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Abstract

Helicity, as a combined measure of the intensity and persistence of turbulent eddies, is
likely to be the most important kinematical characteristic of tornadolike vortices. It is shown
that in simplified form a maximally helical vortex can be described by two Fourier waves
with the same sign of helicity and a fixed amplitude and phase relationship.

Tornadolike vortices tend to occur in the vicinity of strong horizontal gradients of velocity.
It is therefore assumed that they are generated primarily by instabilities of these intense shear
zones of the storm system. Consequently significant variability of the storm flow is on the
scale of the embedded vortex rather than on the scale of the storm circulation itself.

The velocity field is separated into a slowly evolving part representing the storm flow,
and a rapidly evolving part representing the tornadolike vortex. A three-dimensional dy-
namical system is then obtained from the equations of motion for the vortex flow by Fourier
transformation and truncation, restricting the fast flow to the two vortex waves and a non-
helical catalyst wave. The two equilibria of the dynamical system are the phase space origin,
referred to as the ground state, and a nonvanishing vortex state. The system parameters
depend on the expansion coefficients of the slow background flow. The stability of the equi-
libria can therefore be analysed as a function of the background flow state. With a stable
ground state perturbations of the fast velocity field are damped out. As the ground state
loses stability in a transcritical bifurcation the vortex state simultaneously gains stability
and weak vortical perturbations are intensified, approaching a steady state as long as the
vortex equilibrium is maintained by the background flow.

In the simple model the most relevant changes in the background flow affecting vortex
stability are changes in the horizontal shear of horizontal velocity. It is shown that for a given
background updraft strength a certain minimum amount of horizontal shear is necessary to
spin up an intense vortex. However, as the horizontal shear increases relative to the updraft
strength, at a certain point the coherent vortex is destroyed.
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1 Introduction

The scientific complexity of vortex formation in a turbulent fluid, in addition to operational
difficulties, makes the study of tornadoes one of the great frontiers of dynamic meteorology.

Globally the social relevance of tornadoes is negligible compared with other severe weather
phenomena such as hail and lightning, causing more damage or fatalities than tornadoes, re-
spectively. However, locally tornadoes can make the difference between minor and complete
destruction. The vast majority of severe supercell thunderstorms is not tornadic. The spo-
radic nature of tornadoes, especially of the most intense tornadoes, together with the short
time frame in which tornadogenesis takes place, make reliable tornado forecasting, without
significant overwarning, a very difficult task. Moreover and, aside from the operational dif-
ficulties, even the theoretical understanding of the mechanisms involved in the process is
incomplete.

Traditionally, tornado and severe storm research follow an essentially empirical approach,
focussing on the analysis of large-scale severe storm features and their possible connection to
the formation of tornadoes. Turbulence theory on the other hand holds the opposite point of
view, trying to identify properties of the small-scale flow that are independent of the specific
large-scale forcing.

Tornadoes and tornadic waterspouts, by definition, are associated with severe thunder-
storms, as opposed to typically smaller and less intense atmospheric vortices such as land-
spouts and dust devils, or larger vortices such as hurricanes that are storm systems by
themselves. The association of the tornado vortex to the larger-scale circulation of the
storm system leads to a strong coupling of a wide range of spatial and temporal scales. The
complete description of tornadogenesis therefore requires a comprehensive theory of fluid
flow including both the intrinsic, universal properties of small scales and a consideration of
the energy input on large scales by specific forcing.

Due to the seemingly stochastic nature of turbulence there are legitimate concerns about
the practical predictability of tornadoes. However, despite significant synoptic-scale differ-
ences from one tornado occurrence to another, the visually recognisable qualitative similarity
in the appearance of supercell thunderstorms and tornadoes, and the similarity of the for-
mation and decay cycle at different times of the year and in different geographical locations
suggests that, at least at a smaller scale, there exists a unique forcing mechanism responsible
for tornadogenesis under all these circumstances. In that case tornadoes really are mani-
festations of one type of vortex phenomena rather than unrelated realisations of unlimited
possible scenarios in a strongly turbulent fluid with an infinite number of degrees of freedom.
Only then can a unified theoretical treatment and eventually forecasting be successful.

However, before one is able to answer the question about how a tornado forms, one must
answer the question about what a tornado really is.

Verbally a tornado is usually defined as a violently rotating column of air extending
from the base of a rotating swelling cumulus or cumulonimbus cloud down to the ground.
While that is certainly true it is not a very useful definition for theoretical investigations
of tornadogenesis. Since it simply is a translation from the visual appearance of a tornado
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Figure 1.1: Waterspouts over the Mediterranean Sea near the coast of Italy.

into words, this statement contains no more information than looking at a photograph of a
tornado. In particular, as a description of the status quo, it does not say anything about the
specific details leading to the formation of this ‘violently rotating column of air.’

On the elementary level of this investigation, as in the verbal definition, no distinction will
be made between tornadoes and tornadic waterspouts. The arguments presented generally
refer to a tornadolike vortex, i.e., any atmospheric vortex with a diameter of a few hundred
metres associated with a storm system or otherwise driven by larger-scale flow features such
as fronts or squall lines. More specifically, a tornadolike vortex is defined as a vortical insta-
bility of intense shear zones associated with mesoscale weather systems, possibly intensified
by convection. Although, compared with the more general definition, this physical defini-
tion may limit the type of atmospheric vortices that can be described under the heading of
‘tornadolike vortices,’ it is based on possible generating mechanisms and therefore offers a
starting point for the investigation of their formation. Eventually, however, mathematics is
needed to make precise statements about the current and future state of the flow. For the
simple models considered here, mathematically a tornadolike vortex is defined as a helical
eddy or flow structure with a particular phase and amplitude relationship between certain
Fourier expansion coefficients.

Despite the turbulent behaviour of a weakly dissipative fluid such as the atmosphere it is
usually assumed that the time evolution at least of appropriately averaged properties of the
flow is governed by deterministic equations of motion. Although the existence and uniqueness
of solutions for three-dimensional compressible flow has not been proven, the time evolution
of fluid flow is normally described by some form of the Navier-Stokes equations, given by
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Figure 1.2: Waterspouts over the Adriatic Sea near the coast of Italy.

a system of nonlinear partial differential equations. Due to the lack of even approximate
analytical solutions in most cases the equations of motion must be solved numerically as a
specific initial value problem to obtain the time evolution of the flow. However, due to the
mathematical complexity of the fluid mechanical equations, even numerical integration is
very difficult. Numerical simulations of tornadogenesis additionally suffer from the fact that
currently an adequate integration of the equations of motion, together with the time required
for data acquisition and initialisation, takes far too long to be of use to real forecasts. The
main question therefore is how the mathematical complexity of the equations of motion can
be reduced for a particular application without loosing important aspects of the dynamics.

The two complicating characteristics of the fluid mechanical equations are the four inde-
pendent variables of time and space and nonlinearity. For solving initial value problems it
must be assumed that the initial state, i.e., the spatial dependence of all dynamically relevant
variables at the initial time, is given by observations. The degrees of freedom of the equa-
tions of motion can be reduced by projecting the discrete observational fields onto some basis
functions in space. An analytical approximation of the spatial dependence of all variables is
then obtained by a series expansion in these basis functions, where the time-dependence of
the expansion coefficients is given by the projection of the full equations of motion onto the
same basis functions. That way the system of partial differential equations is reduced to a
system of ordinary differential equations. However, nonlinearity usually persists. Without
nonlinearity qualitative changes are limited to oscillatory motion and exponential growth
and decay. Since the qualitative motion of the atmosphere is clearly more complicated than
that, some form of nonlinearity must be retained, generally precluding analytical solutions
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even for the simplified models. Still, if the knowledge of the qualitative behaviour of the
nonlinear system is sufficient for predictions, there exist alternative methods to the explicit
integration of the dynamical equations.

One possibility would be to a priori integrate the equations of motion for a large number
of initial and boundary conditions, thereby creating a ‘climatology of motion.’ However,
due to the infinite number of initial conditions, and the sensitive dependence of a nonlinear
system on initial conditions, this procedure is not practicable. A similar approach, employed
in observational tornado research, is to calculate certain forecast parameters from data of
the storm system (obtained prior to tornadogenesis) and to compare their values between
tornadic and nontornadic cases. That way the derived statistics are based on physically rele-
vant initial states of the system and the ‘integration of the equations of motion’ is performed
in exact form by Nature itself. However, even assuming that the observations are dense and
accurate enough, it appears as if the currently employed parameters are not adequate for
reliable predictions of tornadogenesis. The question therefore is how forecast parameters can
be found that uniquely characterise the storm system with regard to its potential to spawn
tornadolike vortices or not.

The approach taken here is strictly mathematical. It is based on the bifurcation analysis
of low-dimensional dynamical systems derived from the equations of motion via Fourier
transformation and subsequent truncation of spectral components.

Based on the problems with the large-scale forecast parameters, together with the fact
that tornadoes tend to occur in the vicinity of strong velocity gradients, it is hypothesised
that, although tornadolike vortices are primarily forced by a relatively slowly evolving storm
system, the relevant spatial variability of the coherent large-scale system is on the scale
of the smaller vortex. To simplify the analysis and to reduce the amount of information
that is required to specify the initial state it is therefore assumed that tornadolike vortices
are not significantly affected directly by turbulent and thermodynamic forcing varying on
the same timescale. Instead they are directly forced only through kinematical instabilities
of the larger-scale flow. Since these instabilities are assumed to be associated with spatial
variability of the storm system on the vortex scale, a separation of the flow into large and
small wavenumber components is not possible. The velocity field is therefore separated into
a slowly evolving ‘background’ flow representing the storm motion, and a rapidly evolving
perturbation flow representing the tornadolike vortex. In the dynamical system for the
rapidly evolving expansion coefficients various combinations of the slowly evolving expansion
coefficients, over short periods of time, are considered to be constant parameters. For the
simple mathematical models these parameters determine if and under what circumstances a
tornadolike vortex develops or not, where the ‘tornadic’ and ‘nontornadic’ parameter regions
and the corresponding background flow states follow from a bifurcation analysis. Given a
certain background flow an explicit solution of the nonlinear equations of motion is therefore
not necessary to determine the qualitative evolution of the fast flow. Since it is based
on criteria for the stability of the final state, the identification of relevant states of the
background flow through bifurcation analysis essentially is an inverse process of a large
number of numerical simulations from arbitrarily chosen initial conditions. In a more realistic
setting, as the number of qualitatively different dynamical possibilities, or the number of the
degrees of freedom, increases it gets progressively more complicated to explicitly perform



5

this bifurcation analysis. However, in principle the same method can be extended to any
complexity.

The dynamically derived parameters are very abstract and unlike the currently employed
forecast parameters cannot easily be interpreted in terms of physical concepts such as ‘static
instability’ or ‘vertically veering wind profile.’ The basic idea therefore is to use the empirical
insight into the problem to simplify the dynamical equations and then to let the theory decide
what the dynamically relevant variables are and what one should try to observe.

The text is grouped into two main chapters concerning flow in physical and phase space,
respectively.

Chapter 2 introduces the fundamental concepts and definitions of fluid mechanics rele-
vant for the investigation of tornadolike vortices. The various kinematical scalar variables
associated with the velocity field, such as kinetic energy and helicity, are defined and their
meaning for the evolution of the flow is investigated. Elementary physical properties of the
flow, such as large and small spatial scale, or slow and fast timescale are discussed. The
mathematical formalism for the spectral and helical decomposition of the velocity field is
then introduced, and the scaled equations of motion for the slowly and rapidly evolving flow
components are derived.

In Chapter 3 the evolution of the Fourier expansion coefficients is investigated. Stationary
solutions of the low-dimensional dynamical system, or definite observable states of the flow,
and their linear stability as a function of the various system parameters are determined.
It is shown that the qualitative behaviour in phase space is determined by an exchange of
stability between the ground state representing vanishing perturbation flow and the vortex
state. The parameter values associated with a stable vortex state are then interpreted in
terms of slow background flows.

Implications of the results from the low-dimensional analysis for predictions of tornado-
genesis are discussed in Section 4, and a general summary of the main results is given in
Section 5.

Unless necessary for the immediate understanding of the discussion in the main text, the
more elaborate derivations are collected in Appendix A. For easy reference, a glossary of
some of the special terms used in the discussion is given in Appendix B, and abbreviations
and mathematical symbols used are listed in Appendices C and D, respectively.





2 Flow in Physical Space

You don’t seriously believe that a theory must restrict itself to observables?
Perhaps I did use this sort of philosophy, but it’s nonsense. Only the theory
decides what one can observe.

Albert Einstein to Werner Heisenberg (1926)

2.1 Flow Properties

This section briefly summarises the basic concepts of fluid dynamics. It introduces the
fundamental kinematical variables, terminology, and notation used in later sections.

2.1.1 Description of Motion

The description of the motion of a fluid by a continuous velocity field allows the use of the
mathematical formalism of vector analysis. However, the actual motion of the fluid as a
continuum does not exist. Theoretically the smallest scale at which the continuum hypoth-
esis holds must be larger than the mean free path of fluid molecules. In practice, however,
the smallest resolvable scale depends on the quality and resolution of measurements and, in
liquids and the lower1 atmosphere, is much larger than the mean free path. Still, the con-
tinuous velocity field is a purely mathematical construct in the sense that it only represents
statistical or bulk properties of the actual motion of matter. Flow on the observable scale
can only be described as the result of the collective motion on a smaller scale. Denoting the
velocity field on the smallest resolvable scale by v

S
,

v = v
S
+ v′ , (2.1.1)

where v′ are the unobservable perturbations of the elusive ‘true’ velocity field v relative to
v

S
. Just as a Fourier series in the spatial variables is a representation of the velocity field as

a superposition of plane waves with different wavelengths, the velocity field can be written as
a superposition of flow on different physical scales. By defining the average over the smallest
observable scale, v

L

def
= 〈v

S
〉, where averages over a fixed volume in space are denoted by

brackets, this process can be continued to larger and larger scales by writing

v
S
= v

L
+ v′

S
(2.1.2)

and

v = v
L
+ v′

S
+ v′ (2.1.3)

where v′
S
are perturbations of v

S
relative to the mean flow v

L
. On all scales, averages and

perturbations are always determined based on the continuous approximation with a higher

1The mean free path in the troposphere is on the order of 10−7 m.
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resolution. In applications the velocity field derived from the observational data on the
smallest resolved scale must be treated as the true material velocity field and for simplicity
is denoted by v.

For any given averaged flow, or macrostate, in general, there is a large number of com-
patible flows with a higher resolution, or microstates.2 In that sense any continuous velocity
field must be regarded as a macrostate of the actual motion of matter on a much smaller
scale. The fact that different microstates of the same ensemble are usually not dynamically
equivalent introduces an uncertainty in the time evolution of the macrostate. The lack of
uniqueness of microstates for a given macrostate can be interpreted as the independence of
small spatial scales from the observable large scale and the forces acting on it. It will be
seen in Section 2.3.1, that this is in fact one of the fundamental assumptions in turbulence
theory.

The same decomposition of the velocity field into mean and perturbation field can of
course also be defined with respect to time.

For all computational purposes, the velocity field and the equations of motion will be
written in a stationary (inertial), right-handed Cartesian frame of reference with spatial coor-

dinates {x, y, z}, corresponding unit vectors {ex, ey, ez}, and position vector x
def
= (x, y, z)T .

This representation of the flow in which position coordinates are independent of time pa-
rameter t is called Eulerian description. The time rate of change of flow properties at each
point is given by partial derivatives with respect to time.

In some cases, however, a better conceptional understanding of fluid dynamical processes
can be gained with the Lagrangian description of the flow. Under the continuum hypothesis,
instead of as a collection of molecules, the fluid can be described as a continuous ensemble of
infinitesimally small fluid elements. As the flow evolves each fluid element may change its size
and shape such that, by definition, it contains the same molecules at all times. A collection
of fluid elements of finite size is called Lagrangian volume and its bounding surface is called
a Lagrangian surface. Contrary to the Eulerian description, vector fields in the Lagrangian
description of the flow are written in a continuous field of reference frames each one of which
follows the motion of a fluid element. In these noninertial frames of reference the time rate
of change of properties of a fluid element not only includes changes measured locally in an
Eulerian frame but also changes due to the displacement of the fluid element. For variables
such as the velocity components that are only functions of time and space the time rate of
change following the motion is given by the total or Lagrangian time derivative

dt
def
= ∂t + ∂v

= dtx ∂x + dty ∂y + dtz ∂z
(2.1.4)

where ∂v
def
= v · ∇ is the directional derivative along the trajectory of the fluid element.

2.1.2 Forms of Energy

The vector variable of velocity contains all information about the kinematical state of the
fluid. However, for the description of instantaneous flow properties it is convenient to intro-

2In statistical physics, this number is taken as a measure of the probability or entropy of the macrostate.
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duce certain scalar variables.
Neglecting their deformation as they move with the flow, fluid elements to some extent can

be treated as solid particles. Then with each of their degrees of freedom there is associated a
particular form of energy. As for any solid body, two three-dimensional vectors are necessary
to describe all degrees of freedom and to completely specify the kinematical state. These
are the velocity u of the centre of mass, and a spin vector s describing rotation about it.
Consequently, associated with the motion of the centre of mass is the translational kinetic
energy per unit mass u · u, and associated with the spin vector is the rotational kinetic
energy per unit moment of inertia s · s. The spin vector is defined through the relationship
v = s×x, where v is the velocity at a point x inside the fluid element. Assuming that in the
infinitesimal volume the fluid element is in solid body rotation s is constant for each fluid
element.

By making the transition from point to continuums mechanics, the rotational properties
of fluid elements become encoded in the spatial dependence of the velocity field. Then the
vorticity vector,

ω
def
= ∇×v , (2.1.5)

for a fluid element in solid body rotation is equal to twice the spin vector,

ω = ∇×(s×x)

= s ∇· x − (s · ∇)x

= 2s .

(2.1.6)

In analogy with the particle picture the kinetic energy density is defined as

κ
def
= v · v , (2.1.7)

and the rotational kinetic energy density or enstrophy density is defined as

ε
def
= ω · ω . (2.1.8)

The intensity of the flow,

σ
def
=

√
κε , (2.1.9)

is defined as a combined measure of the densities of kinetic energy and enstrophy.
The spatial averages of kinetic energy and enstrophy are denoted by

K
def
= 〈κ〉 (2.1.10)

and

E
def
= 〈ε〉 , (2.1.11)

respectively. For simplicity, the densities and averaged quantities will both be referred to as
kinetic energy or enstrophy, specifying if local or averaged values are meant only if there is
a chance for confusion.
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Taking into account deformation of fluid elements another form of energy becomes im-
portant. Compression and expansion of fluid elements changes the density of the fluid and
therefore its thermodynamic properties. Shearing deformation and viscosity lead to an irre-
versible dissipation of kinetic energy. In both cases thermal energy of the fluid is changed.
As seen in Section 2.2, changes in the fluid density are related to the divergence ∇ · v of
the velocity field, and for a Newtonian fluid with constant viscosity the dissipation of kinetic
energy is described by a forcing term proportional to ∇2v + 1

3
∇(∇ · v) [Batchelor, 1999].

The field vector v therefore contains not only all information about the translational and
rotational properties of the flow, but also some information about thermal processes.

If, as usual, the fluid is in an external gravitational field, then potential energy also has
to be taken into account. More complicated forcing due to water in the atmosphere and
its phase changes, or absorbtion and emission of radiative energy can only be described in
approximate, parameterised form and will therefore be neglected.

2.1.3 Order and Disorder

At a high resolution both the velocity and vorticity fields of a weakly dissipative and strongly
forced fluid such as the atmosphere, independently or relative to each other, are very irregu-
lar. When interested in an apparently regular flow such as a tornado vortex embedded in an
otherwise irregular flow associated with a convective storm system the first idea could be to
suspect that velocity and vorticity, at least in a limited domain, have to be regular relative
to each other. Since vorticity is related to the spatial dependence of the velocity field this
seems to be reasonable and, as seen in Section 2.3.2, the relative regularity of velocity and
vorticity is indeed related to the absolute regularity of the velocity field.

To describe the relative orientation of velocity and vorticity the scalar field of alignment
is defined as

α
def
= cosφ , (2.1.12)

where at each point in space φ is the shortest planar angle between the velocity and vorticity
vectors. Related to alignment is helicity density defined as

η
def
= v · ω
=

√
κε cosφ .

(2.1.13)

Helicity is therefore a combined measure of intensity and alignment. The averaged value of
helicity is denoted by

H
def
= 〈η〉 . (2.1.14)

From (2.1.13) it follows that

κε− η2 ≥ 0 , (2.1.15)

where the equality holds if and only if the velocity and vorticity vectors are parallel or
antiparallel. If this is true throughout a domain B, then there exists a relationship between
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velocity and vorticity such that in B

ω = χv (2.1.16)

with a suitable pseudo-scalar function χ(t,x). This ideal situation is known as Beltrami
flow. Scalar multiplying (2.1.16) by v, χ is found to be given by the ratio of the densities of
helicity and kinetic energy and will be called chirality.

As shown in Appendix A.1, from Schwarz’s inequality for continuous vector fields it
follows that

KE −H2 ≥ 0 . (2.1.17)

Volume averages of helicity as well as the local values are therefore limited by the given dis-
tribution of kinetic energy and enstrophy, and, by (2.1.15), Beltrami flows locally extremise
helicity with respect to kinetic energy and enstrophy. However, the defining equation (2.1.16)
permits chirality to be a function of space and time, in particular it can have positive and
negative values in the same domain. With χ2 = εκ−1, the local values of kinetic energy and
enstrophy only determine the magnitude of chirality. Averaged helicity of a Beltrami flow
in that domain can therefore attain arbitrary values depending on chirality given kinetic
energy and enstrophy. For Beltrami flows it follows from (2.1.17) that

〈χκ〉2 = 〈κ〉〈χ2ε〉 . (2.1.18)

For a given distribution of kinetic energy, this condition must be satisfied by chirality for
averaged helicity to be extremised. One solution of (2.1.18) is χ ≡ χ̄, where χ̄ is not a
function of the spatial variables. Considering perturbations χ′ of χ about that solution,
χ = χ̄+ χ′, with χ̄ def

= 〈χ〉, and writing κ = K + κ′, condition (2.1.18) becomes

K2〈χ′2〉+K〈χ′2κ′〉 − 〈χ′κ′〉2 = 0 . (2.1.19)

For this to be satisfied for arbitrary values of averaged kinetic energy K, the linearly inde-
pendent terms must each vanish. In particular, the variance of χ, 〈χ′2〉 = 〈(χ − χ̄)2〉, must
be zero and χ ≡ χ̄ in fact is the only solution to (2.1.18). Therefore, Beltrami flows, in a
finite volume, only extremise helicity for given kinetic energy (and enstrophy) if chirality is
constant throughout that domain. In that case the velocity field is nondivergent and helicity,
kinetic energy and enstrophy are proportional to each other. In the following, a Beltrami
flow with constant value of chirality will be referred to as a B-flow. Since B-flows satisfy

∇×v = χv , (2.1.20)

with a constant eigenvalue χ, they can be regarded as the eigenvectors of the curl operator.
In Section 2.5.2 this property will be used to construct an orthonormal system for the helical
decomposition of velocity.

There is a fundamental difference between velocity and vorticity regarding their behaviour
under certain coordinate transformations. While velocity as a true vector is the same in
all frames of reference at rest with respect to each other, the calculation of vorticity as
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a pseudo-vector depends on the handedness of the frame of reference. As a result kinetic
energy, enstrophy, and intensity are true scalars whereas helicity and related quantities such
as chirality and alignment are pseudo-scalars. Although helicity changes sign under a parity
transformation, i.e., a change of handedness of the frame of reference, the equations of motion
are invariant. The sign of overall helicity of a flow therefore cannot be dynamically relevant.
The concept of parity is discussed in greater detail in Appendix A.6.

2.1.4 Velocity Perturbations

Interesting flow properties in some sense are always deviations from the ‘normal’ state of the
flow. However, there are several possibilities to define the normal flow state, and consequently
the perturbations therefrom.

The average of a vector field over the entire domain is specified by the average amount and
average direction of the vectors at each point. In complex flow however the global average
is usually not representative and ‘perturbations’ from that normal state are generally not
small.

To include some variability, the normal flow state can be defined as a spatially varying
mean by pointwise averaging or smoothing over some limited domain around each point.
Then perturbations of extent less than the volume of averaging are ‘filtered out.’ The
spatial extent and intensity of deviations from that mean state then depend on the size of
the averaging domain. This procedure leads to the velocity decomposition (2.1.1) introduced
in Section 2.1.1.

In Fourier series representation the global averages of the Cartesian components of veloc-
ity are given by the zero-wave vector component. More generally the normal flow state can
be defined as the velocity field resulting from the waves with wavenumber below a certain
cutoff value. The spatial extent and intensity of deviations from that normal state then
depend on the energy spectrum and the wavenumber cutoff. As shown in Section 2.6.1, the
results of pointwise averaging in space, even for the velocity field given by a Fourier series,
and spectral truncation are not identical.

Regardless of how the normal flow state is defined, an eddy is defined here as a spatially
limited positive perturbation of kinetic energy from the normal flow state. Then, based on
the kinematical properties introduced in the previous sections, intense eddies are defined as
localised positive perturbations in intensity, i.e., positively correlated positive perturbations
in kinetic energy and enstrophy, and helical eddies are defined as localised, positively corre-
lated positive perturbations in intensity and alignment. Since tornadoes are intense, vortical
velocity and vorticity perturbations from the normal flow state they can be considered to be
special helical eddies.

2.2 Conservation Laws

Depending on the hydrodynamic model there may be a whole range of ‘conserved quantities,’
i.e., mathematical expressions that in some sense are invariant, usually under some trans-
formations associated with the motion of the fluid. These conserved quantities can broadly
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be separated into two classes: local and integral invariants.
Tur and Yanovsky [1993] showed that all local invariants can be represented by differential

forms in the calculus of differential geometry.
Invariant zero-forms are associated with Lagrange invariants I defined by

dtI ≡ 0 (2.2.1)

and characterised by surfaces I = const . that are ‘frozen into the fluid,’ meaning that they
move with or are advected by the flow field v. The velocity components in inertial flow are
examples of Lagrange invariants.

An invariant one-form represents a partial differential equation for a vector field S that,
in tensor notation, is given by

∂tSj + v
k∂kSj + Sk∂jv

k ≡ 0 , (2.2.2)

where

∂j
def
= ∂xj (2.2.3)

and summation over a pair of covariant and contravariant indices is implied. The planes
S · dx = 0 perpendicular to S are frozen-in if and only if S satisfies the Frobenius condition
S · ∇×S = 0, i.e., if and only if S is nonhelical.

Invariant two-forms in coordinate representation lead to the differential equation

∂tJ + LvJ ≡ 0 (2.2.4)

which is satisfied for a vector field J whose vector lines are frozen into the flow. Here the
Lie-derivative

LvJ def
= ∂vJ − ∂Jv (2.2.5)

in Cartesian coordinates represents advection of the vector lines of J along streamlines of
the vector field v. Vortex lines in incompressible flow or vector lines of potential vorticity

ωp
def
=

ω

ρ
(2.2.6)

with mass density ρ in barotropic flow are frozen-in.
An invariant three-form is a coordinate independent representation of the differential

equation

∂tρ+∇· (ρv) ≡ 0 (2.2.7)

in Cartesian coordinates for any conserved density ρ. In fluid dynamics the most important
conserved density is mass density.

The connection between different local invariants allows the derivation of new invariants
from known invariants of a different type. For any Lagrange invariant I, S = ∇I has
frozen-in surfaces I = const . perpendicular to S. Alternatively, for any vector field S with



14 2 Flow in Physical Space

frozen-in planes S · dx = 0, and any frozen-in vector field J , I = J · S is a Lagrange
invariant. In isentropic (adiabatic and reversible) flow for example potential temperature θ
is a Lagrange invariant. As seen before, under barotropic conditions potential vorticity is
frozen-in. Therefore, under isentropic and barotropic conditions, Ertel’s potential vorticity
ωp · ∇θ is a Lagrange invariant. Since for an ideal gas potential temperature is a function
of any two (e.g., pressure p and density ρ) of the three basic thermodynamic variables,
∇θ · (∇ρ×∇p) ≡ 0. In that case the potential vorticity equation of a Lagrangian fluid
element reads

dtωp = ∂ωpv + ρ
−3∇ρ×∇p . (2.2.8)

Invariance of Ertel’s potential vorticity then follows from the fact that

dt(∂ωpθ) = ∂∂ωpvθ + ωp · dt∇θ

= ∂ωpdtθ ,
(2.2.9)

and dtθ ≡ 0 in isentropic flow [cf. Dutton, 1995; pp. 381–383]. Here the general product rule
of partial differentiation

∂ω∂vθ = ∂∂ωvθ + ω · (∂v∇θ) (2.2.10)

was used which holds for any two vectors v and ω and any scalar θ. For an ideal gas the
Lagrange invariance of Ertel’s potential vorticity can therefore be extended to baroclinic,
isentropic and therefore inviscid flow.

Integral invariants are obtained from local invariants through integration. The integral
over an invariant one-form is interpreted in coordinate representation as the conservation
of circulation of the vector field S along any closed contour frozen into the fluid. The
integral over an invariant two-form represents the constant flux of a frozen-in vector field
J across any closed Lagrangian surface, and the integral of a three-form or the volume
integral of a conserved density over a volume moving with the flow is constant. An example
is the conservation of mass in any Lagrangian volume since mass density satisfies (2.2.7)
independently of the forcing.3

For special forcing other integral conservation laws can be derived. In the presence of
conservative forces only, conservation of kinetic energy holds in any Lagrangian volume.
Conservative forces exclude compressibility and molecular viscosity since the energy transfer
from kinetic to thermal energy during compression and dissipation is irreversible. Conser-
vation of kinetic energy therefore only applies to an ideal fluid. However, a transformation
of the equations of motion to a rotating frame by the inclusion of Coriolis and centrifugal
forces does not change the result since pseudo-forces by definition cannot do work. With
constant mass density ρ0 the equation of motion of an ideal fluid, or Euler equation, in a
frame of reference at rest with the Earth’s surface is given by

∂v

∂t
= v×(ω + 2Ω)− ∇

(
1

2
v2 +

p

ρ0
+ Φ

)
(2.2.11)

3As mentioned before, mass conservation is in fact the defining property of Lagrangian volumes.
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where Ω is the spin vector of the Earth and Φ is the effective gravitational potential taking
into account centrifugal forces. Then

∂tκ = −v · ∇ (κ+ 2ρ−1
0 p+ 2Φ

)
= −∇ · [(κ+ 2ρ−1

0 p+ 2Φ
)
v
]
,

(2.2.12)

where the second equality holds since for an incompressible fluid ∇ · v ≡ 0. The time rate
of change of total kinetic energy is derived by the use of Gauß’ law of integration,

dtK =

∫
VL

∂tκ dV

= −
∮
S(VL)

(
κ+ 2pρ−1

0 + 2Φ
)
v · n dS ,

(2.2.13)

where the integral over the closed surface S(VL) of VL with outward directed unit normal
vector n vanishes since by definition any flux across the boundary of a Lagrangian volume
is zero. This proves the invariance of the total kinetic energy of a fixed portion of mass of
an ideal fluid.

Under slightly more general forcing but for more special boundary conditions integrated
helicity is also conserved. For a barotropic fluid the density ρ = ρ(p) is a function of pressure
only and

∇
∫ p(x)

p0

dp

ρ(p)
= ∇ [Fρ−1(p(x))− Fρ−1(p0)]

= ∂p(x)Fρ−1(p(x))∇p(x)

= ρ−1∇p ,

(2.2.14)

where

Fρ−1
def
=

∫
dp

ρ(p)
(2.2.15)

is the undeterminate integral of ρ−1 over pressure, and p0 is a constant reference pressure.
The equation of motion of a barotropic fluid is given by

dtv = −∇
(∫

dp

ρ(p)
+ Φ

)
(2.2.16)

from which, with mass conservation (2.2.7), the equation of motion

dtωp = ∂ωpv (2.2.17)

of potential vorticity can be derived. The total Lagrangian volume VL is divided into fluid
elements dm = ρdV that are infinitesimally Lagrangian volumes themselves. Therefore

dt(dm) = 0 (2.2.18)
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and

dtH =

∫
VL

dt(v · ωp ρdV )

=

∫
VL

dt(v · ωp)ρdV

=

∫
VL

[
−ωp · ∇

(∫
dp

ρ(p)
+ Φ

)
+ v · ∂ωpv

]
ρdV

=

∫
VL

∇·
[(
1

2
v2 −

∫
dp

ρ(p)
− Φ

)
ω

]
dV

=

∮
S(VL)

(
1

2
v2 −

∫
dp

ρ(p)
− Φ

)
ω · n dS .

(2.2.19)

In the fourth equality the product rule ∂ωp

1
2
v2 = v · ∂ωpv was used together with the fact

that the vorticity field is nondivergent. A sufficient condition for the invariance of the total
helicity of a barotropic fluid in a Lagrangian volume is that the flux of vorticity out of the
volume vanishes everywhere. This may be due to the fact that vorticity is zero on or parallel
to the bounding surface.

Moffatt [1969] demonstrated that for closed, isolated vortex filaments in a barotropic
fluid helicity is related to the oriented winding number of any pair of linked vortex filaments,
or to the self-winding number of a single vortex filament. In both cases helicity can be
interpreted as a measure of the topological complexity or ‘knottedness’ of an ensemble of
closed, isolated vortex lines. For such a discrete vorticity field in a barotropic fluid there exists
at least one Lagrangian volume in which helicity is conserved. It contains only complete,
closed vortex lines. Conservation of helicity in that case has a simple topological explanation
as the conservation of the oriented linking number since in the absence of viscosity vortex
line reconnection is impossible. However, in a fluid with a continuous vorticity field, single
vortex lines and vortex filaments are generally not closed. A closed vortex line corresponds
to a periodic solution of a generally nonlinear ordinary differential equation dtξ(t, ξ0) =
ω(t, ξ(t, ξ0)), where ξ is the position vector along the vortex line. Initial conditions ξ(0, ξ0) =
ξ0 that belong to periodic solutions generally lie on a possibly fractal set of very small
Lebesgue measure. In that case even for an ideal fluid the topological interpretation of
helicity does not hold.

In fact, as shown above, the invariance of helicity only holds under very special boundary
conditions that generally cannot be satisfied in a bounded barotropic fluid. It is therefore
much more instructive to use the conservation laws as a starting point for the discussion of
mechanisms responsible for nonconservation of kinetic energy and helicity in realistic flow
situations. For that a kinematical instead of topological interpretation of helicity will be
developed in the following sections.

2.3 Flow Instability and Stability

In Section 2.1.3 the regularity of the vorticity field relative to the velocity field was discussed.
Helicity was introduced as a measure for the relative regularity of velocity and vorticity. In
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this section the role of helicity in the regularity of the velocity field itself is established.

2.3.1 Onset of Turbulence

One of the fundamental questions in fluid mechanics is when and under what circumstances
a regular flow becomes irregular.

A regular or laminar flow is characterised in space by smooth streamlines that show
a similar pattern in nearby flow regions. Significant qualitative changes occur slowly and
continuously. The spectral characteristics include a narrow range at small wave numbers
containing most of the kinetic energy. A special type of laminar flow is a potential flow that
by definition is irrotational. More generally, laminar flows are simple rotational flows that
can be approximated well by analytical functions in space and time, at least in a piecewise
fashion.

An irregular or turbulent flow is simply defined as one that is not laminar. It has quali-
tatively very different streamline patterns in neighbouring flow regions and shows significant
qualitative changes over short time intervals interrupted by periods of little change. This
unsteady behaviour is called temporal intermittency and is one of the hallmarks of turbu-
lence. Turbulent flows are inherently rotational and as seen in the next section are likely to
have values of integrated helicity close to zero. They have a broad spectral range of kinetic
energy and other kinematical scalar variables.

The transition from laminar to turbulent flow is referred to as flow instability . However to
quantify exactly when a laminar flow becomes turbulent is highly subjective. Qualitatively
the onset of turbulence occurs when the forcing mechanisms dominate over the damping
mechanisms.

For the atmosphere the most important damping mechanisms on the large scale are
negative buoyancy or a stable density stratification, the Coriolis force due to the Earth’s rapid
rotation, and boundary layer effects at the Earth’s solid surface. Excitations of waves with
very large wavenumbers are also damped out efficiently by internal viscosity and molecular
diffusion of momentum. These short waves are usually, although not necessarily, associated
primarily with kinetic energy perturbations of small spatial extent.

The forcing mechanisms in the atmosphere are a lot more complex than the damping
mechanisms. In a coffee cup turbulence can be created simply by random external stirring.
In engineering flow turbulence is created by forcing the fluid through a system of pipes or
by objects moving through the fluid (turbine blades, airplanes, cars). In all cases the shape
of the mechanical object is well defined and within the pipes or in the vicinity of the moving
object imposes a certain flow on the fluid. It is then possible to calculate at which values of
the scale invariant parameters such as Reynolds and Prandtl number the streamlines separate
from the imposed boundary which is then defined as the onset of turbulence. Mechanical
stirring by moving objects including ocean waves exists in the atmosphere as well but is
insignificant for the generation of turbulence in the free atmosphere where storm formation
takes place.

All important forcing mechanisms can eventually be traced back to radiative energy
input from the sun. Differences in the material properties of the atmosphere and the Earth’s
surface lead to spatially varying amounts of energy absorbed and to varying changes in
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temperature, pressure, and density of the absorbing material (essentially air and water).
These thermodynamic differences do not create turbulence by themselves, only indirectly
through their influences on the velocity field. Generally fluid motion is described by the
system of nonlinear partial differential equations

∂tv = −∂vv + f

= v×ω − ∇1

2
v2 + f ,

(2.3.1)

where f denotes the acceleration due to the sum of all forces acting on fluid elements. The
gradient of kinetic energy −∇1

2
v2 can be included in the gradient of potential energy due to

gravity and pressure forces (weighted by density), −∇
(∫

dp
ρ
+ Φ
)
, that is part of the forcing

term f . The term v×ω is responsible for basically all interesting kinematical phenomena
in fluid dynamics, in particular for the generation of turbulent velocity perturbations and
energy transfer between spectral components of the velocity field. It is called inertial forcing
term because even in the absence of the redefined forcing term in Eulerian coordinates it
creates local changes in the velocity and vorticity field with time such that

∂tv − v×ω ≡ 0 . (2.3.2)

There are essentially two different ways of describing the onset of turbulence in a laminar
fluid.

In space the flow is only actively turbulent in regions where v×ω exceeds the sum of
all damping forces. There the effect of the inertial forcing term is to generate turbulent
velocity perturbations or eddies from intense shear zones of the laminar flow and to mix the
turbulent kinetic energy away from the shear zone and into the laminar part of the fluid,
thereby spreading the region of turbulence. First instabilities typically occur over a small
spatial extent on a scale where viscosity is the dominant damping mechanism, and the route
to turbulence proceeds through continued forcing and repeated interactions of turbulent
eddies.

In addition to creating shear instabilities the inertial forcing term is also responsible for
cross-spectral energy transfer, statistically from spectral regions of high kinetic energy to
spectral regions with low kinetic energy. As mentioned before a laminar flow has a narrow
spectral peak at small wavenumbers. This peak must be due to external forcing. From
that initial state a net transfer of kinetic energy by inertial forcing takes place to larger wave
numbers while the main spectral peak is maintained if external forcing persists. Transport of
kinetic energy usually proceeds through local spectral interactions, i.e., interactions between
wave components with similar wavenumbers, in many small steps across the spectrum and
is therefore referred to as a cascade of kinetic energy; more precisely a direct cascade in the
usual case of energy transport from small to large wavenumbers or an inverse cascade in the
opposite case. In addition to the cascading process cross-spectral energy transfer can also
occur through nonlocal interactions whereby waves with very different wavenumbers interact,
or a wave is excited through the local interaction of two other waves with very different
wavenumbers. If the kinetic energy ‘reaches’ large enough wavenumbers for which molecular
diffusion becomes important it is dissipated. Through these processes often a stationary
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state is reached where kinetic energy transferred from small wavenumbers into the spectral
range between the forced and damped wavenumbers is equal to the kinetic energy removed
at large wavenumbers. The intermediate spectral region that is neither significantly forced
externally nor significantly damped by internal viscosity and only influenced by inertial
forcing is referred to as inertial range.

A continuously forced weakly dissipative fluid such as the atmosphere is almost always
and everywhere fully turbulent, and eddies of many different sizes exist and interact. The
fluid is in a state where statistically the generation of turbulence by the inertial force is
balanced by the dissipation of turbulence by damping forces.

The mathematical description of turbulence is still considered to be one of the most chal-
lenging problems in science. The greatest difficulties arise due to the apparent randomness
that seems to be incompatible with the usual deterministic laws of classical mechanics. Start-
ing with the work by Taylor [1935, 1936, 1938] and von Kármán [1937] many scientists have
therefore contributed to the formulation of a statistical theory of turbulence. Even Werner
Heisenberg after establishing the foundation of modern quantum theory and during the final
years of World War II felt compelled to return to the topic of his dissertation [Heisenberg,
1924] and, in collaboration with von Weizsäcker during their internment at Farm Hall in
1945, independently from Kolmogorov [1941a, 1941b] and Onsager [1945], derived scaling
laws for the kinetic energy spectrum and velocity correlation functions of isotropic turbulence
[Heisenberg, 1948]. The starting point for a statistical description is an assumption about
the existence of a universal equilibrium for motion on scales small enough to be essentially
decoupled from the relatively slow evolution of the large scales yet too large for dissipation
due to internal viscosity to be effective. While large-scale fluid dynamical problems must
be solved for specific forces and boundary conditions this assumption asserts that motion,
corresponding essentially to kinetic energy in the inertial range, reaches an asymptotic state
that to some degree is independent of the large-scale forcing and the structure of the viscous
boundary layer.

Turbulence theory strongly focusses on the discrete or continuous Fourier representation
of the flow and the associated kinetic energy spectra. For that reason most works on tur-
bulence define eddies as flow components associated with a single wavenumber k, and the
inverse L ∼ k−1 of that wavenumber as their typical length scale. The interaction timescale
T of small scales is then defined to be of order L/v(k) where v(k) is the amount of the Fourier
transform of the eddy flow component [e.g., Chorin, 1994; Chap. 3]. According toKolmogorov

[1941a], kinetic energy in the inertial range has a power law dependence E(k) ∼ k−
5
3 . Then

v(k) ∼ k−
5
6 and the interaction timescale T ∼ (k v(k))−1 ∼ k−

1
6 decreases with increasing

wavenumber. However, this is plausible only if the main energy of individual wavenumbers is
associated with velocity perturbations of roughly the same physical extent. If this criterion
is not satisfied a meaningful spatial scale and interaction timescale cannot be assigned to
individual wave components. Therefore, in turbulence theory the statistical interpretation
of flow properties starts with the definition of eddies. The Fourier expansion coefficients
for wave vectors on a spherical shell S(k) with radius (wavenumber) k are interpreted as
being representative for the typical energy of eddies of spatial scale k−1. The interaction
between these Fourier components with those on a shell S(q) is then interpreted statistically
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as the interaction (i.e., an exchange of energy) between eddies on the corresponding scale.
Generally, the interpretation of energy of a certain wavenumber as being representative of
flow features of a certain physical size is not possible and a clear separation must be made
between spatial and spectral scales. Therefore, an alternative definition of the scale of eddies
based on spectral properties is given in Section 2.6.1.

With the usual definition in turbulence of eddies as individual wave components eddies are
not recognisable flow features in the sense of localised velocity perturbations of a particular
spatial extent as defined in Section 2.1.4. A Fourier series expansion is therefore an abstract
mathematical representation of the flow, where unlike the three velocity components the
new variables given by the expansion coefficients are not directly observable. However, in
Section 3.2 a highly truncated model is derived, where an individual vortex is represented
by two waves. In that simple case changes in the corresponding Fourier components are
uniquely associated with the evolution of a particular recognisable flow structure. In that
sense the expansion coefficients become ‘physical’ variables or ‘observables.’

2.3.2 Flow Structures

Once velocity perturbations are formed at small scales by shear instabilities induced by the
inertial force, they interact and start to grow by entrainment of the kinetic energy of the
shear zone. However, if the nonlinear forcing persists after their formation kinetic energy
in physical space is mixed away from an initially coherent eddy, and in wavenumber space
kinetic energy is efficiently ‘transported’ from large to small spectral scales and eventually
dissipated. While the inertial forcing and shear instabilities are responsible for the onset and
maintenance of turbulence, these mechanisms are damaging for an increase in the intensity of
large eddies. To prevent the diffusion of kinetic energy after the formation of eddies, inertial
forcing must be minimised. To survive longer as a coherent kinetic energy perturbation, an
eddy must acquire kinematical properties that minimise the very forcing term that created
the initial disturbance in the normal flow from which it grew.

With the definitions of Section 2.1.3,

|v×ω| = σ sinφ , (2.3.3)

and locally inertial forcing vanishes with perfect alignment between velocity and vorticity. It
can therefore be assumed that intense velocity perturbations with strong alignment are more
persistent than velocity perturbations with weak alignment. Since dynamically significant
eddies are intense, under that hypothesis, the meaning of helicity for eddies and the flow in
general can loosely be expressed as

helicity = intensity × alignment

= significance× persistence .

If this is true, then helical eddies dominate the present flow state through their intensity, and
are likely to dominate the future flow state through their persistence. Intense and persistent
eddies that preserve their qualitative kinematical properties over sufficiently long periods of
time to be able to interact with each other are also referred to as flow structures.
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There is a qualitative similarity between helical flow structures and elementary particles.
Like quantum mechanical particles they do not have solid or well defined boundaries and
therefore their size, shape, position, and other space related parameters cannot be defined
precisely. However, their limited spatial extent and their persistence, over some period of
time, allow to describe flow structures as entities or ‘fluid particles.’

However, the validity of the assumption about the persistence of helical velocity pertur-
bations, particularly vortices, under various circumstances is a topic of much debate.

The idea of the role of alignment in creating low-dimensional coherent structures, or
spatial intermittency, embedded in a turbulent flow is almost as old as turbulence theory
itself. Making the inertial forcing responsible for the generation of turbulence [Reynolds,
1883] it is an immediate logical consequence. In a series of papers, based on the above
arguments, Levich and coworkers established a theoretical explanation for the existence of
large intense and coherent vortices and storms, such as tornadoes and hurricanes, in an
otherwise turbulent flow.

Levich and Tsinober [1983a, 1983b] showed that in addition to helicity also the helicity
correlation function is invariant in homogeneous turbulence of an ideal fluid and cascades
to small wavenumbers. With increasing anisotropy due to large-scale damping mechanisms
an increasing fraction of kinetic energy cascades to small wavenumbers together with the
helicity correlation function. The authors note that helical eddies are quasistationary and
the turbulent cascade proceeds effectively in weakly helical subregions generated as a result
of shear instabilities. These sheets of active turbulence are typically fractal with Hausdorf
dimension between two and three.

The fact that coherent structures are quasistationary means that they are zeros of the
transfer term in the Fourier transformation of the Navier-Stokes equation or singularities of
the renormalised Green’s function [Levich and Tsinober, 1983b]. The presence of coherent
structures therefore leads to divergent perturbation series. Helical structures through stirring
on the one hand and eddy viscosity on the other contribute significantly to the energy cascade
to large wavenumbers. If these effects are subtracted from the dynamical equations the
renormalised nonlinear transfer is reduced effectively to the (fractal) turbulent subsets free
of helical eddies where reduced mode coupling can be calculated perturbatively.

Levich and Tzvetkov [1984, 1985] argued that turbulent stirring of the cloud field can
transfer thermal to kinetic energy with an efficiency of ∼ 2 − 3%. They showed that in
nonhelical shear layers strong, short-lived convective perturbations most likely generate pairs
of vortices with helicity roughly equal in magnitude and opposite in sign. This turbulisation
of the mean flow occurs on a scale much smaller than a tornado or an organised storm system.
The formation of larger vortex structures from excitation of random motion on small scales
is explained by the inverse cascade of the helicity correlation function. This increases the
correlation length or the coherence scale of large-scale velocity fluctuations.

Lilly [1986] reviewed the role of helicity as a stabilising factor for severe convective storms.
He confirmed that small wavenumber perturbations are likely to be characterised by high
helicity and tend to dominate the flow statistics whereas most dissipation in the same range
of wavenumber occurs in regions of low helicity. Moreover for a given kinetic energy, strongly
helical flow dissipates only at 1/4 the rate of nonhelical turbulent flow.

Based on perturbation theory, Belian et al. [1998] found that the effective turbulent
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viscosity in helical turbulence is less than for the nonhelical case, resulting in a slow-down
of the energy transfer along the spectrum from small to large wavenumbers. These effects
are noticeable for Gaußian turbulence in second order of the perturbation velocity field, and
in third and higher order for non-Gaußian turbulence.

However, it was shown byWallace and Balint [1990] in wind tunnel experiments on scales
of a few centimetres to metres that helicity density is not a necessary property of coherent
vortices. They found that in turbulent boundary layers, mixing layers, and in grid flow the
relative orientation of velocity and vorticity inside the vortex depends on the orientation of
the vortex axis relative to the mean flow. They also found little connection between the
energy dissipation rate and helicity density.

Ditlevsen and Giuliani [2001] and Chen et al. [2003] found that statistically helicity often
vanishes at laboratory scales and for most engineering applications. The hypothesis brought
forward by Levich and Tsinober [1983] that organised, large-scale coherent motions are a
universal and intrinsic property of all turbulent flows, stabilised by large values of helicity
and not necessarily related to shear instabilities, is therefore not justified.

On the other hand,Moffatt and Tsinober [1992] state that nonzero mean values of helicity
occur naturally in a wide variety of geophysical flows, in which cases it is likely to play
an important role in the evolution and stability of these laminar or turbulent flows. As
specific examples they note that helicity density of the rotating updraft of thunderstorms
(mesocyclone) is on the order of 0.1ms−1, and of the tornado vortex 10ms−1.

There obviously is a large difference between laboratory and geophysical flows concerning
the role of helicity in the formation of coherent flow structures and spatial and temporal
intermittency in a turbulent fluid. The importance of helicity specifically for the formation
of updraft rotation in thunderstorms and for the formation of smaller, embedded vortices is
discussed in greater detail in the following section.

2.4 Tornado Phenomenology

Observational tornado research focusses on visually striking storm features and their pos-
sible connection to tornadogenesis. As such it focusses on large-scale persistent structures
associated with all or at least the majority of tornadic thunderstorms. Among the main
characteristics of tornadic thunderstorms are the mesocyclone, i.e., the main rotating up-
draft with a diameter on the order of 10 km, the hook echo, a hook-shaped precipitation
region to the right rear of the updraft facing downstream with the horizontal mean flow,
and the rear-flank downdraft. Just prior to tornadogenesis, the mesocyclone often contains
a smaller vortex with a diameter of about 1 km called tornado cyclone.

Although the phenomenological approach in many ways is opposite to the approach
taken by turbulence theory, the two scientific branches have the same fundamental goal in
that they are trying to establish the common statistical relationships between events. While
turbulence theory focusses on the forcing independent universal properties of turbulent small-
scale motion in the inertial range, tornado research identifies forcing mechanisms associated
with the common features of large, well organised severe storm complexes that may be
responsible for the formation of a coherent smaller-scale vortex.
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The most intense tornadoes tend to occur between mesocyclone and rear-flank downdraft.
Since the mesocyclone is a cyclonically rotating updraft and the rear-flank downdraft an
anticyclonically rotating downdraft, tornadoes therefore tend to form near the most intense
positively helical shear zone, and in this region are typically found to rotate cyclonically.4

In addition, the large-scale horizontal mean flow is typically veering over the lowest few
kilometres. The severe storm system and the embedding larger-scale mean flow are therefore
an overall positively helical flow environment.

The explanation of how an intense rotating updraft can form from an essentially hori-
zontally homogeneous, vertically sheared horizontal flow is well established. Starting point
is the vorticity equation

dtω = ∂ωv − ω ∇· v +∇×f (2.4.1)

where again f represents the sum of all forcing terms. The role of the various terms in the
generation of a vertical vortex is best investigated by separating vorticity into horizontal,
ωh, and vertical, ζ, components. Neglecting the forcing terms, the time evolution of these
vorticity components is determined by

dtωh = ωh · ∇vh︸ ︷︷ ︸
A

+ζ∂zvh︸ ︷︷ ︸
B

−ωh∇ · v︸ ︷︷ ︸
C

+ · · · (2.4.2)

and

dtζ = ωh · ∇w︸ ︷︷ ︸
A

+ζ∂zw︸ ︷︷ ︸
B

−ζ∇ · v︸ ︷︷ ︸
C

+ · · · , (2.4.3)

where vh denotes horizontal velocity. Term A in (2.4.3) is positive if horizontal vorticity has a
component along the horizontal gradient of vertical velocity. If horizontal flow with vorticity
along the direction of motion (positive helicity) enters a region where vertical velocity is
increasing (an updraft region), fluid elements will be deflected upward from their horizontal
trajectories. At the same time, through term A, they acquire positive vertical vorticity.
Their helicity therefore remains positive. If horizontal flow with positive helicity encounters
a downdraft region (negative horizontal gradient of vertical velocity), fluid elements will be
deflected downward while gaining negative vertical vorticity and thus remaining positively
helical. Similarly negatively helical flow acquires anticyclonic vorticity in an updraft region
and cyclonic vorticity in a downdraft region, again maintaining its sign of helicity. The effects
of terms A and B in (2.4.2) are complimentary to those in (2.4.3). For helical flow their
combined effect is to ‘tilt’ vortex lines with or against the curvature of streamlines depending
on whether the flow is positively or negatively helical. The term ∂ωv in (2.4.1) is therefore
called tilting term. Given a (thermally direct) circulation cell of positively helical motion
the effect of the inertial forcing term is to produce a ‘tilting cycle’ with cyclonic updraft and
anticyclonic downdraft. It is important to note that for nonhelical horizontal and horizontally
homogeneous flow entering an updraft or downdraft region no vertical vorticity is generated
through the tilting term. Term B in (2.4.3) implies that (positive) vertical vorticity increases

4There may be a weaker anticyclonically rotating tornado along the leading edge of the storm.
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if vertical velocity increases with height. This term is therefore referred to as stretching term.

The terms C in (2.4.2) and (2.4.3) are straightforward to interpret. In a region of conver-
gent flow they lead to a higher concentration of positive or negative vorticity depending on
the momentary sign of the respective vorticity component and to a lower concentration in
a region of divergent flow. They are therefore called convergence terms. For an irrotational
flow they do not generate vorticity.

As shown in Section 2.2 local changes in helicity must be such that the total helicity in a
Lagrangian volume is conserved for barotropic, inviscid flow in an inertial frame of reference,
and therefore also for inertial motion. Tilting and convergence on the average only transfer
helicity between different modes of motion such as from a horizontal, vertically veering shear
flow to a cyclonically rotating updraft.

For inertial flow with dtv ≡ 0 it follows that the time rate of change of helicity density
following the motion of a fluid element is given by

dtη = ω · ∇1

2
v2 − η∇ · v . (2.4.4)

Neglecting convergence, helicity increases if vorticity has a component along the gradient
of kinetic energy. If the fluid element momentarily has perfect alignment the increase in
helicity is maximised if the motion is along the direction of largest increase in kinetic energy.
Since alignment is already maximised the increase in helicity is only due to an increase in
intensity (definitely due to an increase in kinetic energy and possibly also due to an increase
in enstrophy). Conversely for a momentarily nonhelical fluid element the increase in helicity
is maximised if the motion is along an isosurface of kinetic energy. The increase in helicity
is then primarily due to an increase in alignment and possibly enstrophy.

Davies-Jones [1984] investigated the linearised, inviscid, isentropic, shallow, and dry
equations of motion where the mean flow state was assumed to be steady, horizontal, only
a function of height, and in hydrostatic balance. Due to large vertical shear the Coriolis
force was neglected. Basically the same results were found as for inertial motion. Tilting of
horizontal vorticity by an updraft produces a counterrotating pair of vertical vortices. While
for ‘streamwise’ vorticity in a vertically veering horizontal flow (with positive helicity) there
is a spatial correlation between vertical velocity and vorticity (both vortices, cyclonically ro-
tating updraft and anticyclonically rotating downdraft, are positively helical) no correlation
is found for ‘crosswise’ vorticity in a horizontal mean flow with pure vertical speed shear
(zero helicity). However the reason for that is different to that in the case of inertial motion.

It was shown in Section 2.2 that Ertel’s potential vorticity is a Lagrange invariant of
isentropic flow. Then, if the initial conditions of the horizontal mean flow are such that
isentropic surfaces and vorticity are horizontal, Ertel’s potential vorticity is identically zero
following the motion. This can only be true if vortex lines remain in isentropic surfaces. For
these special initial conditions effectively the variable ω ·∇θ is a Lagrange invariant although
density may fluctuate along trajectories. If the buoyant updraft shows up as an isolated peak
on the isentropic surfaces this explains the tilting of vortex lines and the formation of the
counterrotating pair of vortices.

Tilting and convergence processes are both purely kinematical mechanisms in that they
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do not directly involve external forcing. An investigation of inertial motion allows inferences
about the general, forcing independent behaviour of the flow and an identification of the basic
mechanisms of vortex formation. Again this procedure is similar in principal to turbulence
theory, where the investigation of inertial forcing focusses on different scales and phenomena,
using a spectral rather than a spatial representation of the flow.

For more general forcing the previous arguments about the Lagrange invariance of Ertel’s
potential vorticity do not hold and mechanisms other than tilting and convergence must be
considered. The most important question that needs to be addressed is how helicity necessary
for the generation of a vertical vortex through vortex line tilting can be generated in the
first place. Generally this can be achieved by any mechanism that had to be excluded in
Section 2.2 in deriving the helicity conservation law for a barotropic fluid in a Lagrangian
volume. These are baroclinic processes and Coriolis force affecting the main body of the
fluid, and molecular viscosity acting mainly on the solid boundaries. Fluxes of vorticity
across the open boundaries also lead to helicity changes inside a Lagrangian volume. The
importance of veering wind shear for high helicity in the storm inflow region was already
mentioned. The typical existence of this vertical wind profile in the lowest kilometre of the
atmosphere is explained in the Ekman theory by the adjustment of the boundary layer flow to
the geostrophic wind aloft, i.e., by the combined action of Coriolis and pressure gradient force
together with surface friction. In the northern hemisphere, by the thermal wind relationship,
a veering wind profile can also be the result of warm advection by the geostrophic wind.5

Along outflow boundaries and other fronts helicity can be generated by baroclinic processes.
The potential relevance of these mechanisms specifically for tornadogenesis was confirmed in
numerical simulations by Walko [1993] for veering wind shear and by Klemp and Rotunno
[1983] for baroclinicity.

Given initial helicity several conceptual models were proposed to explain the formation
of tornadoes in severe storm systems. They are essentially all combinations of three basic
mechanisms:

(i) tilting of horizontal streamwise vorticity by an updraft or downdraft, i.e., transfer of
helicity from a horizontal shear flow to a rotating updraft,

(ii) spin-up or vortex line stretching in zones of convergent flow with accelerating vertical
motion and preexisting vertical vorticity, and

(iii) solenoidal production of horizontal streamwise vorticity in baroclinic zones and sub-
sequent tilting and stretching.

Davies-Jones and Brooks [1993] described a mechanism similar to the tilting cycle de-
scribed above that keeps helicity concentrated in the storm system and may therefore pro-
mote tornadogenesis. It includes deflection of the horizontal, helical storm outflow by the
downdraft at the inversion layer, and transport of helicity close to surface where it is de-
flected again and recycled back into the updraft. Since helicity of the storm is maintained,
as the thermal circulation is intensified so is updraft and downdraft rotation.

In addition to a buoyant updraft also forced lifting along outflow boundaries may be
responsible for strong tilting close to the ground. Convergence at air mass boundaries and

5In the southern hemisphere warm advection leads to a backing wind profile, negative helicity, and
therefore again, as expected, to cyclonic updraft rotation (negative vertical vorticity) through tilting.
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in the inflow region of the storm updraft contributes further to the intensification of vertical
vorticity. In factWakimoto and Atkins [1996] suggested that convergence may in some cases
dominate tornadogenesis. In that scenario a tornado is spun up by stretching of vertical
vorticity if an intense mesocyclone moves over a layer of vertical circulation that exists
independently of the storm system in a horizontal shear zone. This is essentially the same
mechanism that is responsible for the formation of nonsupercell tornadoes or landspouts
[Wakimoto and Wilson, 1989].

Several other mechanism were proposed to explain the formation of tornadolike vortices
independently of severe storm systems. Barcilon and Drazin [1972] for example suggested
that dust devils may form from horizontal shearing instabilities along gust fronts when
vertical vortex sheets roll up into vortices. In the landspout or dust devil scenario the role of
the storm system if any is to intensify ‘foreign’ circulation through stretching by the storm
updraft and the own circulation simply serves to stabilise the storm system. Normally these
relatively weak non-storm-related vortices are spun up by convergence along shear zones and
air mass boundaries from which they derive their circulation. However in the presence of
an intense updraft the same mechanisms may be responsible for the formation of an intense
tornado.

All these conceptual models suggest that the main characteristics of the larger-scale storm
environment for the generation of mesoscale circulation are veering wind shear, together
with intense neighbouring regions of positive and negative buoyancy. In a large climato-
logical study, Rasmussen and Blanchard [1998] indeed confirmed that combined measures
of buoyancy and vertically turning wind shear are able statistically to discriminate between
supercell and ordinary thunderstorms, while measures of shear and buoyancy alone only
weakly differentiate between the two types of storms.6

Part of the problem may be that shear parameters such as boundary layer to 6 km
shear and mean shear7 contain both effects due to speed and directional shear, while speed
shear only in connection with strong directional shear contributes to helicity in a storm
environment and therefore to rotating updrafts through tilting. Consequently these param-
eters separate only weakly between rotating and ordinary thunderstorms. Storm-relative
helicity8 takes into account primarily changes in the horizontal mean flow perpendicular
to the mean flow at a given level and therefore separates well between supercell and or-
dinary thunderstorms. As a result a combined measure of shear and buoyancy such as
the energy-helicity-index performs better than the Bulk-Richardson-Number in predicting
supercell thunderstorms.

However, the differences between tornadic and nontornadic severe thunderstorms seen
in forecast parameters are not sufficiently significant to allow for reliable tornado forecast-
ing without high false alarm rates. The severe weather parameters mentioned above were
defined to characterise the potential of a large-scale, horizontal mean flow to produce a ro-

6For a short description of the distinguishing characteristics of ordinary and supercell thunderstorms see
Appendix B.

7For a definition of operational forecasting parameters see Rasmussen and Blanchard [1998].
8This parameter is equal to helicity only for a purely turning vertical profile of a horizontally homogeneous

horizontal velocity field. For the maximally helical Beltrami vortex flow discussed in Section 2.6.1, for
example, storm-relative helicity is zero.
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tating updraft in a positively buoyant storm system. As such they serve as predictors of
mesocyclone or supercell formation. However, they are not intended to be forecast parame-
ters for tornadogenesis. Apparently, a certain rotational potential of the storm system is not
sufficient to determine the formation of a smaller-scale vortex. Therefore, the question is
how the rotational energy can be transferred to the smaller scale, or how the rotation of the
thunderstorm interacts with the environmental mean flow to produce conditions conducive
to tornadogenesis.

Although currently observational data is probably neither accurate nor dense enough
to dismiss or validate any theory, based on the wide range of scales of motion involved in
thunderstorm dynamics it can be speculated that the specification of the storm and larger-
scale environment alone is not sufficient to uniquely classify the state of the atmosphere with
regard to the formation of tornadolike vortices. It is now generally acknowledged that, while
the large-scale vertical distributions of temperature, moisture and wind shear determine the
type of the forming thunderstorm, it are details of the dynamical structure in the storm
system that determine tornadogenesis.

As briefly outlined above, tornadolike vortices are usually formed in regions of strong
horizontal velocity gradients such as between main updraft and downdraft, or on or near
flow discontinuities such as gust fronts, more organised squall lines, other outflow boundaries,
or at the leading edge of a thunderstorm. Consequently relevant spatial variability of the
storm flow may be in the horizontal rather than in the vertical, and on the scale of the
smaller, embedded vortex rather than on the scale of the storm circulation itself. With
parameters derived from a single vertical profile (sounding) the horizontal variability of the
flow on any scale is not characterised at all. The immediate environment of the tornado
inside the storm cloud, dominated by horizontal shear zones, can only be determined from
(horizontal) wind velocity data obtained by Doppler radar measurements.

It is likely that there are fundamental differences in the dynamical mechanisms leading
to mesoscale storm rotation and to the rotation of an embedded tornado-scale vortex. It is
therefore hypothesised for the investigation here that tornadolike vortices can be modelled as
instabilities of flow discontinuities and shear zones, intensified by vertical motion, in principle
similar to the conceptual landspout model. In addition it is discussed in Section 2.7 that
there are important differences in the external forcing of the two vortex phenomena.

The idea of having criteria for tornadogenesis based on parameters that can be evaluated
from observations of the storm flow prior to tornadogenesis, without the need for time-
consuming numerical simulations, is very appealing from a forecasters perspective. Ideally,
in principle similar to the parameter charts derived from observations by Rasmussen and
Blanchard [1998; particularly Figures 9, 11, and 13], one would like to find new parameters
for which a clear separation between tornadic and nontornadic storms is possible. For the
investigation of the dynamics of idealised tornadolike vortices governed by an autonomous
dynamical system of first-order ordinary differential equations in time these parameters are
derived in Chapter 3 and ‘tornadic’ and ‘nontornadic’ states of the embedding flow, based
on these parameters, are given by bifurcation charts.
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2.5 Space-Dependence of the Velocity Field

To investigate the process of vortex formation the velocity field must somehow be expressed
mathematically. Based on observations a discrete pointwise representation of the flow at
a particular time is obtained. While this is adequate for numerical simulations, for theo-
retical investigations of the time-dependence of the velocity field the analysis is simplified
significantly if an approximate analytical representation of the spatial dependence of the
velocity field can be obtained. An example for the spatial dependence of a vortex flow is
given by a potential vortex. In cylinder coordinates the radial and vertical velocity compo-
nents are set identical zero and the tangential component is inversely proportional to the
radial coordinate. The velocity field is then irrotational and has a singularity at the vortex
centre. Another example is a solid body vortex, v = s×x, with a constant rotation vector
s parallel to the vortex centre. Since the vorticity ω = 2s is perpendicular to the velocity
field the helicity of solid body flow is zero. Both simple vortex models are not adequate for
the description of helical, tornadolike vortices.

As discussed in the previous sections, at least in a geophysical context (particularly
in supercell thunderstorms), helicity plays an important role for the persistence of eddies
(particularly vortical velocity perturbations) in a turbulent larger-scale flow. As shown in
Section 2.1.3, for a given distribution of intensity helicity in a finite volume is extremised
by B-flows. The question now is, if these maximally helical flows also represent vortices. If
this is the case, a special class of B-flows can be used as an idealised model for the spatial
dependence of tornadolike vortices. The description of vortex flow used in this study is
therefore based on solutions of the Beltrami condition with constant chirality. Three B-flow
solutions to (2.1.20) are found by Fourier series expansion, i.e., by a spectral representation
of the spatial dependence of the velocity field. It is then shown that superpositions of these
three solutions are complete representations of general, spatially periodic velocity fields, and
that in particular tornadolike vortices can be represented by a special superposition of helical
waves.

2.5.1 Spectral Decomposition

For the relatively small-scale flows of severe thunderstorms without a particular symmetry
a Cartesian coordinate system is most convenient. In this coordinate system the Fourier
series in the variables x of function f(t,x) is defined by

Sf
def
=

∞∑
j,k,l=−∞

ajkl(t) exp iχ0(jx+ ky + lz) , (2.5.1)

where the smallest nonzero wavenumber χ0 determines the fundamental wavelength, and

i
def
=

√−1 is the imaginary unit. However, for the discussion of kinetic energy spectra and
curl eigenstates in the following sections it is more convenient to rewrite the Fourier basis
functions

φjkl(x)
def
= exp iχ0(jx+ ky + lz) , (2.5.2)
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and to define them as

φχk(x)
def
= exp iχk · x
= exp iχ0q · x ,

(2.5.3)

where q
def
= (j, k, l)T and the unit wave vectors k are defined as q/q, with the amount

q
def
=
√
j2 + k2 + l2 of q. Relabelling the expansion coefficients

ajkl → aχk (2.5.4)

the Fourier series (2.5.1) can also be written as

Sf =
∑
χ∈Γ

∑
k∈S(1)

aχk(t) exp iχk · x , (2.5.5)

where the set Γ is defined as

Γ
def
= {χ | χ = qχ0 , q =

√
j2 + k2 + l2, j, k, l ∈ Z, χ0 ∈ R} , (2.5.6)

and the set S(1) contains all three-dimensional unit vectors k and their negatives.
If f(t,x) is periodic in the variables x with period 2π/χ0 , only has a finite number of

point discontinuities and extrema over one period, and if

∫ 2π
χ0

0

|f(t,x)|d3x (2.5.7)

is finite in an interval T of t, the Fourier series converges to f(t,x) in T if x is not a point
of discontinuity [e.g., Cohen, 1992; pp. 175–176]. The Fourier expansion coefficients of the
discrete spectral superposition are obtained through the transformation

aχk(t)
def
= 〈f(t,x) exp−iχk · x〉P3 , (2.5.8)

where the averaging operator over the three-dimensional periodic domain P3 is defined as

〈( )〉P3
def
=
(χ0

2π

)3 ∫ 2π
χ0

0

( ) d3x . (2.5.9)

The validity of this transformation can easily be verified by using the orthonormality rela-
tionship〈

φχk(x)φ
∗
χk′(x)

〉
P3 = δk′,k (2.5.10)

of the system of basis functions φχk, and substituting the Fourier series (2.5.5) for f in (2.5.8).
Here ∗ denotes the complex conjugate of a variable and δk′,k denotes the three-dimensional
Kronecker symbol. Conversely, consistency of the Fourier transformation with the series
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expansion (or inverse transformation) can be checked by substituting the definition (2.5.8)
of the expansion coefficients into (2.5.5) and making use of the completeness relationship(χ0

2π

)3∑
χ∈Γ

∑
k∈S(1)

φχk(x
′)φ∗χk(x) = δ(x′ − x) (2.5.11)

of the system of basis functions, where δ(x′−x) is the three-dimensional Dirac distribution.
To be able to represent aperiodic functions via spectral decomposition a continuous su-

perposition of plane waves is required. It is shown in elementary texts on mathematics that
for any function f(t,x) for which∫ ∞

−∞
|f(t,x)|d3x (2.5.12)

is finite the Fourier transform

F (t, q)
def
= (2π)−

3
2

∫ ∞

−∞
f(t,x)φ∗(x, q)d3x (2.5.13)

exists for all continuous wave vectors q and is bounded and steady over the real numbers. If
in addition f(t,x) is steady and in each finite interval piecewise differentiable, the Fourier
transform is invertible and unique. In that case f is given by the inverse transformation

f(t,x) = (2π)−
3
2

∫ ∞

−∞
F (t, q)φ(x, q)d3q , (2.5.14)

where the basis functions

φ(x, q)
def
= exp iq · x (2.5.15)

now satisfy the orthogonality and completeness relations

(2π)−3

∫ ∞

−∞
φ(x, q)φ∗(x, q′)d3x = δ(q′ − q) (2.5.16)

and

(2π)−3

∫ ∞

−∞
φ(x, q)φ∗(x′, q)d3q = δ(x′ − x) , (2.5.17)

respectively. It is then easy to verify that∫ ∞

−∞
|f(t,x)|2d3x =

∫ ∞

−∞
|F (t, q)|2d3q . (2.5.18)

Occasionally, this equality is also referred to as the completeness relation.
The Fourier transformation equation (2.5.13) is obtained from the transformation equa-

tion (2.5.8) for the discrete spectral expansion if the boundaries are pushed further and
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further away to infinity. The periodic boundary conditions are then replaced by integra-
bility (boundedness) conditions. As the periodic domain increases the basic period, i.e.,
the longest wavelength increases and therefore the difference between neighbouring discrete
wavenumbers decreases. In applications the Fourier transformation is invariably calculated
for a discrete spectrum over a finite domain in which the observational data is given. The
smaller this domain the poorer the spectral resolution. The boundaries of the ‘data volume’
must therefore be sufficiently far enough away such that flow in the interior of the domain
can be well resolved.

2.5.2 Helical Decomposition

It is possible to redefine the six independent real variables associated with each three-
dimensional complex Fourier expansion coefficient by decomposing the Fourier transform
of the velocity field into the eigenstates of the curl operator. For many purposes, such as
the representation of specific types of flows, this change of variables has the advantage that
the new expansion coefficients can physically be interpreted more easily.

The curl eigenvector equation (2.1.20) allows for three qualitatively different solutions
vλ
χ that satisfy

∇×vλ
χ = λχvλ

χ , (2.5.19)

where the constants λχ with χ > 0 and λ = 0,±1 are the chiralities of the eigenvectors vλ
χ.

Assuming spatial periodicity in a domain P3, as shown in Appendix A.2, these solutions are
given by

vλ
χ(t,x) =

∑
k∈S(1)

aλχk(t)η
λ
kφχk(x) . (2.5.20)

The spatial basis functions φχk(x) satisfy the orthonormality and completeness conditions
(2.5.10) and (2.5.11) introduced in the previous section. In addition, as shown in Ap-
pendix A.3, the ηλ

k form a complete set of orthonormal spectral basis vectors9 in wavenumber
space. They are defined by

η±
k

def
=

1√
2
(k×n ∓ in)

η0
k

def
= −ik ,

(2.5.21)

and will be referred to as helical basis vectors. Each unit vector n is orthogonal to the
corresponding unit wave vector k, and the normal vector corresponding to −k is defined to
be −n. The Fourier expansion coefficients are defined by

aλχk(t)
def
=
〈(

ηλ
kφχk(x)

)†
v(t,x)

〉
P3

, (2.5.22)

9The two helical eigenvectors η±
k are identical with those of Waleffe [1992], however, other choices are

possible [e.g., Moses, 1971].
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where † denotes the Hermitean transpose, a† def
= (aT )∗ ≡ (a∗)T . As shown in Appendix A.6

for the vλ
χ to be real, the Fourier amplitudes have to satisfy a

λ
−χk = aλ∗χk.

The vector functions ηλ
kφχk individually satisfy (2.5.19) and will therefore be called curl

eigenvectors. The flows (2.5.20), as a superposition of curl eigenvectors with the same chiral-
ity, are perfectly positively or negatively helical, or irrotational for each nonzero wavenumber
χ and will be called curl eigenstates. In Appendix A.4 it is shown that the helicity of these
eigenstates and therefore the decomposition of the velocity field is invariant under spatial
rotations.

It is shown in Appendix A.5 that the curl operator is Hermitean for vector fields that
satisfy periodic boundary conditions in a finite domain, such as the curl eigenstates. As a
result its eigenvalues (chirality) are real and its eigenvectors form a complete orthonormal
basis system. This is explicitly shown in Appendix A.3. Due to the orthonormality of the
curl eigenvectors,〈

(ηλ
kφχk)

†ηλ′
k′φχ′k′

〉
P3
= ηλ†

k ηλ′
k′
〈
φ∗χkφχ′k′

〉
P3

= δλλ′δχχ′δk,k′
(2.5.23)

the curl eigenstates themselves are orthogonal to each other,〈
vλ
χ · vλ′

χ

〉
P3
= δλλ′

∑
k∈S(1)

aλ∗χka
λ′
χk , (2.5.24)

and due to the completeness of the helical basis vectors any monochromatic, periodic, and
analytic velocity field with wavenumber χ can be written as

vχ =
∑

λ=0,±1

vλ
χ

=
∑

λ=0,±1

∑
k∈S(1)

aλχkη
λ
kφχk(x) ,

(2.5.25)

from which it follows that the vorticity of vχ is given by

ωχ = χ
∑

λ=0,±1

λvλ
χ . (2.5.26)

Defining

κλ
def
=
∑
k∈S(1)

∣∣aλχk∣∣2 , (2.5.27)

it can be shown with (2.5.25) and (2.5.26) that

K = κ+ + κ− + κ0 ,

χ−2E = κ+ + κ− ,

χ−1H = κ+ − κ− .

(2.5.28)
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Therefore, the irrotational term does not affect the helicity and enstrophy averages in a
periodic domain. Since in general η, κ, and ε are not proportional to each other H2 = KE
is satisfied if and only if κ+κ− = 0 and κ0 = 0. From a sub-maximally helical state with
positively and negatively helical as well as divergent flow components present, the flow can
evolve into a purely helical state only if all but one of the curl eigenstates vanish with time
within a given (necessarily limited) region of space.

Finally, due the orthonormality and completeness of the curl eigenvectors any periodic
and analytic velocity field can be written as

v =
∑
χ∈Γ

vχ

=
∑

λ=0,±1

∑
χ∈Γ

∑
k∈S(1)

aλχkη
λ
kφχk ,

(2.5.29)

which is identical to the regular Fourier series of v.

2.6 Scales of Motion

Regardless as to whether a tornado is thought of originating from a breakdown of the larger-
scale storm circulation, from the organisation of smaller-scale turbulent eddies, or both, the
vortex is forming on a scale at which previously no intense circulation was present. In one
way or the other, the formation of tornadoes involves the interaction between different scales
of motion or the interaction between eddies of different sizes.

In a turbulent fluid, at any resolution there may be dominant flow features, or eddies, of
different spatial extent. Just how exactly to define eddies and their size is not obvious.

2.6.1 Large and Small

To reduce the complexity of fluid flow an attempt is often made to focus on phenomena of
a particular spatial scale. However, the definition of scale or size of flow phenomena is often
very subjective and case dependent, and the different definitions lead to very different values
and meanings of scale.

Levich and Tsinober [1983a] define a ‘natural’ scale L through the invariants of homo-
geneous turbulence of an ideal fluid. The ensemble average, indicated here by brackets, of
average kinetic energy in domain V of volume V is defined as

〈K〉 =
〈
1

V

∫
V

v2 d3x

〉
, (2.6.1)

and the ensemble average of the spatial helicity correlation function is defined as

I =

〈
1

V

∫
V
η(x)η(x+ r) d3x

〉
, (2.6.2)
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which, by the homogeneity assumption, is constant in space (not a function of r). Spatial
scale L is then defined by10

L =
〈K〉√|I| (2.6.3)

which, as the authors point out, is intrinsic in the sense that it is not related to any external
parameters and defined only by the flow properties. However, simply because a parameter
such as L, or K/H for that matter, has units of length does not mean that it also has the
meaning of a physically or dynamically relevant scale or size.

As mentioned already in Section 2.3.1, in turbulence theory eddies are often defined as
the flow associated with the Fourier components of the same wavenumber k, whose scale is
then defined as k−1. Similarly, the scale L of the most dominant eddies can be defined such
that

L = k−1max , (2.6.4)

where the kinetic energy spectrum peaks at the wavenumber kmax. However, since continuous
and discrete spectral components are defined globally this definition of scale does not imply
any spatial localisation of eddies. The definition of scale based on individual wavelengths of
spectral components is not representative of the physical size of eddies. The representation
of the flow as a superposition of waves with large and small wavelengths is fundamentally
different to a superposition of actual physical scales as in (2.1.1). Similarly there is a fun-
damental difference between the interaction11 of spatially unlimited spectral components, or
eddies as defined above, and the interaction between spatially limited velocity perturbations,
or eddies as defined in Section 2.1.4. Based on the wave definition, interactions between ed-
dies of different scales are interactions between different spectral components that do not
have to correspond to recognisable kinematical flow features of any size. As mentioned in
Section 2.3.1 it is commonly assumed in turbulence theory that interactions in wavenumber
space are local. However, since all eddies are spread over the entire volume, eddy interactions
occur globally in physical space. Contrary to that, interactions between eddies defined based
on spatial characteristics are local in physical space. However, as shown below, since spa-
tially limited velocity perturbations are associated with a continuum of spectral components,
interactions between these eddies is nonlocal in wavenumber space.

The fundamental difference between spatial and spectral scale can easily be seen from
a simple one-dimensional example. Consider a periodic function f(x) given by its Fourier
series,

f(x) =
∞∑

k=−∞
ak exp

2πikx

L
, (2.6.5)

10Strictly speaking the authors define 〈K〉 =
〈∫

V
1
2v2 d3x

〉
, I =

∫
V 〈η(x)η(x + r)〉 d3x, and L = I

〈K〉2 ,
which has units of length−5, but the idea is the same.

11Generally interaction is defined here as any form of energy transfer.
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where

ak
def
=
1

L

∫ 1
2
L

x=− 1
2
L

f(x) exp
−2πikx
L

dx . (2.6.6)

If this function is pointwise averaged (smoothed) over an interval L/n with n ∈ N \ {0},

〈f(x)〉 =
∞∑

k=−∞
ak
n

L

∫ L
2n

x=− L
2n

exp
2πikx

L
dx

= a0 +
∑
k �=0

ak
n

πk
sin

πk

n
,

(2.6.7)

waves with wavenumbers k positive or negative integer multiples of n drop out of the Fourier
series. However for any n > 1 some waves with wavelengths shorter than L/n remain, where
the generally nonvanishing range between spectral gaps created by pointwise averaging is
equal to n. Similarly, for an aperiodic function

f(x) =
1√
2π

∫ ∞

k=−∞
f(k) exp ikx dk (2.6.8)

with a continuous spectrum

f(k) =
1√
2π

∫ ∞

x=−∞
f(x) exp−ikx dx (2.6.9)

the pointwise averaged function12

〈f(x)〉 = 1

L

∫ 1
2
L

x=− 1
2
L

1√
2π

∫ ∞

k=−∞
f(k) exp ikx dk dx

=
1√
2π

∫ ∞

k=−∞
f(k)

1

L

∫ 1
2
L

x=− 1
2
L

exp ikx dx dk

(2.6.10)

has spectral gaps where k is equal to a positive or negative integer multiple of 2πL−1. Al-
though spatial pointwise averaging of the flow field will remove perturbations on a scale
smaller than the averaging domain, this ‘large-scale’ flow generally has still contributions
from the large wavenumbers of the original flow field. A clear association of physical prop-
erties such as large and small with spectral properties is therefore not possible.

The fundamental difference between spatially periodic and aperiodic flows is that they
have discrete or continuous spectra, respectively. In periodic flows the speed of propagation
of interaction has to be infinite since independent changes between distant spatial regions
are impossible. This violates the principle of relativity and true spatial periodicity in reality
cannot be sustained. Since the speed of propagation of interaction between different flow
regions in real fluids is finite, independent changes of remote flow regions have to occur,
naturally leading to aperiodicity and a continuous spectrum. Each local change in the
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Figure 2.1: Hypothetical distributions of kinetic energy over (a) wavenumber and (b) across
the most intense eddies in space.

velocity field affects the continuous spectrum. The same local flow properties are therefore
described by varying spectra depending on the other flow regions.

Given a set of initial data, in practice it is only possible to calculate a discrete spectrum
for which the inverse transformation is a Fourier series expansion representing a spatially
periodic velocity field. All ‘eddies’ associated with individual waves are spread over the entire
space. However, by calculating a continuous approximation of the discrete kinetic energy
spectrum an estimate of the spatial extent of the most intense eddies can be obtained via
(continuous) inverse Fourier transformation.

A discrete isotropic spectrum contains for each wavenumber contributions from all spec-
tral terms |aλχk|2 with the same wavenumber χ. Due to the orthonormality (2.5.23) of the curl
eigenvectors the energy terms for each wavenumber are additive, and the isotropic kinetic
energy spectrum of a Fourier series is given by

|aχ|2 def
=
∑

λ=0,±1

∑
k∈S(1)

∣∣aλχk∣∣2 . (2.6.11)

For simplicity assume that the energy spectrum consists of essentially two bands: a forced
range at small wavenumbers close to a Gaußian distribution, and an inertial range at large
wavenumbers close to a power law distribution. This hypothetical energy spectrum is shown
in Figure 2.1. Most energy is contained in the forced band and the Fourier components in
that range of wavenumbers dominate the instantaneous flow characteristics. The discrete

12To be able to exchange the order of integration it must be assumed that f(k) is bounded and steady for
k in (−∞,∞).
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spectrum calculated from the observational data in the forced range can then be interpolated
by a Gaußian envelope function

|a(k)|2 def
= a2|A|2 exp−a2(k − kmax)

2 , (2.6.12)

where the real constant a determines the spectral width of the main peak around the
wavenumber kmax with the highest energy, and the complex amplitude A determines the
overall intensity. Both parameters can be calculated by minimising the mean-square error
of |a(k)|2 with the discrete spectrum |aχ|2 in the forced range. Only the real quantity |A|2
can be determined from observations, the amplitude A is therefore determined only up to
an arbitrary phase factor. The continuous spectral function a(k) is then given by

a(k) = aA exp−a
2

2
(k − kmax)

2

=
1√
2π

∫ ∞

−∞
ψ(x)e−ikxdx ,

(2.6.13)

from which the inverse Fourier transform ψ(x) can be explicitly calculated [e.g., Greiner,
2001; pp. 60–62]

ψ(x)
def
=

1√
2π

∫ ∞

−∞
a(k)eikxdk

= A exp− x2

2a2
+ ikmaxx .

(2.6.14)

It represents a one-dimensional wave packet with dominant wavenumber kmax, where coor-
dinate x denotes the distance from the main peak along any direction in space. The total
kinetic energy is obtained by integrating over the whole spectrum

K̄
def
=

∫ ∞

−∞
|a(k)|2 dk

=

∫ ∞

x=−∞

∫ ∞

x′=−∞
ψ(x)ψ∗(x′)

1

2π

∫ ∞

k=−∞
eik(x

′−x)dk dx′dx

=

∫ ∞

−∞
|ψ(x)|2 dx ,

(2.6.15)

where the completeness of the one-dimensional Fourier basis functions,

1

2π

∫ ∞

−∞
eik(x

′−x)dk = δ(x′ − x) , (2.6.16)

was used. Since the discrete spectrum |aχ|2 and the continuous approximation |a(k)|2 have
units of energy, K̄ has units of energy over length. From (2.6.15) it is apparent that |a(k)|2
is the spectral kinetic energy distribution function, and

|ψ(x)|2 = |A|2 exp−x
2

a2
(2.6.17)
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is the spatial kinetic energy distribution function. The typical extent of the most intense
eddies, i.e., the most intense kinetic energy perturbations, is determined by the width of
the spatial distribution function. The slope of |ψ(x)|2 decreases from the maximum towards
larger wavenumbers until kmax + 1/

√
2a where it reaches its minimum and then starts to

increase again towards zero at infinity. Similarly, the slope increases from the maximum
towards smaller wavenumbers and reaches a maximum at kmax − 1/

√
2a from where it de-

creases again towards zero at minus infinity. The spectral width ∆k of kinetic energy can
therefore be defined as the distance

√
2/a between the two extrema of the slope of the enve-

lope function. Following the same argument, the width ∆x of the spatial energy distribution
is defined as

√
2a. The product ∆x∆k ≡ 2 is independent of a and therefore the same for

all Gaußian curves and their Fourier transforms. If instead the spatial and spectral intervals
are defined based on the half-widths of the Gaußian functions, ∆k =

√
ln 2/a, ∆x =

√
ln 2a,

and ∆x∆k = ln 2, which is less than one. Generally the widths of the spatial and spectral
kinetic energy distribution functions satisfy

∆x∆k ∼ 1 . (2.6.18)

In quantum mechanics this relationship is known as the uncertainty principle and is valid
for very general kinetic energy distributions. If eddies are defined as localised kinetic energy
perturbations,

∆x ∼ (∆k)−1 (2.6.19)

can be taken as a measure of their typical size. Qualitatively a more precise localisation
in space requires a wider range of wavenumbers, whereas a single wavenumber, as for a
B-flow, represents a completely unlocalised infinite wave train. Consequently, small eddies
must be associated with excitations of waves over a large continuous range of wavenumbers
rather than a single large wavenumber. If the interaction between eddies is defined as energy
transfer between the corresponding velocity perturbations, the range of interaction of the
most intense eddies is also related to the width of the spatial energy distribution function.

Under anisotropic conditions this definition of the spatial extent of eddies can be refined
by calculating spectra for individual directions in space.

In a vertically stratified fluid with essentially horizontal solid lower boundary there are
important differences between the horizontal and vertical statistics, and isotropy is not a
good assumption. In that case the isotropic spectrum is split up into horizontal and vertical
components

|aχhor|2 def
=
∑

λ=0,±1

∑
k∈Sxy(1)

∣∣aλχk∣∣2 (2.6.20)

and

|aχvert|2 def
=
∑

λ=0,±1

∑
k∈Sz(1)

∣∣aλχk∣∣2 , (2.6.21)

respectively, where Sxy(1) = {±ex,±ey} is the set of horizontal, and Sz(1) = {±ez} is
the set of vertical unit wave vectors. Assuming that for each spectrum the same qualitative
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energy distribution in forced and inertial band exists as for the isotropic spectrum, the forced
ranges as before are approximated by Gaußian distribution functions

ahor(kh)
def
= aA exp−a

2

2
(kh − khmax)

2

avert(kz)
def
= bB exp−b

2

2
(kz − kzmax)

2 ,

(2.6.22)

where kh
def
=
√
k2x + k

2
y is the horizontal wave vector, and the {kx, ky, kz} are now continu-

ous components of the unnormalised wave vector. The corresponding spatial distribution
functions are then given by

ψhor(xh)
def
= A exp− r2h

2a2
+ ikhmaxrh

ψvert(z)
def
= B exp− z2

2b2
+ ikzmaxz ,

(2.6.23)

where rh
def
=
√
x2 + y2 is the horizontal position vector.

In some cases it may be instructive to look at spectra of individual helical components of
the velocity field. For that the horizontal and vertical spectra are split up into contributions
from each curl eigenstate,

|aλχhor|2 def
=

∑
k∈Sxy(1)

∣∣aλχk∣∣2
|aλχvert|2 def

=
∑
k∈Sz(1)

∣∣aλχk∣∣2 . (2.6.24)

The continuous spectral distribution functions aλhor(kh) and a
λ
vert(kz), and the corresponding

spatial distribution functions ψλhor(xh) and ψ
λ
vert(z) are then defined analogously to (2.6.22)

and (2.6.23).
In the presence of dominant horizontal density gradients and shear flows, the horizontal

spectrum can also be split up into components parallel and perpendicular to the air mass
boundary.

An infinite, single plane wave train such as

aλk exp ik · x (2.6.25)

has constant intensity |aλk| throughout the entire space and therefore carries an unlocalised
property labelled by λ. For the signal to have meaningful information about that property a
wave pulse must be generated by amplitude modulation of the carrier wave. By a continuous
superposition of plane waves a compact wave packet can be generated. If λ is the helical
state of the wave, this wave packet describes a localised perturbation of helicity, i.e., a helical
eddy.

To illustrate that point consider the positively helical curl eigenstates

v+
χ =

1√
2

∑
k∈S(1)

a+χk(k×n − in) exp iχk · x , (2.6.26)
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as given by (2.5.20) with λ = +1. To simplify the analysis assume that all Fourier amplitudes
a+χk ≡

√
2 and restrict the set of wave vectors to

S+
xy

def
=




10
0


 ,

01
0




 . (2.6.27)

Then the curl eigenstates are Beltrami vortex flows

v+
χ =

∑
k∈S+

xy

n cosχk · x+ n×k sinχk · x . (2.6.28)

As shown in Figure 2.2 (a) for χ = 1 they are a periodic pattern of counterrotating updrafts
and downdrafts.

In simplified form helical vortices can therefore be described by two entangled waves with
a fixed amplitude and phase relationship. In that sense coherent vortices can very literally
be called flow structures. As they intensify or weaken the amplitude and phase relationship
between the vortex waves is maintained. The corresponding expansion coefficients therefore
must have a very similar time-dependence. If this entanglement is destroyed the vortex
disintegrates.13

To calculate a continuous superposition of these vortex flows the discrete wave vectors
χk of the Fourier series are replaced by the continuous wave vector q = (j, k, l)T , and the
constraint of |q| ≡ 1 is relaxed. The spatially periodic vortex flow (2.6.28) is then integrated
over the wavenumbers j, k, and l in the intervals [j0 −∆j, j0 +∆j], [k0 −∆k, k0 +∆k], and
[l0 −∆l, l0 +∆l], respectively. For the explicit calculations see Appendix A.7. For j0 = k0,
∆j = ∆k, and ∆l = 0 the resulting velocity fields are shown in Figure 2.2 for different values
of the parameter δ

def
= ∆j/j0 = ∆k/k0 with fixed wavenumbers j0 and k0. As δ increases

towards one a single vortex emerges from the periodic vortex pattern at δ = 0. Since the
central wavenumbers j0 and k0 are fixed the increase in δ and the decrease in the range of
nonzero kinetic energy are due to an increase in the spectral interval. As the spectral intervals
increase kinetic energy averaged over the spectral volume and space steadily decreases, while
the maximum kinetic energy in the vortex centre remains constant.

It should be noted that in this simple example where all superposed waves have the same
intensity, the diameter of the vortex, for a given spectral interval also depends inversely on
the central wavenumber. However, for a given spectral distribution of kinetic energy such as
(2.6.12) the vortex diameter is influenced primarily by the width of the spectral interval.

Unlike for classical mechanics of macroscopic solid bodies the scale of fluid motion is an
elusive property. All approaches discussed in this section in one way or the other require
subjective definitions. However, in a given application a ‘visual’ classification of scales is
often straightforward. In the case of severe storms horizontal scales can be classified as
follows. The large scale is defined as the size of the storm (supercell or mesoscale convective

13For comparison, in quantum mechanics entanglement refers to a situation in which two particles are
described by the same wave function that cannot be factorised in single particle wave functions. The two
particles, regardless how far apart they are, therefore have the same time evolution. They have no individual
characteristics and only their combined properties are observable.
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Figure 2.2: Continuous superposition of Beltrami vortex flows with χ = 1 and (a) δ = 0, a
spatially periodic Beltrami vortex flow pattern as given by Equation 2.6.28, (b) δ = 0.3, (c)
δ = 0.6, and (d) δ = 1. The vectors represent the horizontal components of the velocity field,
and the colour shading denotes vertical velocity.

complex) which is typically on the order of 104 − 105m. The intermediate scale ranges
from the diameter of a tornado cyclone of 1 − 5 km to the diameter of the tornado of
roughly 102 − 103m. The small scales on the order of 1 − 10m cover the inertial range.
The essentially laminar micro scale on which dissipation due to internal viscosity becomes
dominant is usually excluded from the analysis of atmospheric motion above the planetary
boundary layer by truncating large wavenumbers and neglecting dissipative terms in the
equations of motion for the remaining larger scales. Of course, the visual classification is
not without problems as well. The diameter of the condensation funnel of a tornado is
determined by the radial pressure gradient and relative humidity. For a dust devil the
diameter of the funnel depends on the updraft strength and rotational speed but also on the
type of surface material. In both cases the visible size of the vortex may not be consistent
with any definition of scale discussed above. It may also not be dynamically relevant, i.e., if
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the equations of motion were Reynolds averaged over the visible scale they may not represent
the relevant forcing. However, given actual wind velocity data of the tornado circulation the
width of the funnel can simply be defined kinematically as the diameter of the maximum
tangential speed.

2.6.2 Slow and Fast

Spatial and temporal scales of flow phenomena are often related, where phenomena on a
small spatial scale tend to have shorter timescales than larger-scale phenomena. Given
the complications with the definition of spatial scale the question is now how to define a
meaningful timescale.

How fast a variable x(t) is changing momentarily is given by the time-rate of change
ẋ. For a continuous process of growth or decay in which the time-rate of change itself does
not change much, ẋ and derived parameters such as half-life can be taken as a measure of
the timescale of the process. For more complicated processes ẋ and higher order derivatives
themselves depend on time. In general, the time-dependence of an analytic function x(t) is
given by its Taylor series

x(t) = x(0) + ẋ|t=0 t+
1

2
ẍ|t=0 t2 +O(t3) . (2.6.29)

To second order (ẍ ≈ const .) the variable x follows an increase and decay cycle or vice versa,
depending on the sign of ẍ. For cyclic phenomena, such as the formation and dissipation of
tornadolike vortices, a typical magnitude of the second time-derivative of the velocity field,
or the timescale of the forcing field, therefore is a better indicator for the timescale of the
flow phenomenon than the magnitude of the forcing field itself.

To be able to develop a model for the investigation of the development of tornadolike
vortices based on characteristics of the storm flow, it is necessary to mathematically separate
the two flow phenomena. As seen in the previous subsection it is impossible to associate
specific local flow phenomena of any spatial extent with any particular wave or Fourier basis
function. Since eddies are forced as an entity in real space, all waves involved in the local
representation of the eddy have the same causal connection to the forcing, regardless of their
wavelength relative to the spatial extent of the flow perturbation. A separation of a small
vortex from a large storm system based on spectral characteristics is therefore not possible.

It was briefly discussed in Section 2.3.1 that timescale separation between large and small-
scale motion is a common assumption in turbulence theory. With the approximate spatial
scales given in the previous subsection, there is an order of 10− 100 difference between the
length-scales of the main storm circulation and the tornado vortex. Furthermore, since the
storm system evolves over a period of several tens of minutes to hours, while the tornado
forms and dissipates in usually less than 15 minutes, there is a difference of order 10 between
the timescales of storm and tornado.

In the following, the storm flow is therefore considered to be a slowly evolving, or simply
‘slow’ flow, and the tornado vortex is referred to as a rapidly evolving or ‘fast’ flow.14 Since

14The classification in slow and fast is incidental to the fact that tangential and updraft speeds in the
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the main interest is in the evolution of the fast perturbation flow, the slow flow will also be
referred to as ‘background’ flow.

As mentioned in Section 2.4, tornadolike vortices usually form on or near intense shear
zones, such as the region of intense gradients in vertical velocity between main updraft and
rear and forward-flank downdraft. Since this shear zone is maintained by the two forced
intense, larger-scale counterrotating vortices it has a component that is varying on the same
slow timescale. There is a fundamental difference in the small-scale variability of the slowly
evolving quasistationary shear zones of the externally forced storm system, and the spatial
variability of rapidly evolving small-scale motion. In the following sections, the formation
of tornadolike vortices is therefore modelled as a rapidly evolving instability of stationary
shear zones of the background flow.

2.7 Time-Dependence of the Velocity Field

For the derivation of a simple dynamical system describing vortex formation it is necessary
to uniquely associated the vortex flow with particular values of some expansion coefficients.
In a large-scale flow the formation of a smaller vortex changes the kinetic energy spectrum
(i.e., the Fourier expansion coefficients). However, the spectral difference depends on the
large-scale flow and the relative position of the vortex. For the formation of identical vortices
under different flow situations there can therefore be no unique spectral ‘vortex signature.’ A
solution to that problem is the separation of the total velocity field, ṽ, into a slowly evolving
background flow, u, and a rapidly evolving eddy flow, v,

ṽ(t,x) = u(τ,x) + v(t,x) , (2.7.1)

where τ and t symbolically represent variation on the slow and fast timescale, respectively.15

Choosing the spatial and temporal scales such that the main variability of v is on the scale of
a typical tornado vortex, and assuming that in the thunderstorm on that scale the tornado,
if it occurs, is the dominant vortical perturbation, (2.7.1) can schematically be expressed as

total flow = storm + tornado , (2.7.2)

where fast perturbations smaller than the tornado are neglected. Before deriving the equa-
tions of motion for the slow and fast flow it is necessary to get an idea about the relative
magnitude of the expansion coefficients of the two velocity fields. Consider the case where
the storm velocity data is given in a three-dimensional domain D, the ‘storm volume.’ From
(2.7.1) it follows that the expansion coefficients for the total flow are given by

ṽq(t)
def
=
〈
ṽ(t,x)φ∗q(x)

〉
D

= uq(τ) + vq(t) ,
(2.7.3)

vortex of an intense tornado exceed those in the rest of the storm system and in fact any weather related
flow phenomena in the troposphere of our planet.

15The total velocity field ṽ(t, x) can of course have strong fluctuations on the slow timescale. However,
the primary timescale of a variable is determined by the fastest (measurable) fluctuations.
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where the expansion coefficients of the slow and fast flow,

uq(τ)
def
=
〈
u(τ,x)φ∗q(x)

〉
D (2.7.4)

and

vq(t)
def
=
〈
v(t,x)φ∗q(x)

〉
D , (2.7.5)

respectively, are also calculated over domain D. However, the fast flow, under the assumption
that it describes the tornado vortex, is significantly nonvanishing only in a small, horizontally
limited domain V of the size of the tornado, the ‘tornado volume’. For a typical tornado
V has a horizontal extent on the order of 0.1×0.1 − 1×1 km with the same height as the
storm volume. Similarly, the mesocyclone is contained in a three-dimensional domain M of
horizontal extent of order 10×10 km. For scaling purposes assume that the slow (storm) ex-
pansion coefficients are dominated by the mesocyclone. As discussed in Section 2.6.1, to be
able to describe spatially limited vortices such as mesocyclone and tornado a superposition
of a large number of waves with increasingly larger wavenumbers is necessary. Each wave
contributes to the total velocity within the respective vortex volume. With a maximum rota-
tional speed of 100ms−1 in the tornado vortex, and storm motion on the tornado scale (prior
to tornadogenesis) on the order of 10ms−1, the speed associated with the tornado locally and
within a short period of time exceeds the magnitude of mesocyclone circulation on a compa-
rable scale by roughly a factor of 10. However, since the expansion coefficients for slow and
fast flow are calculated (averaged) over the whole storm volume, the spectra hypothetically
calculated locally for mesocyclone and tornado are scaled by the factors V (M)/V (D) and
V (V)/V (D), respectively, where V (D) denotes the size of domain D, and similarly for the
other domains.16 As a result, since V (V) ∼ 10−4 − 10−2V (M), there is at least an order
of magnitude difference between expansion coefficients of the slow and fast motion for the
same wave vectors. Despite the local intensity of a tornadolike vortex, due to its transient
character and small spatial extent, the fast expansion coefficients associated with this short,
localised event are relatively small perturbations on the expansion coefficients of the ‘normal’
flow state given by the storm motion.

Substituting the decomposition of the velocity field (2.7.1) into the equation of motion
(2.3.1), and expanding also the forcing term f̃ into slow, f(τ,x), and fast, f ′(t,x), compo-
nents leads to

∂τu+ ∂tv + (u · ∇)u+ (u · ∇)v + (v · ∇)u+ (v · ∇)v = f + f ′ . (2.7.6)

To obtain a dynamical system of ordinary differential equations, the slow and fast velocity
fields are expanded in Fourier series. For computational purposes, calculation of expansion
coefficients of the slow velocity field from observational data and for high-order numerical
simulations, the compact notation of slow expansion coefficients without helical decompo-
sition is used. However, for truncation of the fast flow and interpretation of the simple

16In reality of course the slow expansion coefficients are effectively calculated over the entire storm volume,
and are not associated with any particular local excitation of any spatial extent and intensity.



2.7 Time-Dependence of the Velocity Field 45

examples discussed below, the helical decomposition of the expansion coefficients as intro-
duced in Section 2.5.2 is more convenient. The slow and fast velocity fields are then given
by

u(τ,x) =
∑
q

uq(τ)φq(x) (2.7.7)

and

v(t,x) =
∑
λ,χ,k

aλχk(t)η
λ
kφχk(x) , (2.7.8)

respectively. Fourier transformation with projection onto the helical basis vectors (2.5.22)
of (2.7.6) then leads to

∂τ
(
ηλ∗
k · uχk

)
+ ∂ta

λ
χk +

∑
q+q′=χk

iq′ · uq
(
ηλ∗
k · uq′

)
+
∑
λ′

∑
q+χ′k′=χk

i
(
ηλ∗
k · ηλ′

k′ χ
′k′ + q · ηλ′

k′ η
λ∗
k

)
· uq a

λ′
χ′k′

+
∑
λ′,λ′′

∑
χ′k′+χ′′k′′=χk

iχ′′k′′ · ηλ′
k′

(
ηλ∗
k · ηλ′′

k′′

)
aλ

′
χ′k′a

λ′′
χ′′k′′

= ηλ∗
k · (fχk + f ′

χk

)
.

(2.7.9)

Since u and v vary on two different timescales, and since the expansion coefficients aλχk of
the fast flow are small compared with the magnitude of the Fourier transforms of the slow
flow |uχk|, it is reasonable to assume that the zeroth-order terms in the perturbations aλχk
in (2.7.9) are approximately balanced,

∂τuq +
∑

q′+q′′=q

i (q′′ · uq′)uq′′ = fq . (2.7.10)

Subtracting this slow balance equation from the original transformed equations of motion
(2.7.9) then leads to an approximate balance equation for the fast expansion coefficients

∂ta
λ
χk +

∑
λ′

∑
q+χ′k′=χk

i
(
ηλ∗
k · ηλ′

k′ χ
′k′ + q · ηλ′

k′ η
λ∗
k

)
· uq a

λ′
χ′k′

+
∑
λ′,λ′′

∑
χ′k′+χ′′k′′=χk

iχ′′k′′ · ηλ′
k′

(
ηλ∗
k · ηλ′′

k′′

)
aλ

′
χ′k′a

λ′′
χ′′k′′

= ηλ∗
k · f ′

χk .

(2.7.11)

In this derivation (2.7.10) is obtained based on order-of-magnitude and time-scaling argu-
ments. The same set of equations (2.7.11) could have been obtained in ‘exact’ form by simply
defining the slow background flow to satisfy (2.7.10), and then to define the fast perturbation
flow such that it satisfies the equations of motion (2.7.6) with a particular forcing term f ′.
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However, the motivation and ultimately justification for these definitions would have been
based on the arguments given in the ‘phenomenological’ derivation above. A mathemati-
cally rigorous scaling method such as time-averaging in this particular case is not applicable
since this would require the fast velocity field to have a zero time-mean over a particular
period of time. With the fast velocity field representing a particular vortex and the period
of averaging taken as its formation and decay cycle this would not be satisfied. However,
as discussed in Appendix A.8, the results obtained by time-averaging are identical with the
phenomenological approach if terms quadratic in the fast perturbations in (2.7.10) are ne-

glected. Instead of defining the fast flow through v
def
= ṽ −u, where u is defined as a certain

time-mean of ṽat all times, as in Reynolds theory, the fast flow here is defined dynamically
through ∂tv

def
= ∂tṽ − ∂τu, where u is defined to satisfy the slow balance equation (2.7.10).

In that case only the initial values for u and f are obtained from observational time-series
through averaging or frequency filtering. Since the slow balance equation does not depend
on time-averaged quantities, the system (2.7.10) and (2.7.11) can be solved explicitly with-
out further closure assumptions, and the fast perturbations aλχk have no impact on the slow
expansion coefficients uq. The set of equations (2.7.10) and (2.7.11) therefore only describes
situations in which the fast flow is driven without feedback by a slow background flow. For
the onset of tornadogenesis that is a reasonable assumption as in this case initially the fast
flow vanishes. As the tornado reaches maximum intensity it may affect the surrounding
storm motion. However, for the investigation of the initialisation of vortex formation this is
irrelevant. In fact, in the decomposition into slow storm flow and fast vortex flow changes
in the expansion coefficients due to the formation and evolution of the tornado by definition
are associated with the fast velocity field while other rapidly evolving flow perturbations are
neglected.

Aside from the phenomenological arguments given in the previous section, the mixing
of temporal and spatial scales over a range of spectral scales also follows from the fact that
(2.7.10) and (2.7.11) are nonlinear partial differential equations for persistent and transient
motion. As a result generally a full spectrum develops on both timescales. Starting with the
excitation of primarily long waves by large-scale external forcing shorter waves are excited
by nonlinear (triad) interactions. It was argued in Section 2.6.2 that for formation and decay
phenomena such as tornadoes the timescale of the flow is determined by the timescale of
the forcing. If there were waves with very different timescales, each forcing term and the
corresponding expansion coefficient would change on the timescale of the fastest evolving
expansion coefficient involved in the particular expression. In the time-evolution equations
for the Fourier expansion coefficients, except for very special truncations, all waves are
somehow coupled. They must therefore all vary on roughly the same timescale.

Next to gravity the most dominant forcing of geophysical flow is due to pressure gradients
−ρ−1∇p. This term introduces two independent thermodynamic variables into the dynam-
ical equations. For density the time evolution equation independent of the forcing follows
from mass conservation and is given by the continuity equation (2.2.7). Even assuming the
atmosphere to be an ideal gas that still leaves one thermodynamic variable unexplained. To
close the dynamical system of equations an ‘energy equation’ is needed [e.g., Dutton, 1995;
pp. 238–247]. This in turn requires the introduction of additional variables and flux equa-
tions describing water in the atmosphere and its phase changes as well as radiative energy
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transfer. All these processes have to be parameterised since, except for very special cases,
forcing of fluid flow is too complex for an exact mathematical formulation.

Without equations for the forcing terms f and f ′, (2.7.10) and (2.7.11) are not a closed
system of equations. Based on the arguments given in Section 2.6.2 about the connection
of the timescale of the forcing and the timescale of a cyclic growth and decay process it
can be assumed that the most relevant thermodynamic processes for tornadogenesis vary
on the fast timescale of the vortex flow and therefore differ from the slow thermodynamic
forcing involved in storm formation and evolution. If, however, as suggested in Section 2.4,
tornadogenesis is investigated as a flow instability of intense shear zones and fronts of the
storm flow, it can be assumed that rapid changes in the thermodynamic variables do not
contribute directly to vortex formation and can be neglected altogether. Effects of the Earth’s
rotation are noticeable only on space and timescales larger than those of tornadogenesis and
can safely be neglected for forcing on the fast timescale. Stationary forcing such as gravity
and effects due solid boundaries (and other imposed stationary boundary conditions) are
only included in the slow forcing term f . To derive a kinematical system of equations for
the rapidly evolving velocity field it can therefore be assumed that the fast forcing term
f ′ is negligible for vortex formation. The total time-rate of change of the velocity field of
thunderstorm and tornado vortex is therefore due to two qualitatively different processes: the
externally forced slow evolution of the storm flow and a rapidly evolving small-scale vortex
instability of that large-scale velocity field which is not directly affected by thermodynamic
and external forces. Tornadogenesis tends to occur during the most intense state of the
thunderstorm or mesocyclone. At this stage the storm is fully developed and approximately
stationary over the period of the formation and decay of the tornado. Assuming that the
slow expansion coefficients are approximately constant during tornadogenesis, (2.7.11) with
∂τu = f ′ ≡ 0 is a closed dynamical system for the fast expansion coefficients, in which the
slow expansion coefficients are constant parameters.17 If the slow forcing term f is known
at a particular time, equations (2.7.10) and (2.7.11) are a closed dynamical system of a
diagnostic equation for the constant background flow and a prognostic equation for the fast
perturbation flow. Since under the assumptions made above the slow balance equation does
not depend on the time-averaged fast advection term (or the time-averaged stress tensor
in the case of incompressible fast flow) as it would be the case for the Reynolds averaged
equations, a change in the fast flow is not inconsistent with a constant steering background
flow. The system of equations (2.7.11) with f undetermined to investigate the effects of the
background flow on the perturbation flow as in the next chapter, or the system of equations
(2.7.10) and (2.7.11) with f given by observations are therefore not only mathematically
complete but also dynamically consistent.

Under these assumptions the interpretation of the slow flow as a ‘background’ flow can
be taken very literally. Since it is assumed to be constant over the short period of the
vortex formation and decay cycle, it only sets the stage for the evolution of the fast flow.
However, the perturbation flow, although it evolves significantly faster than the externally
forced large-scale flow, is still strongly coupled to and forced by that background flow. The
vortex phenomenon described by the fast flow is therefore on a scale just above the inertial
range.

17Here the identical vanishing of a vector field is used to indicate the vanishing of all expansion coefficients
independently.
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The Fourier transformation of the equations of motion introduced in the previous section
transforms a system of three partial differential equations for the velocity components into an
infinite-dimensional system of ordinary differential equations for their expansion coefficients.
To be able to solve that system a reduction of the degrees of freedom is required. This is
done through spectral and helical truncation.

3.1 Truncation

The first step in the spectral truncation was already done by the discretisation of the spatial
spectrum, i.e., by replacing the continuous Fourier transform by Fourier series. To further
reduce the number of variables in the dynamical system (2.7.11) for the fast expansion
coefficients, all but a few of the most dominant waves will be neglected. Since the special
interest here is in a particular vortex instability of the slow flow, the few waves chosen
to represent the fast flow must, at least with a certain amplitude and phase relationship,
describe a cyclonically rotating, radially converging updraft.

As mentioned in Section 2.6.1, for the representation of an isolated vortex a continuous
spectrum is required. This continuum of waves adds up to generate a locally intense vortex.
However, as shown in Section 2.6.1 and Appendix A.7 a simple periodic Beltrami vortex
field can be represented by two positively helical ‘vortex waves’ corresponding to the wave
vectors

kx
def
=


10
0


 (3.1.1)

and

ky
def
=


01
0


 , (3.1.2)

and by setting either the real or imaginary parts of the expansion coefficients zero and the
other parts of the complex numbers equal. As mentioned before, this eliminates the varying
phase relationship between the two vortex waves leading to phase locking. However, to be
able to describe vortex formation and decay a varying amplitude relationship is retained.
Finally, the negatively helical and irrotational waves associated with the same wave vectors
are neglected.

The question is now about the maximum simplification of the system (2.7.11) such that
it still represents the most important aspects of vortex formation. Neglecting all but the two
vortex waves leads to two uncoupled, linear equations that cannot be expected to faithfully
represent the qualitative behaviour of the full system, in particular with respect to the
formation of a symmetrical vortex flow. To retain the coupled, nonlinear character of the
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original equations the consideration of triad interactions, i.e., the interaction of the vortex
waves with a third ‘catalyst’ wave, is required such that

kx ± ky = q, (3.1.3)

where q is the wave vector of the catalyst wave.

3.2 Basic Interactions

For the equations of motion for the total flow the investigation of single triad interactions
[Kraichnan, 1973; Waleffe, 1992] has shown that local spectral interactions between two
waves of the same sign of helicity only excite a third wave with the opposite sign of helicity,
whereas in local interactions between three nonvanishing waves of which one has the opposite
sign of helicity of the others, only the equal helicity modes interact significantly. These
interactions result in a net direct cascade of energy from large to small scales or from small
to large wave numbers. However, due to the coupling of the fast flow to the slow background
flow through the linear terms (in the fast expansion coefficients) in (2.7.11), these results are
generally not true for the triad interactions of fast vortex waves.

As discussed in Section 2.6.1, for the particular case of vortex formation the expansion
coefficients of the two vortex waves must have a very similar time-dependence. There are
only two expansion coefficients that couple the two amplitudes corresponding to the wave
vectors kx and ky of the simple vortex flow (2.6.28) directly. These belong to the wave
vectors

kx,y
def
=

1√
2


11
0


 (3.2.1)

and

kx,−y
def
=

1√
2


 1
−1
0


 , (3.2.2)

with the triads

kx + ky =
√
2kx,y (3.2.3)

and

kx − ky =
√
2kx,−y . (3.2.4)

To determine conditions under which the two vortex waves are forced simultaneously it is
reasonable to assume that these two triads represent the dominant spectral interactions for
vortex formation. It is then instructive to investigate the low-dimensional dynamical systems
for single triad interactions. Since both catalyst wave vectors for the vortex waves also lie
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in the horizontal plane, the fast perturbation flow represented by a single wave vector triad
only has horizontal spatial variability.

Furthermore, under the high truncation the fast system is coupled to the slow background
flow only through wave vectors of roughly the same magnitude and larger. As a result,
vortex formation is controlled by quasistationary shear zones on roughly the same scale as
the vortex, while large-scale variability of the slow flow is only of indirect importance through
cascading of energy towards short waves. This is consistent with tornado phenomenology
as discussed in Section 2.4 in that tornadoes invariably occur near fronts or in regions of
strong velocity gradients. On the other hand storms with very different large-scale structure
are associated with tornadoes and, vice versa, of two storms with a very similar large-scale
structure only one may spawn a tornado.

Each of the three waves that are coupled in a triad interaction can be in three different
helical states. There can then be 33 = 27 different interactions for a single wave vector triad.
In the particular case of the ‘vortex triads’ (3.2.3) and (3.2.4), in the following referred to as
triads T1 and T2, respectively, two of the waves have the same positive sign of helicity. That
reduces the number of different helical interactions for each of the two spectral interactions
to three, one for each helical state of the catalyst wave vector (3.2.1) or (3.2.2). There is
therefore a total of six basic vortex interactions.

Setting either the real or imaginary parts of the expansion coefficients zero leads to a
real three-dimensional dynamical system for each vortex triad. For a positively or negatively
helical catalyst wave the four resulting dynamical systems are all conservative, i.e., divergence
of the flow in phase space vanishes. As a result there can be no attractors, and in particular
there can be no asymptotically stable equilibria. The only hyperbolic fixed points are saddle
points. Without asymptotically stable equilibria there can be no transition between definite
(observable) states of the system for generic perturbations from one of the equilibria. While
the basin of attraction of saddle or possibly nonhyperbolic fixed points is nonvanishing, the
probability that an arbitrary perturbation from another fixed point lies within the basin
of attraction of these equilibria is generally smaller than for an asymptotically stable fixed
point. Moreover, the representation of the qualitative behaviour of the nonlinear system by
the linearised system about the stationary solution requires a hyperbolic fixed point with
empty centre manifold.

Generally, a meaningful definition of ‘state of a system’ requires at least some degree of
persistence. In the following, ‘state’ will therefore always be referring to an equilibrium of
the system. Otherwise the transition probability between states, together with the states
themselves, is time-dependent. Without asymptotically stable equilibria there can only be
transient fluctuations and the momentary development of a vortex flow would not be a
convincing argument for the formation of tornadolike vortices in a turbulent fluid.

The existence of stable equilibria for the rapidly evolving velocity field may seem coun-
terintuitive. It is important to remember, however, that the simple dynamical systems are
derived to model the initial instability leading to the transition to the vortex state, not the
long-term behaviour of the flow. The constancy of the slow expansion coefficients during
this initial transition period is an idealisation of the temporal evolution of the full system.
Eventually the background flow changes and ‘moves out’ of the ‘tornadic’ parameter region,
causing a qualitative change in the dynamics of the fast system. This leads to the concept
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of dynamic bifurcations discussed in Section 4.1.
For the existence of a stable vortex equilibrium a nonhelical, divergent catalyst mode is

required. Physically this can be expected for two reasons. As discussed in Section 2.3, while
the persistence of vortices is likely to increase with their helicity, the generation of turbulent
eddies requires inertial forcing and therefore a nonhelical flow component. Furthermore,
due to vortex line stretching and concentration of vertical vorticity, one would expect that
a radially converging vortex is more stable than a nondiverging or even diverging vortex.
As seen below, the only stationary vortex states are indeed converging cyclonically rotating
updrafts or anticyclonically rotating downdrafts.

To be able to explicitly derive real dynamical systems from (2.7.11) for particular sets of
waves, the expansion coefficients must be decomposed into their real and imaginary parts.
The slow expansion coefficients are therefore written as

uq = αq + iaq , (3.2.5)

where

αq
def
=


αqβq
γq


 (3.2.6)

and

aq
def
=


aqbq
cq


 , (3.2.7)

and the fast expansion coefficients are written as

aλχk = αλχk + iβ
λ
χk , (3.2.8)

with real numbers αλχk, β
λ
χk, αq, aq, etc.. Since for the truncated systems wave vectors are

restricted to the horizontal plane, q = χ(j, k, 0)T , with integers j and k, a simplified index
notation

uq −→ uj,k etc. (3.2.9)

for the slow expansion coefficients can be introduced. For triad T1 with positively helical
vortex waves and nonhelical catalyst wave, setting α+χkx

= α+χky
= β0χkx,y

≡ 0, the complex

dynamical system (2.7.11) then reduces to the three-dimensional real system

β̇+χkx
= −χ

2
(γ1,1 − γ1,−1) β

+
χky

+
χ

2
(−a0,1 + γ0,1 + a2,1 − 2b2,1 + 3γ2,1)α

0
χkx,y

β̇+χky
=
χ

2
(γ1,1 − γ1,−1) β+χkx

+
χ

2
(b1,0 + γ1,0 + 2a1,2 − b1,2 + 3γ1,2)α

0
χkx,y

α̇0χkx,y
=

χ√
2
β+χkx

β+χky
+
χ

2
(2a0,1 + b0,1 + b2,1) β

+
χkx

− χ

2
(2b1,0 + a1,0 − a1,2) β

+
χky

− χ (a2,2 + b2,2)α
0
χkx,y

,

(3.2.10)
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where the dot over a variable denotes total differentiation with respect to time. Defining the
new variables

X
def
=

√
2β+χkx

(3.2.11)

Y
def
=

√
2β+χky

(3.2.12)

Z
def
=
2
√
2

χ
α0χkx,y

, (3.2.13)

and the new parameters

r
def
=
χ

2
(γ1,1 − γ1,−1) (3.2.14)

r1
def
=
χ2

4
(−a0,1 + γ0,1 + a2,1 − 2b2,1 + 3γ2,1) (3.2.15)

r2
def
=
χ2

4
(b1,0 + γ1,0 + 2a1,2 − b1,2 + 3γ1,2) (3.2.16)

r3
def
= 2a0,1 + b0,1 + b2,1 (3.2.17)

r4
def
= 2b1,0 + a1,0 − a1,2 (3.2.18)

σ
def
= χ (a2,2 + b2,2) , (3.2.19)

the notation of system (3.2.10) simplifies to

Ẋ = −rY + r1Z
Ẏ = rX + r2Z

Ż = XY + r3X − r4Y − σZ .

(3.2.20)

The same dynamical system is obtained for triad T2 if

Z
def
=
2
√
2

χ
α0χkx,−y

, (3.2.21)

and the parameters {r1, . . . , r4, σ} are defined as

r1
def
=
χ2

4
(−a0,1 + γ0,1 − a2,−1 − 2b2,−1 + 3γ2,−1) (3.2.22)

r2
def
=
χ2

4
(b1,0 + γ1,0 − 2a1,−2 − b1,−2 + 3γ1,−2) (3.2.23)

r3
def
= 2a0,1 − b0,1 − b2,−1 (3.2.24)

r4
def
= 2b1,0 − a1,0 + a1,−2 (3.2.25)

σ
def
= χ (a2,−2 − b2,−2) , (3.2.26)

For particular initial and boundary conditions the time-evolution of both systems can easily
be determined to arbitrary accuracy through numerically integration. However, the qual-
itative behaviour of the systems over a larger volume of initial conditions in phase space
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and boundary conditions in parameter space can be obtained through essentially analytical
methods. The discussion in the following two sections of the equilibria of system (3.2.20),
their stability, and transitions between equilibria equally applies to the dynamical systems
for both vortex triads. Distinctions only have to be made in Section 3.5 for the interpreta-
tion of the system parameters in terms of background flows. To simplify the analysis it is
assumed in the following that

u2,1 = u1,2 = u2,−1 = u1,−2 ≡ 0 . (3.2.27)

Then parameters r1 and r2 for both triads are identical.

3.3 Equilibria and Their Stability

The divergence of the flow Ẋ in phase space with X
def
= (X, Y, Z) is given by

∂XẊ + ∂Y Ẏ + ∂ZŻ = −σ . (3.3.1)

For the existence of attractors and stable equilibria it is therefore necessary that σ > 0.
The two stationary solutions of (3.2.20) are X0

def
= (0, 0, 0), which exists for all parameter

values, and X̄
def
= (X̄, Ȳ , Z̄), where

X̄
def
=
r1r4 + r2r3 + rσ

r1
(3.3.2)

Ȳ
def
= −r1r4 + r2r3 + rσ

r2
(3.3.3)

Z̄
def
= −r(r1r4 + r2r3 + rσ)

r1r2
. (3.3.4)

For X̄ to represent a symmetrical vortex it is required that |X̄| = |Ȳ |, or |r1| = |r2|. For
X̄ �→ −X̄ the periodic vortex pattern is shifted by πχ−1 along the x-axis, while for Ȳ �→ −Ȳ
the vortex pattern is shifted by πχ−1 along the y-axis. There are therefore essentially two
possibilities for vortex equilibria in which cases p

def
= r2 = ±r1.

Under the simplification (3.2.27) parameter p can be interpreted by assuming that the
slow background flow is given by the positively helical Beltrami vortex (A.7.8). With (A.7.6)
and (A.7.7) the slow expansion coefficients are given by

u1,0 =
iA√
2

1√
2


 0
−1
−i




=
A

2


 0
−i
1




(3.3.5)

and

u0,1 =
B

2


i0
1


 . (3.3.6)
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Then

b1,0 = −γ1,0 , (3.3.7)

a0,1 = γ0,1 , (3.3.8)

and therefore p ≡ 0 for all A,B ∈ R and arbitrary phase shifts of the vortex centre. On the
other hand for a negatively helical Beltrami vortex the slow expansion coefficients are given
by

u1,0 =
A

2


 0
−i
−1


 (3.3.9)

and

u0,1 =
B

2


 i
0
−1


 , (3.3.10)

in which case

b1,0 = γ1,0 , (3.3.11)

−a0,1 = γ0,1 , (3.3.12)

and p = 2b1,0 = 2γ1,0 = 2a0,1 = −2γ0,1. For generality consider now the function p = a + b
with real numbers a and b. For a given value c2 of the ‘kinetic energy’ a2+ b2, p2 = 2ab+ c2

and therefore |p| are extremised for a2 = b2, where for a = −b, |p|min = 0 and for a = b,
|p|max = 2|a| = 2|b|.1 For a given value of b21,0 + γ21,0 and a

2
0,1 + γ20,1, the magnitude of

p is therefore minimised (zero) for a positively helical Beltrami vortex and maximised for
a negatively helical Beltrami vortex. In as much as the negatively helical vortex can be
considered to be the ‘opposite’ of the positively helical vortex, parameter p can be interpreted
as the deviation of the background flow from a positively helical Beltrami vortex.

Consider first the case p = r2 = −r1 which results in a vortex centred over the origin in
the horizontal plane. Then

X̄ = Ȳ = −p
r
Z̄ = r4 − r3 − rσ

p
. (3.3.13)

The corresponding flow in physical space is given by

v =


−Ȳ sinχy + χ

2
Z̄ sinχ(x+ y)

X̄ sinχx+ χ
2
Z̄ sinχ(x+ y)

X̄ cosχx+ Ȳ cosχy


 (3.3.14)

1Since c2 = a2 + b2 is required to be constant p2 = 2ab + c2 is extremised for the same values of a
and b as ab. With a, b > 0 the example given above has a simple geometrical analogue in that for a given
circumference 2(a + b) of a rectangle its volume ab is maximised by a square a = b.
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Figure 3.1: Flow in physical space around the origin corresponding to vortex equilibria in
phase space for triad T1 (left column) and triad T2 (right column), with X̄ = Ȳ = −Z̄ > 0
(converging cyclonically rotating updrafts) in the first row and X̄ = Ȳ = −Z̄ < 0 (diverging
anticyclonically rotating downdrafts) in the second row. The vectors represent the horizontal
components of the velocity field, and the colour shading denotes vertical velocity.

for triad T1, and

v =


−Ȳ sinχy + χ

2
Z̄ sinχ(x− y)

X̄ sinχx− χ
2
Z̄ sinχ(x− y)

X̄ cosχx+ Ȳ cosχy


 (3.3.15)

for triad T2. These vector fields are shown in Figure 3.1 for χ = 1 and different values of the
equilibrium expansion coefficients. It is apparent that the vortex states for both triads, just
as the corresponding catalyst wave vectors, are simply rotated relative to each other by 90◦

about the vertical axis. Consequently, as seen in Section 3.5, for every tornadic background
flow for the T1 vortex state there is a corresponding tornadic background flow for the T2



3.3 Equilibria and Their Stability 57

vortex state which is rotated counterclockwise by 90◦ relative to the T1 background flow,
and vice versa.

The linear stability of the two equilibria of each system is analysed by calculating the
eigenvalues of the Jacobian matrix

J(X)
def
=


∂XẊ ∂Y Ẋ ∂ZẊ

∂X Ẏ ∂Y Ẏ ∂Z Ẏ

∂XŻ ∂Y Ż ∂ZŻ




=


 0 −r r1

r 0 r2
(Ȳ + r3) (X̄ − r4) −σ




(3.3.16)

evaluated at the stationary solutions X0 and X̄

J(X0) =


 0 −r −p
r 0 p
r3 −r4 −σ


 (3.3.17)

and

J(X̄) =


 0 −r −p

r 0 p
(r4 − rσ

p
) −(r3 + rσ

p
) −σ


 . (3.3.18)

The characteristic equations for eigenvalues λ are given by

λ3 + σλ2 +
[
p(r4 + r3) + r

2
]
λ∓ r [p(r4 − r3)− rσ] = 0 , (3.3.19)

where the upper sign of the term r [p(r4 − r3)− rσ] corresponds to the phase space origin
and the lower sign corresponds to the vortex equilibrium. Since the coefficients in the
characteristic equations are real it follows from the fundamental law of algebra that for each
complex solution the complex conjugate also is a solution. For an algebraic equation with an
uneven order this implies that at least one solution of (3.3.19) must be real for all parameter
values.

To simplify the analysis consider the two cases q
def
= r4 = ±r3. Then for q = r4 = r3

X̄ = Ȳ = −p
r
Z̄ = −rσ

p
(3.3.20)

and

λ3 + σλ2 +
(
2pq + r2

)
λ± r2σ = 0 , (3.3.21)

and for q = r4 = −r3

X̄ = Ȳ = −p
r
Z̄ = 2q − rσ

p
(3.3.22)
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and

λ3 + σλ2 + r2λ∓ r (2pq − rσ) = 0 . (3.3.23)

In both characteristic equations parameters p and q effectively only appear as one parameter
in the combination pq. Through the definition of the parameters p and q the number of
independent parameters in the stability analysis is therefore reduced from six to three.

The linear stability of the system near any of the fixed points depends on the sign of the

real parts of the three eigenvalues λi. For asymptotic stability Re [λi]
!
< 0 for all i = 1, 2, 3.

Conversely, for instability Re [λi]
!
> 0 for at least one eigenvalue. Since for σ > 0 the system

(3.2.20) is dissipative there must always be at least one stable direction. To characterise the
combined instability or stability of all three eigendirections of the linearised flow around any
equilibriumX̄, the repellor strength ofX̄ is defined as the magnitude of the vector containing
all its unstable eigenvalues,

R(X̄)
def
=


 ∑

Re[λi]>0

Re
[
λi(X̄)

]2
1
2

, (3.3.24)

while the attractor strength of X̄ is defined as

A(X̄)
def
=

(
3∑
i=1

Re
[
λi(X̄)

]2) 1
2

, (3.3.25)

for all Re [λi] negative, else A(X̄)
def
= 0.

Since the term r2σ in (3.3.21) is greater than zero for all values of r and σ > 0, as shown
in Figure 3.2, for q = r4 = r3 the ground state is stable over the entire parameter space,
while, as shown in Figure 3.3, the vortex state has unstable directions for all parameter
values. However, as shown in Figures 3.4 and 3.5, for q = r4 = −r3 both equilibria have
nonoverlapping parameter regions of stability. In all figures attractor and repellor strengths
are shown only for positive values of pq, r and σ. However, there is a mirror symmetry in
pq and r with respect to the origin in parameter space.

Consider now the case p = r2 = r1. Then, for q = r4 = r3

X̄ = −Ȳ = −p
r
Z̄ = 2q +

rσ

p
(3.3.26)

and

λ3 + σλ2 + r2λ± r (2pq + rσ) = 0 , (3.3.27)

while for q = r4 = −r3

X̄ = −Ȳ = −p
r
Z̄ =

rσ

p
(3.3.28)
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Figure 3.2: Ground state repellor strength (left column) and attractor strength (right column)
for p = r2 = −r1 and q = r4 = r3.

and

λ3 + σλ2 +
(
2pq + r2

)
λ± r2σ = 0 . (3.3.29)

As before, the upper sign corresponds to the phase space origin and the lower sign to the
vortex equilibrium. As shown in Figures 3.6 and 3.7, for q = r4 = r3 neither the ground nor
the vortex state are stable for any combination of parameters. The characteristic equation
(3.3.29) is identical with (3.3.21). For q = r4 = −r3 the vortex state is therefore unstable
for all parameter values.

For a perfectly helical background vortex with p = r2 = ±r1 = 0 the vortex equilibrium
of the fast flow does not exist for nonvanishing r and σ. For q = r4 = ±r3 = 0 and
p = r2 = ±r1 �= 0 identical characteristic equations

λ3 + σλ2 + r2λ± r2σ = 0 (3.3.30)

are obtained. It can be seen from the previous figures that in those cases the vortex state is
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Figure 3.3: Vortex state attractor strength (left column) and repellor strength (right column)
for p = r2 = −r1 and q = r4 = r3.

unstable for all values of p, r and σ. Finally, for r = 0 or σ = 0 there exist only nonhyperbolic
equilibria.

3.4 Conditions for Vortex Formation

In practice, for the purpose of tornado forecasting, the slow velocity field is calculated from
observations of the storm system prior to tornadogenesis. Relevant initial conditions for
phase space trajectories are therefore small perturbations from the phase space origin. Since
stable (or unstable) manifolds of two distinct hyperbolic fixed points cannot intersect, a
point arbitrarily close to the origin, which lies within the basin of attraction of the vortex
fixed point, must necessarily also lie on the unstable manifold of the origin. Then vortex
formation from small initial perturbations, i.e., a transition from a state close to the origin to
the vortex equilibrium, takes place. Stated differently, if both fixed points are simultaneously
asymptotically stable, arbitrarily small perturbations from the origin cannot lie within the
basin of attraction of the vortex equilibrium and a transition from perturbations of the
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Figure 3.4: Ground state repellor strength (left column) and attractor strength (right column)
for p = r2 = −r1 and q = r4 = −r3.

‘ground state’ to the vortex state cannot take place. Moreover, as discussed in Section 3.2, the
transition probability for arbitrary perturbations from the origin to a saddle or nonhyperbolic
fixed point is generally very small.

The isolated stability or instability2 of fixed points is therefore not a sufficient criterion
for a transition between equilibria. To characterise the transition probability between states
of the system, a combined measure of the instability of the initial state and the stability of
the final state must be introduced. Based on the definition of repellor and attractor strength,
(3.3.24) and (3.3.25), respectively, it is straightforward to define the transition probability
from equilibrium stateX̄1 to equilibrium stateX̄2 as the product of the repellor strength of
the initial state with the attractor strength of the final state,

TP
[
X̄1 →X̄2

] def
= R(X̄1)A(X̄2) . (3.4.1)

Since generally not all perturbations from the initial state lie within the basin of attraction

2In the following stability is always referring to asymptotic stability of the linearised system, while
instability is referring to the absence of asymptotic stability.



62 3 Flow in Phase Space

0

0.2

0.4

0.6

0.8

r

pq

σ = 1

0 0.5 1
0

0.25

0.5

0.75

1

0

0.2

0.4

r

pq

σ = 1

0 0.5 1
0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0.8

σ

pq

r = 1

0 0.5 1
0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

σ
pq

r = 1

0 0.5 1
0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0.8

r

σ

pq = 0.25

0 0.5 1
0

0.5

1

0

0.1

0.2

0.3

r

σ

pq = 0.25

0 0.5 1
0

0.5

1

Figure 3.5: Vortex state attractor strength (left column) and repellor strength (right column)
for p = r2 = −r1 and q = r4 = −r3.

of the final state, nonvanishing transition probability, as the name suggests, only is a sta-
tistical measure and not a sufficient criterion for the transition to take place. Unlike the
case in quantum mechanics transition probability here is unnormalised. Since the magni-
tudes of the eigenvalues of the linearised system in phase space are dynamically relevant,
unnormalised transition probabilities allow comparisons of transitions between equilibria for
two velocity fields that are scaled in the same way. However, since the dynamical system
is autonomous the transition probability is constant in time and is therefore a meaningful
statistical measure.

The transition probabilities for the four cases p = r2 = ±r1 and q = r4 = ±r3 discussed
in the previous section are shown in Figures 3.8, 3.9, and 3.10. It can be seen that for
p = r2 = r1 and q = r4 = ±r3, and for p = r2 = −r1 and q = r4 = r3 transitions from the
ground to the vortex state are extremely unlikely. For these special parameter values the
only likely contribution to vortex formation comes from the case when p = r2 = −r1 and
q = r4 = −r3. The following discussion will therefore focus on these parameter values.

The information in the previous figures can then be summarised by four inequalities. The
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Figure 3.6: Ground state repellor strength (left column) and attractor strength (right column)
for p = r2 = r1 and q = r4 = r3.

ground state is stable for parameter values satisfying

0 < pq <
rσ

2
(3.4.2)

for r > 0, and for parameter values satisfying

rσ

2
< pq < 0 (3.4.3)

for r < 0. Since in those cases arbitrary, small perturbations of the fast flow are damped
out, the part of parameter space satisfying (3.4.2) and (3.4.3) is referred to as the ‘laminar’
region. Similarly, the part of parameter space satisfying

rσ

2
< pq < rσ (3.4.4)

for r > 0, and

rσ < pq <
rσ

2
(3.4.5)
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Figure 3.7: Vortex state attractor strength (left column) and repellor strength (right column)
for p = r2 = r1 and q = r4 = r3.

for r < 0, in which the vortex state is stable, is referred to as the ‘tornadic’ region.
A classification of dynamical regimes can be based on the volume of parameter space

with nonvanishing transition probability and the magnitude of transition probability in that
region. In the domain of positive parameters the dynamical regime for vortex development
becomes more significant with increasing parameters r and σ, and the magnitude of transition
probability for given parameters r and σ increases towards the upper limit of the tornadic
region given by (3.4.4). While a larger tornadic volume of parameter space allows for storm
evolution and measurement errors, the magnitude of the transition probability determines
the speed at which the vortex state is approached.

By continuity, at the boundaries of the laminar and tornadic regions at least one of the
real parts of the corresponding eigenvalues of the linearised system must be zero. At the
common boundary pq = rσ/2 the ground and vortex state coincide (i.e., the fast vortex
flow vanishes) and one of the real eigenvalues vanishes.3 This kind of transition is called

3Since for a real dynamical system complex eigenvalues always come in complex conjugate pairs, if the
real part vanishes for a single eigenvalue, this eigenvalue must be real.
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Figure 3.8: Transition probability from ground to vortex state (left column) and from vortex
to ground state (right column) for p = r2 = r1 and q = r4 = r3.

a steady-state bifurcation. More specifically, since two equilibria simply exchange stability
without being created or destroyed at the bifurcation point, this steady-state bifurcation
is a transcritical bifurcation. At the outer boundaries of the two dynamical regimes the
real parts of a pair of complex conjugate eigenvalues vanishes. These transitions, generally
referred to as Hopf bifurcations,4 are associated with the change of stability of only one of
the equilibria. At pq = 0 the ground state changes stability while the vortex state remains
unstable, whereas at pq = rσ the vortex state changes stability while the origin remains
unstable. The two dynamical regimes with transition boundaries (bifurcation points) are
schematically shown on a bifurcation chart in Figure 3.11.

In a multiparameter problem such as (3.2.20) there are several different possibilities for
any of the transitions to take place. However, by keeping all but one of the parameters
constant the simple normal-form dynamics of one-parameter problems derived via centre-

4The Hopf bifurcations here differ from those typically encountered in 1-parameter systems in that the
stationary solution gaining stability is not created (nor is a stable stationary solution destroyed) at the
bifurcation point.
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Figure 3.9: Transition probability from ground to vortex state (left column) and from vortex
to ground state (right column) for p = r2 = ±r1 and q = r4 = ∓r3.

manifold reduction can be recovered. For the transcritical bifurcation between the laminar
and tornadic regions this is briefly outlined in Appendix A.9. For simplicity consider two
one-parameter bifurcation sequences.

In the first case, shown in Figure 3.12, p, q, σ > 0 are fixed. For 0 < r < pqσ−1 both
the ground and vortex state are unstable. With X̄ = Ȳ > 0 and Z̄ < 0 the vortex is
a converging, cyclonically rotating updraft whose intensity (kinetic energy) is continuously
decreasing as r approaches 2pqσ−1. As r increases above pqσ−1 the vortex becomes stable in
a Hopf bifurcation and remains stable in the interval pqσ−1 < r < 2pqσ−1, while the origin
is unstable. At r = 2pqσ−1 the two equilibria coincide. As r increases above that critical
value there is an exchange of stability from the vortex to the ground state. Since X̄ = Ȳ < 0
and Z̄ > 0 the unstable vortex now is a diverging, anticyclonically rotating downdraft whose
intensity continuously increases with r.

Similarly the case where p, r, σ > 0 are fixed and q varies can be analysed. This situation
is shown on the second bifurcation diagram in Figure 3.13. For q < 0 both equilibria are
unstable. The vortex is a diverging, anticyclonically rotating downdraft whose intensity is
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Figure 3.10: Transition probability from ground to vortex state (left column) and from vortex
to ground state (right column) for p = r2 = −r1 and q = r4 = −r3.

continuously decreasing as q approaches rσ/2p. As q increases above zero the ground state
gains stability in a Hopf bifurcation and remains stable until q reaches rσ/2p, where it loses
stability in a transcritical bifurcation to the vortex state. At the bifurcation point the vortex
flow vanishes and increases in intensity as a converging, cyclonically rotating updraft as q
increases above its critical value. The vortex state remains stable until q reaches rσp−1,
where it loses stability again in a second Hopf bifurcation.

Due to the reflectional symmetry with respect to the parameter space origin the same
bifurcations occur with r < 0 if the stability criteria (3.4.2) and (3.4.4) are replaced by
(3.4.3) and (3.4.5).

The question now is if these bifurcations are generic, i.e., if they are robust in the sense
that they also occur in a slightly perturbed system. It is easy to verify that by adding
arbitrary small terms linear or quadratic in any of the phase space variables to any of the
equations in (3.2.20) the bifurcations persist. The nontrivial stationary solution and the
bifurcation points are simply shifted by a small amount depending on the perturbation
of the system. Since the bifurcations are generic with respect to six parameters they are



68 3 Flow in Phase Space

Figure 3.11: Bifurcation chart showing dynamical regimes and transition boundaries in the
positive parameter plane.

codimension-six bifurcations, i.e., the codimension of system (3.2.20) is six. The system
(3.2.20) itself is generic in the sense that it is neither symmetric in any of the phase space
variables nor Hamiltonian.

With p = r2 = −r1 and q = r4 = −r3 the dynamical system (3.2.20) becomes

Ẋ = −rY − pZ

Ẏ = rX + pZ

Ż = XY − q(X + Y )− σZ ,

(3.4.6)

with stationary solutions

X̄ = Ȳ = −p
r
Z̄ = 2q − rσ

p
, (3.4.7)

and a critical value qc = rσ/2p of q at the transcritical bifurcation. With σ > 0 it follows
from the criteria (3.4.4) and (3.4.5) for stable vortex states5 that the sign of the stationary
solutions X̄ = Ȳ only depends on the sign of the product pr, while Z̄ < 0 for all param-
eter values within the tornadic range. The stable vortex states may therefore represent

5As it can be seen from Figure 3.5, since ground and vortex state have nonoverlapping regions of stability,
the criteria for stable vortex states are identical with those for a nonvanishing transition probability from
the ground state.
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Figure 3.12: Bifurcation diagram with respect to parameter r. The positions of the stable
equilibria are shown by solid lines, while the positions of the unstable equilibria are shown by
dashed lines.

Figure 3.13: As in Figure 3.12 but for bifurcations with respect to parameter q.
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Figure 3.14: Locations of vortex equilibria in phase space and their stability. The solid
lines indicate stable equilibria and the dashed lines unstable equilibria. (a) sig p = sig r, the
stable equilibria are CCUs, and the unstable equilibria are divergent anticyclonically rotating
downdrafts (DADs); (b) sig p = − sig r, the stable equilibria are CADs, and the unstable
equilibria are divergent cyclonically rotating updrafts (DCUs).

convergent cyclonically rotating updrafts (CCUs) with sig p = sig r, or anticyclonically ro-
tating downdrafts (CADs) with sig p = − sig r.6 The locations in phase space of the vortex
equilibria and their stability for sig p = sig r and sig p = − sig r are shown in Figure 3.14.

To get an idea about the qualitative flow in phase space it is best to separate the system
into smaller components. Considering only the linear terms in X and Y in the Ẋ and Ẋ
equations gives the system

Ẋ = −rY
Ẏ = rX

Ż = 0 ,

(3.4.8)

which is simply a cyclonically (r > 0) or anticyclonically (r < 0) rotating, nondiverging
vortex over the origin in the horizontal plane with vanishing vertical velocity, where the
continuous string of stationary solutions (0, 0, Z) with arbitrary Z lies along the vortex axis.
Under the coordinate transformation(

X
Y

)
�→
(
X
Y

)
+
p

r
Z

(
1
1

)
, (3.4.9)

with(
Ẋ

Ẏ

)
�→
(
Ẋ

Ẏ

)
, (3.4.10)

6Anticyclonically rotating updrafts or cyclonically rotating downdrafts have negative helicity in a right-
handed frame of reference and are therefore not represented by the positively helical vortex waves.
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the system (3.4.8) becomes

Ẋ = −rY − pZ

Ẏ = rX + pZ

Ż = 0 .

(3.4.11)

On a horizontal plane Z = const . the vortex centre is shifted to −pZ/r. The steady solutions
X̄ = Ȳ = −pZ/r therefore lie along the axis (p/r, p/r,−1) of a slanted vortex. With
Ż = XY − q(X +Y )−σZ, as in the actual system (3.4.6), the horizontal flow in each plane
Z = const . remains unchanged but the continuous line of stationary solutions in the vortex
centre now reduces to the two discrete stationary solutions (0, 0, 0) and (3.4.7).

To determine if for parameters in the tornadic region small perturbations from the origin
really lie within the basin of attraction of the vortex equilibrium, phase space trajectories
have to be explicitly calculated. For sig p = sig r, the case of a cyclonically rotating updraft
over the origin in physical space, Figures 3.15, 3.16, and 3.17 show ensembles of trajectories
starting from near the phase space origin for values of q on or near the transcritical bifurcation
points between the laminar and tornadic regions. To be able to compare the speed of the
transition between equilibria supercriticality s is defined as a measure of the bifurcation
parameter relative to its critical value, e.g. q/qc.

7 The integration time is 40 nondimensional
time units (NTU). Scaled to physical variables as in Section 3.5 this corresponds to a period
of 2min. The trajectories were calculated with a forth-order Runge-Kutta scheme and a
time-step of 0.01NTU.

For supercritical parameter values there exist trajectories that leave the origin and are
attracted by the stable vortex equilibrium. These trajectories rapidly approach the line
(p/r, p/r,−1) leading straight into the fixed point, indicating that the linearised flow around
the vortex equilibrium only has real negative eigenvalues. As a result the two Beltrami
vortex amplitudes proportional to X and Y increase proportionally sufficiently far enough
away from the origin. Therefore the vortex really is generated as a flow structure. After
a short transition period the two vortex amplitudes become practically identical forming a
symmetric vortex which intensifies as the phase space trajectory approaches the stable fixed
point.

As usual for weakly nonlinear and weakly dissipative systems such as (3.4.6), as the origin
becomes unstable there also exist unbounded trajectories, i.e., initial conditions leading to
an essentially exponential growth in time of some of the phase space variables. Some of
these trajectories are shown in Figure 3.18. Unlike for the bounded trajectories there lies
no stable stationary state ‘in the way’ of the unbounded trajectories leading away from
the origin. The line towards which they are all attracted approaches a tangent vector of(
Ẋ, Ẏ , Ż

)
∝ (−1, 0, 1) as Z → ∞. Clearly, in the case of fluid flow these trajectories have

no physical interpretation. The question therefore is if the initial conditions leading to these
unbounded trajectories are physically relevant.

7This definition is valid if qc �= 0. If qc = 0, as at the first Hopf bifurcation, subcriticality for q near qc

can be defined as qc/q. The prefixes ‘sub’ and ‘super’ are relative of course, and in this case refer to the
ground to vortex state transition.
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Figure 3.15: Phase space trajectories for a supercriticality of s = 0.8. The ground state is
stable and small initial perturbations are damped out. The ground state is marked by symbol
◦, and the vortex state is marked by symbol ×.

For all parameter values within the tornadic region all trajectories with initial pertur-
bations from the origin such that Z < 0 are attracted towards the fixed point, while for
initial perturbations with Z > 0 trajectories are unbounded. For sig p = sig r, analysing the
trajectories for initial perturbations in the horizontal plane Z = 0, the corresponding initial
flows in physical space fall into two categories. For

(X(0), Y (0), Z(0)) ∈ {(±ε, 0, 0); (0,±ε, 0)| ε > 0} (3.4.12)

the velocity fields are the straight-line shear flows shown in Figure 3.19. They only differ
from each other by a shift of ±πχ−1 along any of the horizontal directions or by a 90-
degree rotation. Depending on where within the vortex around the origin in phase space the
perturbations fall, their trajectories are either swept inside the vortex centre and towards
the stable fixed point or in the opposite direction in which case they follow the unbounded
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Figure 3.16: Phase space trajectories at criticality (s = 1).

line attractor towards infinity. For

(X(0), Y (0), Z(0)) ∈ {(±ε,±ε, 0); (±ε,∓ε, 0)| ε > 0} (3.4.13)

the velocity fields are shown in Figures 3.20. They are a periodic pattern of counterrotat-
ing updrafts and downdrafts that only differ from each other by a shift of ±πχ−1 along
the horizontal directions. Dynamically however, as for the initial perturbations satisfying
(3.4.12), they are very different. For (X(0), Y (0), Z(0)) = (ε,±ε, 0) the phase space trajec-
tories tend towards the fixed point, whereas for (X(0), Y (0), Z(0)) = (−ε,±ε, 0) the phase
space trajectories are unbounded.

Velocity fields represented by Fourier series are always periodic in space. As discussed
in Section 2.5.1 they are calculated over a given finite domain and for aperiodic velocity
fields are valid approximations only in the interior of that domain. Moreover, the fast ex-
pansion coefficients are associated with a flow phenomenon of much smaller extent than
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Figure 3.17: Phase space trajectories for s = 1.2. The vortex state is stable and some initial
perturbations from the ground state are attracted towards it.

the total domain over which the expansion coefficients are calculated. Based on the dis-
cussion in Section 2.6.1 the fast expansion coefficients are therefore part of a continuous
spectrum associated with a fluid volume of small extent in which all waves add up to gen-
erate a locally intense vortex while cancelling each other out away from that domain. For
an equilibrium state representing a vortex over the origin in physical space the velocity
fields corresponding to the various initial states must therefore be interpreted in a horizontal
domain {(x, y)| x ∈ [−πχ−1, πχ−1]; y ∈ [−πχ−1, πχ−1]}. Since the real parts of the fast ex-
pansion coefficients of the vortex waves are set equal to zero there can be no phase changes
and therefore no continuous shifts of the vortex centres. In the highly truncated system it
is therefore not possible that vortices move into the domain of the final vortex state.

The flows around the origin in physical space for the different cases of initial perturbations
from the origin in phase space discussed above for sig p = sig r are schematically shown in
Figure 3.21. Initial perturbations corresponding to straight-line or hyperbolic shear flows
around the origin in physical space may either lead to bounded or unbounded phase space



3.4 Conditions for Vortex Formation 75

−10 −5 0 5 10
−10

−5

0

5

10

X

Y

−10 −5 0 5 10
−10

−5

0

5

10

X

Z

−10 −5 0 5 10
−10

−5

0

5

10

Y

Z

−10
−5

0
5

10 −10
−5

0
5

10

−10
−5

0
5

10

YX

Z

Figure 3.18: The same trajectories as in Figure 3.17 shown over a larger phase-space region
and calculated only over a period of 27NTU. Due to the larger numbers involved the time-step
was reduced to 0.001NTU.

trajectories. An initially weak cyclonically rotating updraft steadily intensifies and reaches
a stationary state, while an anticyclonically rotating downdraft develops into approximately
exponentially intensifying countermoving and meandering jets with strong shear zones about
the origin, i.e., into an unphysical state with unbounded phase space trajectory. Similarly, the
initial perturbation (X(0), Y (0), Z(0)) = (0, 0,−ε), associated with a converging flow around
the origin develops into a vortex state, while a diverging flow corresponding to the initial
perturbation (X(0), Y (0), Z(0)) = (0, 0, ε) becomes unbounded. In simplified form it can be
said that converging and/or cyclonically rotating updraft perturbations develop into a more
intense vortex given the right background flow, whereas diverging and/or anticyclonically
rotating downdraft perturbations belong to a set of initial conditions for which the highly
truncated system (3.4.6) has unphysical solutions. Therefore, if the various initial states
are correctly interpreted in physical space relative to the evolving final vortex state it is
apparent that initial conditions that are likely to be found in the thunderstorm on the scale
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Figure 3.19: Flows in physical space corresponding to perturbations about the phase space
origin with χ = 1. Flows in the left column have unbounded trajectories, while flows in the
right column develop into a CCU at the origin. In phase space the initial perturbations are
(a) (−ε, 0, 0), (b) (ε, 0, 0), (c) (0, ε, 0), and (d) (0,−ε, 0).

of a tornado and around the typical locations of tornadogenesis are in fact uniquely associated
with a transition from perturbations of the ground state to the vortex state, given the right
state of the storm flow. The qualitative analytical results obtained through bifurcation
analysis are therefore sufficient to determine if vortex formation from small perturbations
takes place or not, and explicit numerical solutions of the low-dimensional dynamical system
for specific initial conditions are not required. Moreover, since for an autonomous dynamical
system such as (3.2.20) the phase space structure is fixed, the verification of bifurcations by
explicit phase space trajectories does not have to be done for every forecast.

There are several unphysical scenarios that are possible in the simple system, whereas
several processes that are possible in nature cannot happen. The focus must therefore be
on initial and boundary (i.e., background flow) conditions that are physically relevant for
tornadogenesis or any vortex phenomenon under consideration. A useful model must then
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Figure 3.20: As for Figure 3.19 but for initial phase space perturbations (a) (−ε, ε, 0), (b)
(ε,−ε, 0), (c) (−ε,−ε, 0), and (d) (ε, ε, 0).

produce physically reasonable results. However, ‘physically relevant’ initial conditions are
determined only relative to the final state. The same results obtained for sig p = sig r are also
true for sig p = − sig r representing an anticyclonically rotating downdraft equilibrium vortex
state if ‘cyclonically rotating updraft’ is replaced with ‘anticyclonically rotating downdraft,’
and vice versa, in the previous paragraph. In the simple model there is no symmetry breaking
mechanism such as buoyancy that favours the formation of either an updraft or downdraft.8

In summary, the dynamics in phase space is characterised primarily by the line attractor,
on which the two fixed points (0, 0, 0) and

(
X̄, Ȳ , Z̄

)
are local disturbances. For bounded,

i.e., physically relevant trajectories, significant qualitative changes in the dynamics are due
to the exchange of stability between these two equilibrium states.

8The favoured formation of cyclonic updraft rotation or anticyclonic downdraft rotation in the simple
model is due to the helical truncation of the system and not due to the Coriolis force as in Nature.
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Figure 3.21: Schematic flow around the origin in physical space corresponding to initial
perturbations from the origin in phase space. The symbols ⊕ and " indicate positive or
negative vertical velocity, respectively. The initial states on the left of each subfigure have
unbounded phase space trajectories, while the flows on the right develop into a stationary CCU
at the origin. (a) from top left to bottom right the initial perturbations (X(0), Y (0), Z(0))
are equal to (−ε, 0, 0), (ε, 0, 0), (0, ε, 0), and (0,−ε, 0); (b) initial perturbations (−ε, ε, 0) and
(ε,−ε, 0); (c) initial perturbations (−ε,−ε, 0) and (ε, ε, 0); (d) initial perturbations (0, 0, ε)
and (0, 0,−ε).
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3.5 Environments of Vortex Formation

In the bifurcation scenarios discussed in the previous section vortex formation is described
as an instability of the ground state, where the mathematical mechanism for the instability
is a loss of hyperbolicity of the coinciding equilibria at the critical point of the transcritical
bifurcation. To be able to interpret the bifurcation scenario as a real process, physical
instability mechanisms corresponding to the mathematical instabilities must be identified.

The transcritical bifurcation between laminar and tornadic region taken alone could be
interpreted by saying that some forcing, e.g., buoyancy (represented by background updraft
strength in the kinematical model) or shear or a combination thereof,9 must exceed a certain
threshold value for the spin-up of an intense vortex. However, as that forcing is increased,
at some point a second critical value is reached, in which the vortex state loses stability
again in a Hopf bifurcation. If buoyancy or convective instability was the main forcing
mechanism it would be hard to imagine that at some point where convection exceeds a
certain intensity the vortex is destroyed. As long as convection is maintained there is a
convergence into the vortex centre with tilting of horizontal vortex lines close to the surface
and stretching of vertical vortex lines in the updraft, and therefore an intensification of the
existing circulation. If on the other hand shear instability is the primary mechanism it is
conceivable that a certain minimum amount of shear is required for an initial vortex spin-up.
However, if the shear zones persist (as it is assumed) a too strong background shear destroys
or prevents the formation of an ordered vortex. Therefore it is reasonable to suspect that in
the simple model shear rather than convective instability is responsible for vortex formation.

To interpret the different parameter values as certain slow background flows emphasis
must then be on the description of shear flows. The separation of slow background flow
and fast perturbation flow on the same spatial scale is therefore not only with respect to
timescales but also with respect to qualitatively different flow phenomena. While the fast
flow is defined to represent a certain vortex instability of the slow background flow and initial
shear perturbations are ignored, the slow flow on the scale of the rapidly evolving vortex
instability is defined to represent a persistent shear flow, where rotational motion on that
scale is ignored. This is consistent with the situation found in typical supercell thunderstorms
where prior to tornadogenesis there may be no significant circulation on the tornado scale
but intense fronts and shear zones close to the favourite locations of tornadogenesis. Based
on this observation it was suggested already in Section 2.4 that tornadoes may be vortical
instabilities of these shear zones. In reality of course the initial vortex instability is intensified
by convection.

With (2.7.7) and (3.2.5) the slow background flow in explicitly real notation is given by

u = 2
∑
q

αq cos q · x − aq sin q · x (3.5.1)

where summation is only over linearly independent wave vectors. A particular set of slow ex-
pansion coefficients uniquely specifies a set of parameters. The evolution of the slow system
is therefore associated with a unique trajectory in parameter space. However, a particular
set of parameters does not uniquely specify the background flow. Moreover, only a small

9Cf. the discussion of tornado forcing mechanisms in Section 2.4.
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number of slow expansion coefficients couple to the few fast expansion coefficients considered
in the highly truncated systems. The difference between the slow and fast expansion coef-
ficients is that while most of the slow expansion coefficients are explicitly truncated in the
derivation of the dynamical system no assumption is being made about the slow expansion
coefficients that are not included in the fast equations of motion. Therefore, in addition to
the ununiqueness, the system parameters do not completely specify the background flow. In
particular none of the parameters contains both the real and imaginary parts of any of the
expansion coefficients. With

αq = Aq cos q · x0 (3.5.2)

aq = −Aq sin q · x0 (3.5.3)

and Aq real, u can be written as

u = 2
∑
q

Aq cos q · (x − x0) , (3.5.4)

where the amplitudes Aq and phases q · x0 depend on both αq and aq. The phases of the
slow background waves are therefore all undetermined.

Not taking into account phase shifts, parameter r,

r =
χ

2
(γ1,1 − γ1,−1) , (3.2.14)

is associated with essentially two types of horizontal shear of vertical velocity: localised
neighbouring regions of updrafts and downdrafts or ‘plumes’ for γ1,1 = ±γ1,−1, and straight-
line ‘frontal’ shear for γ1,1 = 0 or γ1,−1 = 0. These velocity fields are shown in Figure 3.22.
For simplicity, here and in the following it is assumed that the length scale is chose such
that χ = 1.

Even under the simplification (3.2.27) the background flows associated with parameter
p, for both vortex triads,

p =
χ2

4
(b1,0 + γ1,0)

=
χ2

4
(a0,1 − γ0,1) ,

(3.5.5)

shown in Figure 3.23, are more complex. It was mentioned already in Section 3.3 that p = 0
implies a positively helical Beltrami vortex. However, for p = 0 nontrivial equilibria do
not exist. For a0,1 and b1,0 nonvanishing the background flow has circulation on the fast
vortex scale. For physical reasons, as discussed above, these cases must be excluded. For
a0,1 = b1,0 = 0, similar to the cases of γ1,1 = ±γ1,−1, the resulting velocity field has horizontal
shear of vertical velocity with localised neighbouring regions of updrafts and downdrafts.

Parameter q,

q = 2b1,0 + a1,0

= −2a0,1 − b0,1 ,
(3.5.6)
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Figure 3.22: Background flow associated with parameter r = 1 (left column) and r = −1
(right column): (a) γ1,1 = −γ1,−1 = 1, (b) γ1,1 = −γ1,−1 = −1, (c) γ1,1 = 2 and γ1,−1 = 0,
(d) γ1,1 = 0 and γ1,−1 = 2.

for triad T1, and

q = 2b1,0 − a1,0

= −2a0,1 + b0,1
(3.5.7)

for triad T2 with a0,1 = b1,0 = 0 is easy to interpret. As shown in Figure 3.24 it creates a
horizontal hyperbolic shear flow around the origin. The shear flows for the two vortex triads
only differ from each other by a rotation about the vertical axis of 90◦. Parameter σ,

σ = χ (a2,2 + b2,2) , (3.2.19)

for triad T1, and

σ = χ (a2,−2 − b2,−2) (3.2.26)
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Figure 3.23: Background flow associated with parameter p = 1 (left column) and p = −1
(right column): (a) a0,1 = b1,0 = 4, (b) a0,1 = b1,0 = −4, (c) γ1,0 = −γ0,1 = 4, (d)
γ1,0 = −γ0,1 = −4.

for triad T2, also does not represent qualitatively different background flows. In both cases it
is associated with straight-line convergence near the origin for all {a2,2, b2,2} and {a2,−2, b2,−2}
such that σ > 0. As for parameter q the two vector fields are simply rotated by 90◦ relative
to each other.

With a0,1 = b1,0 = 0 the parameters p and q are decoupled. In that case parameters p
and r determine the vertical background velocity field, and parameters q and σ determine
the horizontal velocity field.

For triad T1, as an explicit example, consider the case p = r = 1 and σ = 0.5. The critical
value of free parameter q at the transcritical bifurcation is then qc = 0.25. For the particular
case that γ1,1 = 2, γ1,−1 = 0, and a2,2 = b2,2 = 0.25 the background flow at criticality is shown
in Figure 3.25. For the same background flow and triad T2, q = −0.25. With p = r = 1 T2
therefore does not contribute to vortex formation. For q < 0 the stability criteria require
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Figure 3.24: Horizontal background flow for vortex triad T1 (left column) and T2 (right
column), associated with parameter q with a0,1 = b1,0 = 0 (first row) and parameter σ
(second row): (a) a1,0 = −b0,1 = q, (b) −a1,0 = b0,1 = q, (c) a2,2 = b2,2 = σ/2, and (d)
a2,−2 = −b2,−2 = σ/2.

that p and r have opposite signs. For p = −r = 1 with γ1,1 = 0 and γ1,−1 = −2, the
critical background flow for T2 is shown in Figure 3.26. For q = qc = σ/2 = 0.25 and
p = r = −1 the same picture shown in Figure 3.25 for triad T1, rotated by 90◦, is obtained
for T2. In both cases the centre of the forming vortex is in a positively helical updraft
region with strong gradients in vertical velocity and a converging horizontal shear flow. As
mentioned before, the system parameters only determine part of the small-scale variability
of the background flow, where the phases of all waves are undetermined. The component
of the background flow derived from the system parameters does not necessarily represent
any recognisable flow features of the actual background flow. A comparison with large-scale
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Figure 3.25: Background flow at criticality of the transcritical bifurcation for triad T1 with
a0,1 = b1,0 = 0, p = γ1,0/4 = −γ0,1/4 = r = 1, γ1,1 = 2, γ1,−1 = 0, and q = a1,0 = −b0,1 =
σ/2 = a2,2 = b2,2 = 0.25. Vectors indicate horizontal velocity.

storm flow characteristics is therefore not possible.
In the bifurcation scenario with respect to parameter q, as shown in Figure 3.13 for triad

T1, only the horizontal flow varies. With a2,2 = b2,2 = σ/2 = qc it is given by

u(x, y, q)
def
= −q sin x− qc sin 2(x+ y) (3.5.8)

v(x, y, q)
def
= q sin y − qc sin 2(x+ y) . (3.5.9)

As shown in Figure 3.27, as q increases towards qc, the initially converging flow associated
with parameter σ more and more develops directional shear at the origin. As this directional
shear becomes more intense it creates torques that create the initial perturbation to spin up
the vortex. Eventually, as the stress becomes too strong it destroys the ordered vortex. The
same pictures rotated by 90◦ are obtained for T2.
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Figure 3.26: As Figure 3.25 but for triad T2 with a0,1 = b1,0 = 0, p = γ1,0/4 = −γ0,1/4 =
−r = 1, γ1,1 = 0, γ1,−1 = 2, and q = −a1,0 = b0,1 = −σ/2 = −a2,−2 = b2,−2 = −0.25.

Parameter r is not uniquely related to the type and intensity of the horizontal shear of
vertical velocity, nor to the intensity of vertical motion itself. This can easily be seen by
comparing Figure 3.28 with Figure 3.22. However, a large positive or negative value of r
means that at least one of the expansion coefficients γ1,1 and γ1,−1 is large in magnitude,
indicating waves of intense vertical motion in the direction of the corresponding wave vectors.
To maintain the qualitative pattern of vertical motion the relative magnitude of all four
expansion coefficients γ1,0, γ0,1, γ1,1, and γ1,−1, and therefore p and r, must remain constant.
As shown in Figure 3.29, on the (rσ, pq)-plane in parameter space the slope of the line of
transcritical bifurcation points, i.e., the boundary between the laminar and tornadic regions,
is one-half. Increasing or decreasing p and r such that p = r greater or less than zero, the
trajectory in parameter space will remain in either the laminar or tornadic region depending
on the relative magnitude of q and σ. Consistent with the conjecture above, in the simple
model changes in the intensity of vertical background motion representing buoyancy on the
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Figure 3.27: Horizontal background flow for different values of supercriticality s of parameter
q with respect to the transcritical bifurcation: (a) s = .2, (b) s = .6, (c) s = 1 (transcritical
bifurcation point) , (d) s = 1.4, (e) s = 1.8, (f) s = 2.2 (supercritical with respect to the
second Hopf bifurcation).

tornado scale neither force nor destroy the fast vortex flow.

It is apparent however, that in a multiparameter system such as (3.2.20) there is no
unique association of any particular type of shear, either horizontal or vertical, with vortex
formation. Only a combination of different types of shear spins up a stable vortex. Although
a quantitative change in the vertical background motion may not force or destroy a vortex
it is required for vortex formation by a change in the horizontal shear flow.

The interpretation of the system parameters in terms of background flows and background
flow variability requires simplifications and associations of the mathematically defined pa-
rameters with certain flow properties that may by misleading. Instead of eliminating the
‘inconvenient’ expansion coefficients for the physical interpretation of the system parameters
in terms of simple concepts such as updraft strength or horizontal shear and convergence,
the parameters can also be redefined by p→ p+ p̄, etc., where p now contains the easily in-
terpretable background flow variability as in the simplified cases discussed above. However,
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Figure 3.28: Background flow associated with parameter r = 0: (a) γ1,1 = γ1,−1 = 1, (b)
γ1,1 = γ1,−1 = −1.

this is probably more useful for completer models that allow better physical interpretations.
Due to the linearity of the forcing equations for the two vortex waves in the dynamical

systems (3.2.20), the effects of single triad interactions for the forcing of the vortex waves in
a combined system are essentially additive. It is easy to verify that taking into account inter-
actions of four complex waves with wave vectors {kx,ky,kx,y,kx,−y}, the time-dependence
of the imaginary parts of the two vortex waves is given by

Ẋ =
(
−r
2
Y + r11Z1

)
+
(
−r
2
Y + r12Z2

)
Ẏ =

(r
2
X + r21Z1

)
+
(r
2
X + r22Z2

)
,

(3.5.10)

where Z1 and Z2 denote phase space variable Z for triads T1 and T2, respectively, and the
parameters rjk denote the parameters rj in the dynamical system for single triad Tk. With a
rescaled parameter r the combined forcing is therefore just the sum of the individual forcing
terms. In terms of sets, contributions to vortex formation in a more complete system can
therefore come from the union of tornadic background flows for both single triad systems.
As seen above, qualitatively these flows are identical. They only differ by rotations in space
about the vertical axis. The unphysical preferred direction of shear for vortex formation
that is implied by the individual systems is therefore removed in the combined system.

Consider now the time and length scales involved in the dynamics of the low-dimensional
system, and the magnitude of the expansion coefficients in terms of real units. Since there
are no physical parameters such as the angular velocity of the Earth or the coefficient of
kinematic viscosity, the equations of motion for the fast velocity field (2.7.11) are valid in the
same form for dimensional and nondimensionalised variables. They are therefore valid for all
spatial and temporal scales. However, the relative magnitudes of speed, length, and duration
are coupled. For simplicity the calculations were done in nondimensional coordinates such
that χ = 1. As a result the diameter of the vortex with maximum tangential speed is equal
to 2π. For a typical tornado vortex with a diameter of about 200m that would imply a
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Figure 3.29: Trajectories in parameter space associated with an increase or decrease of the
intensity of the background vertical motion as a function of the horizontal shear.

length scale L = 30m. Depending on the initial perturbation from the origin, the fastest
trajectories get to within 50% of the vortex equilibrium after 20NTU, and to within 90%
after 40NTU for a supercriticality of 1.2. For a vortex development time of about 1–2min
this implies a timescale of T = 3 sec. Consistent with the discussion in Section 2.7, there is an
order of magnitude difference between the slow and fast expansion coefficients. Scaled by the
velocity scale V = L/T = 10ms−1, individual slow expansion coefficients are of magnitude
10ms−1, and individual fast expansion coefficients are of magnitude 1ms−1. As mentioned
in Section 2.7, the total speed of the tornado vortex is generated by the superposition of a
large number of waves which is necessary to describe an isolated vortex with small horizontal
extent.



4 Implications for Tornado Forecasting

Don’t worry if your theory doesn’t agree with the observations, because they are
probably wrong.

Sir Arthur Eddington

4.1 Tornadogenesis

One of the main results of the analysis of the low-dimensional model is that, as suggested
in Section 2.4, vortex formation in the simplified setting is determined by horizontal spatial
variability of the embedding background flow on approximately the same scale. If transferred
to the tornado problem, as discussed in Section 2.6.2, this does not mean that tornadogenesis
is dominated by actual small-scale processes such as the rapid interactions of turbulent
eddies. If that really is the case, the chances of ever understanding and reliably predicting
this phenomenon are very small. Instead the relevant part of the small-scale variability, by
definition, is associated with slowly evolving, persistent, intense shear zones of a larger-scale
storm system. The key to understanding tornadogenesis, as suggested by the simple model,
is therefore through understanding of the structure of these shear zones and the role of
mesoscale or even synoptic-scale forcing in their formation.

Another important result of the low-dimensional analysis is that the differences between
‘tornadic’ and ‘nontornadic’ background flow states on the vortex scale are very subtle.
Considering the qualitative similarity between some tornadic and nontornadic storm systems
this is probably also true for real tornadolike vortices.

As mentioned in Section 3.5, the impact of the background flow on the vortex flow is
limited only by the truncation of the fast Fourier modes. Other than the fact that the back-
ground flow in the region of vortex formation must be reasonably well described by a Fourier
series, no simplifying assumptions are being made. For the description of sharp fronts a large
number of expansion coefficients are necessary. However, since the background expansion
coefficients in the simple model, instead of dynamical variables, are constant parameters,
their number does not have to be restricted for numerical simulations of the fast system.
One of the primary limiting factors for transferring the results from the simple models to the
tornado problem are therefore the spectral truncation of the vortex flow and the omission
of the real or imaginary parts of the expansion coefficients. Since positively helical and irro-
tational (divergent) waves in principle are taken into account, and since tornadoes form in
an overall positively helical flow environment, the truncation of the negatively helical waves
should not be a problem. Also the omission of vertical variability of the storm flow and
consequently of the background flow is consistent with the hypothesis that for the formation
of the vortex the most relevant variability of the background flow is in the horizontal. How-
ever, the discretisation and reduction of wave vector space and the elimination of varying
phase relationships between the waves for each wave vector significantly restricts not only
the motion of the fast flow itself but also the coupling to the background flow.
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In Section 2.6.1 it was demonstrated that an isolated helical vortex can be described by a
continuous spectral superposition of spatially periodic Beltrami vortex flows. The first step
towards a more realistic vortex model for the investigation of tornadogenesis is therefore
to consider a superposition of the same Fourier waves as for the simple three-dimensional
model over some (necessarily discrete) spectral interval. To be representative of the full
vortex flow it must be assumed that the wavenumber χ of the vortex waves considered in
the previous chapter is at the maximum of the kinetic energy spectrum of the vortex flow,
and that the radius of maximum tangential speed is about 2πχ−1. To maintain that vortex
radius, with an approximately symmetrical kinetic energy spectrum around the maximum,
the wavenumbers of the superimposed waves must be centred around χ. If the spectral
interval is shifted towards smaller or larger wavenumbers, the diameter of the resulting
vortex is either larger or smaller, respectively, and a smaller fraction of the kinetic energy
of the full vortex flow is captured. Then, since the background flow is coupled to the vortex
flow over a wider spectral range, with χ chosen such that 2πχ−1 corresponds to the radius
of maximum tangential speed of a typical tornado vortex, the spectral range of influence of
the storm flow is also increased, taking now into account variability on a larger and smaller
scale than the vortex diameter.

The other important limiting factor of the simple model is the reduced number of degrees
of freedom. As indicated in the introduction, degrees of freedom of a fluid system here
are defined as the qualitatively different dynamical possibilities. The dynamical system
discussed in the previous chapter for example has three degrees of freedom starting from
small perturbations. The perturbations may be damped out, they may develop into a vortex,
or into a shear flow whose intensity is increasing indefinitely. The two physically relevant
degrees of freedom correspond to the two equilibria or the states of the system as defined
in Section 3.2. The number of degrees of freedom is therefore determined by the number
of real solutions of the algebraic system of equations Ẋ(X̄) ≡ 0. For an autonomous,
homogeneous system such as (2.7.11) the ground state X̄ = 0 always is a solution. The
number of nontrivial solutions not only depends on the highest order of nonlinearity of the
various algebraic equations (at most two in the case of (2.7.11)), but also on the types of
nonlinearity. In general it should always be possible to associate at least one of the equilibria
with a vortex state. The conditions the system parameters have to satisfy for the existence of
vortex equilibria (such as p1 = ±p2 �= 0 for the systems discussed in the previous chapter) give
criteria the background flow has to satisfy in order to support vortex formation prior to the
analysis of their stability. As the number of spectral components and therefore the number
of terms in each of the forcing equations is increased, competing nontrivial equilibria may
emerge. However, in principle the same bifurcation charts for transitions from the ground
state to possibly several vortex states can be derived as in the three-dimensional system.

Although in the dynamical system (3.2.20) for the fast expansion coefficients the slow ex-
pansion coefficients were considered to be constant parameters for the purpose of calculating
phase space trajectories, the assumption that ∂τu ≡ 0 is not required in the derivation of
(2.7.11). Rather it is based on the fact that there is a scale separation between the magnitude
of the expansion coefficients of the background and vortex flow and the timescale of their
evolution. It is therefore possible to propose a dynamic bifurcation scenario in which the
parameters in the fast dynamical system are driven by the equations of motion (2.7.10) for
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the slow background flow. However, instead of solving the closed system for the expansion
coefficients of u, v, f , and f ′, the response of v on hypothetical prescribed variations of u
is investigated. The transcritical bifurcation between the laminar and tornadic parameter
regions discussed in Section 3.4 can then be interpreted as a simplified description of tornado-
genesis. For a storm flow state in the laminar region, (vortical) instabilities of small-scale
shear zones are damped out. As the storm system evolves ‘into’ the tornadic region vortical
instabilities are amplified and reach a steady state which persists as long as the storm system
remains tornadic. Eventually the storm evolves back into the laminar region and the vortex
dissipates.

The dynamic bifurcation scenario involves two timescales. A slow evolution timescale
of the system parameters and the position of the equilibria, and fast transitions between
equilibria. However, the bifurcation analysis gives no information about the conditions
under which the slow storm flow itself behaves in the prescribed way. For the evolution of
the storm system thermodynamic and external forcing cannot be neglected. In addition, due
to the large range of spatial scales involved in storm dynamics and the complexity of the
storm flow a high truncation as for the vortex flow is not possible. In that context also the
undetermined background flow expansion coefficients become important. Given the spectral
forcing terms fq they determine the initial values of the expansion coefficients that appear
directly in the fast dynamical system and their time-evolution through the slow balance
equation (2.7.10). An investigation of the evolution of the storm is therefore significantly
more complicated than the study of the formation of an embedded vortex. However, it is a
first step towards forecasts of tornadogenesis if predictions can be based on a given storm
velocity field. This of course requires the existence of accurate, high resolution data prior to
tornadogenesis.

4.2 Storm Data

The completeness of the equations of motion is limited by the knowledge of the mathematical
expressions for the (radiative, thermodynamic, dissipative, etc.) forcing terms and by the
existence of initial data. The dynamical equations can only be as complete as the knowledge
of the initial state of the system. An inaccurate formulation of the equations of motion and
an inaccurate specification of the initial state introduce errors in the time-evolution of the
system. One source for errors in time for the evolution of the total velocity field is therefore
errors in space. For the evolution of the vortex flow errors in the spatial dependence of the
background flow translate to errors in the slow expansion coefficients, and therefore to errors
in the system parameters. Due to the sensitivity of the qualitative behaviour of the fast
dynamical system near the bifurcation points on small changes in the parameter values, the
success of the predictions critically depends on the accuracy of the actual measurements of
the background flow as well as their analytical representation by Fourier series. For data on
a regular grid the shortest wave that can be resolved has a wavelength about four times the
gridpoint spacing δx. Hence the Fourier series cutoff must be for wavenumbers exceeding
χmax = π/2δx.

The airborne and ground-based Doppler radar data obtained over the previous decade
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during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX)
conducted by the National Severe Storms Laboratory of the United States has a horizontal
and vertical gridpoint spacing of 250m (for a general description of VORTEX prior to the
measurement campaigns see Rasmussen et al. [1994], and for details of the measurements
and data Straka et al. [1996]). The shortest resolvable wave therefore has a wavelength of
about 1 km, which is larger than the diameter of the maximum tangential speed of most
tornadoes. If the spectrum calculated from the storm data down to the smallest wavelength
in each direction is sufficiently smooth, it can be fitted (e.g, through least-square polynomial
interpolation) by a three-dimensional, analytical spectral function, similarly to the discus-
sion in Section 2.6.1. If from the smallest resolvable scale down the spectrum is qualitatively
continuous, an approximation of the energy distribution over the unresolved scales can be
obtained by spectral extrapolation. The standard scaling laws of turbulence theory are prob-
ably not accurate enough due to the assumptions about isotropy, homgeneity, and locality
of spectral interactions.

Tornadoes are resolved by mobile 3mm-wavelength pulsed Doppler radars, where the
resolution at a range of 3 km is less than 10m in the azimuthal direction and 15m in the
radial direction at all ranges [Bluestein and Pazmany, 2000].

The discrete initial velocity and forcing data can be used in two ways. In both cases an
analytic approximation of the observational data by means of a Fourier series expansion is
obtained.

Based on discrete initial data u0(r) = (u0,1(r), u0,2(r), u0,3(r))
T on a possibly irregular

grid with position vector r, the Fourier expansion coefficients of the background flow are
obtained by

uq(0) =
1

D

∑
r

u0(r)φ
∗
q(r) , (4.2.1)

for D data points [cf. Walker, 1996; Chap. 2], with a similar expression for the expansion
coefficients of the forcing term f . Then the mean-square error between the Fourier expansion
of initial velocity u(0, r) = (u1(0, r), u2(0, r), u3(0, r))

T and observations u0(r) is defined as

∆2 def
=
1

D

∑
r

(u(0, r)− u0(r))
2 . (4.2.2)

In the limit of a continuous spectrum of wave numbers from zero to infinity∑
q

exp iq · (r − r′) −→ δ(r − r′) , (4.2.3)

and for a continuous distribution of data points

1

D

∑
r′

∑
q

u0(r
′) exp iq · (r − r′) −→

∫
u0(r

′)δ(r − r′)d3r′ = u0(r) . (4.2.4)

The mean-square error ∆ is therefore due to sparse initial data and a discrete and truncated
spectral representation.
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Whereas in the case of accurate high resolution data a calculation of Fourier expan-
sion coefficients based on (4.2.1) is easiest, for the typically sparse and irregular (radar,
sounding, profiler) data likely to be encountered in meteorological applications, a calcula-
tion of the expansion coefficients based on minimisation of the mean-square error might
produce better results. The least squares method determines the expansion coefficients
uq(0) = (u1,q(0), u2,q(0), u3,q(0))

T from the conditions

∂uj,q(0)∆
2 !
= 0 , (4.2.5)

leading to

∑
q′

uq′(0)
1

D

∑
r

φq+q′(r) =
1

D

∑
r

u0(r)φq(r) , (4.2.6)

with ∆2 as defined in (4.2.2). In the limit of a continuous distribution of data points in
volume V ,
1

D

∑
r

φq+q′(r) −→ V (V)δq′,−q , (4.2.7)

and therefore∑
q′

uq′(0)
1

D

∑
r

φq+q′(r) −→ u∗
q . (4.2.8)

Since also, in the same limit,

1

D

∑
r

u0(r)φq(r) −→ 〈u0(r)φq(r)〉 , (4.2.9)

the condition (4.2.6) for the minimisation of the mean-square error is identical with the def-
inition of the Fourier expansion coefficients for a continuous initial velocity field. Condition
(4.2.6) leads to a linear algebraic system of equations for the expansion coefficients whose
solution is given by

a = C−1b , (4.2.10)

where the column vectors a and b are defined as

a
def
= (. . . , uj,q(0), . . .)

T (4.2.11)

b
def
= (. . . , bj,q(0), . . .)

T , (4.2.12)

and

bj,q(0)
def
=
1

D

∑
r

u0,j(r)φq(r) . (4.2.13)
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The coefficient matrix

C
def
= {Cq,q′} (4.2.14)

with

Cq,q′
def
=
1

D

∑
r

φq+q′(r) (4.2.15)

is symmetric. Assuming that detC �= 0 and using the Gauß-Jordan method fewer compu-
tations are therefore required to calculate the inverse than for a general matrix. Since C
does not depend on the specific velocity data contained in b, it can be inverted prior to the
analysis and reused for several transforms if the data structure is the same.

To capture the most relevant persistent forcing, for the calculation of background expan-
sion coefficients it is important to make sure that fast transient motions on the scale of the
tornado prior to tornadogenesis are filtered out. Since the long-term trend of the storm flow
can only be determined from time series, for an accurate calculation of the slow expansion
coefficients wind velocity data is required at more than one time. Ideally the storm is ob-
served continuously over some period of time during which the data is automatically fed into
an analysing system. The slow trend is determined time-averaging or spectral filtering, the
expansion coefficients are calculated, and the parameters are evaluated. The trajectory in
parameter space is then monitored and a warning is issued if a tornadic region is approached.
Today, technologically we are far from this ideal case scenario, but maybe it is the only way
to reliably predict tornadoes. In the meantime an important step is to develop a theory on
which an interpretation of observations can be based, and a fast prediction model to analyse
the available initial wind velocity data obtained from the thunderstorm.



5 Summary and Conclusions

The three-dimensional dynamical systems analysed in the previous chapters were derived in
an attempt to minimise the complexity of the full set of equations governing the evolution
of a geophysical fluid, and to isolate the kinematical effects of a slowly evolving background
velocity field on the formation of an embedded small-scale vortex. Clearly, the simple system
is not a complete tornado model. Instead it was designed to take into account the two major
complications of tornado forecasting: incomplete thermodynamic data and time constraints.
The motivation for this analysis is to obtain a faster prediction model for tornadogenesis
and to gain a better understanding of the kinematical processes in a thunderstorm and their
connection to the formation of tornadoes. The main results and their implications for the
study of tornadogenesis can be summarised as follows.

Helicity, as a combined measure of the intensity and persistence of turbulent eddies, is
likely to be the most important kinematical characteristic of tornadolike vortices. Locally and
over finite domains helicity, for given values of kinetic energy and enstrophy, is extremised
for positively or negatively helical Beltrami flows with a constant ratio of helicity and kinetic
energy. These Beltrami flows, together with irrotational gradient flow, are solutions of the
curl eigenvector equation. Since the curl operator is Hermitean its (normalised) eigenvectors
form a complete orthonormal basis system. To be able to describe helical vortices more
easily, the velocity field in Fourier series expansion is therefore decomposed into these curl
eigenstates. It is then shown that in simplified form a helical vortex can be described
by two entangled waves with the same sign of helicity and a fixed amplitude and phase
relationship. To describe vortex formation, the time evolution of these two waves must be
coupled. Coupling in wave vector space is through triad interactions. There are only two
wave vectors that couple the two vortex waves and it is assumed that their triads represent
the most dominant spectral interactions for vortex formation.

Based on current observations parameters characterising the vertical wind profile or the
static instability of the large-scale storm environment only weakly separate between tornadic
and nontornadic storms. On the other hand, tornadolike vortices tend to occur in the vicinity
of strong horizontal gradients of velocity. Prior to tornadogenesis only a limited amount of
observational data, particularly of thermodynamic variables, is available. To be able to
improve predictions in the near future, kinematical criteria for vortex formation must be
derived that only involve the storm velocity field, which can be derived from remote radar
observations. For simplicity it is therefore assumed that tornadolike vortices are generated
primarily by instabilities of intense shear zones of the storm system. Consequently significant
variability of the storm flow is on the scale of the embedded vortex rather than on the scale
of the storm circulation itself.

To be able to determine the influence of the storm flow on the formation of the vortex,
the two flow phenomena must mathematically be separated. Due to the relevant small-scale
variability of the storm system a separation based on the wavenumber of Fourier components
is not possible. Instead the velocity field is separated into a slowly evolving part represent-
ing the storm flow, and a rapidly evolving part representing the tornadolike vortex. The
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corresponding equations of motion are derived from the equations for the total flow through
scaling arguments and omission of the external forcing for the vortex flow.

A three-dimensional dynamical system is obtained from the equations of motion for the
vortex flow by by Fourier transformation and spectral and helical truncation, restricting
the fast flow to the two vortex waves and a nonhelical catalyst wave. The two equilibria
of the dynamical system are the phase space origin, referred to as the ground state, and
a nonvanishing vortex state. The system parameters depend on the expansion coefficients
of the slow background flow. The stability of the equilibria can therefore be analysed as
a function of the background flow state. Essentially two types of transitions are found:
transcritical bifurcations leading to an exchange of stability between the two stationary
states, and Hopf bifurcations leading to a change in stability of only one of the equilibria. The
mathematical transitions with the most obvious physical interpretation are the transcritical
bifurcations. With a stable ground state perturbations of the fast velocity field are damped
out. As the ground state loses stability in the transcritical bifurcation the vortex state
simultaneously gains stability and weak vortical perturbations are intensified, approaching
a steady state as long as the vortex equilibrium is maintained by the background flow.

In the simple model the most relevant changes in the background flow affecting vortex
stability are changes in the horizontal shear of horizontal velocity. It is shown that for a given
background updraft strength a certain minimum amount of horizontal shear is necessary to
spin up an intense vortex. However, as the horizontal shear increases relative to the updraft
strength the coherent vortex is destroyed in a Hopf bifurcation.

Due to the slow speed of data acquisition and adequate numerical simulations of the full
fluid mechanical equations, a physical interpretation of the storm system prior to tornadoge-
nesis (i.e., science) is necessary. To be able to make predictions an assessment of the storm
flow state with respect to the formation of tornadolike vortices must be possible without an
explicit determination of the time evolution of the velocity field. Improving tornado forecasts
therefore is a quest for new physical concepts and predictive variables of the storm system.
In that sense the most important implication of the analysis of the simple model for the
study of tornadogenesis is that in principle abstract forecast parameters can be derived from
the dynamical equations that, from a strictly empirical point of view, would not be obvious.

Outlook

In this study an attempt was made to reduce the degrees of freedom of the motion of a tur-
bulent fluid to a point where precise numerical criteria can be established for the formation
of coherent vortices. The three-dimensional systems studied here represent the maximum
simplification of the full set of equations that still produces reasonable results for the par-
ticular problem of the formation of tornadolike vortices. The question now is if the simple
single-triad-interaction systems themselves are representative of real physical phenomena or
if they can systematically be extended to more complex and hopefully more realistic systems.
It was briefly indicated already towards the end of Chapter 3 that the effects of single triad
interactions are additive for the two complex vortex waves. However, for the forcing of the
catalyst waves additional linear terms have to be taken into account. These linear terms



97

represent coupling between perturbation and background flow and help to specify ‘tornadic’
or ‘nontornadic’ background flows more completely based on the stability analysis of the vor-
tex state. In addition, to be able to describe travelling vortex perturbations, it is necessary
to consider both the real and imaginary parts of the fast expansion coefficients. The inves-
tigation of the eight-dimensional real system resulting from a combination of four complex
waves with wave vectors {kx,ky,kx,y,kx,−y} is therefore planned for the near future.





A Derivations

A.1 Schwarz’s Inequality

Schwarz’s inequality states that for any real numbers aj and bj(∑
j

ajbj
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≤
(∑
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)
. (A.1.1)

From that, with the definition of the scalar product, it immediately follows that

η2 ≤ κε , (A.1.2)

with η, κ, and ε as defined in Section 2.1. Assuming that the discrete variables aj and bj are
given on D points of an even lattice over volume V , with gridpoint spacing δx, δy, and δz,
and gridpoint values ajk and bjk, after multiplying by (δV/V )

2, where δV = δxδyδz, (A.1.1)
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As the gridpoint spacing becomes infinitesimally small, δV → dV → 0, D → ∞, and the
discrete variables become continuous functions of space, ajk → aj(x), and bjk → bj(x). The
sum over index k is then replaced by an integral over space such that

∑
k

( )
δV

V
→ 1

V

∫
( ) dV = 〈( )〉 . (A.1.4)

For continuous functions of space (A.1.3) then becomes〈∑
j

ajbj

〉2

≤
〈∑

j

a2j

〉〈∑
j

b2j

〉
, (A.1.5)

from which it follows that

〈η〉2 ≤ 〈κ〉〈ε〉 , (A.1.6)

or

H2 ≤ KE . (A.1.7)

This is Equation 2.1.17 of Section 2.1.3.
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A.2 Eigenstates of the Curl Operator

Assuming periodic boundary conditions in a finite domain, solutions to (2.5.19),

∇× vλ
χ = λχvλ

χ , (A.2.1)

for a particular chirality λχ with χ > 0 and λ = ±1 are found by expanding the velocity
field in a Fourier1 series,

vλ
χ(t,x) =

∑
k∈S(1)

uλ
χk(t) exp iχk · x . (A.2.2)

The vector amplitudes can be expanded further in the complete set of orthonormal basis
vectors2 {k,n⊥k,k×n} such that

uλ
χk = aλχkη

λ
k , (A.2.3)

where

ηλ
k = αk + βn+ γk×n+ i (ak + bn+ ck×n) . (A.2.4)

The complex amplitudes aλχk may be functions of time, and the {α, β, γ, a, b, c} are real
constants. The unit normal vectors n are defined such that −n corresponds to −k. Defining
also ηλ

−k
def
= ηλ∗

k requires that α = β = c ≡ 0. Since for constant chirality B-flows are
nondivergent, k · uλ

χk = 0 for all wave vectors and a ≡ 0. The Fourier transforms are
therefore given by

uλ
χk = aλχk (γk × n+ ibn) . (A.2.5)

Substituting now (A.2.2) into (A.2.1) leads to

ik × (γk × n+ ibn) = λ(γk × n+ ibn) . (A.2.6)

This requires that γ = −λb. Since for the definition of the Fourier basis vectors the ampli-
tudes aλχk are arbitrary, γ ≡ 1 and therefore b = −λ can be chosen without loss of generality.
Furthermore, a normalisation factor of 2−

1
2 is introduced. Then the helical basis vectors

satisfy the curl eigenvector equation in wavenumber space,

ik×ηλ
k = ληλ

k , (A.2.7)

and

vλ
χ =

∑
k∈S(1)

aλχk
1√
2
(k × n − iλn) exp iχk · x , (A.2.8)

1Assuming cylinder symmetry, vortex solutions to (2.1.20) with a swirling updraft can also be found in
terms of Bessel functions [Dritschel, 1991].

2cf. the discussion in Appendix A.3.
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which is equivalent to (2.5.20) with λ = ±1.
For λ = 0, ∇×v0

χ ≡ 0, and the nonhelical curl eigenstate v0
χ is a gradient flow −∇Φχ.

The nonhelical basis vectors η0
k are derived by expanding the potential function Φχ(t,x)

in a Fourier series in space, taking the negative gradient, and by comparing the resulting
expression with the definition (2.5.20).

Since helical curl eigenstates extremise helicity for a given kinetic energy distribution,
they can also be derived from a variational principle. Considering a general function L =
L(v,ω) of velocity and vorticity, L̄

def
= 〈L〉D is required to be extreme for a particular velocity

field within a fixed domain D and fixed boundary conditions on velocity. Then the variation
δL̄ of L̄ must vanish. Since the expression for the extremising velocity field must hold
at all times, L cannot be explicitly time dependent and only variations with respect to
the velocity components and their spatial derivatives are taken into account. The Euler-
Lagrange equations for all three velocity components vi are then given by [e.g., Cohen, 1992;
pp. 406–409](

∂vi
− ∂x∂∂xvi

− ∂y∂∂yvi
− ∂z∂∂zvi

)
L = 0 . (A.2.9)

If boundary conditions are the only constraints on the velocity field then a function F =
F (v,ω) has an extreme spatial average F̄ = 〈F 〉D if and only if it satisfies (A.2.9). However,
if in addition to the boundary conditions the averaged values of N functions Gi = Gi(v,ω),
i = 1, . . . , N , are prescribed, F̄ is extremised in D if only if the modified Lagrangian

L = F +
N∑
i=1

λiGi (A.2.10)

satisfies (A.2.9). Here, the Lagrange multipliers λi are real constants that have to satisfy
the imposed constraints. Then

0 = δL̄

= δF̄ +
N∑
i=1

λiδḠi

(A.2.11)

implies δF̄ = 0 since, by definition δḠi
def
= δ〈Gi〉D ≡ 0 for all functions Gi, i.e., with L̄ also

F̄ is extremised under the given constraints. However, the set of equations (A.2.9) derived
for the Lagrangian (A.2.10) is equivalent to the set of equations derived for the Lagrangian
given by any linear combination of the set of functions {F,Gi}.3 The optimum velocity field
derived from the Euler-Lagrange equations (A.2.9), therefore simultaneously extremises all
functions {F,Gi} of the Lagrangian (A.2.10). The curl eigenstates are then obtained from
the Lagrangian

L = λχ−1η − κ , (A.2.12)

for which (A.2.9) simultaneously extremises helicity and kinetic energy. This leads to

λχ−1∇× v − v = 0 , (A.2.13)

which is identical with (A.2.1).

3The Lagrangian λ−1
1 L = G1+λ−1

1

(
F +

∑N
i=2 λiGi

)
, for example, is dynamically equivalent to (A.2.10).



102 A Derivations

A.3 Completeness of Curl Eigenstates

For any vector v in a D-dimensional space

v =
D∑
j=1

vjbj , (A.3.1)

where vj
def
= v ·bj are the components of v into the direction of the real basis vector bj. Since

(v · bj) bj ≡ bjb
T
j v, the decomposition is complete if and only if

D∑
j=1

bjb
T
j = ED , (A.3.2)

with D-dimensional unit matrix ED. For complex basis vectors the components are defined
by vj

def
= v · b∗

j , and the completeness relation becomes

D∑
j=1

bjb
†
j = ED . (A.3.3)

Since in three dimensions, for any unit vector n normal to unit vector k,

kkT + nnT + (k × n)(k × n)T = E3 , (A.3.4)

any three-dimensional vector can be expanded in the complete orthonormal set of basis
vectors {k,n,k × n}. With the orthonormal basis vectors ηλ

k as defined in Section 2.5 it is
easy to verify that∑

λ=0,±1

ηλ
kη

λ†
k = kkT + nnT + (k × n)(k × n)T . (A.3.5)

The helical basis vectors therefore also satisfy the completeness relationship (A.3.4).
From the completeness of the helical basis vectors together with the completeness of

the spatial Fourier basis functions expressed by (2.5.11) in Section 2.5.1 then follows the
completeness of the curl eigenvectors ηλ

kφχk,

E3δ(x
′ − x) =

(
2π

χ0

)3∑
χ∈Γ

∑
k∈S(1)

( ∑
λ=0,±1

ηλ
kη

λ†
k

)
φχk(x)φ

∗
χk(x

′)

=

(
2π

χ0

)3∑
χ∈Γ

∑
k∈S(1)

∑
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ηλ
kφχk(x)

(
ηλ
kφχk(x

′)
)†
.

(A.3.6)

A.4 Rotational Invariance of Curl Eigenstates

Consider a rigid rotation of a vector field a together with the frame of reference and denote
the rotated vector field by a′. The coordinate basis vectors and field vectors at each point
transform under the rotation matrix R such that

e′ = Re . (A.4.1)
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Then the rotated field vector Ra at any point in the rotated frame O′ has the same com-
ponents as the original field vector a in the original frame O at the same point. However,
in general a′(x) �= Ra(x) due to the rotational translation of the vector field from point P
with coordinates x to point P ′ with coordinates x′ = Rx in addition to the local rotation.
The total transformation of the vector field is a superposition of a global and local rotation
and, as seen below, is therefore generated by the total angular momentum operator.

Since three-dimensional rotation operators are matrix representations of the special or-
thogonal group SO(3), the rotation matrix is orthogonal, i.e., R−1 = RT and its determi-
nant is equal to one. The inversion of the coordinate transformation is therefore given by
x = RTx′.

To discuss rotational invariance of curl eigenstates the matrix curl operator R̂ is defined
such that

R̂v
def
= ∇×v, (A.4.2)

where the hat denotes a differential operator quantity. From this definition, R̂ is found to
be

R̂
def
=


 0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0


 . (A.4.3)

More generally, the cross product between any two three-dimensional column vectors u =
(u1, u2, u3)

T and v = (v1, v2, v3)
T in matrix form can be written as

u×v = Cuv , (A.4.4)

where

Cu
def
=


 0 −u3 u2
u3 0 −u1
−u2 u1 0


 . (A.4.5)

Since CT
u = −Cu the cross product operator Cu is antisymmetric and v×u = CT

uv. Obvi-
ously, C∇ ≡ R̂.

An explicit matrix representation for infinitesimally small rotations can then be derived
by defining a rotation vector δφ such that changes in the position vector are given by
δx = x′ − x = δφ×x or x′ = x + δφ×x and therefore R(δφ) = E3 + Cδ . Similarly
x = x′ − δφ×x and therefore RT (δφ) = E3 − Cδ [cf. Greiner and Müller, 1994].

A vector of the rotated field at P ′ is equal to a rotated vector of the original field at P

a′(x′) = a′(Rx)

= Ra(x) ,
(A.4.6)

or

a′(x) = Ra(RTx) . (A.4.7)



104 A Derivations

Then, to first order in |δφ|, for infinitesimal rotations
a′(x) = a(x − δφ×x) + δφ×a(x − δφ×x)

Taylor≈ a(x)− (δφ×x) · ∇a(x) + δφ×a(x) +O(|δφ|2)
=
[
E3 − iĴ(δφ)

]
a(x) ,

(A.4.8)

where the total angular momentum operator Ĵ is defined by

Ĵ(δφ)
def
= L̂(δφ) + S(δφ) (A.4.9)

with matrix orbital angular momentum operator

L̂(δφ)
def
= −iE3(δφ×x) · ∇
= −iE3δφ · (x×∇)

(A.4.10)

and intrinsic angular momentum or spin matrix

S(δφ)
def
= iCδ . (A.4.11)

With the vector angular momentum operator

L̂
def
= −ix×∇
= χx×k̂χ ,

(A.4.12)

where the wave vector (momentum) operator k̂χ is defined as

k̂χ
def
= −iχ−1∇ , (A.4.13)

the matrix operator can also be written as

L̂(δφ) = E3δφ · L̂ . (A.4.14)

To calculate the transformed vector field under finite rotations, the finite rotation vector
φ is divided into N equal small segments δφ = φ/N . Then, since L̂(φ) = NL̂(δφ) and
S(φ) = N S(δφ), also Ĵ(φ) = NĴ(δφ). In the limit N → ∞, the finite rotation can be
written as an infinite series of successive infinitesimal rotations

a′(x) = lim
N→∞

[
E3 − iĴ(φ)

N

]N
a(x)

= Û(φ)a(x) ,

(A.4.15)

where the unitary matrix rotation operator Û is defined as

Û(φ)
def
= exp(−iĴ(φ))

=
∞∑
j=0

1

j!

[
iE3x · (φ×k̂χ) + C

]j
.

(A.4.16)
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For the decomposition of the velocity field into curl eigenstates to be meaningful, the
decomposition must be conserved under spatial rotations of the frame of reference, i.e., the
rotated curl eigenstates v′λ

χ = Ûvλ
χ in the rotated frame also have to satisfy the eigenvalue

equation R̂v′λ
χ = λχv′λ

χ . This is true if and only if the vλ
χ are simultaneous eigenstates of the

curl and rotation operator, i.e., if and only if the commutator [R̂, Û ]
def
= R̂ Û− ÛR̂ applied

to the velocity fields vλ
χ vanishes. Since

[
Â,
∑∞

j=0
1
j!
B̂j
]
= 0̂ if [Â, B̂] = 0̂ it suffices to show

that the curl operator commutes with the total angular momentum operator.
Any operator equation that holds for the individual velocity terms vλ

χk
def
= aλχkη

λ
kφχk also

holds for their linear superposition vλ
χ. Therefore the curl eigenstates are invariant under

spatial rotations if [R̂, Ĵ ] = [R̂, L̂] + [R̂, S] = 0̂ applied to the vλ
χk. With the general vector

relationships

a×(b×c) = (a · c)b − (a · b)c , (A.4.17)

R̂ (fa) = fR̂a+∇f×a , (A.4.18)

and

R̂ (c×a) = c ∇· a − (c · ∇)a , (A.4.19)

where c = const ., it is straightforward to calculate

L̂vλ
χk = −χx · (φ×k)vλ

χk , (A.4.20)

R̂L̂vλ
χk = −λχ2x · (φ×k)vλ

χk − χ(φ×k)×vλ
χk , (A.4.21)

L̂R̂vλ
χk = −λχ2x · (φ×k)vλ

χk , (A.4.22)

and therefore

[R̂, L̂]vλ
χk = −χC ×kvλ

χk . (A.4.23)

Similarly,

R̂Svλ
χk = χ

[
(φ · k)vλ

χk − (k · vλ
χk)φ

]
, (A.4.24)

SR̂vλ
χk = χ

[
(φ · k)vλ

χk − (φ · vλ
χk)k

]
, (A.4.25)

and

[R̂, S]vλ
χk = χC ×kvλ

χk . (A.4.26)

It follows that [R̂, Ĵ ] = 0̂ and consequently the v′λ
χ are also eigenstates of the curl operator,

R̂v′λ
χ = R̂ Ûvλ

χ

= ÛR̂vλ
χ

= λχv′λ
χ ,

(A.4.27)

where the rotated eigenvectors v′λ
χ have the same sign λ of helicity as the original ones.
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A.5 Hermiticity of the Curl Operator

An Hermitean or self-adjoint matrix operator L̂ by definition satisfies∫
D
ψ†
1L̂ψ2 d

3x =

∫
D

(
L̂ψ2

)†
ψ1 d

3x , (A.5.1)

with arbitrary vector valued functions ψ1 and ψ2 that satisfy periodic boundary conditions
in a finite domain or tend to zero at infinity. To be Hermitean for bounded fluids, the real
curl operator R̂ must therefore satisfy∫

D
uT
(
R̂v
)
d3x =

∫
D

(
R̂v
)T

u d3x , (A.5.2)

where u and v are periodic at the boundary ∂D of finite domain D. The expression u·(∇×v)
is a sum of terms uj∂l v

k. With partial integration it follows that∫
D
uj∂l v

k dxl =
[
ujvk

]
∂D −

∫
D
vk∂l u

j dxl , (A.5.3)

where the first term on the right-hand side vanishes due to the boundary conditions. It is
then easy to show that∫

D
u · (∇ × v) d3x =

∫
D

v · (∇ × u) d3x , (A.5.4)

and therefore the Hermiticity of the curl operator.

A.6 Parity Transformation and Complex Conjugation

Suppose two observers OR and OL are describing the same physical phenomenon in a right-
and left-handed frame of reference, respectively. By comparing their measurements, a dis-
tinction needs to be made between two types of vectors.

A true vector (or polar vector) such as velocity is defined such that its direction can be
determined without referring to frame dependent conventions by simply connecting two dif-
ferent points in space, possibly at infinitesimally different times. Since the distance between
points in spacetime (or the metric) is invariant under a change of handedness of the frame
of reference, i.e., a parity transformation, both observers see the same vector although its
components have different values in the two coordinate systems.

In contrast to true vectors, due to the change of handedness, vector quantities such as
cross product and curl (e.g., vorticity) are evaluated differently in the two frames. These
vectors are called pseudo-vectors (or axial vectors). Since they point in opposite directions
in the two frames of reference, a right- and left-handed observer see different pseudo-vectors
associated with the same physical process.

The relationship a× b = c between true vectors a, b, and c as observed by OR, using
the right-hand rule to evaluate the cross product, is observed as b × a = c by OL using the
left-hand rule. Stated differently, the pseudo-vector a × b as determined by OL is equal to
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−a × b in terms of quantities of the right-handed system, i.e., (a × b)L = −(a × b)R. The
same is true for vorticity or any spin vector. Suppose now that OR and OL observe a spinning
solid body, determining the same relationship u = s × r between the rotational velocity u
of a point on the solid body, its position vector r measured from the centre of mass, and the
spin vector s. Since r and u are objectively measurable in both systems, s cannot be a true
vector if the equation u = s × r is to be preserved under a parity transformation. In fact,
there is no objective way for any of the observers of defining s directly without the constraint
of the kinematical relationship with the true vectors r and u. Given the true vectors of a
physical problem, all dynamically relevant pseudo-vectors follow in a consistent way from
the requirement that the dynamical equations be invariant under a parity transformation.

In addition to true and pseudo-vectors, a distinction needs to be made between true and
pseudo-scalars. While true scalars such as kinetic energy and enstrophy are invariant under
a change of handedness of the frame of reference, a scalar quantity that changes sign under
a parity transformation, such as helicity or chirality, is called a pseudo-scalar.

Locally and averaged over limited spatial regions helicity of atmospheric flow is usually
non-vanishing. Referring to parity as the symmetry under a parity transformation, one could
argue that parity invariance in these cases is spontaneously broken. Spontaneous symmetry
breaking generally refers to a situation in which the observable state of a system is not
invariant under the full symmetry group of the dynamical equations that govern the given
process. Parity conservation, under these circumstances, is a hidden invariance principle as
opposed to manifest dynamical symmetries associated with conservation laws.

Parity occasionally is referred to as mirror symmetry. Correspondingly, a parity trans-
formation is called mirror transformation, referring to the situation in which either the same
physical process is evaluated in frames of reference that are mirror images of each other or
the true and mirror image of a process are evaluated in the same frame of reference. Under
some circumstances the definition of a parity transformation as the change of handedness of
the frame of reference as above is not equivalent with the reflection of the frame of reference.
While a reflection of the coordinate system at the origin (full frame inversion) or at one of
the coordinate planes inverts an odd number of axes (three or one, respectively) resulting
in a frame of reference with switched handedness, the reflection at one of the coordinate
axes inverts an even number of axes (two) and the resulting frame of reference has the
same handedness as the original frame, in which case true and pseudo-vectors or true and
pseudo-scalars transform equally between the two coordinate systems.

The question of whether the mirror image of a process could occur in nature as well is
also fundamentally different to the question as to whether right- or left-handed observers
are equivalent, or whether the same physical laws are valid in right- and left-handed frames
of reference. In classical physics the latter is true because pseudo-quantities are determined
that way. However, while the transformation between two different points of view of the
same reality necessarily must make them equivalent, different realities seen from the same
point of view do not have to follow the same physical equations. A famous example of parity
nonconservation is weak interaction and beta-decay.

The velocity field of a fluid has to satisfy two criteria: it has to be real (invariant under
complex conjugation) and true (invariant under a parity transformation). Based on the
Fourier series representation in helical decomposition these two conditions can be shown to
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be related.
From the definitions (2.5.21) and (2.5.3) of the curl basis vectors ηλ

k and spatial basis
functions φχk, respectively, it follows that complex conjugation is equivalent to an inversion
of the unit wave vector, k �→ −k. The set S(1) in the velocity expansion (2.5.20) contains
all linearly independent unit vectors q/q plus their negatives. Expanded in terms of only
the linearly independent wave vectors in the set S+(1), the helical flows are given by

vλ
χ =

∑
k∈S+(1)

aλχkη
λ
kφχk + a

λ
−χkη

λ∗
k φ

∗
χk . (A.6.1)

For the vλ
χ to be real, this must be equal to the complex conjugated velocity field,

vλ∗
χ =

∑
k∈S+(1)

aλ∗−χkη
λ
kφχk + a

λ∗
χkη

λ∗
k φ

∗
χk . (A.6.2)

Therefore

aλ−χk = aλ∗χk (A.6.3)

or

Re
[
aλ−χk

]
= Re

[
aλχk
]

and Im
[
aλ−χk

]
= −Im [aλχk] (A.6.4)

must be satisfied in right- and left-handed frames of reference.
Following the definitions given above, the position vector x is a true vectors and the

amount χ of the wave vector is a true scalar.4 For the phase φχk of the Fourier components
to be a true scalar, the wave vectors k must be true vectors. In fact, their direction is given by
the gradient of the phase which can be uniquely determined in right- and left-handed frames
of reference if φχk is a true scalar. If the wave vectors are somehow numbered, k → ki, then
the corresponding normal vectors can systematically be defined by

ni
def
= ki×ki+1 . (A.6.5)

Then, with the set of true vectors {ki}, nL = −nR for each ni, since OR and OL evaluate
the cross-product differently. However, (k × nR)R = (k × nL)L and(

ik ×
((

k × nR/L
)R/L ∓ inR/L

))R/L
= ±

((
k × nR/L

)R/L ∓ inR/L
)
. (A.6.6)

Therefore, k × n − in is the positively helical basis vector in both frames of reference and
the complex conjugate k×n+ in is the negatively helical basis vector. As far as the helical
basis vectors are concerned, complex conjugation is equivalent to a change of handedness
of the coordinate system. Leaving the basis vectors unchanged, the same is true for the
basis functions φχk. The complex conjugate phase φ

∗
χk with chirality χ is equal to the phase

4For the two helical curl eigenstates χ > 0 is equal to plus or minus chirality where the sign changes
under a parity transformation.
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φ∗χk = φ−χk with chirality −χ and the opposite sign of helicity. However, the combined basis
vectors ηλ

kφχk maintain their helicity under complex conjugation, and the sum of a complex
velocity field and its complex conjugate,

vλ
χ =

∑
k∈S+(1)

aλχkη
λ
kφχk + c. c.

= 2Re


 ∑
k∈S+(1)

aλχkη
λ
kφχk


 ,

(A.6.7)

to form a real velocity field, has a unique sign λ of helicity.
To avoid confusion about the sign of helicity, right-handed flows vR and left-handed flows

vL can be defined such that they have positive helicity in a right-handed or left-handed
frame of reference, respectively. Then, with χ > 0,

v±
χ

def
= vR/L =

1√
2

∑
k∈S(1)

(a±χk)
R
((

k × nR
)R ∓ inR

)
exp iχk · x (A.6.8)

in a right-handed system, and

v∓
χ

def
= vR/L =

1√
2

∑
k∈S(1)

(a∓χk)
L
((

k × nL
)L ± inL

)
exp iχk · x (A.6.9)

in a left-handed system. For these flows to be invariant under a parity transformation

(a±χk)
R = (a∓χk)

L (A.6.10)

must be satisfied. The frame independent concept of right- and left-handed flows is more
precise than that of positively and negatively helical flows which is only meaningful with
respect to a specific coordinate system. However, for simplicity, throughout the main part
of the text a right-handed frame of reference was assumed.

A.7 Beltrami Vortices

The positive curl eigenstate in a right-handed frame of reference was given in Section 2.5.2
as

v+
χ =

1√
2

∑
k∈S(1)

a+χk(k × n − in) exp iχk · x . (A.7.1)

This can be written in explicitly real form as

v+
χ =

√
2
∑

k∈S+(1)

[
α+χk(k × n cosχk · x+ n sinχk · x)

− β+χk(k × n sinχk · x − n cosχk · x)] , (A.7.2)
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where the sum runs over the set S+(1) of linearly independent wave vectors in S(1). Choosing
the two wave vectors

kx =


10
0


 (A.7.3)

ky =


01
0


 (A.7.4)

with

n =


00
1


 , (A.7.5)

and setting

α+χkx
= α+χky

= 0 (A.7.6)

and

A
def
=

√
2β+χkx

B
def
=

√
2β+χky

,
(A.7.7)

this reduces to5

v+
χ =


 −B sinχy

A sinχx
A cosχx+B cosχy


 . (A.7.8)

With A = B the positive curl eigenstate becomes a Beltrami vortex flow with a spatially peri-
odic pattern of counterrotating updrafts and downdrafts, where one of the cyclonic updrafts
is centred over the coordinate origin in the horizontal plane. Setting the imaginary parts
of the expansion coefficients zero would result in a vortex pattern shifted in the horizontal
plane by the vector (π/2χ, π/2χ).

To calculate continuous superpositions of these B-flows the discrete wave vectors χk of
the Fourier series (A.7.1) are replaced by the continuous wave vector q = (j, k, l)T . As
discussed in Appendix A.6, for the vλ

χ to be real vector functions the set of wave vectors
must include the negative of each wave vector. In wavenumber space this means that the
wave vectors are distributed mirror symmetrical with respect to the origin. The volumes
Vq

def
= 8∆j∆k∆l of the continuous wave vectors are therefore centred around the positions of

5This vector field can be ‘completed’ by adding the vertically turning (veering for χ > 0) shear flow
(C sinχz,C cosχz, 0)T corresponding to the wave vector (0, 0, 1)T . One then obtains a special case of the
famous ABC-flows [e.g., Galloway and Frisch, 1987] that, like all B-flows, are analytical, stationary solutions
of the Euler equations.
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the discrete wave vectors of the Beltrami vortex flow. It simplifies the analysis to relax the
constraint of |q| ≡ 1 on the discrete wave vector and to replace n×k in (A.7.1) by |q0|−1n×q,
where |q0| is equal to j0 or k0 depending on whether the spectral volume is centred around
the j or k axis. The unit wave vectors k are required for the B-flow property and for the
completeness of the velocity decomposition into curl eigenstates. However, the Beltrami
property is destroyed anyway by the superposition of B-flows with different chiralities, and
completeness is irrelevant since the superposition only defines a special velocity field.

The continuous superposition of Beltrami vortices is then defined as an average over the
spectral volume Vq,

v+ = V −1
q

∫ j0+∆j

j0−∆j

∫ ∆k

−∆k

∫ ∆l

−∆l


 1
j0


−k
j
0


 sin(jx+ ky + lz)
+


00
1


 cos(jx+ ky + lz)


 dl dk dj

+ V −1
q

∫ ∆j

−∆j

∫ k0+∆k

k0−∆k

∫ ∆l

−∆l


 1
k0


−k
j
0


 sin(jx+ ky + lz)
+


00
1


 cos(jx+ ky + lz)


 dl dk dj .

(A.7.9)

Using the formula

∫ x2

x1

x sin(ax+ b) dx

=
1

a2
[sin(ax2 + b)− sin(ax1 + b)− ax2 cos(ax2 + b) + ax1 cos(ax1 + b)]

(A.7.10)

the six integrals of (A.7.9) are found to be

I1 = −(j0Vq)−1

∫ j0+∆j

j0−∆j

∫ ∆k

−∆k

∫ ∆l

−∆l
k sin(jx+ ky + lz)dl dk dj

= j−1
0

cos j0x sin∆j x

∆j x
×∆k y cos∆k y − sin∆k y

∆k y2
× sin∆l z

∆l z
,

(A.7.11)

I2 = (k0Vq)
−1
∫ ∆j

−∆j

∫ k0+∆k

k0−∆k

∫ ∆l

−∆l
j sin(jx+ ky + lz)dl dk dj

= k−10

sin∆j x−∆j x cos∆j x

∆j x2
× cos k0y sin∆k y

∆k y
× sin∆l z

∆l z
,

(A.7.12)
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I3 = −(k0Vq)−1

∫ ∆j

−∆j

∫ k0+∆k

k0−∆k

∫ ∆l

−∆l

k sin(jx+ ky + lz)dl dk dj

= k−10

sin∆j x

∆j x
× 1

∆k y2
[cos k0y(∆k y cos∆k y − sin∆k y)− k0y sin k0y sin∆k y]

× sin∆l z
∆l z

,

(A.7.13)

I4 = (j0Vq)
−1

∫ j0+∆j

j0−∆j

∫ ∆k

−∆k

∫ ∆l

−∆l
j sin(jx+ ky + lz)dl dk dj

= j−1
0

1

∆j x2
[cos j0x(sin∆j x−∆j x cos∆j x) + j0x sin j0x sin∆j x]

× sin∆k y
∆k y

× sin∆l z
∆l z

,

(A.7.14)

I5 = V −1
q

∫ j0+∆j

j0−∆j

∫ ∆k

−∆k

∫ ∆l

−∆l
cos(jx+ ky + lz)dl dk dj

= cos j0x
sin∆j x

∆j x
× sin∆k y

∆k y
× sin∆l z

∆l z
,

(A.7.15)

and

I6 = V −1
q

∫ ∆j

−∆j

∫ k0+∆k

k0−∆k

∫ ∆l

−∆l

cos(jx+ ky + lz)dl dk dj

= cos k0y
sin∆j x

∆j x
× sin∆k y

∆k y
× sin∆l z

∆l z
.

(A.7.16)

The superimposed vortex flows discussed in Section 2.6 are then given by

v+ =


I1 + I3I2 + I4
I5 + I6


 . (A.7.17)

Defining the approximate Beltrami vortex flows

v+
q

def
=

1

|q0|


−k
j
0


 sin(jx+ ky + lz) +


00
1


 cos(jx+ ky + lz) , (A.7.18)

their spectral average (A.7.9) can be written in short form as

v+ =
1

Vq

∫
v+
q d

3q . (A.7.19)

The mean spectral kinetic energy referred to in Section 2.6 is then defined as

K+
mean(x)

def
= v+ · v+

=
1

V 2
q

∫ ∫
v+
q · v+

q′ d
3q d3q′ ,

(A.7.20)
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rather than

1

Vq

∫
v+
q · v+

q d
3q , (A.7.21)

and the mean kinetic energy is defined as the spatial average of the spectral mean kinetic
energy,

K+
mean

def
=
〈
K+

mean(x)
〉
. (A.7.22)

A.8 Time-Averaging

If the slow and fast dependence of the velocity fields u and v is symbolically expressed by
writing

u = u(τ,x)

v = v(t,x)
(A.8.1)

with slow and fast time variables τ and t, respectively, the time-derivative in the equations
of motion is replaced by

∂t̃ṽ(t̃,x) −→ ∂τu+ ∂tv . (A.8.2)

Formally one might try to introduce the variable transformation t̃ = τ + t. Then, however,
for any function f = f(t̃) = f(τ + t), ∂τf = ∂t̃f∂τ t̃ = ∂t̃f∂tt̃ = ∂tf , which would be
wrong. Instead the formal transformation of the differential operator ∂t̃ → ∂τ + ∂t must be
introduced. Together with ṽ(t̃,x)→ u(τ,x) + v(t,x) this leads to (A.8.2).

A particular case is where u, at each time τ , is the time-average of ṽ over the previous
period T ,

u(τ,x)
def
= ṽ(t̃,x)(τ)

def
=
1

T

∫ τ

τ−T
ṽ(t̃,x)dt̃ .

(A.8.3)

By the Leibniz rule

∂τ

∫ h(τ)

g(τ)

f(τ, t)dt =

∫ h(τ)

g(τ)

∂τf(τ, t)dt+ f(τ, h(τ))∂τh(τ)− f(τ, g(τ))∂τg(τ) , (A.8.4)

and the time-derivative of the time-average, with ∂τ ṽ(t̃,x) = 0,

∂τ ṽ(τ,x) =
1

T
(ṽ(τ,x)− ṽ(τ − T,x)) (A.8.5)

is equal to the time-average of the time-derivative

∂t̃ṽ(τ,x) =
1

T

∫ τ

τ−T
∂t̃ṽ(t̃,x)dt̃ . (A.8.6)
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The equations of motion for the slowly evolving velocity field u are then derived from the
equations of motion

∂t̃ṽ + ∂ṽṽ = f̃ (A.8.7)

for the total velocity field ṽ through time (Reynolds) averaging, and are given by

∂τu+ (u · ∇)u+ (v · ∇)v = f . (A.8.8)

Subtracting (A.8.8) from (A.8.7) then gives the equations of motion for the velocity pertur-

bations v
def
= ṽ − u,

∂tv + (u · ∇)v + (v · ∇)u+ (v · ∇)v − (v · ∇)v = f ′ . (A.8.9)

Often in turbulence and boundary layer theory it is assumed that the fast velocity pertur-
bations, and in fact the total velocity field, are incompressible.6 Assuming as in Section 2.7
that thermodynamic forcing varies on the slow timescale, the time-perturbations f ′ of the
forcing term in the Navier-Stokes, Boussinesq, or Euler equations vanishes. Also, since

∇T
(
aaT

)
= (a · ∇)a+ (∇ · a)a (A.8.10)

for any column vector a, the term (v · ∇)v is equal to the divergence of the symmetrical
stress tensor vvT = (vvT )T ,

(v · ∇)v = ∇T
(
vvT

)
. (A.8.11)

Defining the time-averaged stress tensor R
def
= vvT and introducing the notation

∇ ·R def
= ∇TvvT , (A.8.12)

the ‘fast’ equations of motion (A.8.9) become

∂tv + (u · ∇)v + (v · ∇)u+ (v · ∇)v = ∇ ·R . (A.8.13)

The Fourier transformations of (A.8.8) and (A.8.9) or (A.8.13) are equivalent with (2.7.10)
and (2.7.11) of Section 2.7 if (v · ∇)v ≡ 0. This is consistent with the fact that in Section 2.7
the expansion coefficients of the fast flow were assumed to be small perturbations of the
corresponding expansion coefficients of the total flow.

Technically, (A.8.8) and (A.8.9) or (A.8.13), with a prognostic equation for the forcing
term f̃ , constitute a closed system of equations. However, due to the time-averaged nonlinear
quantities in v the system cannot be integrated without a closure assumption expressing the
time-averaged quantities in terms of the time-averaged velocity field u. If instead of some
parameterisation of the stress tensor divergence it can be assumed that the quadratic terms
in the time-perturbations can be neglected, the analysis simplifies significantly. For the
description of space filling, continuously generated turbulent eddies, i.e., for the general

6Under the Boussinesq approximation density fluctuations are still taken into account in the buoyancy
term.
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description of turbulence, this is not a good assumption. Away from solid boundaries (above
the planetary boundary layer) or strong gradients (fronts) the divergence of the time-averaged
stress tensor is generally small. However, in the vicinity of jets and in regions of strong
convection, even in the free atmosphere, this term can become large. For the description of
general turbulent motion in the storm cloud, (2.7.10) and (2.7.11), derived for the study of
a particular flow instability, are not valid.

A.9 Centre-Manifold Reduction

Similarly to the helical decomposition of the flow in physical space into curl eigenstates the
flow in phase space can be projected onto any orthonormal system of basis vectors. Initially
the most obvious choice of phase space coordinates are the Fourier expansion coefficients
directly. However, after a linear stability analysis the dynamics in phase space in a small
neighbourhood of the fixed points can often be simplified by projecting the dynamical system
onto their linear eigenspaces. At criticality the significant dynamics takes place on the centre-
manifold.

To study the centre-manifold dynamics by standard normal forms the system (3.4.6) must
be reduced to a one-parameter problem. This is achieved by setting p ≡ r and by keeping
all parameters fixed except for q, which therefore becomes the bifurcation parameter with
critical value qc = σ/2. At criticality (3.4.6) is then given by

Ẋ = −p(Y + Z)
Ẏ = p(X + Z)

Ż = XY − σ

2
(X + Y + 2Z) .

(A.9.1)

For the transcritical, steady-state bifurcation one real eigenvalue vanishes at criticality. The
centre-manifold is therefore one-dimensional. The eigenvector corresponding to that eigen-
value, at criticality, is proportional to

c
def
=

1√
3


 1
1
−1


 , (A.9.2)

i.e., it is pointing along the line on which lie the vortex equilibria as a function of q (see
Figure 3.14). If this centre-direction is taken as one of the new coordinate axes, the normal
vector n can be defined as

n
def
=

1√
2


 1
−1
0


 , (A.9.3)

and the binormal vector b as

b
def
=

1√
6


11
2


 . (A.9.4)
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The new phase space coordinates in terms of the old ones are then given by

c
def
= c · X =

1√
3
(X + Y − Z) (A.9.5)

n
def
= n · X =

1√
2
(X − Y ) (A.9.6)

b
def
= b · X =

1√
6
(X + Y + 2Z) , (A.9.7)

or vice versa

X =
1√
3
c+

1√
2
n+

1√
6
b (A.9.8)

Y =
1√
3
c− 1√

2
n+

1√
6
b (A.9.9)

Z = − 1√
3
c+

2√
6
b . (A.9.10)

Since the basis vectors c, n, and b are constant, the dynamical system for the new phase
space coordinates c, n, and b is given by

ċ = c · Ẋ

=

√
2

3
pn+

1√
2
σb−XY (A.9.11)

ṅ = n · Ẋ
= −

√
3pb (A.9.12)

ḃ = b · Ẋ
=

1√
3
pn− σb+ 2XY , (A.9.13)

where the product XY can also be expressed in terms of the new variables. Since at the
equilibrium the linear eigenspaces are tangent to the corresponding nonlinear manifolds,
near an equilibrium points on the nonlinear centre-manifold can be described by writing the
variables n and b as functions of the centre coordinate c,

n = n(c) (A.9.14)

b = b(c) , (A.9.15)

where due to the tangency ∂cn = ∂cb = 0 at the equilibrium. Then

ṅ = (∂cn) ċ (A.9.16)

ḃ = (∂cb) ċ (A.9.17)

with (A.9.11). Comparing these two equations with (A.9.12) and (A.9.13), respectively, gives
an equation for n = n(c) and b = b(c), which can be solved by power series expansion to any
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order in c. Substituting these expression into (A.9.11) then gives an uncoupled equation for
the dynamics on the centre-manifold near the equilibrium.7

Due to the nonlinearity of the centre-manifold an exact analytical representation is gen-
erally not possible. However, near an equilibrium at criticality an approximate description
of the dynamics can often be derived. In this particular case, since the stable vortex equi-
libria lie on a straight line from the origin parallel to the centre-direction at the origin, the
centre-manifold dynamics at the transcritical bifurcation is in fact an accurate dynamical
description for the origin to vortex transition for supercritical values of q as well, i.e., for
noncoinciding equilibria.

7For an introduction to normal-form dynamics and centre-manifold reduction see Crawford [1991].





B Glossary

alignment measure of the correlation between velocity and vorticity vectors; alignment den-
sity is the cosine of the angle between velocity and vorticity vectors. [→ Section 2.1.3]

asymptotic stability state of an equilibrium of a phase space flow or map without unstable
and neutral directions, i.e., with empty unstable and centre subspaces. [→ Section 3.3]

B-flow Beltrami flow with constant chirality; spatially periodic solutions are given by
monochromatic Fourier series expansions where the single wavenumber is equal to
the amount of chirality. [→ Section 2.1.3]

Beltrami flow flow for which velocity and vorticity are parallel or antiparallel everywhere
in a specified domain; alignment is constant and equal to plus or minus one. [→
Section 2.1.3]

bifurcation significant change in the qualitative behaviour of a dynamical system due to
small changes in the system parameters; more specifically the change in linear stability
of certain equilibria upon small parameter changes. [→ Section 3.4]

chirality ratio of helicity density to kinetic energy density; wavenumber of a B-flow. [→
Section 2.1.3]

curl eigenstates solutions of the curl eigenvector equation with constant chirality; posi-
tively and negatively helical B-flows and irrotational gradient flows; in Fourier series
representation pure helical and spectral states. [→ Section 2.5.2, Appendix A.2]

curl eigenvectors combined spectral and helical basis vectors of curl eigenstates. [→ Sec-
tion 2.5.2, Appendix A.2]

eddy spatially limited positive perturbation of kinetic energy from normal flow state; intense
eddies are associated with localised, positively correlated positive perturbations in
kinetic energy and enstrophy, and helical eddies with positively correlated positive
perturbations in intensity and alignment. [→ Section 2.1.4 and 2.6.1]

enstrophy measure of the rotational energy of small fluid elements; enstrophy density is the
square of the vorticity vector. [→ Section 2.1.2]

flow structures intense and persistent eddies that preserve their qualitative kinematical
properties over sufficiently long periods of time to be able to interact with each other.
[→ Section 2.3.2 and 2.6.1]

fluid element infinitesimal volume containing the same molecules at all times; infinitesimal
Lagrangian volume. [→ Section 2.1.1]

fundamental law of algebra states that the polynomial xn+ an−1xn−1+ · · ·+ a1x+ a0 = 0
with aj ∈ C has n roots in C. For aj ∈ R the roots are real or come in complex
conjugate pairs.

helical property of eddies or flow structures, referring to positively correlated positive per-
turbations of intensity and alignment. [→ Section 2.1.4]



120 B Glossary

helical basis vectors three eigenvectors of the curl operator in wavenumber space; orthonor-
mal vector basis for Fourier transform of velocity. [→ Section 2.5.2, Appendix A.2]

helicity combined measure of intensity and persistence of flow perturbations; helicity density
is the scalar product between velocity and vorticity. [→ Section 2.1.3]

hyperbolic fixed point equilibrium of a dynamical system without centre (neutral) direc-
tions. [→ Section 3]

intensity combined measure of kinetic energy and enstrophy. [→ Section 2.1.2]

kinetic energy of fluid elements is a measure of their kinetic energy in the usual mechan-
ical definition for solid particles; kinetic energy density is the square of velocity. [→
Section 2.1.2]

Lagrangian surface surface of a Lagrangian volume. [→ Section 2.1.1]

Lagrangian volume volume of fluid containing the same molecules at all times; mass is
constant and all fluxes across the bounding surface vanish. [→ Section 2.1.1]

left-handed property of a frame of reference whose ordered coordinate axes are arranged
according to the left-hand rule. [→ Appendix A.6]

parity invariance (symmetry) of the physical laws under a change of handedness of the frame
of reference. [→ Appendix A.6]

parity transformation transformation between right- and left-handed frames of reference.
[→ Appendix A.6]

pseudo-scalar scalar that changes sign under a parity transformation. [→ Appendix A.6]

pseudo-vector vector that points in opposite directions in a right- and left-handed frame
of reference. [→ Appendix A.6]

right-handed property of frame of reference whose ordered coordinate axes are arranged
according to the right-hand rule. [→ Appendix A.6]

supercell thunderstorm a particular type of thunderstorm characterised by a persistent,
quasi-stationary, strongly rotating updraft (a mesocyclone), which promotes storm
organisation and maintenance. The majority of supercell thunderstorms is severe.
The environmental mean flow is generally veering over the lowest 3 km, and, given
sufficient instability for initial updraft formation, the flow structure of the storm cloud
is determined by this large-scale vertical wind profile. The storm usually moves to the
right of the mean wind.

thunderstorm (or electrical storm) a cumulonimbus cloud that, in addition to precipitation,
is associated with gusty winds, and thunder and lightning. Ordinary thunderstorms
generally do not last for more than one hour. They do not have organised rotating
updrafts and are usually nonsevere. Since the environmental mean flow does not have
a consistent wind shear over the depth of the storm cloud, buoyancy is the dominant
factor for storm formation. The storm usually moves with the mean wind.
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topology branch of geometry where distance is not relevant. Since no metric is defined,
topology investigates geometrical properties without measurements of length. Knot
theory and the investigation of the structure of streamlines and vortex-lines have be-
come an important part of topology. [→ Section 2.2]

true scalar scalar that does not change sign under a parity transformation. [→Appendix A.6]

true vector vector that points in the same direction in right- and left-handed frames of
reference. [→ Appendix A.6]





C Abbreviations and Plot Annotations

CAD Convergent anticyclonically rotating downdraft
CCU Convergent cyclonically rotating updraft
DAD Divergent anticyclonically rotating downdraft
DCU Divergent cyclonically rotating updraft
NTU Nondimensional time unit

T1 Vortex triad kx + ky =
√
2kx,y

T2 Vortex triad kx − ky =
√
2kx,−y

VORTEX Verification of the Origins of Rotation in Tornadoes Experiment





D List of Symbols and Notation

Symbols

a real constant;
scale factor of continuous spectral function, Section 2.6.1

ak, ajkl, aχk expansion coefficients of Fourier series
aλχk helical expansion coefficients of v
aq = (aq, bq, cq)

T , imaginary part of uq
aj,k = (aj,k, bj,k, cj,k)

T , index notation for uq with q = (j, k, 0)T

a(k) continuous isotropic kinetic energy spectral function
ahor(kh) continuous horizontal kinetic energy spectral function
aλhor(kh) continuous horizontal kinetic energy spectral function

in helical decomposition
|aχ|2 discrete isotropic kinetic energy spectrum

|aχhor|2 horizontal discrete isotropic kinetic energy spectrum
|aλχhor|2 horizontal discrete isotropic kinetic energy spectrum

in helical decomposition
A real amplitude function of Beltrami vortex;

complex factor of spatial and spectral kinetic energy
distribution functions, Section 2.6.1

A(X̄) attractor strength of equilibrium X̄
Aq real expansion coefficients of Fourier series
b real constant;
B real amplitude function of Beltrami vortex;

complex factor of spatial and spectral kinetic energy
distribution functions, Section 2.6.1

B domain in which the flow satisfies the Beltrami condition
c real constant
C real amplitude function of Beltrami vortex
D number of data points
D three-dimensional spatial domain
ex unit vector in the direction given by coordinate x

E
def
= 〈ε〉, averaged enstrophy

f arbitrary analytic scalar function
f sum of all acceleration terms in fluid dynamical equations;

slow forcing term of storm system

f̃ forcing term for ṽ
f ′ fast forcing term for v
fq expansion coefficients of f
f ′
q expansion coefficients of f ′



126 D List of Symbols and Notation

F Fourier transform of f
Ff undetermined integral of f

H
def
= 〈η〉, averaged helicity

i
def
=

√−1, imaginary unit;
index

I Lagrange invariant, dtI ≡ 0, Section 2.2;
ensemble average of spatial helicity correlation, Section 2.6.1

j continuous wavenumber component in x-direction;
index of summation

j0 central wavenumber of wave packet
J(X) Jacobian matrix of dynamical system evaluated at point X

J frozen-in vector field
k wavenumber;

continuous wavenumber component in y-direction;
index of summation

k0 central wavenumber of wave packet
k discrete unit wave vector in Fourier series

kmax wavenumber of maximum of |a(k)|2
kh

def
=
√
k2x + k

2
y, horizontal wave vector

khmax wavenumber of maximum of |ahor(kh)|2
kx component of wave vector k corresponding to coordinate x
kx wave vector (1, 0, 0)T

ky wave vector (0, 1, 0)T

kx,y wave vector (1, 1, 0)T/
√
2

kx,−y wave vector (1,−1, 0)T/√2
k̂χ vector operator corresponding to k, k̂χφχk = kφχk
K

def
= 〈κ〉, averaged kinetic energy

K̄ total integrated kinetic energy
l continuous wavenumber component in z-direction;
index of summation

L length scale;
length of spatial domain, Section 2.6.1

m mass of Lagrangian volume
n positive integer
n unit normal vector to k;

outward unit normal on a closed surface
M spatial domain of the mesocyclone
N set of natural numbers including zero

O(ε) term of order ε
p air pressure, Chapter 2;

parameter in dynamical system, Chapter 3
P3 domain in which φχk satisfies periodic boundary conditions
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q amount of wave vector q, Chapter 2;
parameter in dynamical system, Chapter 3

q continuous wave vector in Fourier transformation;
discrete wave vector with integer components in Fourier series

qc critical value of parameter q
r, rj parameters in dynamical system

rh
def
=
√
x2 + y2, horizontal radial coordinate

R(X̄) repellor strength of equilibrium X̄

R̂ matrix curl operator, R̂v ≡ ∇×v
R set of all real numbers
s supercriticality q/qc
s spin vector of fluid element;

rotation vector of solid body vortex
S size of any surface

S(D) closed bounding surface of D
S(1) set of all unit wave vectors k
S(k) spherical shell in continuous wave vector space with radius k

Sxy(1) set of horizontal unit wave vectors
Sz(1) set of vertical unit wave vectors

S nonhelical vector field for which planes S · dx = 0 are frozen in
Sf Fourier series of f
t (fast) time parameter
T timescale;

time interval
u eastward velocity component
u velocity of centre of mass of fluid element, Section 2.1.2;

slowly evolving velocity field
uq expansion coefficients of u
v northward velocity component
v = (u, v, w)T , general velocity field;

rapidly evolving vortex flow field
ṽ total velocity field

vq expansion coefficients of v
ṽq expansion coefficients of ṽ

v(k) amount of Fourier transform of velocity

vh
def
= (u, v, 0)T , horizontal velocity vector

vL pointwise average of vS

vS velocity field on smallest resolvable scale
vχ monochromatic periodic velocity field with wavenumber χ

vλ
χ curl eigenstates, R̂vλ

χ = λχvλ
χ

V size of any volume
V (D) size of volume D

V spatial domain of tornado vortex



128 D List of Symbols and Notation

VL any Lagrangian volume
w upward velocity component
x (eastward) Cartesian coordinate
xj = {x, y, z}, Cartesian coordinates in 3D tensor notation
x = (x, y, z)T , 3D position vector

x0 constant position in space
X phase space variable
X̄ position coordinate of vortex equilibrium in phase space
X = (X,Y, Z)T , position vector in phase space

X0 = (0, 0, 0)T , origin in phase space, ground state
X̄ = (X̄, Ȳ , Z̄)T , position vector of equilibrium in phase space;

position vector of vortex equilibrium
y (northward) Cartesian coordinate
Y phase space variable
Ȳ position coordinate of vortex equilibrium in phase space
z (vertical) Cartesian coordinate
Z phase space variable
Z̄ position coordinate of vortex equilibrium in phase space
Z set of all integers

α
def
= cosφ, local alignment

αλχk real part of aλχk
αq = (αq, βq, γq)

T , real part of uq
βλχk imaginary part of aλχk
Γ set of discrete wavenumbers in Fourier series

δ
def
= ∆k/k0, measure of spectral width of wave packet

δ(x′ − x)
def
= δ(x′ − x)δ(y′ − y)δ(z′ − z), 3D Dirac distribution

δk′,k
def
= δk′x,kxδk′y ,kyδk′z ,kz , 3D Kronecker symbol

∆k width of spectral kinetic energy distribution
∆x width of spatial kinetic energy distribution

ε
def
= ω · ω, enstrophy density;
small positive number

ζ vertical vorticity component

η
def
= v · ω, helicity density

ηλ
k helical basis vector
θ potential temperature

κ
def
= v · v, kinetic energy density

κ′ perturbation of κ from K
κλ kinetic energy of vλ

χ

λ = 0,±1, index denoting helical state of Fourier wave, Chapter 2;
eigenvalue of Jacobian matrix of dynamical system, Chapter 3

ξ position vector along vortex line
ξ0 position of ξat t = 0
ρ mass density;
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any conserved density
ρ0 constant mass density

σ
def
=

√
κε, intensity, Chapter 2;

parameter in dynamical system, Chapter 3
τ slow timescale variable
φ locally shortest planar angle between velocity and vorticity vectors

φjkl
def
= exp iχ0(jx+ ky + lz), Fourier series basis function

φχk
def
= exp iχk · x, identical to φjkl

φ(x, q)
def
= exp iq · x, Fourier transformation basis function

Φ effective gravitational potential
χ wavenumber of Fourier series; for B-flows chirality = ηκ−1 = const .

χ̄
def
= 〈χ〉, averaged chirality

χ′ perturbation of χ from χ̄
χ0 smallest nonzero wavenumber in Γ

ψ(x) Fourier transform of a(k)
ψhor(xh) Fourier transform of ahor(kh)
ψλhor(xh) Fourier transform of aλhor(kh)

ω
def
= ∇ × v, 3D vorticity field

ωh horizontal vorticity vector

ωp
def
= ω

ρ
, potential vorticity

ωχ vorticity of vχ

Ω Earth’s spin vector

Notation

A a boldface symbol denotes a vector quantity
|A| absolute value of real number A, magnitude of complex number A
|A| amount of vector A
A∗ complex conjugate of quantity A
AT transpose of matrix A
A† = (A∗)T = (AT )∗, Hermitean transpose of matrix A

Re [A] real part of A
Im [A] imaginary part of A

Â (differential) operator quantity

Ȧ total time derivative of A
〈A〉 spatial mean of A over an unspecified volume;

ensemble average of A
〈A〉D spatial mean of A over domain D
A′ deviations of A from 〈A〉

λ′, λ′′ equivalent indices to λ in multiple sum
Aj covariant components of vector A
Aj contravariant components of vector A



130 D List of Symbols and Notation

Ajk covariant components of matrix A
{Aj} set of all functions or parameters Aj

∂j
def
= ∂/∂xj, used in tensor notation

∂f
def
= ∂/∂f , for a scalar f

∂v
def
= v · ∇, spatial derivative in the direction of vector v

LvJ def
= ∂vJ − ∂Jv,
Lie derivative of J along v in Cartesian coordinates

∇ def
= ex∂x + ey∂y + ez∂z, nabla operator

∇2 def
= ∂2x + ∂

2
y + ∂

2
z , Laplacian operator

dt
def
= ∂t + ∂v, total or Lagrangian derivative

d3x
def
= dx dy dz, infinitesimal 3D volume element

δx finite difference in variable x

TP
[
X̄1 →X̄2

] def
= R(X̄1)A(X̄2), transition probability from X̄1 to X̄1
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Index

alignment, of velocity and vorticity, 10
angular momentum

intrinsic, 104
matrix operator, 104
orbital, 104

attractor strength, 58

B-flow
definition, 11
eigenvector of curl operator, 11
properties, see helicity extremisation

background flow, 43
balance equation

fast, 45
slow, 45

Beltrami flow
definition, 11
properties, see helicity extremisation

bifurcation
codimension-n, 68
dynamic, 90
generic, 67
Hopf, 65
steady-state, 65
transcritical, 65

bifurcation chart, 27, 65
bifurcation diagram, 66

cascade of kinetic energy
direct, 18
inverse, 18

catalyst wave, 50, 51
centre-manifold reduction, 115
chirality, 11
codimension, 68
commutator, 105
completeness

of curl eigenvectors, 102
of helical basis vectors, 102

conserved density, 13
continuum hypothesis, 7

convergence term, 24
curl

eigenstates, 32
eigenvector equation, 31
eigenvectors, 32
matrix operator, 103

degrees of freedom, 4, 90
differential n-forms, 13

eddy
helical, 12
intense, 12
perturbation definition, 12, 34
range of interaction, 38
wave definition, 19, 34

eigenstates of curl operator, 32
enstrophy

average, 9
density, 9

equation of motion
of barotropic fluid, 15
of ideal fluid, 14

Euler equation, see equation of motion of
ideal fluid

Euler-Lagrange equations, 101
Eulerian description, 8

flow
laminar, 17
left-handed, 109
potential, 17
right-handed, 109
turbulent, 17

flow instability, 17
flow structure, 20, 40
flow, fast and slow, 42
fluid element, 8
Fourier basis functions, 28

completeness, 30
orthonormality, 29



136 Index

Fourier basis functions (continuous), 30
completeness, 30
orthogonality, 30

Fourier series, 28
expansion coefficients, 29
of velocity field, 31

Fourier transformation, 30
inverse, 30

Frobenius condition, 13
frozen-in

surface, 13
vector line, 13

generic system, 68

helical basis vectors, 31
helical eigenstates, see eigenstates of curl

operator
helicity

average, 10
density, 10
extremisation of, 11, 33, 101
meaning of, 20
of storm flow, 23

hidden invariance principle, 107
hook echo, 22

inertial range, 19
instability

convective, 79
shear, 79

interaction
between eddies, 38
helical, 51
vortex, 51

intermittency
spatial, 21
temporal, 17

invariant
integral, 14
Lagrange, 13
local, 13

kinetic energy
average, 9

density, 9
spatial distribution function, 38
spectral distribution function, 37

knottedness of vortex filaments, 16
Kolmogorov power law, 19

Lagrangian description, 8
Lagrangian surface, 8
Lagrangian time derivative, 8
Lagrangian volume, 8
Lie-derivative, 13
line attractor, 71

macrostate, 8
material velocity field, 8
mean free path, 7
mesocyclone, 22
microstate, 8

parameter region
laminar, 63
tornadic, 64

parity, 107
invariance, 107
transformation, 106

parity transformation, 12
potential vorticity, 13

Ertel’s, 14
pseudo-scalar, 12, 107
pseudo-vector, 12, 106

rear-flank downdraft, 22
repellor strength, 58
rotation operator, 104
rotational energy, see enstrophy

Schwarz’s inequality, 11
special orthogonal group SO(3), 103
spectral extrapolation, 92
spectral interaction, 50

local, 18, 34, 50
nonlocal, 18, 34

spectrum
continuous, of aperiodic flow, 35
discrete, of periodic flow, 35
helical, 39
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horizontal, 38
isotropic, 36
vertical, 38

spontaneous symmetry breaking, 107
state of system, 51
stretching term, 24
subcriticality, see Footnote 7
supercell thunderstorm

characteristics, 22
scales, 40

supercriticality, 71
system of equations

dynamically consistent, 47
mathematically closed, 47

tilting of vortex lines, 23
tilting term, 23
time variables, 113
timescale of cyclic phenomenon, 42
tornado

helical eddy, 12
phenomenology, 22–26
predictability, 1
scales, 43–44, 87

verbal definition, 1
tornado cyclone, 22
tornadogenesis, 25–26
transition probability, 61
triad interactions, 50–51
true scalar, 12, 107
true vector, 11, 106
turbulence, 17–20

damping mechanisms, 17
forcing mechanisms, 17
statistical theory, 19

uncertainty in time evolution, 8
uncertainty principle, 38
universal equilibrium, 19

variational principle, see Euler-Lagrange
equations

vortex
potential, 28
solid body, 28
tornadolike, 2

vortex triads, 51
vortex waves, 49
vorticity, 9


