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Sequential Monte Carlo Methods for State and

and Parameter Estimation

(with application to ocean biogeochemistry)

Outline

1. Motivation: observations and dynamic models for
ocean biogeochemistry

2. The state space model for nonlinear and
nonGaussian systems: filtering and smoothing

3. Sequential Monte Carlo approaches:
resampling/bootstrap and MCMC

4. Static parameter estimation for stochastic
dynamics: likelihood and state augmentation



Statistical Estimation for Nonlinear NonGaussian

Dynamic Systems

Approaches …

• Statistical emulators/ computer experiments for
studying large scale dynamical model and perhaps
DA.

• Functional data analysis applied to estimating
differential equations

• Hierarchical Bayes and Markov Chain Monte Carlo

• Sequential Monte Carlo approaches*

Data



 Ocean Biogeochemical Time Series

• Ocean Observatory
at Lunenburg, Canada

 
Pt

obs
� gamma(� t , �)
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obs
� lognormal(�t , f (�t ))

Long Term Ocean Time - Space Series

Bermuda Atlantic Time Series:
• 15 years, monthly cruises
• measure depth profiles of 
  biogeochemical variables
• use CTD and bottle samples

Temperature

Chlorophyll



Dynamic Models

A Physical - Biogeochemical Model
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where turbulence sub-model computes Kt
and Kt’ from u,v,T and S
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Sample Output

Physics

Biogeochemistry



Incorporating Stochasticity

• Frequent transitioning
across bifurcation

• aperiodic/episodic

• dynamical dependencies
maintained

• note (high freq) forcing
versus (low freq) response

O-D ODE based PZND model

(stochastic photosynthetic parameter + system noise)

Describe ensemble properties as a distribution

The estimation problem
for system state and parameters …



The State Space Model

xt = f (xt�1,� ,nt )

dynamics equation

• Given Y
�

= ( �y1,...., �y
�
�)

(measurement equation)

yt : measurements
ht : obs operator
et : measurement error

( , )t t t ty h x e=
measurement equation

yt = h(xt ,�,� t )

 
xt � p(xt | xt�1,�)  

yt � p(yt | xt ,�)

or or

� want to jointly estimate the state xt
and static parameters � and �

General Case (Nonlinear Stochastic Dynamics): 

Filtering and Smoothing for State Estimation*

p(xt | Yt ,� ,�) � p( yt | xt ,�) p(xt | xt�1,�) p(xt�1 | Yt�1,� ,�)dxt�1�

Filtering:

Smoothing:

p(x1:T | YT ,�,�) = p(x0 ) p(xt | xt�1,�) p(yt | xt ,�)
t =1

T

�
t =1

T

�

� nonlinear, non-Gaussian case can be treated with sampling
based solutions (via sequential MC methods)

* treat parameter estimation later on …

for t=1, …, T,  given p(x0 )



Sequential Monte Carlo Approaches 

1. Stochastic dynamic prediction: numerical integration of
stochastic dynamic system (generate forecast ensemble)

2. Bayesian blending of measurements and numerical
model predictions (e.g. resampling, MCMC).

xt |t�1
(i ) = f (xt�1|t�1

(i ) ,nt
(i ),�), i = 1,....,n

 
xt |t�1

(i ){ } � p(xt | Yt�1,�,�)�

Ensemble must cover the part of state space with non-
negligible values of the predictive density

�

Sequential Bayesian Monte Carlo

SIR  - compute:  wt
(i ) = wt�1

(i ) p(yt | xt |t�1
(i ) ), i = 1,....,n

 
 - weighted resample of xt |t�1

(i ) ,wt
(i ){ }� xt |t

(i ){ } � p(xt | Yt )

(b) Sequential Metropolis Hastings MCMC

(d) Ensemble/unscented Kalman filter (approximate)

(c) Resample - Move (SIR/MCMC)

or

(a)

 
xt |t�1

(i ){ } � p(xt | Yt�1,�,�)
 

xt |t
(i ){ } � p(xt | Yt ,�,�)

+ …



Sequential Metropolis-Hastings 

1. Generate candidate from predictive density:

 
xt |t�1

*
� p(xt | Yt�1,�,�)

� = min 1,
p(yt | xt |t�1

* ,�,�)

p(yt | xt |t
(k ),�,�)

�

��
�


	
,  choose xt |t�1

*  or xt |t
(k )

2. Evaluate acceptance probability

 
xt |t

(i ){ } � p(xt | Yt ,�,�)

Basic Idea:  Given

• Flexible and configurable, e.g adaptive ensemble
• EFFICIENT PROPOSALS ARE KEY, e.g prior, or from EnKF?

 
xt�1|t�1

(i ){ } � p(xt�1 | Yt�1,�,�), i = 1,....,n

via: xt |t�1
* = f (xt�1|t�1

* ,nt
*,�)

lo
op

 o
ve

r k

sample from target:

Filter State Estimates

Time series of median and percentiles Distributions



Example SIR Results from Physical Biogeochemical Model

Comparison of  SMC Methods : Convergence of Distributions

 

<K-L divergence>  =  p(xt | y1:t )log
p(xt | y1:t )
�p(xt | y1:t )

dxt�

Figure: Convergence to “exact” solution for different SMC methods



Convergence of Moments (M-H MCMC)

Parameter Estimation via Likelihood

The likelihood arising from the state space model* is

L(� | YT ) = p(YT |�) = p(yt | Yt�1,�) =
t =1

T

� p(yt | xt ,�)p(xt | Yt�1,�)dxt�
t =1

T

�

From sequential MC filter we can compute predictive density

{xt |t�1
(i ) } ~ p(xt | Yt�1,�)

and so compute the likelihood as

L(� | YT ) �
1

n
p(yt | xt |t�1

(i ) ,�
i =1

n

�( )
t =1

T

�

*assume � is given, and suppress the explicit dependence)



Distributions for Parameters

Posterior: using prior infoLikelihood

Parameter identifiability issues priors ‘focus’ the likelihood

(sample based) likelihood surface is ‘rough’
� challenge for optimizers (stochastic gradients)

Parameter Estimation via State Augmentation

 

�xt =
xt

�t

�

��
�

��
Idea: Append state to include parameters,

�t = �t�1Specify p(�0 ) and allow parameter to evolve as

For practical implementation with finite sample, we must

Choose �T  as estimate for parameter

(1) Specify initial ensemble                     (including dependence structure
between the parameters)

{�0
(i )} ~ p(�)

(2) At each t, introduce smoothed bootstrap of            (with dispersion
correction) to generate diversity in parameter ensemble, while
maintaining distributional properties.

{�t
(i )}

Easy and seems to work in practice, little theoretical guidance on convergence.
Does not seem to work well with EnKF



 State Augmentation Example

Trace plot of one realization
Parameter values from
2000 realizations

 State Reconstruction by Smoother

• Fixed interval smoother using
optimal parameters.

• Uses forward M-H MCMC
filter

• Smoother realizations
provided by backwards sweep
smoother algorithm of Godsill
et al (2004)



Remarks and Outstanding Issues on Fully

Bayesian DA via Sequential Monte Carlo
1. Sequential MC approaches allow for state and parameter estimation in

nonlinear nonGaussian dynamic systems. Wide variety available
(bootstrap  or MCMC) and easy to implement, but computationally ….

2. Static parameter estimation in SDEs outstanding statistical issue.
Likelihood (via predictive density). State augmentation (via filter density).
EM algorithm (via smoother density)

3. Effective stochastic simulation (integration) and specification of model
errors a key feature.

4. Adaptation for (large dimension) dynamical systems! � need small
ensembles (100-1000) to represent large dimensional state space.
Efficient proposal distribution is paramount, e.g use information flow via
dynamics.

5. Methods for computationally efficient smoothing also needed.

6. Information based metrics for assessing improvements and comparing
approaches


