A Conceptual Introduction to Principal Component Analysis (PCA)

Steven Greybush
University of Maryland
AOSC 630

Note: These slides complement Lecture 14 of AOSC 630, taught by Prof. Eugenia Kalnay.
Principal Component (EOF) Analysis

• Have a set of spatial maps (or vectors).
• Would like to describe each map as a sum of pattern vectors (EOFs).
• These pattern vectors are chosen to be orthogonal, and are ordered according to the amount of variance in the dataset that they describe.
• The weights in this sum are known as amplitudes, or principal components.
Principal Component (EOF) Analysis

- Example of spatial maps: vertical temperature profiles.
Sample Data: Vertical Temperature Profiles on Mars

- $K=28$
 (number of vertical grid points)

- $N>10^5$
 (number of profiles in space/time)
First 6 EOFs of Vertical Temperature Profiles

There are 28 EOFs total. We keep only the first 6 because they explain 99% of the variance in the data.

- Represents physically the decrease in T with height
- Represents a simple temperature inversion structure
Representing a profile in terms of EOFs

- Red: a temperature profile on a given day.
- Blue: representation using first EOF.
- Green: representation using 2 EOFs.
- Cyan: representation using 3 EOFs.

Notes:
- With 3 EOFs (out of 28), we capture most of the variability (wiggles) in the temperature profile.
- Here, EOF 3 represented most of the variability. Over all profiles, EOF 1 will typically have the highest amplitude.
Applications of PCA

• To search meteorological data for statistical patterns in space and time (and sometimes provide physical interpretation, such as the North Atlantic Oscillation).

• To represent datasets more efficiently by describing only the most important modes of variability.