Sequential Monte Carlo Methods for State and Parameter Estimation
(with application to ocean biogeochemistry)

Michael Dowd
Dept of Mathematics and Statistics
Dalhousie University
Halifax, N.S., Canada

Outline

1. Motivation: observations and dynamic models for ocean biogeochemistry

2. The state space model for nonlinear and nonGaussian systems: filtering and smoothing

3. Sequential Monte Carlo approaches: resampling/bootstrap and MCMC

4. Static parameter estimation for stochastic dynamics: likelihood and state augmentation
Statistical Estimation for Nonlinear NonGaussian Dynamic Systems

Approaches …

• Statistical emulators/computer experiments for studying large scale dynamical model and perhaps DA.

• Functional data analysis applied to estimating differential equations

• Hierarchical Bayes and Markov Chain Monte Carlo

• Sequential Monte Carlo approaches*

Data
Ocean Biogeochemical Time Series

- Ocean Observatory at Lunenburg, Canada

\[P_t^{\text{obs}} \sim \text{gamma}(\alpha, \beta) \]

\[N_t^{\text{obs}} \sim \text{lognormal}(\mu, f(\mu)) \]

Long Term Ocean Time - Space Series

Bermuda Atlantic Time Series:
- 15 years, monthly cruises
- measure depth profiles of biogeochemical variables
- use CTD and bottle samples

Temperature Profile

Chlorophyll Profile
A Physical - Biogeochemical Model

\[
\frac{dP}{dt} = g\left\{ N; k_x \right\} P - \lambda_x P - g\left\{ P; k_P \right\} IZ + \epsilon_t \\
\frac{dZ}{dt} = \epsilon g\left\{ P; k_P \right\} IZ - \lambda_x Z + \epsilon_t \\
\frac{dN}{dt} = \phi D + \beta g\left\{ P; k_P \right\} IZ - g\left\{ N; k_x \right\} P + \nu \lambda_x Z + \epsilon_t \\
\frac{dD}{dt} = -\phi D + \lambda_x P + (1 - \epsilon - \beta) g\left\{ P; k_P \right\} IZ + (1 - \nu) \lambda_x Z + \epsilon_t
\]

where turbulence sub-model computes \(K_t \) and \(K'_t \) from \(u, v, T \) and \(S \)
Incorporating Stochasticity
(stochastic photosynthetic parameter + system noise)

O-D ODE based PZND model

- Frequent transitioning across bifurcation
- aperiodic/episodic
- dynamical dependencies maintained
- note (high freq) forcing versus (low freq) response

Describe ensemble properties as a distribution

The estimation problem for system state and parameters …
The State Space Model

dynamics equation

\[x_t = f(x_{t-1}, \theta, n_t) \]

or

\[x_t - p(x_t \mid x_{t-1}, \theta) \]

measurement equation

\[y_t = h(x_t, \phi, v_t) \]

or

\[y_t - p(y_t \mid x_t, \phi) \]

• Given \(Y_t = (y'_1, ..., y'_r)' \)

\[\rightarrow \text{want to jointly estimate the state } x_t \]

and static parameters \(\theta \) and \(\phi \)

General Case (Nonlinear Stochastic Dynamics):
Filtering and Smoothing for State Estimation*

Filtering:

\[
p(x_t \mid Y_t, \theta, \phi) \propto p(y_t \mid x_t, \phi) \int p(x_t \mid x_{t-1}, \theta) p(x_{t-1} \mid Y_{t-1}, \theta, \phi) dx_{t-1}
\]

for \(t=1, ..., T \), given \(p(x_0) \)

Smoothing:

\[
p(x_{1:T} \mid Y_T, \theta, \phi) = p(x_0) \prod_{t=1}^{T} p(x_t \mid x_{t-1}, \theta) \prod_{t=1}^{T} p(y_t \mid x_t, \phi)
\]

\[\rightarrow \text{nonlinear, non-Gaussian case can be treated with sampling based solutions (via sequential MC methods)} \]

* treat parameter estimation later on …
Sequential Monte Carlo Approaches

1. **Stochastic dynamic prediction**: numerical integration of stochastic dynamic system (generate forecast ensemble)

\[x_{t_{|t-1}}^{(i)} = f(x_{t-1_{|t-1}}^{(i)}, n_t^{(i)}, \theta), \quad i = 1, \ldots, n \]

\[\implies \{ x_{t_{|t-1}}^{(i)} \} \sim p(x_t | Y_{t-1}, \theta, \phi) \]

Ensemble must cover the part of state space with non-negligible values of the predictive density

2. **Bayesian blending** of measurements and numerical model predictions (e.g. resampling, MCMC).

Sequential Bayesian Monte Carlo

\[\{ x_{t_{|t-1}}^{(i)} \} \sim p(x_t | Y_{t-1}, \theta, \phi) \]

\[\implies \{ x_{t_{|t}}^{(i)} \} \sim p(x_t | Y_t, \theta, \phi) \]

(a) SIR - compute: \(w_t^{(i)} = w_{t-1}^{(i)} p(y_t | x_{t_{|t-1}}^{(i)}), \quad i = 1, \ldots, n \)

- weighted resample of \(\{ x_{t_{|t-1}}^{(i)}, w_t^{(i)} \} \rightarrow \{ x_{t_{|t}}^{(i)} \} \sim p(x_t | Y_t) \)

or

(b) Sequential Metropolis Hastings MCMC

(c) Resample - Move (SIR/MCMC)

(d) Ensemble/unscented Kalman filter (approximate)

+ ...
Sequential Metropolis-Hastings

Basic Idea: Given \(\{x_{i-1|1}^{(i)}\} \sim p(x_{i-1} | Y_{i-1}, \theta, \phi), \quad i = 1, \ldots, n \)

1. Generate candidate from predictive density:
\[
x_{i|1}^{*} \sim p(x_i | Y_{i-1}, \theta, \phi)
\]
via: \(x_{i|1}^{*} = f(x_{i-1|1}^{*}, n_i^*, \theta) \)

2. Evaluate acceptance probability
\[
\alpha = \min \left(1, \frac{p(y_i | x_{i|1}^{*}, \theta, \phi)}{p(y_i | x_{i|1}^{(k)}, \theta, \phi)} \right), \quad \text{choose } x_{i|1}^{*} \text{ or } x_{i|1}^{(k)}
\]

\[\rightarrow \text{sample from target: } \{x_{i|1}^{(i)}\} \sim p(x_i | Y_{i}, \theta, \phi)\]

- Flexible and configurable, e.g adaptive ensemble
- EFFICIENT PROPOSALS ARE KEY, e.g prior, or from EnKF?

Filter State Estimates

Time series of median and percentiles

Distributions
Example SIR Results from Physical Biogeochemical Model

Comparison of SMC Methods: Convergence of Distributions

\[
\langle \text{K-L divergence} \rangle = \left\langle \int p(x_t | y_{1:t}) \log \frac{p(x_t | y_{1:t})}{\bar{p}(x_t | y_{1:t})} \, dx_t \right\rangle
\]

Figure: Convergence to “exact” solution for different SMC methods
Parameter Estimation via Likelihood

The likelihood arising from the state space model* is

\[L(\theta | Y_T) = p(Y_T | \theta) = \prod_{t=1}^{T} p(y_t | Y_{t-1}, \theta) = \prod_{t=1}^{T} \int p(y_t | x_t, \theta) p(x_t | Y_{t-1}, \theta) dx_t \]

From sequential MC filter we can compute predictive density

\[\{x_{t|t-1}^{(i)}\} \sim p(x_t | Y_{t-1}, \theta) \]

and so compute the likelihood as

\[L(\theta | Y_T) \approx \frac{1}{n} \prod_{t=1}^{T} \left(\sum_{i=1}^{n} p(y_t | x_{t|t-1}^{(i)}, \theta) \right) \]

*assume \(\phi \) is given, and suppress the explicit dependence)
Distributions for Parameters

Likelihood

Posterior: using prior info

Parameter identifiability issues

prior 'focus' the likelihood

(sample based) likelihood surface is 'rough'
→ challenge for optimizers (stochastic gradients)

Parameter Estimation via State Augmentation

Idea: Append state to include parameters,
\[
\tilde{x}_t = \begin{pmatrix} x_t \\ \theta_t \end{pmatrix}
\]

Specify \(p(\theta_0) \) and allow parameter to evolve as \(\theta_t = \theta_{t-1} \)

Choose \(\theta_T \) as estimate for parameter

For practical implementation with finite sample, we must

(1) Specify initial ensemble \(\{\theta_0^{(i)}\} \sim p(\theta) \) (including dependence structure between the parameters)

(2) At each \(t \), introduce smoothed bootstrap of \(\{\theta_t^{(i)}\} \) (with dispersion correction) to generate diversity in parameter ensemble, while maintaining distributional properties.

Easy and seems to work in practice, little theoretical guidance on convergence.
Does not seem to work well with EnKF
State Augmentation Example

Trace plot of one realization

Parameter values from 2000 realizations

State Reconstruction by Smoother

- Fixed interval smoother using optimal parameters.
- Uses forward M-H MCMC filter
- Smoother realizations provided by backwards sweep smoother algorithm of Godsill et al (2004)
Remarks and Outstanding Issues on Fully Bayesian DA via Sequential Monte Carlo

1. Sequential MC approaches allow for state and parameter estimation in nonlinear nonGaussian dynamic systems. Wide variety available (bootstrap or MCMC) and easy to implement, but computationally ….

3. Effective stochastic simulation (integration) and specification of model errors a key feature.

4. Adaptation for (large dimension) dynamical systems! → need small ensembles (100-1000) to represent large dimensional state space. Efficient proposal distribution is paramount, e.g use information flow via dynamics.

5. Methods for computationally efficient smoothing also needed.

6. Information based metrics for assessing improvements and comparing approaches