization, there are adaptive techniques for inflation as

well. Wang and Bishop (2003) estimate a time-dependent inflation factor using the

innovation statistics 〈dT d〉 = trace(πHP f HT +R)where 〈·〉 is the expectation operator,

d = y − Hx f is the innovation, and π is the inflation factor; note that it is assumed

that the observation-error covariance matrix is known which is a limiting factor on

how much filter performance may be improved when the inflation scheme is applied

in a real-observation context. Anderson (2007) uses a hierarchical Bayesian approach

to develop an adaptive covariance inflation algorithm that directly incorporates the

observations to be assimilated. Li et al. (2009), using the various diagnostics of system

error presented by Desroziers et al. (2005), observe that the relationship between the

observation-error covariance matrix and an ensemble inflation parameter is nonlinear,

and suggest a method that estimates the two simultaneously; this approach assumes

19



that the observation-error covariance matrix is diagonal. Liang et al. (2012) propose

a maximum likelihood estimation (MLE) method that is capable of inflating both the

background- and observation-error covariance matrices while also allowing for the more

general case whereby observation errors are spatially correlated.

4.2 A Word on Model Error

The ensemble analysis-error covariance may be underestimated not only because

of sampling error due to finite ensemble size, but also because of the presence of

extrinsic model error not accounted for elsewhere by the assimilation system. To an

extent, model error can be addressed via the use of localization and inflation. This

treatment is made more explicit by methods that attempt to account for model error

by the application of a unique stochastic perturbation to each member of the forecast

ensemble. A set of such perturbations may take a number of different forms and can

target the parameterization schemes used for sub-grid scale processes (as in stochastically

perturbed physics tendencies (SPPT schemes; Buizza et al. (1999))), how kinetic energy

transfer between resolved and unresolved scales is approximated (as in stochastic kinetic

energy backscatter (SKEB schemes; Shutts (2005))), the tendency terms in the forward

model (as in stochastic total tendency perturbations (STTP schemes; Hou et al. (2006))),

and/or effects associated with variability in boundary layer humidity (as in stochastic

perturbed humidity (SHUM schemes; Tompkins and Berner (2008))).

5 Ensemble-Variational Methods

The discussion up to this point has been concerned with filters belonging exclusively

to the more general class of sequential data assimilation methods. It is worthwhile to

explore ways the EnKF can be implemented in tandem with other types of schemes

whereby more sophisticated assimilation systems are created. Firstly, to better un-

derstand such systems, a run-through of four-dimensional variational data assimilation

(4DVar) is provided.
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5.1 4DVar Run-through

In NWP, historically, data assimilation has primarily utilized variational techniques,

which determine an analysis via the minimization of a cost function. Assuming

Gaussian-distributed system errors, the cost function for 4DVar, which provides for the

consideration of observations (presumably acquired asynchronously) at the appropriate

time, can be written as follows

J(x) =
1
2
(x − x f )T B−1

o (x − x f ) ... (5.14)

+
1
2

P∑
k=0
(HkMk(x) − yk)

T R−1
k (HkMk(x) − yk) ...

+
1
2

P∑
k=1
(xk −Mk(xk−1))

T Q−1
k (xk −Mk(xk−1))

where the subscript k indicates the appropriate observation time in the assimilation

window over which there are a total of P + 1 observations. The formulation given in

Eq.(5.14) is a weak-constraint 4DVar cost function whereby the analysis need not be a

solution of the forward model. Omission of the terms normalized by Qk in Eq.(5.14)

yields a cost function for strong-constraint 4DVar, which requires that the analysis

trajectory indeed be an exact solution of the forward model.

Incremental 4DVar If either Hk orMk acting on the control variable is nonlinear, the

cost function may have multiple minima. The cost function can be approximated as a

quadratic by using versions of the operators that have been linearized about a reference

state xg as is done in the incremental formulation of 4DVar. Ignoring model error and

leveraging the somewhat more compact L2-norm notation, the incremental form of

Eq.(5.14) is as given

J(δx) =
1
2
‖ δx ‖2B−1

o
+

1
2

P∑
k=0
‖ δd ‖2R−1

k

(5.15)
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where δx = x − xg, δd = yk − Hkx f − HkMkδx − yk , and xg is taken to be equal to

x f . In practice, Eq.(5.15) uses simplified operator linearizations (e.g. reduced spatial

resolution) and is minimized iteratively whereby the solution x is used as the reference

state xg in the subsequent loop (Trémolet, 2007).

Preconditioning Minimization of Eq.(5.14) and Eq.(5.15) requires the use of a numerical

optimization algorithm. The behavior of such algorithms is dependent on the condition

number of the Hessian of the cost function, where given some eigenspectrum, the

condition number, in this text, is defined as the ratio of the eigenvalue with the largest

magnitude to that of the smallest. It is possible to precondition the Hessian so that

the condition number is closer to one, which leads to better convergence rates for

optimization algorithms. Consider the following

δx = LδχV AR (5.16)

where L is a control variable transform (CVT). The strong-constraint incremental cost

function can now be written as

J(δχV AR) =
1
2
‖ δχV AR ‖

2
LTB−1

o L +
1
2

P∑
k=0
‖ δd ‖2R−1

k

(5.17)

If Bo = LLT , then the normalization matrix LT B−1
o L in the first term of Eq.(5.17)

becomes equal to the identity matrix. The usefulness of the CVT can be illustrated

by first supposing that we want to assimilate a single observation that is valid at the

same time as the initial background state. For such a case (three-dimensional (or

stationary) variational data assimilation (3DVar)), the Hessian of Eq.(5.17) is equal to

(B−1
o +HT R−1H), which tends to have a very high condition number. Taking into account

a CVT of the form derived earlier, the Hessian becomes (I + LT HT R−1HL), the result

being, generally, a better conditioned problem.

For any variational method, Bo is crudely estimated one of a number of ways (de-

tails on some of the more notable estimation, or calibration, methods are given in the
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appendix). The key point is that Bo is full-rank but quasi-static. This is in contrast to

the rank-deficient, flow-dependent background-error covariance description that is used

in the EnKF. Combining ensemble and variational methods so as to exploit/mitigate the

strengths/weaknesses of either when implemented in isolation is the goal of Ensemble-

Variational (EnVar) data assimilation.

EnVar has many forms, all of which involve either (i) 1-way coupling where infor-

mation is passed from one method to another but not the other way around (e.g. an

analysis determined from 4DVar (with calibratedBo) is used to recenter an EnKF ensem-

ble running in parallel) or (ii) 2-way coupling whereby information is exchanged with

and used by both the sequential and variational subsystems (e.g. 4DVar incorporates

background-error information provided by an ensemble running in parallel to determine

an analysis which is then used to recenter that same aforementioned ensemble). Here,

an overview of some EnVar methods with 1-way coupling will be given.

For the purposes of the following discussion, the components making up each EnVar

method are assumed to be 4DVar and EnKF schemes unless stated otherwise. Such

EnVar methods are subdivided into pure and hybrid variants.

5.2 Pure EnVar

Pure EnVar methods determine the analysis using a variational framework that in-

corporates the background-error information provided by an ensemble. En4DVar and

4DEnVar, the methods to be discussed here, accomplish this in slightly different ways

whereby the tangent-linear ofMk and Hk are directly employed in the former but not

in the latter.

Pure En4DVAR Consider the following

δx = X f δχENS (5.18)
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where X f is the CVT. Eq.(5.15) can be rewritten to arrive at the following cost function

for (pure) En4DVar

J(δχENS) =
1
2
‖ δχENS ‖

2
I ... (5.19)

+
1
2

P∑
k=0
‖ yk −Hkx f −HkMkX f χENS ‖

2
R−1
k

where it is implicit that Bo = X f X f ,T .

Pure 4DEnVar For large and complex systems, it may be necessary to use simplified

versions of the tangent-linear operators (e.g. due to switches in code). Additionally,

the derivation and maintenance of tangent-linear code, approximated or not, can require

whatmay be a prohibitive number ofman-hours. The desire to entirely avoid the tangent-

linear in (pure) En4DVar is a key motivator behind the (pure) 4DEnVar formulation.

Starting with the following approximation for the i-th column of the forecast perturbation

matrix in Eq.(5.19)

HkMkX f
i ≈

1
m − 1

(
HkMkx f

i −HkMkx f
)

(5.20)

yielded is an expression equivalent to the i-th column of Yk , so that now

J(δx) =
1
2
‖ δχENS ‖

2
I ... (5.21)

+
1
2

P∑
k=0
‖ yk −Hkx f − YkδχENS ‖

2
R−1
k

for which tangent-linear operators are not needed.

5.3 Hybrid EnVar

The aforementioned En4DVar and 4DEnVar can be hybridized such that theBo matrix

is some combination of each of the hybrid’s subsystem’s description of the background

errors (Bo and P f for pure 4DVar and the pure EnKF, respectively). This can be
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done via a simple weighted average whereby the resultant hybridized background-error

covariance matrix Bh takes the place of Bo in a variational cost function and may be

made explicit in similar fashion to (Hamill and Snyder, 2000) by

Bh = (1 − γ)Bo + γP f (5.22)

where γ is some tunable scalar parameter with the constraint 0 ≤ γ ≤ 1.

Eq.(5.22) suggests that a full-rank Bo needs to be provided, which may be problem-

atic for high-dimensional systems. Bh can be determined implicitly by appropriately

augmenting the control vector (Wang et al., 2007), which allows for reformulation of

the incremental cost function

J([δχV AR δχENS]
T ) =

1
2
‖ [δχV AR δχENS]

T ‖2I ... (5.23)

+
1
2

P∑
k=0
‖ δd ‖2R−1

k

so now

δd = yk −Hkx f ... (5.24)

−HkMk(
√

1 − γ L δχV AR +
√
γ X f δχENS)

δx =
[√

1 − γL
√
γX f

]
[δχV AR δχENS]

T (5.25)

= Uh δχh

where Uh, the hybrid CVT, is equal to
[√

1 − γL √
γX f

]
and δχh, the augmented

control variable, is equal to [δχV AR δχENS]
T . Recalling that Bh = 〈δxδx〉 and that

the expectation 〈δχhδχ
T
h 〉 was defined to yield the identity matrix (as shown in the first
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term in Eq.(5.23)) allows for the following

Bh = 〈(Uh δχh) (Uh δχh)
T 〉 (5.26)

= Uh 〈δχhδχ
T
h 〉U

T
h

= UhUT
h

= (1 − γ)LLT + γX f X f ,T

= (1 − γ)Bo + γP f

an expression equivalent to that given in Eq.(5.22).

Most hybrid schemes involve averaging the background-error covariance matrices

from the variational and ensemble subsystems in a manner similar to that which was

shown above, but hybridization can also be achieved in different ways. Penny (2014)

computes a weighted average of the Kalman gain derived from a variational method

KV AR and that of an ensemble method KENS to yield a hybridized gain Kh which is

then finally used to update the state in a sequential framework (i.e. xa = x f + Kh(y −

Hx f )). The Ensemble Variational Integrated Localized (EVIL) method of Auligné et al.

(2016) uses the analysis determined from the cost function minimization to compute

an ensemble of states that adequately sample the analysis-error covariance matrix; this

method relies on the assumption of linear operators, which if valid means that the

inverse of the Hessian of the cost function is equal to the analysis-error covariance

matrix. Pereira and Berre (2006) compute a hybridized background-error covariance

matrix using the sample covariance of an ensemble of 4DVar systems instead of from

an EnKF ensemble.

6 Accommodating Non-Gaussianity

Up to this point, all of the methods presented have assumed Gaussian-distributed

system errors. Non-Gaussianity in a system can be introduced by non-Gaussian priors

and/or by nonlinear operators. It is possible for conventional Gaussian systems to
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mitigate the effects of non-Gaussianity and nonlinearity. For example, the EnKF uses

the full nonlinear model to propagate the ensemble members in between observations

(but still performs a linear analysis). The incremental formulation for 4DVar breaks up

the minimization of a non-quadratic cost function into a series of smaller tasks that make

use of linear approximations. Additionally, for small systems, one can use stochastic

optimization algorithms (e.g. simulated annealing (Krüger 1993)) in order to ensure

that the solution obtained in a variational framework is indeed the global minimum of

the prescribed cost function. System nonlinearities may also be reduced by deploying

observations more frequently in areas corresponding to domains in the model space

dominated by chaotic behavior, whereby targeting can be guided by an analysis of the

leading local Lyapunov exponents of a system (Pires 1996). Cohn (1997) shows that,

via an appropriately defined anamorphosis function, one may transform a non-Gaussian

random variable into a Gaussian one. This new variable can be used in an analysis

of a form similar to that given in Eq.(1.4) (albeit with an extra observation bias term

dependent on the specific transformation employed), whereby the result is then converted

back to the non-Gaussian space using the inverse of the anamorphosis function.

There do exist mathematical formalisms that allow for the full consideration of

every moment of a non-Gaussian distribution by a nonlinear data assimilation system,

but their implementation requires the time evolution of the pdf of every variable in

the state vector (van Leeuwen & Evensen 1996). Assuming that such functions are

determinable, the associated information content introduces a complexity that does not

scale well with system size, explaining in large part why the second-order moment

closure (effectively Gaussian) approximation is commonly made and consequently why

linear approximations are needed for a number of data assimilation methods when

applied to high-dimensional problems.

It is of interest to consider data assimilation methods that entirely avoid assumptions

of Gaussianity. Such avoidance is exemplified by the particle filter. In similar spirit

to how the EnKF uses ensemble members to parameterize Gaussian distributions, the

particle filter enlists ensemble members, or particles, that are capable of parameterizing

27



any arbitrarily-shaped distribution.

6.1 The Gist of Particle Filtering

The particle filter can be derived from Bayesian first principles as follows

p(x|y) =
p(x)p(y|x)

p(y)
(6.27)

where the posterior pdf p(x|y) is obtained once the prior pdf p(x) has been up-

dated with new information via the likelihood p(y|x). The marginal distribution

p(y) =
∫

p(y|x)p(x)dx acts as a normalization factor ensuring that the integral
∫

p(x|y)dx

evaluates to 1. The formula given in Eq.(6.27) is commonly known as Bayes’ rule, which

imposes no restrictions on any of the distributions. The particle, or discrete, represen-

tation of the posterior pdf is as follows

p(x|y) =
m∑

i=1
wiδ(x − xi) (6.28)

where δ is the dirac-delta function and

wi =
p(y|xi)∑m

j=1 p(y|xj)
(6.29)

Of note is that the sum of the weights expressed in Eq.(6.29) is equal to 1.

Resampling Eq.(6.28) and Eq.(6.29) represent the most generic form of the particle

filter (the bootstrap variant of Gordon et al. (1993)). Given some observation y, each

particle (forecast) xi is updated with its respective likelihood p(y|xi). The particle filter

beautifully avoids matrix inversions and provides for a fully nonlinear and non-Gaussian

data assimilation framework. Unfortunately, the naive implementation of the particle

filter is likely to be ineffective due to an inherent degeneracy problem whereby weights

tend to vanish with each analysis cycle (Berliner and Wikle, 2007). This is related to

the curse of dimensionality which states that a given number of particles tend to be
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less representative of systems with increasingly large state spaces. One way to avoid

or at least postpone weight-collapse is to produce a new sample of uniformly-weighted

particles via a resampling of the degenerate distribution. Intuitively, such a resampling

is not useful if the forecast is deterministic as this would only lead to multiple copies of

a single particle.

6.2 Nonlinear Ensemble Transform Filter (NETF)

(Tödter and Ahrens, 2015)

Several ensemble-based filters have been developed that bypass the Gaussian con-

straint of the EnKF variants by requiring the analysis ensemble to have the same mean

and covariance as that given by the particle filter. Such moment-matching ensemble

filters include the Particle Filter with Gaussian Resampling of Xiong et al. (2006), the

Merging Particle Filter of Nakano et al. (2007), and the Nonlinear Ensemble Transform

Filter (NETF) of Tödter and Ahrens (2015), the last of which will be overviewed as a

representative example.

The NETF assumes that the posterior mean and covariance are equivalent to the

respective sample estimates given by an ensemble of priors (forecasts)

xa
=

m∑
i=1

wix f
i (6.30)

Pa =

m∑
i=1

wi(x f
i − xa

)(x f
i − xa

)T (6.31)

where the weights wi are normalized likelihoods as given in Eq.(6.29). Eq.(6.30) can

be rewritten as xa
= x f

+ X f w (i.e. Eq.(3.1)), where here w is an m-dim column

vector containing all of the individual wi. This allows the following expansion of the
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analysis-error covariance matrix

Pa =

m∑
i=1

wi((x f
i − x f

) − X f w)((x f
i − x f

) − X f w)T (6.32)

=

m∑
i=1

wi(x f
i − x f

)(x f
i − x f

)T −

m∑
i=1

wi(x f
i − x f

)wT X f ,T ...

−

m∑
i=1

wiX f w(x f
i − x f

)T +

m∑
i=1

wiX f wwT X f ,T

= X f WX f ,T − X f wwT X f ,T

where W = diag(w) (not to be confused with the right-transform matrix introduced in

Eq.(3.5)). Recalling the requirement that Pa be equal to the sample-error covariance of

the updated ensemble, the following transformation follows

1
m − 1

XaXa,T =
m

m − 1
X f (W − wwT )X f ,T (6.33)

(W−wwT )
1
2 is the right-transform matrix of the prior perturbation ensemble analogous

to that given in Eq.(3.5) for the deterministic EnKF variants discussed earlier.

Having also implemented localization and inflation for the NETF in 80-variable

Lorenz-96 model experiments, Tödter and Ahrens (2015) noted that filter stability was

better maintained when the posterior ensemble was rotated (while still maintaining the

proper second-order statistics). Why this is helpful can be understood by noting that the

NETF, given the Bayesian update from which the necessary transform matrix is derived,

is subject to the same degeneracy issues as the particle filter. The rotation mitigates the

threat of degeneracy by effectively reducing the variance in the weights assigned to the

particles.
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Part II
Improving Predictability of the Earth System

Forecasting at subseasonal-to-seasonal (S2S; 14 days - 12 months) timescales is a

research area that has received substantial attention from the environmental modeling

community. This interest is largely motivated by the increasingly forceful societal

demand that actionable information concerning high-impact weather situations (e.g.

floods, droughts, and blizzards) be provided as far in advance of their onset as possible.

A potential source of S2S predictability in the earth system is the land surface, which

has the ability to modulate the large-scale atmospheric flow via significant moisture and

energy fluxes. Capitalization of this potential improvement in forecast skill requires that

the land surface initialization be accurate. Some issues that can lead to degraded model

representations of land surface states are associated with the limiting assumptions on

which conventional land data assimilation schemes are based and with the assimilated

observations themselves. The material that follows briefly expands on the problem

presented in the specific context of the characterization of soil moisture in land surface

models (LSMs).

7 Model Representation of Soil Moisture

Soil moisture acts as a limiting factor for evapotranspiration, which can have a notable

influence on boundary layer dynamics. Koster and Suarez (2003) found that Boreal sum-

mer precipitation is affected strongly by land surface initialization in wet-dry transition

regions like the US Great Plains due to a confluence of factors: (i) high soil moisture

variability, (ii) a likelihood for soil moisture anomalies to induce evaporation anomalies,

and (iii) a likelihood for evaporation anomalies to induce precipitation anomalies. Stated

differently, improvements in model soil moisture initialization may translate to improve-

ments in forecasts of near-surface sensible weather variables. The realization of such

potential requires an accurate description of the soil moisture state, which is something

that LSMs have been noted to struggle with. For example, using 7 different LSMs,
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Koster et al. (2009) found soil moisture to be best described as a model-specific quantity

having no directly comparable real-world analogue but that its temporal variability could

still be useful for improving S2S forecasts of low-level atmospheric fields.

In experiments with the Noah 3.3 LSM, Kumar et al. (2014) noted that satellite soil

moisture retrieval data, when assimilated with a one-dimensional (Gaussian) EnKF,

yielded small but statistically significant improvements in the model prognostic analogs

over the continental United States (CONUS) compared to when no assimilation was

used. Additionally, for the case in which soil moisture retrieval data were assimi-

lated, percentile-based drought area estimates obtained from forecasts of model-derived

root-zone soil moisture were of comparable utility with more sophisticated drought

monitoring resources in depicting the intensity and spatial orientation of droughts, es-

pecially for less extreme events. Such results showcase how soil moisture information

can be of use as a predictability source for high-impact weather.

8 Current Land Data Assimilation Practices

In-situ soil moisture measurements can help describe the near-surface soil moisture

profile, but taking into account the inadequate global-scale spatial coverage of current

ground-based observing networks and the point-scale nature of the information, it be-

comes attractive to supplement those observations with estimates derived from satellite

retrievals. The inclusion of remotely sensed data allows for an appreciable increase

in spatiotemporal coverage of the earth’s surface. Soil moisture retrievals, due to their

dependence on poorly estimated parameters like surface roughness and surface tempera-

ture, tend to be error prone but can still extend invaluable assistance to the approximation

of the true state when their error properties are taken into consideration by a capable

data assimilation system.

LSMs, unlike atmospheric models, are not sensitive to initial conditions. Initialized

with a number of unique starting points, the resulting LSM forecasts will all collapse to

a trajectory largely determined by the boundary conditions (e.g. meteorological forcing
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data). Also, LSMs typically do not account for horizontal flow. Such factors make it

natural that certain data assimilation methods are preferred over others for operational

applications. The European Center for Medium-Range Weather Forecasts (ECMWF)

uses a land data assimilation system (LDAS) that implements a simplified EKF (SEKF)

in conjunction with screen-level observations from ground-based networks to analyze

soil moisture and separately employs a 2-dim optimal interpolation (OI) scheme (OI

is exactly the Kalman Filter but with background-error covariances that are prescribed

instead of propagated temporally) to analyze snow parameters (Rosnay et al., 2013).

The same quantities are analyzed exclusively using the stochastic EnKF at the Canadian

Meteorological Center (CMC) via the Canadian LDAS (CaLDAS) (Carrera et al., 2015).

Given that LSM code tends to be littered with switches, tangent-linear operators are

determined via finite differences whereby a perturbed model run is needed for every

variable in the state vector.

It has been shown that for an adequately-sized ensemble, the EnKF is able to produce

more accurate land surface state estimates than those obtained by the EKF (Reichle

et al., 2002). Despite this, the assumption of Gaussian-distributed system errors used

in the conventional formulation of the EnKF mandates that, by ignoring the higher-

order information of the ensemble distribution, the yielded state estimate may be only a

sub-optimal approximation for non-Gaussian systems.

9 Summary & Conclusions

The EnKF has been shown to be a computationally affordable filter suitable for

high-dimensional state estimation problems. The threat of filter divergence is mitigated

significantly by ad hoc impositions such as inflation and localization. Due to only the first

two moments of the ensemble being explicitly updated in the traditional formulation of

the EnKF, the scheme is implicitly Gaussian. Presumably, non-Gaussian variables and

processes would be better described using an assimilation scheme with non-Gaussian

support. It is of interest to observe how the predictability of the earth system is affected
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when one or more components of a coupled framework use an assimilation scheme

that can accommodate deviations from normality in an optimal way. The discussion

given here focused on the soil moisture given its being able to modulate the near-surface

atmospheric flow in certain regions on S2S timescales. Soil moisture is a bounded

variable with an error distribution that can be highly skewed. These factors suggest

that better estimates of soil moisture states would be obtained via the use of a data

assimilation scheme not dependent on the assumption of normality. The implications

of non-Gaussian assimilation on model initialization make it worth further research.

A Original Examples

A.1 System Design

A description of the L63 dynamics is given by the nonlinear system of equations

dx
dt
= σ (x − y) (A1)

dy
dt
= ρx − y − xz (A2)

dz
dt
= xy − βz (A3)

where x = x(t), y = y(t), z = z(t). σ, ρ, β are constants, the values of which are set

equal to 10, 28, and 8/3, respectively, for the experiments presented, all of which were

carried out exlusively in Python (v3.7.3). The L63 equations were discretized using the

Modified-Euler method (a second-order Runge-Kutta scheme) with ∆t = 0.02.

The EKF data assimilation system used was inspired largely by the Python FilterPy

module created and maintained by Roger Labbe. Plotting functions and the accom-

modation of user-defined observation frequencies were added. Additionally, effort was

made to create a more model agnostic framework. All of the ensemble and variational

methods to be shown here were coded independently making use of various other Python

modules, namely mpi4py and SymPy.
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A general workflow for the code is as follows

Pilot Script:
Initialize and drive
data assimilation
system (e.g.

specification of total
number of time
steps, P,R, model
specific parameters
(e.g. σ, β, ρ for

L63), observations,
initial background

conditions as well as
ensemble generation).
Plotting capabilities.

Data Assimilation System

Sequential Variational

Tangent-linear
Computation:

Computation of linearized
versions of model and
observation operators
M and H. Jacobians
computed using Python

SymPy module.

Cost Function
Minimization:

Gradient descent algo-
rithm applied to ∇J(x).
Specification of necessary

stopping conditions.

Kalman Gain
Computation: Using
static background-error
covariance or sample
covariance in case

of ensemble methods

with the notable exception of the EKF, which requires both the determination of the

Kalman gain and the tangent-linear model, but does not make use of any cost function

minimization. The feedback loop between the Tangent-linear Computation script and

the Cost Function Minimization script is only for the case of 4DVar, which needs

to recompute linearizations about each new first guess, whereas this minimization is

carried out only once in 3DVar. Where possible, user readability of code took priority

over computational efficiency.

A.2 Some Results & Comments

EKF | Figure 1 Pictured is the variable x. The black solid line represents the truth trajec-

tory. The prior trajectory is given by the green dotted line. The value of the prior used to

compute the analysis at the observation time is given by a green circle. An observation is

denoted by a red x. Computed analyses are given by black asterisks. All variables in L63
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Figure 1: Extended Kalman filter (EKF) as applied to L63 model.

are directly observed and assimilated (i.e. H = I3, where Ig is the gxg identity matrix).

Observations are obtained by perturbing the truth trajectory with random samples of

Gaussian-distributed noise consistent with R = 4 ∗ I3, which was also the observation-

error covariance matrix prescribed to the EKF algorithm. The model error Q was

chosen arbitrarily to be equal to 0.3 ∗ I3. Observations are assimilated at a frequency

of one every 50 time steps. The TLM and model adjoint were computed analytically

using Python’s SymPy module. The difference between the TLM and the full nonlinear

process model was found to be smaller for smaller perturbation magnitudes, a result that

supports the correctness of the TLM. The adjoint was simply computed as the transpose

of the tangent-linear operators. The same process for determining the tangent-linear and

adjoint was used for the variational methods as well. The background-error covariance

matrix was set equal to a climatological ensemble-covariance matrix determined using

a set of optimally-tuned inflation parameters for the stochastic ensemble Kalman filter
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(EnKF) (i.e. that which minimized the root-mean-square analysis-error over a long run

of the assimilation system; data from the first portion of the long run was discarded to try

and correct for EnKF spin-up). Using this empirically determined climatology (here-

after denoted BC) as a proxy for the true (and unknown) background-error covariance

matrix, the initial conditions were determined from a random sample of an approximate

multivariate Gaussian distribution centered about the truth trajectory. The EKF handles

nonlinear regimes well. Intuitively, performance was better when analyses were more

frequent.
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Figure 2: Same as Figure 1 but for the stochastic EnKF and without any model error.

Stochastic EnKF | Figure 2 There are a total of 6 ensemble members with a mean value

denoted by the purple solid line. Recall that the ensemble mean is regarded as the

analysis state throughout the ensemble integration. Each ensemble member receives its

own observation to assimilate at the analysis time. RTPP and RTPS inflation parameters

were set equal to 0.1 and 0.05, respectively. The initial ensemble was determined via
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a random draw of a pdf described with a mean given by the truth trajectory and a

covariance given by BC (the same climatological covariance matrix outlined in the EKF

experiment).
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Figure 3: Same as Figure 2 but for the deterministic EnKF.

Deterministic EnKF | Figure 3 The deterministic EnKF variant shown is that of Whitaker

and Hamill (2002). Here, the observations of the L63 system variables x, y, and z are

processed synchronously. Note, in contrast to the stochastic EnKF, that the ensemble

assimilates a single observation of each variable at the analysis time. RTPP and RTPS

inflation parameters were set equal to 0.8 and 0.9, respectively. Qualitatively, the filter

performswell. (Of note is that the code is themost contrived of all themethods presented

here.)

Filter Divergence | Figure 4 Such inflation (here the term "deflation" might be more

appropriate) parameter values encourage a small ensemble spread and hence an over-
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Figure 4: Same as Figure 3 except with RTPP and RTPS inflation parameters set equal to 0 and -0.15,
respectively.

confidence in the prior that over time leads to the catastrophic filter divergence given

in the figure. To help ensure that filter divergence would be observed more clearly, the

initial ensemble was centered about a prior state that was significantly distant from the

truth. Note that after the first few analyses, there is a complete lack of response the

analysis has to the observation information.

4DVar | Figure 5 The length of the assimilation window is 350 times steps and is

demarcated by the blue vertical lines. A set of short forecasts (50 time steps in

length) follows the window. The prescribed background- and observation-error co-

variance matrices are BC and 4 ∗ I3, respectively, as in previous experiments with

other assimilation schemes. The strong-constraint cost function’s gradient ∇J(x) =

B−1(x − xf) − [HT
0 R−1

0 d0 +MT
1 [H

T
1 R−1

1 d1 +MT
2 [H

T
2 R−1

2 d2 + . . . +MT
PHT

PR−1
P dP]]] was

minimized using a bootstrapped gradient descent functionwith a step size of .001∗∇J(x).
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Figure 5: Same as Figure 2 but for strong-constraint 4DVar.

Correctness of the∇J(x)was supported by an appropriate decrease in higher order terms

for smaller perturbation magnitudes given a Taylor Series expansion of J(x). Diver-

gence of the minimization algorithm, (here specified as increasing values of J(x) for

a total of 3 iterations (whether successive or not)) was used as a stopping condition.

The minimization would also cease if ∇J(x) < 0.05 or if 500 total iterations had been

reached. In experiments with the 4DVar system, it was noted that cost function min-

imization behavior is especially sensitive to the length of the assimilation window as

well as to the number of the observations in that window. This is due to the lack of an

accounting of model error in the strong-constraint formulation. Too many observations

for a given assimilation window length may over-constrain the analysis trajectory and

lead to divergence. The caveat is that too few observations will also likely lead to poor

analysis quality as well due to a less-than-ideal amount of system information being

assimilated to help guide the model solution to a more representative description of the
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truth.

0 50 100 150 200 250 300 350 400
Time Step

10

5

0

5

10

15

20

x

Figure 6: Same as Figure 5 but for 3DVar.

3DVar | Figure 6 The code used for 3DVar was similar to that used for 4DVar, with the

primary difference being that 3DVar assimilated a single observation and minimized the

cost function only one time for the determination of the analysis.

B A Few Background-Error Covariance Matrix Calibration Methods

Calibration of the background-error covariance matrix is important since the matrix

largely determines how the observation information is distributed in state space during

the analysis. As follows is a description of a few of the ways this estimation can be

approached.
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B.1 Analysis of innovations (o-b)

(Rutherford, 1972)

The observation vector equation y = Hxt+εo can be used to arrive at an expression for

the innovation y−Hxb = Hεb+εo, which uses the truncated Taylor series expansion of the

observation operator about the background stateH(xb+(xt−xb) = Hxb+H(xt−xb)+ ...,

where (xb − xt) = εb is the background error. From consideration of variables w1 and

w2 located at positions r1 and r2, respectively, it follows that

〈(y(w1, r1) −Hxb(w1, r1))(y(w2, r2) −Hxb(w2, r2))〉 (A4)

≈ 〈εo(w1, r1)εo(w2, r2)〉 + 〈εb(w1, r1)εb(w2, r2)〉

≈ 〈εb(w1, r1)εb(w2, r2)〉

where the correlations between the background and observations have been neglected,

and it is assumed that the observation errors at two distinct points are uncorrelated. The

final result is an expression that allows for the estimation of εb. An obvious issue is that

many samples are needed to compute the average of the innovation correlations, which

is not feasible for high-dimensional systems. The analysis of innovations can still be

helpful in tuning the background-error covariance matrix where appropriate.

B.2 National Meteorological Center (NMC) Method

(Parrish and Derber, 1992)

Suppose there are two forecasts of different lengths that verify at the same time

x2∆
b =M2∆x0

a + ε
2∆
b (A5)

x2∆
b =M∆x∆a + ε∆

b (A6)
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where xt
a is the analysis obtained at time t, and ε∆b is the forecast error accumulated over

the time interval ∆. If δx = Eq.(A6) - Eq.(A5), it follows that

〈δxδx〉 = 〈ε∆b ε
∆,T
b 〉 + 〈ε

2∆
b ε2∆,T

b 〉 (A7)

≈ 2〈εbε
T
b 〉

= 2Bo

where it is assumed that the accumulated errors of each of the forecasts are comparable

to one another. This method avoids having to observe the entire state. In poorly

observed regions, the background state does not change much, so error variances may be

underestimated in those regions. Variances at larger scales are likely to be overestimated

in the cases where forecast samples differ more than the length of the a priori state (e.g.

using forecasts that differ by 24 hours to approximate background errors of 6 hour

forecasts). This method is best suited for estimating climatological covariances. Also

noteworthy is the lagged NMC method (Siroka et al. 2003), which seeks to incorporate

into the description of Bo the error associated with lateral boundary conditions used by

a limited area model (LAM).

B.3 Ensemble Method

The sample covariance of an ensemble of states about its mean can be used to

approximate the background-error covariance matrix

Bo = 〈(xi − x)(xi − x)T 〉 (A8)

where xi is a forecast and x is the mean. The ensemble can be derived from an ensemble-

based data assimilation system such as the EnKF or from an ensemble of variational

systems. The ensemble method has been shown to produce errors with more appropriate

length scales than the NMC method, especially in data-sparse regions. Such results can

be explained in part by the use of forecast samples of the same duration as the prior and
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by the use of flow-dependent background errors.

B.4 Canadian Quick (CQ) Method

(Polavarapu et al., 2005)

Adrawback to the aforementionedmethods is that they all require a background-error

covariance matrix to begin with. It has been suggested to use samples of the difference

of single forecast and it’s earlier state to estimate Bo

Bo ≈
1
2
〈(xt+∆t − xt)(xt+∆t − xt)

T 〉 (A9)

where the means of each sample have already been subtracted. Eq.(A6) assumes that

the time-tendency of a forecast is a suitable placeholder for the background error, which

may lead to the assignment of spuriously small/large correlations to features that evolve

slowly/quickly over time.
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