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Abstract 

The use of coupled models is now considered essential for Earth science and seasonal 

forecast. The coupled models have shown their ability to reproduce natural variability of 

various timescales and its response to human activities. Taking advantage of this 

advancement, data assimilation with those coupled models has been studied to obtain the 

best state estimate of the coupled system. This approach is called coupled data assimilation. 

The earlier stage of coupled data assimilation, called weakly coupled data assimilation 

(WCDA), where the coupling takes place by just coupling the forecasts, has been 

successfully implemented in operational atmosphere and ocean analyses. 

The more sophisticated method is called strongly coupled data assimilation (SCDA). 

In SCDA, the cross-covariance of background error is utilized for correcting the 

background state of the coupled system consistently. Previous studies of SCDA with 

ensemble Kalman filters (EnKFs) show contradicting results: some study obtained better 

analysis than WCDA, whereas other study reported the analysis was degraded than WCDA. 

Since the relationship between WCDA and SCDA is equivalent to the relationship between 

analyses with and without localization (Section 2.1), strongly coupled EnKF is naturally 

more susceptible to the rank deficiency and spurious correlation problems. Therefore, 

localization of the analysis is the central problem for the successful implementation of 

strongly coupled EnKF. 

In this study, we first show that the square of background error correlation between the 

observed and analyzed variables plays a crucial role in the reduction of analysis 

uncertainty. This result suggests the use of correlation-cutoff method, in which we cut-off 

the assimilation of observations guided by formerly estimated error statistics. Experiments 
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of the method with a nine-variable coupled model with three subsystems show overall 

superior analysis compared to WCDA and standard SCDA with enhanced robustness to the 

ensemble size. 

To obtain the optimal covariance localization for more realistic applications, we also 

examine the background error correlation structure of the global atmosphere-ocean system 

using a coupled general circulation model (Fast Ocean Atmosphere Model; FOAM). A 

physically plausible correlation is found between some variables of the atmosphere and the 

ocean, suggesting that we may improve the analysis of those variables by implementing 

SCDA. The implementation of the correlation-cutoff method to the coupled general 

circulation model remains for the future work. 
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1. Introduction 

In traditional numerical weather prediction, sea surface temperature (SST), land 

surface, sea ice, and chemical variables are treated as prescribed boundary conditions given 

to the atmospheric models. This approximation has been successful, as long as the target of 

the prediction is limited to the synoptic weather up to several days ahead. However, when 

we try to predict phenomena with longer timescales, the “boundary conditions” vary in time 

due to their internal processes and interactions with the other components. Furthermore, 

some natural variability modes, such as El Niño Southern Oscillation (ENSO), are 

intrinsically coupled modes which cannot be explained either by atmospheric or oceanic 

internal processes. To predict such coupled phenomena, coupled models that explicitly 

predict the atmosphere, the ocean, the cryosphere, and other biogeochemical processes are 

employed. They have shown an ability to predict the natural variability and its response to 

human activities. 

Similarly, data assimilation (DA) has been developed to analyze each subsystem of the 

Earth individually; the atmospheric state is estimated using an atmospheric model and 

atmospheric observations, and so is the state of the ocean and other subsystems of the 

Earth. Such individually estimated analyses, when combined and used as initial conditions 

of a coupled model, may cause “initialization shock” and deteriorate the forecast due to 

dynamical inconsistencies (e.g., Chen et al., 1995; Zhang et al., 2007; Mulholland et al., 

2015). Therefore, to provide dynamically consistent initial conditions to coupled models, 

coupled data assimilation, data assimilation with coupled models, has been studied (e.g., 

Penny and Hamill, 2017, and references therein). In addition to better initialization of 

coupled models, coupled DA is also expected to provide better constraints on subsystems in 
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which few measurements are available (Zhang et al., 2007). For example, global 

observations of the internal ocean were not been available before the deployment of Tao 

array (McPhaden et al., 1998) and ARGO floats (Argo, 2000), which is limiting our 

understanding of oceanic climate variability (Zhang et al., 2010). 

Coupled DA is broadly divided into two stages of sophistication: weakly coupled data 

assimilation (WCDA) and strongly coupled data assimilation (SCDA) (Penny et al., 2017). 

Figure 1 shows schematics of conventional non-coupled and coupled atmosphere-ocean 

DA. In WCDA, a coupled model is used for updating short-term forecast or the background 

(blue boxes in Figure 1 right) whereas in non-coupled DA, an atmospheric/oceanic model 

uses pre-determined boundary conditions typically derive from an antecedent reanalysis or 

observations interpolated without dynamical models (dashed black arrows in Figure 1 left). 

Due to the employment of physical laws of coupled dynamics in the form of a coupled 

model, we expect that the background of WCDA is more self-consistent and accurate than 

the one produced by non-coupled models, and the improved background estimate will also 

improve the resulting analysis. Due to the coupling of forecast steps, analysis increments in 

a component can propagate to the other component during the forecast steps to indirectly 

correct the background of the next analysis. 

In SCDA, in addition, we make use of the cross-covariance between the atmospheric 

and oceanic background errors (hereafter the term cross-covariance (cross-correlation) is 

used to refer to that of the background errors). This enables the error in the atmospheric and 

oceanic backgrounds to be corrected all at once by assimilation of observations. Consider, 

for example, we observed surface air temperature and knew that the background surface air 

temperature predicted by the coupled model was too warm compared to the observation. In 
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that case, we would imagine that the background SST would also be too warm compared to 

the truth. Strongly coupled DA enables to correct these errors in a self-consistent manner 

even if SST observation is unavailable (red arrows in Figure 1). 

 

Figure 1: Schematics of non-coupled data assimilation (left) and weakly and strongly coupled 

data assimilation (right). See Introduction for a detailed description. 

The earlier stage of coupled DA, WCDA, was successfully implemented as coupled 

real-time analyses and reanalyses of the atmosphere and the ocean (e.g., Saha et al., 2010; 

Laloyaux et al., 2016; Karspeck et al., 2018). Although the most sophisticated method, 

SCDA, is expected to provide even better analysis than WCDA, its effectiveness is still 

under investigation (Penny et al., 2017). Some of the important previous studies are listed 

below. 

Sluka et al. (2016) assimilated simulated atmospheric observations directly into 

unobserved oceanic variables and showed that the analysis error in the ocean was reduced 

by 46% compared to WCDA using the local ensemble transform Kalman filter (LETKF; 
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Hunt et al., 2007) and a coupled general circulation model (GCM). They also conducted 

experiments to assimilate both atmospheric and oceanic observations, obtaining better 

analysis accuracy near the surface (Sluka, 2017, personal comm.). Han et al. (2013) tested 

strongly coupled ensemble Kalman filter (EnKF; Evensen, 1994) using a six-variable 

model that mimics the atmosphere, the ocean, and the sea ice. They showed that the use of 

cross-covariance between subsystems only improved the oceanic analysis accuracy if and 

only if they used a very large ensemble (∼ 104); the atmospheric analysis could not be 

improved by directly assimilating oceanic observations. Kang et al. (2011) studied SCDA 

between dynamic and carbon dioxide variables. They showed that the best analysis was 

obtained when they ignored the cross-covariance between carbon dioxide 

flux/concentration and some dynamical variables like temperature or specific humidity. 

Their successful approach of ignoring some of the cross-covariances, called “variable 

localization”, is based on the observation that temperature and humidity, unlike wind, do 

not have a direct physical interaction with carbon dioxide flux/concentration. 

Lu et al. (2015a, b) tested direct assimilation of atmospheric observations into oceanic 

variables and showed that simple SCDA is only beneficial in the deep tropics, where the 

ocean drives the atmosphere through anomalous sea surface temperature (Ruiz-Barradas et 

al., 2017). They attributed the detrimental effect of SCDA in higher latitudes to the 

fluctuating synoptic weather, which does not last long enough to strongly interact with the 

ocean. Therefore, they proposed the Leading Averaged Coupled Covariance (LACC) 

method, in which the innovation of atmospheric observations is averaged for several days 

to suppress the effect of the weather noise. 
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These existing studies of SCDA are contradictory, and this raises an important 

question: Under what condition the direct assimilation of an observation into the other 

components (i.e., SCDA) improves the analysis compared to WCDA? In other words, what 

determines the optimal coupling/localization in the analysis of coupled systems? We will 

answer this fundamental question by a theoretical/experimental study and explore the 

optimal assimilation strategy for SCDA. 
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2. Correlation-cutoff method and experiments with a nine-variable coupled model 

2.1 Theoretical analysis 

From a mathematical viewpoint, SCDA allows cross-covariances between background 

errors of components and their evolution through coupled forward models (e.g., Smith et 

al., 2017). In an example of a two-component system of the atmosphere and the ocean, the 

coupled background error covariance matrix 𝐁SCDA is written as 

𝐁SCDA = [
𝐁AA 𝐁AO

𝐁AO
T 𝐁OO

], (1) 

where the subscripts A and O denote the atmosphere and the ocean; 𝐁AA, 𝐁OO, and 𝐁AO 

are the background error covariances within the atmosphere, within the ocean, and between 

the atmosphere and the ocean. In contrast, in the analysis steps of WCDA, each component 

is analyzed by itself, which means it solves the minimization problem using the background 

error covariance 

𝐁WCDA = [
𝐁AA 𝐎

𝐎 𝐁OO
], (2) 

ignoring the cross-covariances, or the off-diagonal blocks of 𝐁SCDA (Frolov et al., 2016). 

Therefore, the advancement from WCDA to SCDA is in some sense equivalent to 

removing the covariance localization, a necessary treatment for EnKFs with limited 

ensemble size (e.g., Hamill et al., 2001; Ott et al., 2004; Greybush et al., 2011). Hence it is 

understandable that a naïve implementation of a strongly coupled EnKF requires larger 

ensemble size than a weakly coupled EnKF as experimentally shown by Han et al. (2013). 
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However, in practice, we want to improve the analysis without increasing the ensemble 

size and the computational cost. To meet this requirement, one needs to couple only the 

“relevant” pairs of components but ignore unimportant or unreliable covariances as Kang et 

al. (2011) empirically did. This discussion motivates us to estimate how much analysis 

uncertainty of a model variable is reduced by assimilating each observation. 

Under an assumption that each observation is assimilated sequentially with the Kalman 

filter (Kalman, 1960), the relative decrease of analysis uncertainty of each model variable 

can be written in a simple formula (Yoshida and Kalnay, 2018): 

𝜎b𝑖
2 − 𝜎a𝑖

2

𝜎b𝑖
2 =

𝜎𝑦b
2

𝜎𝑦b
2 + 𝜎𝑦o

2
corr2(𝛿𝑥b𝑖 , 𝛿𝑦b), (3) 

where 𝜎b𝑖 (𝜎a𝑖) is the background (analysis) error standard deviation of the analyzed 

variable (indexed by 𝑖 ), 𝜎𝑦b
 ( 𝜎𝑦o

) is the background (observation) error standard 

deviation of the observed variable, and corr(𝛿𝑥b𝑖 , 𝛿𝑦b) is the correlation between the 

background errors of the analyzed variable (𝛿𝑥b𝑖) and the observed variable (𝛿𝑦b). The 

assumption of sequential assimilation of observation is not very restricting because the 

Kalman filter can assimilate each observation sequentially without changing the analysis if 

the observation errors are not correlated (e.g., Houtekamer and Mitchell, 2001), although 

the sequential assimilation of observations may change the analysis when localization is 

applied (Nerger, 2015; Kotsuki et al., 2017). 

This simplified equation indicates that the improvement of the analysis at each model 

variable by a single observation is the product of two quantities: (i) the ratio of the 

background and total error variances at the observed variable (this ratio is close to one 
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when the observation is precise relative to the background) and (ii) the square of 

background error correlation between the analyzed and observed variables. This equation 

also provides a quantitative estimate of analysis error reduction by considering 

cross-covariances (i.e., the difference between SCDA and WCDA). 

We hypothesize that in EnKFs, the assimilation of “irrelevant” observations 

deteriorates the coupled analysis when the detrimental effect of spurious correlation 

exceeds this expected error reduction in the Kalman filter. This argument suggests the use 

of a correlation-cutoff method in strongly coupled EnKFs, in which we only consider 

cross-covariance between variables that have strong background error correlation and 

cut-off the assimilation of irrelevant observations. 

2.2 Correlation-cutoff method 

Using an offline analysis cycle of a coupled EnKF, we first calculate error statistics as 

follows. 

Assuming a constant observation network, for each pair of a model variable and an 

observable (𝑥𝑖 , 𝑦𝑗), we first calculate an instantaneous background ensemble correlation at 

each analysis time 𝑡:  

corr𝑖𝑗(𝑡) =
∑ [𝐾

𝑘=1 𝑥b𝑖
𝑘 (𝑡) − 𝑥b𝑖(𝑡)][𝑦b𝑗

𝑘 (𝑡) − 𝑦
b𝑗

(𝑡)]

√∑ [𝐾
𝑘=1 𝑥b𝑖

𝑘 (𝑡) − 𝑥b𝑖(𝑡)]2√∑ [𝐾
𝑘=1 𝑦b𝑗

𝑘 (𝑡) − 𝑦
b𝑗

(𝑡)]2

,
 (4) 

where 𝑥b𝑖
𝑘  and 𝑥b𝑖 respectively are background values of the 𝑖th model variable of the 

𝑘th ensemble member and the ensemble mean (similarly 𝑦b𝑗
𝑘  and 𝑦

b𝑗
 are defined for the 
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𝑗th observation), and 𝐾 is the ensemble size. Then for each pair (𝑥𝑖 , 𝑦𝑗), we obtain the 

temporal mean of squared correlation: 

〈corr𝑖𝑗
2 〉 =

1

𝑇
∑ corr𝑖𝑗

2 (𝑡)

𝑇

𝑡=1

, (5) 

where 𝑇 is the number of assimilation windows used to estimate the error statistics. If 

some of the model variables are directly observed, the observation 𝑦𝑗 is just a model 

variable 𝑥�̃�, which is the case for our experiments in subsections 2.4 and 3.2. For a 

nonconstant observation network, the statistics can be aggregated for similar sets of 

observations (e.g., those with similar observation type, level, and latitude) instead of 

aggregating for each observation index 𝑗. 

As suggested by Eq. (3), we can use the static quantities 〈corr𝑖𝑗
2 〉 to know the priority 

of assimilation of each observation into each model variable and cut-off the assimilation 

when the squared correlation becomes small. 

2.3 Experimental settings 

We have tested the correlation-cutoff method with the nine-variable toy coupled model 

of Peña and Kalnay (2004) with model equations: 

𝑥�̇� = 𝜎(𝑦𝑒 − 𝑥𝑒) − 𝑐𝑒(𝑆𝑥𝑡 + 𝑘1) 

𝑦�̇� = 𝑟𝑥𝑒 − 𝑦𝑒 − 𝑥𝑒𝑧𝑒 + 𝑐𝑒(𝑆𝑦𝑡 + 𝑘1) 

𝑧�̇� = 𝑥𝑒𝑦𝑒 − 𝑏𝑧𝑒 

𝑥�̇� = 𝜎(𝑦𝑡 − 𝑥𝑡) − 𝑐(𝑆𝑋 + 𝑘2) − 𝑐𝑒(𝑆𝑥𝑒 + 𝑘1) 

𝑦�̇� = 𝑟𝑥𝑡 − 𝑦𝑡 − 𝑥𝑡𝑧𝑡 + 𝑐(𝑆𝑌 + 𝑘2) + 𝑐𝑒(𝑆𝑦𝑒 + 𝑘1) 

(6) 
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𝑧�̇� = 𝑥𝑡𝑦𝑡 − 𝑏𝑧𝑡 + 𝑐𝑧𝑍 

�̇� = 𝜏𝜎(𝑌 − 𝑋) − 𝑐(𝑥𝑡 + 𝑘2) 

�̇� = 𝜏𝑟𝑋 − 𝜏𝑌 − 𝜏𝑆𝑋𝑍 + 𝑐(𝑦𝑡 + 𝑘2) 

�̇� = 𝜏𝑆𝑋𝑌 − 𝜏𝑏𝑍 − 𝑐𝑧𝑧𝑡 , 

where the parameters are (𝜎, 𝑟, 𝑏, 𝜏, 𝑐, 𝑐𝑧, 𝑐𝑒, 𝑆, 𝑘1, 𝑘2) = (10,28,8/

3,0.1,1,1,0.08,1,10, −11), and the integration time step is ∆t = 0.01. This coupled model 

consists of three subsystems: an “extratropical atmosphere”, a “tropical atmosphere”, and 

a “(tropical) ocean”. Each component is simulated with a three-variable model of Lorenz 

(1963) but coupled by coefficients 𝑐, 𝑐𝑧, and 𝑐𝑒. Furthermore, the “ocean” is slowed 

down by a factor of 10 through 𝜏 to mimic the slower variation of the ocean. The 

extratropical atmosphere is only weakly coupled with the tropical atmosphere (𝑐𝑒 = 0.08), 

and the tropical atmosphere is, in turn, strongly coupled with the ocean (𝑐 = 𝑐𝑧 = 1). There 

is no direct interaction between the extratropical atmosphere and the ocean. 

Despite its extreme simplicity, the two-timescale coupled model shares important 

characteristics with the real coupled atmosphere-ocean system and is an excellent testbed 

for testing ideas for coupled DA problems. For example, the model shows a chaotic 

behavior with two distinct regimes: the coupled tropical atmosphere and the ocean cycle 

into a random number of “normal years” (between two and seven), interrupted by an 

anomalous “El Niño year”, before returning to normal years. Since this asymmetric 

oscillation neither occurs in the uncoupled tropical atmosphere nor ocean, it is regarded as 

an intrinsically coupled instability. 
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All the experiments with this model (results shown in subsection 2.4) are conducted 

with an LETKF cycle with an analysis window of 8 timesteps. Observations are only 

available at the end of each window, and only three of nine variables (𝑦𝑒 , 𝑦𝑡, and 𝑌) are 

observed unless otherwise noted. The ensemble size K for this nine-variable model with 

four non-negative Lyapunov exponents (Norwood et al., 2013) is chosen to be 4, 6, or 10, 

representing an insufficient-member, intermediate, and a sufficient-member case 

respectively. 

2.4 Experimental results 

First, we conducted offline experiments of LETKF to estimate the mean squared 

correlation of background error (5). For this purpose, a strongly coupled LETKF cycle with 

10 members is used, and 𝑇 = 6250 analyses are computed. Figure 2 shows the mean 

squared correlation obtained with this experiment. In this model, there is a clear distinction 

between well-correlated ( 〈corr2〉 > 0.5 ) pairs of variables and weakly correlated 

( 〈corr2〉 < 0.03 ) pairs of variables. Therefore, it is clear where we should stop 

assimilation: we should assimilate the observations in the “tropical atmosphere” and 

“ocean” together and analyze the “extratropical atmosphere” individually. 
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Figure 2: (a) Mean of squared error correlation for each pair of variables (5) obtained by an 

offline LETKF experiment with the nine-variable model of Peña and Kalnay (2004). (b) 

Mean of squared error correlation for all the 81 ordered pairs of variables, sorted in 

descending order. Note the drop in correlation after the first 45 highly correlated pairs of 

variables, which indicates that the ENSO-coupling localization pattern in Figure 4 is optimal. 

Figure from Yoshida and Kalnay (2018) 

Figure 3 shows the result of other offline experiments with different observation 

networks and LETKF configurations. Although the distinction between the highly 

correlated and weakly correlated pair of variables becomes less apparent in the 4-member 

WCDA experiment (Figure 3b), we can see that the correlation structure of the background 

error is almost intrinsic in the model and not significantly affected by the observation 

network or the ensemble size. This robustness of the error correlation structure is 

supportive of the correlation-cutoff method since we do not need to re-evaluate the 

structure every time we change the observation or assimilation systems. 
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Figure 3: Same with Figure 2(a) but (a) estimated with an LETKF cycle assimilating 

observations of all nine variables instead of only 𝑦𝑒 , 𝑦𝑡, and 𝑌 and (b) estimated with a 

4-member WCDA cycle instead of a 10-member fully coupled SCDA cycle. 

Then, we test five covariance localization patterns in Figure 4 and evaluate the 

analysis accuracy. 

• The Full pattern is the standard SCDA, in which every observation is assimilated 

into every variable. 

• In the Adjacent pattern, we ignore the cross-covariance between the extratropical 

atmosphere and the ocean, which are not directly interacting. 

• The ENSO-coupling pattern is the one suggested by the theoretical analysis and the 

offline experiment (Figure 2a). Here, the tropical atmosphere and the ocean are 

mutually assimilated, but the extratropics is analyzed individually. 

• In Atmos-coupling, we analyze the extratropical and tropical atmosphere at the 

same time but the ocean separately. This pattern separately analyzes the faster 

components and the slower component.  
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• The last is Individual, in which each component is analyzed individually. This 

pattern is equivalent to WCDA for this three-component model; the background is 

updated by the coupled model, but the analysis step is individually conducted in 

each component. 

 

Figure 4: Covariance localization patterns tested. Background covariance is considered only 

at the shaded pairs of variables. Except for the offline experiment of Figure 3(a), only the 

observations (columns) indicated by “+” signs are assimilated into model variables (rows). 

Figure from Yoshida and Kalnay (2018) 

The resulting analysis errors are plotted in Figure 5. 



 

23 

 

We first note that Full (standard SCDA) performs worse than Individual (WCDA) 

when the ensemble size is small (𝐾 = 4, 6). This negative result of considering the 

cross-covariance would be caused by the rank deficiency of the filter and the spurious 

correlation between the components. As the ensemble becomes larger, Full becomes 

gradually better, whereas the analysis accuracy of Individual is not so sensitive to the 

ensemble size. This result supports the importance of using larger ensembles for successful 

implementation of strongly coupled EnKFs as claimed by Han et al. (2013). 

As Eq. (3) indicates, in the Kalman filter, the assimilation of any observation, on 

average, will not increase the analysis uncertainty if the assumptions on the error statistics 

are valid. Therefore, with an LETKF with sufficient ensemble members, assimilation of 

observations of uncorrelated variables will be neither beneficial nor harmful. The ensemble 

size needed for successful implementation of SCDA will be highly model dependent. 
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Figure 5: Temporal mean analysis root-mean-square error (RMSE) of each experiment. 

Different shading shows the different covariance localization pattern (see the legend and 

Figure 4). In each panel, the errors in the extratropical atmosphere, the tropical atmosphere, 

and the ocean are separately shown. Horizontal lines indicate the observation errors of each 

component for comparison. Each panel is the result of (a) 4-member experiments, (b) 

6-member experiments, and (c) 10-member experiments. Note that the filter diverges and 

cannot finish all the cycle correctly in the 4-member Full experiment. Figure from Yoshida 

and Kalnay (2018) 

The ENSO-coupling pattern suggested by the correlation-cutoff method performs best 

in essentially all experiments and components. In comparison to Individual and 
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Atmos-coupling, ENSO-coupling is superior regardless of the ensemble size. This result 

supports the importance of exploiting information from the strong background error 

correlation between the tropical atmosphere and the ocean in this model. In contrast to Full 

and Adjacent, ENSO-coupling performs well with the smaller ensembles (𝐾 = 4, 6), while 

all these patterns, which consider the strong cross-covariance between the tropical 

atmosphere and the ocean, perform similarly well when the ensemble size is large enough 

(𝐾 = 10). This result supports the decision of ignoring the cross-covariance between the 

extratropical atmosphere and the other components as suggested by Figure 2(a). 
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3. Experiments with a coupled general circulation model 

3.1 Experimental settings 

We investigate the background error correlation of the Fast Ocean Atmosphere Model 

(FOAM; Jacob, 1997), to search for the optimal inter-fluid localization for SCDA. FOAM 

is a coupled atmosphere-ocean-sea-ice-land GCM with intermediate complexity. Table 1 

shows its specifications. Although FOAM is a coupled GCM with physical 

parameterizations and can reproduce realistic climatology and internal variability of 

interest, it is implemented efficiently for parallel computing. When tested on the 

Deepthought2 supercomputer at the University of Maryland (Ivy Bridge, 2.8 GHz), it 

finished a 50-model-year integration within 3 hours with 16 processors. The efficiency of 

the model is essential for an early-stage study of coupled DA since EnKFs need to run tens 

of ensemble members in parallel. In addition, a coupled model has longer spin-up time than 

an atmospheric model, which means we need longer experiments to evaluate the method 

accurately. 

The model, originally developed for the study of climate dynamics, has been slightly 

modified for the study of coupled DA. First, the model’s shortest integration length 

(frequency of input and output) is shortened from 24 hours to 6 hours. This enables a 

6-hourly DA cycle, which is typically adopted by most global atmospheric DA systems. 

Also, the 6-hour interval is as short as the model’s coupling frequency between the 

atmosphere and the ocean, and it enables examining the coupled dynamics more closely. 

Second, the model is augmented with incremental analysis update (IAU; Bloom et al. 1996) 

so that the analysis increment is distributed into a finite time interval and gradually added 
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to the model state. The primary motivation for implementing IAU is to stabilize the 

atmospheric part of the coupled model, which often blows up due to numerical instability 

when the analysis increment is suddenly imposed. 

For a DA algorithm, we adopt LETKF as we have done with the nine-variable coupled 

model. The LETKF program has been written to read/write the restart files of FOAM and 

analyzes horizontally divided domains in parallel using the Message Passing Interface 

(MPI). The LETKF program is designed specifically for exploring the coupled DA and 

deals with the atmospheric and oceanic variables in the same manner.   
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Table 1: Specification of the Fast Ocean Atmosphere Model (FOAM). See Chapter 2 of Jacob 

(1997) for details.  

Atmosphere model (PCCM3; spectral, hydrostatic) 

Resolution R15 spectral (40 latitudes × 48 longitudes) 
18 levels (hybrid sigma-pressure coordinate) 

Integration time step 30 minutes (radiation is only updated hourly) 

Parameterized schemes  Convection 
Cloud 
Radiation (δ-Eddington type) 
Vertical diffusion (boundary layer) 
Surface physics 
Gravity wave drag 

Ocean model (OM3; finite difference, hydrostatic, incompressible) 

Resolution  128 latitudes × 128 longitudes (polar grid) 
24 levels (z coordinate) 

Integration time step 15 minutes (barotropic pressure balance) 
2 hours (remaining pressure balance) 
6 hours (advection and diffusion) 

Parameterized schemes Vertical mixing 

Coupler, Sea ice, Land, Hydrology, and River runoff 

Resolution 128 latitudes × 128 longitudes (same as the ocean) 

The land model has four layers of soil 

Atmosphere-ocean 
fluxes 
(freshwater, heat, and 
momentum) 

Calculated in the atmosphere model using SST, 
accumulated in the coupler, and passed to the 
ocean model every six hours 

Sea ice processes Freezing/melting, freshwater exchange, albedo, 
surface roughness, and insulation 

Integration time step 30 minutes 
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3.2 Background error correlation of a coupled GCM 

After implementing the LETKF system for FOAM and roughly tuning the DA 

parameters such as inflation and (distance-based) localization, we thoroughly examined the 

ensemble correlation of the coupled system; this mirrors the offline experiments with the 

nine-variable model (i.e., Figure 2 and Figure 3). All results in this subsection are from 

weakly-coupled, 64-member observation system simulation experiments (OSSEs). 

In this subsection, the temporal mean ensemble correlation instead of the temporal 

mean squared ensemble correlation (3) is shown. One reason is that the former is easier to 

interpret by associating with dynamical processes as it retains positive and negative signs. 

Another reason is that the square of the mean correlation (〈corr〉2) and the mean squared 

correlation (〈corr2〉) do not qualitatively differ in our examples. Note that only the former 

includes the temporal fluctuation (denoted by a prime): 〈corr2〉 = 〈corr〉2  + 〈corr′2〉. 

This means that the flow-dependent portion of the background error correlation is not 

dominating in our examples. 

First, vertical ensemble correlation structure between each pair of atmospheric (U, V, 

T, Q, Ps) and oceanic (U, V, T, S) state variables is examined at several points over the 

ocean. Two examples that have strong cross-correlation are shown in Figure 6. 

Figure 6(a) is mean ensemble correlation between the meridional wind and the zonal 

current at the southern Indian Ocean. The atmosphere, especially the troposphere and the 

lower stratosphere is dominated by barotropic error structure, with positive error correlation 

between those layers. The internal ocean below 50 meters similarly has barotropic error 

structure with positive error correlation between layers. The background error of zonal 
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current within a few upper layers (< 50 m depth) of the ocean is less correlated to that of 

the internal ocean and negatively correlated with the meridional wind error. It is known that 

in the southern hemisphere, the water in the top Ekman layer is transported to the left of the 

wind stress so that the Coriolis force of the transported water balances the wind stress (e.g., 

Figure 2.14 of Vallis, 2006). Under a first-order assumption that the wind stress is 

proportional to the wind velocity and that the oceanic eddy viscosity coefficient to be 

independent of the wind stress, the wind and Ekman transport have a linear relationship; 

hence the errors of wind and current also follow the Ekman transport relationship. Such 

background error correlation between the surface wind and the perpendicular surface 

current is seen everywhere in the midlatitudes and strongest among the cross-correlations 

between the atmosphere and the ocean. The spatial and temporal average surface 

correlation between errors of the meridional wind and the zonal current reaches 0.76 (-0.79) 

north of 20°N (south of 20°S). 

Figure 6(b) is mean ensemble correlation between the temperatures of the atmosphere 

and the ocean, at the Eastern Equatorial Pacific, where the anomalous SST is expected to 

drive the atmosphere. Within the atmosphere, the errors of temperature in each layer are 

almost independent of each other except in the planetary boundary layer at the bottom. In 

the planetary boundary layer, there is positive error correlation within the adjacent two or 

three layers. Within the ocean, above 1000 m depth, the temperature error of each layer is 

loosely and positively correlated with each other. Below 1000 m, the temperature error 

shows almost perfect internal correlation and is slightly negatively correlated to that of the 

upper (< 1000 m depth) layers. The cross-correlation between the upper ocean and the 

lower atmosphere is positive, as expected. Within 20°S-20°N, the spatial and temporal 
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average cross-correlation between the surface temperatures is 0.41, which means almost 

17% (0.412) of the error variance of surface air temperature can be explained by the error 

variance of sea surface temperature, and vice versa. 

(a)

 

(b)

 

Figure 6: Ensemble correlation within vertical columns averaged for 260 instances (00UTC 

of 260 days starting on model date January 1st). The panels show (a) ensemble correlation 

between meridional wind and zonal current at point 40°S 80°E (southern Indian Ocean) and 

(b) ensemble correlation between atmospheric and oceanic temperature at 0° 120°W (Eastern 

Equatorial Pacific). Deep ocean layers below the model topography are whited-out. 

Upper-left and lower-right quadrants of each panel show atmospheric and oceanic internal 

error correlation, respectively, and the other two quadrants show cross-correlation between 

the atmosphere and the ocean. 

It is also informative to check the horizontal structure of error correlation to 

understand the driving mechanisms of error growth in the coupled system. Figure 7 shows 

temporal mean background ensemble correlation to an observation background. 
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Figure 7(a) shows a map of background error correlation between the surface zonal 

current of each grid and a surface zonal current observation at 40°S 80°E (southern Indian 

Ocean). Naturally, the peak of positive correlation exists around the observation location. 

In addition to the main lobe of correlation, the error has two lobes of negative correlation to 

the east and west of the observation. Interestingly, the error correlation in the ocean part of 

the coupled model has correlation extending to a continental scale; in other words, the 

oceanic error correlation extends to the synoptic scale of the atmosphere. This large-scale 

error correlation in the ocean cannot be explained by the ocean’s internal dynamics because 

the ocean is thought to have small decorrelation length; typical middle-latitude ocean has 

Rossby deformation radius of 100 km (e.g., section 5.2 of Vallis, 2006).  

If we look at the background error correlation of surface wind, we can understand the 

cause of the large-scale error correlation in the ocean. Figure 7(b) is a map of background 

error correlation between the surface meridional wind of each atmospheric grid and an 

observation of surface meridional wind at 40°S 80°E. Although Figure 7(a) and (b) 

respectively show the error correlation structure within the ocean and the atmosphere, they 

look almost identical. The spatial structure of Figure 7(b) resembles the spatial correlation 

function under the geostrophic increment assumption (Figure 5.4.2 of Kalnay, 2003). 

Therefore, we can explain that the continental-scale correlation originates from the 

atmospheric quasi-geostrophic dynamics. At each point, the surface ocean current is driven 

by the atmospheric wind, and so is its error. 
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(a)

 

(b)

 

Figure 7: Mean ensemble background correlation of (a) ocean surface zonal current to an 

ocean surface zonal current observation at point 40°S 80°E (southern Indian Ocean) and (b) 

atmospheric surface meridional wind to an atmospheric surface meridional wind observation 

at the same point, averaged for 260 instances (00UTC of 260 days starting on model date 

January 1st). 

These examples show the existence of physically reasonable cross-correlation between 

the atmosphere and the ocean and support the possibility of improving the coupled DA by 

utilizing the cross-covariances. However, it should be noted that the spatial and temporal 

scale of those cross-correlation varies by latitudes and variables. For example, the ensemble 

correlation between SST and surface air temperature becomes greater when atmospheric 

ensemble perturbation is averaged for several days (as done by Lu et al., 2015b), whereas 

the error correlation between surface current and surface wind weakens when temporally 

smoothed out (not shown). Therefore, it is essential to understand the characteristics of 

each coupling process for the SCDA applications. 

 

  



 

34 

 

4. Summary and Future Work 

In this study, we first compared weakly and strongly coupled DA in light of 

background error covariance/correlation used in the analysis step of data assimilation. Here 

we showed that the uncertainty reduction by the assimilation of an observation is 

proportional to the square of background error correlation between the observed and the 

analyzed variables. From this observation, we proposed the correlation-cutoff method, 

where the analysis step of a coupled system should be coupled only between the 

well-correlated pair of variables in term of background error. 

The correlation-cutoff method was tested with a nine-variable coupled model which 

mimics the fast and slow variations of the atmosphere-ocean coupled system. With the 

model, partially coupled analysis, guided by the offline error statistics, achieved the best 

accuracy out of five coupling (localization) patterns tested. The analysis accuracy of the 

correlation-cutoff method was more robust than the standard strongly coupled DA for 

smaller ensemble sizes. 

Finally, to apply the correlation-cutoff method to strongly coupled DA of the 

atmosphere-ocean system, the background error correlation of a coupled GCM (FOAM) 

was examined. With the coupled model, the strongest background error correlation was 

found in the Ekman layer dynamics in the midlatitudes. The ocean surface current, which is 

thought to be the ‘slave’ of the wind in the midlatitudes, was found to have 

continental-scale horizontal error correlation originated from the atmospheric 

quasi-geostrophic dynamics. 
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The correlation-cutoff method will be extended to the localization of the global 

strongly coupled analysis of the atmosphere and ocean. The next important step will be to 

summarize the mean squared background error correlation between the observed and the 

analyzed variables into a simple function of their distance and variable types. We will test 

the methodology with the same analysis system for the coupled GCM, which should be an 

important milestone in the design of an improved strongly coupled DA. 
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