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Abstract 

To obtain accurate greenhouse gas emissions estimates, it is important to understand the 

influence of the biosphere on atmospheric carbon dioxide (CO2). This is difficult as 

observations are sparse over large spatial domains. The Northeastern United States is an 

area of interest for studying the carbon cycle because it is highly urbanized but also 

contains an active biosphere. To study the influence of the biosphere on CO2, the 

VEgetation-Global-Atmosphere-Soil (VEGAS) model is used alongside the Weather 

Research and Forecasting model with coupled Chemistry (WRF-Chem). VEGAS model 

output is first assessed against observations and other CO2 analyses for the Northeast 

Corridor of the United States for the period of November 2016 through October 2017. 

Biological fluxes from VEGAS are then utilized in the WRF-Chem modeling framework 

along with anthropogenic CO2 emissions to simulate atmospheric CO2. Results show that 

the VEGAS model underestimates the length of the growing season and the magnitude of 

the diurnal cycle in biospheric productivity. The model does capture the spatial 

distribution in biological fluxes in the Northeast. Simulated CO2 from WRF-Chem 

matches observations well in urban areas but does not match observations in rural areas 

where biological uptake dominates the diurnal cycle in CO2. Biological uptake is 

estimated to sequester 32% of anthropogenic emissions in the innermost model domain 

over Washington DC/Baltimore, Maryland area. 
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Chapter 1. Introduction 

After decreasing for 3 straight years, carbon dioxide (CO2) emissions from US 

power plants rose 0.6% in 2018 to 1.93 GtC per year (EPA 2019). The rise in emissions 

is a result of increased power demand associated with a thriving US economy and 

inexpensive oil. This news comes at a troubling time as recent research from the IPCC 

states that we may have as little as 12 years to keep global mean surface temperature 

warming below 1.5°C by the end of the century (Masson-Delmotte et al. 2018). To 

inform decisions on controlling CO2 emissions, it is essential to have proper estimates of 

atmospheric CO2 concentrations. Since the late 1950s, atmospheric observations of CO2 

have been made at Mauna Loa in Hawaii to monitor earth’s climate (Keeling et al. 1976). 

These stations have expanded into the Greenhouse Gas Reference Network which 

combines tower, balloon, aircraft, and ship measurements to provide high quality 

observations of CO2 globally (Masarie et al. 2014). Observations from the Greenhouse 

Gas Reference Network are used in different modeling frameworks to estimate 

anthropogenic sources and create gridded CO2 analyses (Patra et al. 2005; Peylin et al. 

2005; Peters et al. 2007; Gurney et al. 2008; Rayner et al. 2008; Chevallier et al. 2010; 

Maki et al. 2010; Niwa et al. 2012). Despite the growth of the global network, smaller, 

more regional, networks of observations are needed to understand emissions on a finer 

spatial scale. 

Multiple studies have been conducted using high density networks of CO2 

observations and high resolution modeling to constrain CO2 emissions in cities (Briber et 

al. 2013; Kort et al. 2013; Lauvaux et al. 2013; Bréon et al. 2015; Turnbull et al. 2015; 

Feng et al. 2016; Lauvaux et al. 2016; Miles et al. 2017; Sargent et al. 2018). These 
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studies utilize both inverse modeling (top-down) and city-level emissions (bottom-up) 

methods to constrain CO2 emissions estimates. For inverse modeling, background CO2 

measurements from observation towers outside of urban areas are necessary to 

understand the inflow of CO2 into cities. Background towers tend to be in areas of high 

biological productivity. Fluxes between the biosphere and atmosphere provide a large 

source of uncertainty in inverse modeling frameworks when trying to understand the 

background state of CO2. It is even more difficult to constrain the biosphere for bottom-

up estimations due to a lack of data on vegetation at the city-level. In a comparison 

between top-down and bottom-up emissions estimates for Indianapolis, IN, the largest 

source of error between the two methods came from the biosphere. It was estimated that 

0.58 – 1.17 MtC from the biosphere could reconcile the difference between the two 

methods over the eight-month study period in the dormant season (Gurney et al. 2017). 

These differences need to be minimized to provide more accurate estimations of 

atmospheric CO2.  

A recent network of observational towers operated by the National Institute of 

Standards and Technology (NIST) has been implemented over the Northeast Corridor 

centered on the Baltimore, MD and Washington, DC metropolitan areas (NEC-B/W)  

(Lopez-Coto et al. 2017; Mueller et al. 2018). The NEC-B/W is interesting to study 

because of the inherent complexities in the carbon cycle. The Northeastern US is the 

most highly urbanized area of the US and thus has a large anthropogenic signal. It is also 

highly vegetated with productive deciduous forests and is downwind of much of the 

nation’s agriculture. North American forests are a net carbon sink with an uptake of 217 

Tags per year (Domke et al. 2018). If all the carbon emitted from power plants from the 
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EPA estimate were taken up by the biosphere in North America, the biosphere would 

account for 12.5% of US emissions. 

To understand the role of the biosphere over the NEC-B/W, a carbon cycle model 

is used in conjunction with a meteorological transport model. The carbon cycle model is 

first validated against in-situ observations, satellite observations, and another carbon 

dioxide analysis. Hourly fluxes from the carbon cycle model are used with the 

meteorological model along with anthropogenic fluxes to simulate the carbon cycle in its 

entirety. These results are compared to NEC-B/W CO2 observation towers to assess the 

accuracy of WRF-Chem in simulating the carbon cycle and to understand the role of the 

biosphere in counteracting anthropogenic CO2 emissions.  
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Chapter 2. Data 

 This chapter describes the two types of data used in this analysis: input data for 

initializing and running the model (Section 2.1.1 and Section 2.1.2) and data used to 

validate the output from the two models (Section 2.1.1 and Section 2.2).  

2.1 Gridded CO2 Datasets  

2.1.1 CarbonTracker Near Real-Time 

The CarbonTracker Near Real-Time (CT-NRT) product is a CO2 analysis which 

utilizes a transport model, a biosphere model, and data assimilation to generate a global 

CO2 product at a 1° x 1° horizontal resolution and three-hourly temporal resolution 

(Peters et al. 2007). The CT-NRT product estimates CO2 fluxes and CO2 concentrations. 

To estimate biological fluxes, CT-NRT uses the CASA (Carnegie-Ames-Stanford 

Approach) Model to estimate mean Net Ecosystem Production (NEP) (Potter and 

Klooster 1997). This diagnostic biosphere model uses satellite derived Normalized 

Difference Vegetation Index (NDVI) data, described in Section 2.2.1, to drive biosphere 

fluxes.  

The CT-NRT product also provides gridded atmospheric CO2 mole fraction data. 

CT-NRT provides three-dimensional mole fractions of CO2 at a 1° x 1° horizontal 

resolution and three-hourly temporal resolution.  

2.1.2 FFDAS 

 Fossil fuel emissions data for this study comes from the Fossil Fuel Data 

Assimilation System (FFDAS) (Rayner et al. 2010). The system utilizes the Kaya identity 

to aggregate fossil fuel emissions based on population and economic data for a given 

region. Night lights data are assimilated into the system to constrain errors in the Kaya 
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identity. Emissions in FFDAS are provided at an hourly temporal resolution and a spatial 

resolution of 0.1° x 0.1° for the year of 2015. There are likely differences in emissions 

between 2015 and 2017 which is the year used in this analysis. FFDAS was found to 

have a high bias when compared to tower observations in the NEC-B/W region for 

February 2015 (Martin et al. 2019). 

2.2 Observations 

2.2.1 VIIRS NDVI 

 The Suomi Polar-Orbiting Partnership (SNPP) is a polar orbiting satellite operated 

by the National Oceanic and Atmospheric Administration. It orbits the earth 14 times 

daily and was launched in October 2011. One of the principal instruments for imaging the 

land and atmosphere onboard the satellite is the Visible-Infrared Imaging Radiometer 

Suite (VIIRS). The instrument is a whiskbroom scanning radiometer that images the earth 

in the visible and infrared bands. These bands are used to calculate remotely sensed 

metrics of biological productivity. One such metric is the Normalized Difference 

Vegetation Index (NDVI). NDVI is calculated from imagery bands I2 (near-infrared: 

0.846 – 0.855 µm) and I1 (visible: 0.600-0.680 µm) (Kogan et al. 2015).  

𝑁𝐷𝑉𝐼 = 	
𝐼2 − 𝐼1
𝐼2 + 𝐼1

	(1) 

Vegetation reflects radiation in the near-infrared and absorbs in the visible. The NDVI 

data used in this analysis has a spatial resolution of 4 km and has a weekly temporal 

resolution (Yang et al. in press).  

2.2.2 AmeriFlux 

 The AmeriFlux observation network has provided biosphere/atmosphere fluxes of 

CO2, water vapor, and energy for over 90 stations in various regions in the United States 



 14 

since 1996 (Baldocchi et al. 2018). AmeriFlux tower sites use sonic anemometers to 

measure three-dimensional wind velocities and virtual temperature as well as sensors to 

measure water vapor and CO2. Fluxes are calculated using meteorological measurements 

and gas concentrations by the eddy covariance method. The station that is used for this 

comparison is US-IB2 (Latitude: 41.8406200; Longitude: -88.2410300) which is located 

at Fermilab outside of Chicago, IL (Matamala). 

2.2.3 NIST Tower Network 

A network of 16 observation sites is planned for the NEC-B/W project to provide 

in-situ measurements of CO2. These measurements will be used for top-down analyses of 

emissions using different inversion frameworks. There are currently 13 sites already 

collecting observations. Each site contains a state of the art Cavity Ring-Down 

Spectrometer managed by Earth Networks. The observational system is identical to that 

used in the Los Angeles Megacities project (Verhulst et al. 2017). Many of the sites have 

2 inlets at different heights for calculating CO2 gradients. The height of the inlets varies 

depending on tower location. A list of the towers used in this analysis can be found in 

Table 1 and locations of the tower sites are mapped in Figure 1. 

Table 1. A list of CO2 observation sites used to compare to WRF-Chem output. Sites designated as 
background are in rural areas which are influenced by the biosphere. Urban sites are in urban areas and 
are influenced by anthropogenic emissions. 

Site Code Location Site Type 
LEW Lewisburg, PA Background 
UNY Utica, NY Background 
SNP Shenandoah National Park, VA Background 
BUC Bucktown, MD Background 
TMD Thurmont, MD Background 
ARL Arlington, VA Urban 
NEB Northeast Baltimore, MD Urban 
JES Jessup, MD Urban 

HAL Halethorpe, MD Urban 
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2.1.4 Airport Meteorological Observations 

 Automated Weather Observing Systems (AWOS) take meteorological 

observations at regional airports around the US. These stations are regulated by the 

Federal Aviation Administration and managed by state and local governments. AWOS 

stations measure wind speed (WS), wind direction (WD), temperature, humidity, dew 

point, pressure, cloud height, visibility, and precipitation as well as estimate present 

weather conditions and runway conditions. Wind speed and direction data from the 

Cambrige-Dorchester Regional Airport (KCGE Latitude: 38.5393; Longitude: -76.0304) 

and Carroll County Regional Airport (KDMW Latitude: 39.6083; Longitude: -77.0077) 

AWOS stations are used in this study. The sensors used to measure wind speed and 

direction have an accuracy within 2 knots and ± 5° (FAA 2017). The wind speed and 

direction data used in this analysis are provided every 20 minutes. 
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Chapter 3. Methods 

The chemical transport model used in this analysis is the Weather Research and 

Forecasting Model with coupled Chemistry (WRF-Chem) (Grell et al. 2005; Skamarock 

et al. 2008; Beck et al. 2011). Anthropogenic emissions data along with biological flux 

data from the VEgetation-Global-Atmosphere-Soil (VEGAS) model provide CO2 sources 

and sinks at the surface in the WRF-Chem modeling framework (Zeng et al. 2005). This 

modeling framework is the same system used in Martin et al. 2019 with some slight 

differences. For this simulation, carbon fluxes from the biosphere are provided to WRF-

Chem in an offline framework instead of an online approach. This is to ensure a better 

representation of the biosphere through proper spinup and driver meteorological data. A 

simulation of VEGAS is performed and analyzed for the period of November 1st, 2016 

through November 1st, 2017. This period is chosen to coincide with other inverse 

modeling studies over the same domain. VEGAS output is validated against VIIRS 

NDVI, the US-IB2 AmeriFlux site, and the CT-NRT product at the diurnal and seasonal 

scales to better understand vegetation during the growing season in NEC-B/W.  

Using biological fluxes from VEGAS and anthropogenic fluxes from FFDAS, a 

forward simulation of WRF-Chem is performed for July 2, 2017 through July 9, 2017. 

The model is analyzed for the period of July 3, 2017 through July 9, 2017 to allow for 

one day of mixing in the model. Total CO2 output from the WRF-Chem run is validated 

against observational towers in the region. The contribution of the biosphere to the uptake 

of anthropogenic emissions is further examined through the WRF-Chem tracer 

experiment.  
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3.1 VEGAS Modeling 

 VEGAS is a Dynamic Global Vegetation Model (DGVM) that uses prognostic 

equations to simulate the growth of 5 vegetation carbon pools and 6 soil carbon pools 

using driver meteorological data. To simplify vegetation growth in a numerical modeling 

framework, vegetation models bin plants by their productivity using Plant Functional 

Types (PFTs). Vegetation is modeled using 5 PFTs which include broadleaf, needle leaf, 

cold grass, warm grass, and cropland. Photosynthesis is simulated using a method similar 

to Collatz et al. 1992. This technique uses a co-limiting factor to allow gradual responses 

in individual components of the model. Photosynthesis is controlled by temperature, soil 

moisture, light, and CO2 dependent growth factors. Competition between trees and grass 

is simulated in the model through the light dependent factor, which is a function of PFT-

height and Leaf Area Index (LAI) (Zeng et al. 2005).  

VEGAS must to be run for 300 years to allow for the carbon pools to build up. 

This is because the model does not use prior biological information and thus the carbon 

pools must be solved dynamically from a zero state. This is known as model spinup. We 

use the TRENDY model protocol for model spinup (Sitch et al. 2015). First, the model is 

run hourly for 300 years without land use at a 2.5° x 2.5° spatial resolution. The restart 

files are then used to initialize the model for another 300-year simulation with land use at 

the same spatial and temporal resolution. For this simulation, land use was kept constant 

by utilizing the land use information for the year 2000 for simplicity. A summary of the 

input data used to run VEGAS is provided in Table 2. The vegetation variables from 

VEGAS that are used in this analysis are listed in Table 3. 
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Table 2. Input data used to run VEGAS. 

Input Data Dataset Horizontal 
Resolution 

Temporal 
Resolution 

Citation 

2-m Temperature CRUNCEP 1° x 1° 6-hourly (Viovy 2019) 

Land Use History HYDE 3.2 0.5° x 0.5° yearly (Klein Goldewijk 
et al. 2011) 

Precipitation CRU/ 

OPI/PRECL 

0.5° x 0.5° 

(blended) 

6-hourly (Hulme et al. 
1998; Janowiak 

et al. 1999; Chen 
et al. 2002) 

 

The data products used to validate the VEGAS simulation include VIIRS NDVI 

data, CT-NRT biological fluxes, and AmeriFlux observations. Because of the large 

difference in resolution between the NDVI product and the vegetation model, 4 km 

compared to 2.5° x 2.5° or (~ 55 km), NDVI is spatially averaged over the outermost 

model domain and compared to spatially averaged NEP from VEGAS. This provides a 

comparison of the seasonality of biological productivity in the vegetation model. 

Comparing VEGAS to CT-NRT is interesting because of the structural 

differences between these products, CT-NRT uses a diagnostic model for biological 

fluxes and VEGAS is a prognostic model. Spatial comparisons are made between 

VEGAS and CT-NRT during the growing season of 2017 while diurnal comparisons are 

performed between VEGAS and CT-NRT for July 2, 2017 through July 6, 2017. 

Only one AmeriFlux site is used for comparison in this study to show the typical 

offset between VEGAS and the AmeriFlux observations at US-IB2. The site is also used 

to illustrate that both the model and observations show biological uptake as early as mid-

March. Observations from US-IB2 are compared against biological uptake from the grid 

cell in the vegetation model corresponding to the location of US-IB2 in March of 2017. 
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Table 3. The VEGAS flux variables used in this analysis. GPP (Gross Primary Productivity) is the rate at 
which plants produce organic compounds. Ra (autotrophic respiration) is the metabolism of organic matter 
by plants. Rh (heterotrophic respiration) is the metabolism of organic matter by bacteria, fungi, and 
animals. CFhar is the decay rate of harvested crop and wood. CFfire is the release of carbon from wildfires.  

Flux Variable Formula 
Net Ecosystem Production (NEP) NEP = GPP − R, − R' 
Net Ecosystem Exchange (NEE) NEE = 	−	NEP 

Carbon Flux to Atmosphere (CFta) CF&, = CF',J + CFK)JL − NEP 
 

3.2 WRF-Chem Modeling 

 Figure 1 shows the three nested WRF-Chem model domains: D01 (outermost 

domain), D02 (intermediate domain), and D03 (innermost domain). The D01 domain 

contains almost the entire Northeastern and Mid-Atlantic United States and has a 

horizontal resolution of 9 km. The D01 domain extends into the Midwestern United 

States to capture upwind emissions from urban areas. This domain also includes the Corn 

Belt which is an area of high agricultural productivity. The intermediate domain (D02) 

has a horizontal resolution of 3 km and the innermost domain (D03) has a horizontal 

resolution of 1 km. Output from WRF-Chem is hourly for the D01 and D02 domains and 

10-minutely from the D03 domain. WRF-Chem is run with 50 vertical levels. Initial and 

boundary conditions for the model come from the North American Regional Reanalysis 

(NARR). NARR has a 3-hourly temporal resolution, 32 km horizontal resolution, and a 

vertical resolution of 29 pressure levels (Mesinger et al. 2006). WRF-Chem utilizes the 

YSU Planetary Boundary Layer (PBL) scheme in all three domains and the Kain-Fritsch 

Cumulus Parameterization in D03 and D02 domains. An extended comparison of WRF-

Chem meteorology to observations can be found in Martin et al. 2019. 

Gridded mole fraction CO2 data from CT-NRT are used as the initial and 

boundary conditions of atmospheric CO2 concentrations for the WRF-Chem model. 

These data are considered as the model “background” because the data provides the base 
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atmospheric CO2 state for WRF-Chem as well as the transport of CO2 into the outer 

WRF-Chem domain. A full list of the input data used to run WRF-Chem is provided in 

Table 4. 

Table 4. Input data used to run WRF-Chem. 

Input Data Dataset Horizontal 
Resolution 

Temporal 
Resolution 

Citation 

Meteorological 
IC/BC 

NARR ~ 0.3° x 0.3° 3-hourly (Mesinger et al. 
2006) 

Atmospheric CO2 
IC/BC 

CT-NRT 1.0° x 1.0° 3-hourly (Peters et al. 
2007) 

Anthropogenic CO2 
Fluxes 

FFDAS 0.1° x 0.1° Hourly (Rayner et al. 
2010) 

Biological Fluxes VEGAS 2.5° x 2.5° Hourly - 

 

 
Figure 1. (left) A map of the WRF-Chem domain configuration and CO2 observing sites used to compare 
against the WRF-Chem results. The D01 domain is modeled with a horizontal resolution of 9 km, the D02 
domain is modeled with a 3 km resolution, and the D01 domain is modeled with a 1 km resolution. (right) A 
map of the WRF-Chem domains and the CO2 monitoring sites over the immediate Baltimore/Washington 
region.  

 Three tracer experiments are performed in the WRF-Chem modeling framework 

and compared to observations at each of the NEC-B/W sites within the modeling domain. 

The variable F denotes flux and the subscript denotes the type of flux. These experiments 

include: 
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𝐶𝑂#OPQR = 𝐹 𝐶𝑂# TU0VWU + 	𝐹 𝐶𝑂# XXYOZ		(2) 
𝐶𝑂#[\] = 𝐹 𝐶𝑂# TU0VWU + 𝐹 𝐶𝑂# ^_`OZ			(3) 

𝐶𝑂#U]Qbc = 	𝐹 𝐶𝑂# TU0VWU + 𝐹 𝐶𝑂# ^_`OZ + 𝐹 𝐶𝑂# XXYOZ	(4)		 
 

These tracers allow for a direct comparison of the impact of anthropogenic 

emissions and uptake from the biosphere on atmospheric CO2 concentrations. The WRF-

Chem tracers are compared to the NIST tower observations from Table 1/Figure 1. Time 

series data of CO#+*&,- are extracted from WRF-Chem at the latitude, longitude, and 

height of each tower for comparisons of the model to observations. WRF-Chem mean 

bias from observations and standard error statistics are calculated for the CO#+*&,- data 

for the entirety of the model simulation as well as for the daytime and nighttime hours.  

Wind speed and wind direction observations from the Cambrige-Dorchester 

Regional Airport (KCGE Latitude: 38.5393; Longitude: -76.0304) and Carroll County 

Regional Airport (KDMW Latitude: 39.6083; Longitude: -77.0077) AWOS stations are 

compared against WRF-Chem simulated wind speed and direction at the BUC and TMD 

CO2 observing sites. Wind speed is converted to m/s to compare against model-simulated 

wind speed. 

Lastly, VEGAS fluxes and FFDAS fluxes are averaged spatially and diurnally for 

D03 over the WRF-Chem period. This provides some insight into the contribution of 

VEGAS to the carbon cycle in the D01 domain and also provides some explanation for 

the WRF-Chem tracer experiment results.  
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Chapter 4. Results 

This chapter presents the results of the 2 modeling experiments described in 

Chapter 3. Section 4.1 is where VEGAS output is validated against observations and the 

CT-NRT product. In Section 4.2, the results from the WRF-Chem experiment and 

validation are explained.  

4.1 VEGAS Validation 

4.1.1 Seasonal Variability  

 Domain averaged NEP from VEGAS is compared to domain averaged NDVI for 

D01 to study the onset and duration of the growing season. NEP is aggregated from 

hourly to daily averages to remove noise and for easier comparison to the weekly NDVI 

data. The averages are shown in Figure 2. This comparison reveals that VEGAS 

simulates a peak in biological productivity about a month earlier than in the VIIRS NDVI 

data and with a shorter growing season. Peak uptake in July is consistent with other 

vegetation carbon models (Raczka et al. 2013). NEP from VEGAS is above 75% of the 

max uptake (1.83 µmol m2 s-1), barring one day at the beginning of July, starting in mid-

May and remains above 75% until early August. NDVI is above 75% of max NDVI (0.6) 

from the beginning of June through the beginning of October. Biological productivity 

decreases rapidly in mid-August in the VEGAS runs whereas NDVI appears to show a 

gradual decline as summer transitions to fall. The reason for this sharp decline is due to 

the biological processes in VEGAS. Once crops reach their maximum height, they are 

harvested and thus biological productivity is shut down. The same process is used for 

broadleaf trees. Once the conditions are met for dormancy, the trees drop their leaves and 
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cease carbon uptake. Because the D01 domain comprises mostly of cropland and 

broadleaf trees, the D01 averaged NEP is driven by these two processes.   

 
Figure 2. Spatially averaged NDVI from VIIRS (blue) and NEP output from VEGAS (green) for the D01 
domain. 

Fluxes from VEGAS are compared to CT-NRT for July 2017 in Figure 3. The 

July 2017 D01 mean NEE from VEGAS is -2.31 µmol m2 s-1 while the D01 mean NEE 

for CT-NRT is -2.33 µmol m2 s-1. The monthly averaged maps reveal that VEGAS 

accurately captures the same spatial structure of NEE in D01 for July 2017 as the bio flux 

in CT-NRT. Areas of strong uptake include the Corn Belt with maximum uptake over 

Illinois and Central Iowa. Another area of high biological productivity from agriculture, 

which is simulated by VEGAS, is the area around Lake Ontario. This region is known for 

high agricultural productivity with the main crops being hay, corn, and soybeans. 

Because of the coarse resolution of VEGAS, the model is simulating the pixel over the 

water as agriculture. This matches with CT-NRT but is stronger in the VEGAS 

simulation. Because of the spatial resolution differences between VIIRS NDVI and 

VEGAS, it is difficult to perform spatial comparisons. As mentioned previously, NDVI is 

above 75% of its max by July 2017. Spatial plots of mean NDVI for July 2017 show that 

the biosphere is active for the D01 domain. 
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Figure 3. Average July 2017 biosphere fluxes from the (top) CT-NRT product and (bottom) VEGAS. CT-
NRT has a horizontal resolution of 1° x 1° while VEGAS has a horizontal resolution of 2.5° x 2.5°. 

4.1.2 Diurnal Variability 

Diurnal comparisons in Figure 4 of D01 averaged NEE from VEGAS show that 

the diurnal scale is weaker than that in CT-NRT. Nighttime respiration in VEGAS is 

about half of that from CT-NRT while daytime uptake is slightly less than half. Uptake in 

VEGAS is consistent between days whereas the diurnal cycle is more variable in the CT-

NRT product. Spatial comparisons of average fluxes at 1Z, 7Z, 13Z and 19Z show 

similar results. These time periods are chosen to match with the timestamps of the CT-

NRT product. Peak uptake in VEGAS is 51% of that from CT-NRT. Peak respiration 

occurs at 1Z in CT-NRT while in VEGAS, peak respiration is at 7Z. Respiration in 

VEGAS is 48% of that from CT-NRT. As expected, the areas of peak uptake in the two 
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models are centered in the Corn Belt and up through Southern Ontario. These areas also 

match with peak respiration at night for CT-NRT. This is not the case in VEGAS. Areas 

of highest respiration in VEGAS are predominantly covered in the broadleaf PFT while 

the cropland PFT has the lowest respiration. Because the model has one PFT for 

cropland, average photosynthetic properties are estimated for maize, wheat, and rice. This 

simplification may be reducing the respiration from cropland. 

 
Figure 4. Average biosphere fluxes for the D01 domain for the CT-NRT product (orange) and VEGAS 
(green). VEGAS has an hourly temporal resolution whereas CT-NRT has a 3-hourly temporal resolution. 

Diurnal uptake in VEGAS is compared to AmeriFlux observations in Figure 5 for 

the US-IB2 tower just outside of Chicago, IL. There are limitations when comparing a 

low-resolution model to point observations. Fluxes from VEGAS are expected to be 

smaller in magnitude than that of the productive meadow at US-IB2 because the fluxes 

are representative of the average biological productivity within the 2.5° x 2.5° grid cell. 

This is evident when comparing daily averaged fluxes from VEGAS to the observations. 

Interestingly, there is uptake in both the model and observations during early spring 

2017. Observations from AmeriFlux show slight uptake in early March 2017 and 

VEGAS shows uptake beginning March 26, 2017. By the beginning of April 2017, 

VEGAS daytime uptake matches nighttime respiration on given days. Monthly averaged 
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maps of NDVI for the region over US-IB2 show low NDVI values in March 2017 with a 

considerable increase in NDVI by April 2017. For the grid cell where US-IB2 is located, 

NDVI increases from 0.27 to 0.47 from the beginning of March 2017 to the beginning of 

May 2017. Despite the inability of VEGAS to simulate the magnitude of the variability of 

the diurnal cycle of the US-IB2 station, the model does simulate daytime biological 

uptake early in the year. 

 
Figure 5. Hourly flux tower measurements of NEE for the US-IB2 tower site (black) compared to the 
hourly VEGAS output of NEE for the grid cell location of the US-IB2 tower (green).  

4.2 WRF-Chem Comparisons 

4.2.1 Background Tower Comparisons 

Fluxes from the biosphere have a minor impact on the CO#+*&,- concentrations in 

the WRF-Chem simulation. This is evident through WRF-Chem comparisons to 

observations at the background tower sites. Background tower comparisons are 

performed for the two outer domains: D01: LEW and UNY as well as D02: SNP, BUC, 

and TMD. For the two D01 sites, the model over-predicts daytime CO#+*&,-. The LEW 

site over-predicts daytime CO#+*&,- by 4.87 ppm and the UNY site over-predicts daytime 

CO#+*&,- by 5.79 ppm (Figure 6 and Figure 7). At both sites, WRF-Chem simulates very 

low variability in CO#()*. In these rural areas, the model is unable to simulate high CO2 
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uptake from the biosphere during the daytime. Further analysis of other D01 site 

comparisons also show low variability in CO#()* and CO#$%&' for both daytime and 

nighttime hours. This could be a result of the lower spatial resolution of 9 km in the D01 

domain. The coarse resolution may be preventing the model from properly dispersing the 

CO2 tracers leading to low variability in those tracers in WRF-Chem at the observation 

site locations. 

 
Figure 6. (top) WRF-Chem CO2 concentration for the three tracer experiments compared to the CO2 
observations for the LEW tower site. The bottom three panels show meteorological variables from the 
WRF-Chem simulation.  
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Figure 7. (top) WRF-Chem CO2 concentration for the three tracer experiments compared to the CO2 
observations for the UNY tower site. The bottom three panels show meteorological variables from the 
WRF-Chem simulation. 

Observations at SNP in D02 show that the model is over predicting CO#+*&,-	by 

10 to 20 ppm during the day (Figure 8). This is the only station where the nighttime mean 

bias is lower than the daytime mean bias for D02. Complex meteorology due to the Blue 

Ridge Mountains, such as stronger vertical transport from orographic lifting, is likely to 

blame for the inability of WRF-Chem to match the observations at SNP.  
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Figure 8. (top) WRF-Chem CO2 concentration for the three tracer experiments compared to the CO2 
observations for the SNP tower site. The bottom three panels show meteorological variables from the 
WRF-Chem simulation. 

Comparisons at BUC in Figure 9 also show that the model over-predicts daytime 

CO#+*&,- by 2.19 ppm with differences as high as 20 ppm. TMD comparisons show a 

similar result with the model overestimates daytime concentrations by 3.6 ppm (Figure 

10). WRF-Chem is over-predicting daytime CO2 by as much as 13 ppm. Because the 

station is rural, anthropogenic emissions are believed to not affect the overall CO2 

concentration. As a result, variability in CO#+*&,- is expected to be driven mainly by the 

diurnal cycle of biological fluxes. This does not appear to be the case for CO#+*&,- at the 

BUC and TMD sites. Variability in CO#+*&,- is about 10 to 15 ppm while observations at 

both sites show variability of about 10 to 20 ppm on the diurnal scale. In rural areas, 

uptake from VEGAS is less than the observations. The standard error is also low for the 

BUC and TMD stations because the variability in CO#+*&,- is low.  
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It is interesting to note that the model does not simulate nighttime peaks in 

CO#+*&,- at BUC and TMD even though there are peaks measured by the background 

sites. There are 2 reasons for this. First, because the diurnal cycle in vegetation fluxes 

from VEGAS is quite small, the model is likely underestimating nighttime respiration as 

well. There must be something else contributing to the differences because the nighttime 

differences are so large at both sites (around 40 ppm for BUC and around 15 ppm for 

TMD). The second explanation for the differences is associated with meteorological 

transport. Despite these towers being background towers, they are still close enough to 

the urban areas that they are measuring CO#$%&'. One such analysis for citing towers for 

the NEC-B/W found that during July, winds are predominantly from the southwest and 

northwest (Mueller et al. 2018). Towers downwind of urban areas may be measuring 

CO#$%&' even if they are considered background towers. Comparing WRF-Chem wind 

speed and wind direction to nearby meteorological observations provides some insight 

into this theory. For the BUC site, WRF-Chem is simulating westerly winds on the night 

of July 3 while observations at KCGE are showing northerly winds. On the night of July 

7, WRF-Chem simulates a shift in the wind from northerly to southwesterly at the BUC 

site while observations at KCGE show a shift from northerly to northwesterly. The 

inability of the model to simulate wind direction on those nights is important given the 

large emissions sources of Baltimore and I-95 to the north and northwest of the BUC 

tower. The nights of July 5 and 6 are when WRF-Chem underestimates CO#+*&,- at the 

TMD site. On those nights, the model is simulating northeasterly winds at the TMD site 

while observations at KDMW show winds are from the southeast. Baltimore is to the 
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southeast of BUC which may be the reason why the model does not properly simulate the 

two peaks in CO#+*&,-. 

 
Figure 9. (top) WRF-Chem CO2 concentration for the three tracer experiments compared to the CO2 
observations for the BUC tower site. The bottom three panels show meteorological variables from the 
WRF-Chem simulation. This figure includes meteorological observations of wind speed (WS) and wind 
direction (WD) for the bottom 2 panels from the KCGE AWOS station which is the nearest AWOS station to 
the BUC site. 
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Figure 10. WRF-Chem CO2 concentration for the three tracer experiments compared to the CO2 
observations for the TMD tower site. The bottom three panels show meteorological variables from the 
WRF-Chem simulation. This figure includes meteorological observations of wind speed (WS) and wind 
direction (WD) for the bottom 2 panels from the KDMW AWOS station which is the nearest AWOS station 
to the TMD site. 

4.2.2 Urban Tower Comparisons 

Across the 6 urban sites, half of the site comparisons have daytime mean biases 

that are lower than nighttime mean biases while the opposite is true for the other 

comparisons. The average daytime mean bias across all urban stations is 3.34 ppm with 

an average daytime standard error of 0.65 ppm. ARL has the lowest daytime mean bias of 

1.68 ppm (Figure 11).  
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Figure 11. (top) WRF-Chem CO2 concentration for the three tracer experiments compared to the CO2 
observations for the ARL tower site. The bottom three panels show meteorological variables from the 
WRF-Chem simulation. 

ARL is to the west of Washington, DC. Winds are predominantly from the west 

during the simulation period so high concentration air from Washington, DC is not 

advected over the ARL observation tower. NEB has the highest daytime mean bias of 

4.09 ppm (Figure 12). All station comparisons show a positive daytime mean bias 

compared to the observations with low variability in CO#()*. Stations such as JES, ARL, 

and HAL shows a weak diurnal cycle in CO#()* of about 15-20 ppm on July 6 with an 

overall range of 390 ppm to 410 ppm during the simulation period.  
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Figure 12. (top) WRF-Chem CO2 concentration for the three tracer experiments compared to the CO2 
observations for the NEB tower site. The bottom three panels show meteorological variables from the 
WRF-Chem simulation. 

Nighttime mean biases in CO#+*&,-	vary considerably across the stations. JES has 

the highest nighttime mean bias (Figure 13) of -8.83 ppm while NEB has the lowest 

nighttime mean bias of -0.07 ppm. Daytime and nighttime mean biases at HAL are 

comparable (Figure 14). Three stations have nighttime mean biases below 1 ppm while 

two other stations have nighttime mean biases below 5.4 ppm. Overall, WRF-Chem 

simulates the nighttime peak in CO#+*&,- at the urban sites. These results are encouraging 

given that the biases are expected to be high at night because of the difficulty in modeling 

PBL height. At night, the PBL in the model collapses and traps CO2 near the surface 

which leads to an overestimation of CO#+*&,-. 



 35 

 
Figure 13. (top) WRF-Chem CO2 concentration for the three tracer experiments compared to the CO2 
observations for the JES tower site. The bottom three panels show meteorological variables from the WRF-
Chem simulation. 

On the first three nights, the model simulates a PBL height of close to 0 m for the 

urban sites. The night of July 6, the model simulates the highest nighttime PBL of 500 m. 

Despite these low PBL heights, the model does capture the nighttime peaks in CO#+*&,-. 

At NEB, the model has a slight time offset in the nighttime peak but simulates the mean 

CO2 concentration well. When emissions are not dominant, the model does a poor job of 

simulating CO#+*&,- which resembles the result for the background stations. On July 6, 

emissions are low and thus variability is dominated by biological fluxes. This leads to an 

overestimation of CO2 throughout the day and an overall decrease in the variability of 

CO#+*&,-. 
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Figure 14. (top) WRF-Chem CO2 concentration for the three tracer experiments compared to the CO2 
observations for the HAL tower site. The bottom three panels show meteorological variables from the 
WRF-Chem simulation. 

4.2.3 CO2 Flux Comparisons for the WRF-Chem Simulation 

Further investigation of the fluxes in the D01 domain in early July 2017 reveals 

that VEGAS fluxes are a fraction of FFDAS emissions, summarized in Table 3. Mean 

biological fluxes from VEGAS account for the uptake of 32% of FFDAS emissions in 

D03 when averaged over the 6-day simulation period, which is much higher than the 

estimate in the introduction. This is important because the WRF-Chem results show that 

the model is not properly simulating CO#+*&,- during the daytime, meaning that fluxes at 

the diurnal scale do matter. VEGAS and FFDAS fluxes are averaged across the 6-day 

simulation period for 0Z, 6Z, 12Z, and 18Z. For the D01 domain, net emissions are 

positive throughout the entire day. Net fluxes are lower during the daytime hours (12Z 

and 18Z) because of the active biosphere while net fluxes are higher during nighttime 
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hours (0Z and 6Z) when primary productivity shuts down. VEGAS has a positive domain 

mean flux of 3.27 µmol m-2 s-1 at 6Z resulting from respiration. Respiration at night is on 

the order of magnitude of daytime peak uptake in the model.  

Table 5. D03 diurnally averaged fluxes for VEGAS and FFDAS. The VEGAS flux used is total biological 
flux (CFta). Averages are made for the instantaneous fluxes at the times listed above for the period of July 
3, 2017 through July 9, 2017. 

Time (UTC) VEGAS 
(µmol m-2 s-1) 

FFDAS 
(µmol m-2 s-1) 

FFDAS + VEGAS 
(µmol m-2 s-1) 

0 Z -0.559 3.991 3.432 
6 Z 3.269 2.590 5.858 

12 Z -3.698 4.251 0.553 
18 Z -3.950 4.600 0.651 

Mean -1.235 3.858 2.624 
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Chapter 5. Summary and Conclusions 

 A dynamic vegetation model (VEGAS) was used with a chemical transport model 

(WRF-Chem) to estimate the influence of the biosphere in the carbon cycle in the 

Northeastern United States. VEGAS simulations were compared against satellite 

observations and other CO2 analyses while WRF-Chem output was compared against 

CO2 tower observations.  

The results show that the growing season in VEGAS is shorter than the growing 

season in the NDVI measurements by about one month. This is a consequence of the 

simplified parameterizations within VEGAS which lead to an underrepresentation of 

biological uptake in the fall months in the model. VEGAS captures the spatial coverage 

of NEE and mean CO2 sink for the D01 domain when compared to CT-NRT for the peak 

growing season in July 2017.  

Despite the similarities in monthly averaged fluxes, the model differs from CT-

NRT on the diurnal scale. VEGAS has a much smaller diurnal cycle than CT-NRT and 

does not simulate as strong of a daily peak in biological uptake. VEGAS has a much 

weaker diurnal cycle in NEE when compared to the US-IB2 AmeriFlux site. The model 

does simulate daytime biological uptake as early as March which is also measured by the 

US-IB2 site. 

Across the 5 background sites, the biosphere leads to a roughly 10 to 15 ppm 

variability at some stations in the model domain but is largely underrepresented. WRF-

Chem overestimates CO#+*&,- for all of the background sites. Anthropogenic emissions 

are being measured at the BUC and TMD background sites but this is not represented in 

WRF-Chem because of model transport error. 
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For the urban sites, the model also over-predicts daytime CO#+*&,-.	Despite the 

suppressed diurnal cycle in VEGAS, WRF-Chem simulates nighttime CO2 in urban 

areas. This result is surprising because of the poor representation of the PBL in this 

region within the model. The following conclusions can be made about the WRF-Chem 

framework used in this analysis: the model does well with representing CO2 observations 

when anthropogenic emissions are high but underrepresents CO2 observations when 

anthropogenic emissions are not the dominant source of variability.  

Overall, VEGAS sequesters roughly 32% of FFDAS emissions in the D03 domain 

which is higher than 12% estimated at in the introduction. This means that properly 

simulating the diurnal fluxes is crucial to understanding the full carbon cycle on these 

scales.  

To improve biological uptake in VEGAS, two changes must be made to the 

model. One reason that the model is not capturing the diurnal uptake is because of the 

low temporal resolution of the input temperature data which drives VEGAS. For this 

study, VEGAS is driven with 6-hourly CRUNCEP temperature data at 2 m. The low 

resolution prevents the model from simulating the sharp uptake which occurs as 

temperature peaks during the day in the growing season. A comparison of the current 

VEGAS simulation used in this study and a new experimental run driven by hourly 

temperature and radiation data is shown in Figure 15. GPP and CFta in the new simulation 

show more of a parabolic structure in uptake compared to the simulation used in this 

study which shows a plateau during the daytime hours. A new function for light 

dispersion within the canopy is also applied to VEGAS but does not improve the VEGAS 

simulation as drastically as the hourly driver data. Future improvements to the model 
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include assimilating observations from the biosphere of NDVI from satellite 

measurements or GPP from AmeriFlux sites to constrain the model. This approach will 

constrain the model using real observations and would thus nudge the model more 

towards the true biological state. 

                     

 
Figure 15. (top) The diurnal cycle of biological fluxes at one grid cell over Maryland in early July for the 
VEGAS run used in this study. (bottom) The diurnal cycle for the same grid cell in Maryland from a new 
VEGAS run which utilizes hourly temperature and radiation data. This figure is meant to show how the 
new methods for running VEGAS are improving daytime uptake in the model. The simulations are for 
different years and should not be compared directly. Rhs is soil respiration. Res is the total respiration (Ra + 
Rhs). 
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