For N=3 and M=4,

1. write a MATLAB code:

a) Define NxM-dimensional matrix A and M-dimensional vector b

b) Construct row vectors a_r^n for $n=1,\ldots,N$, and column vectors a^c_m for $m=1,\ldots,M$ of A (what is the dimension of a_r^n and a^c_m?)

2. Write “function codes” that compute $c=A \cdot b$ (what is the dimension of c?) by
 a) Brute force (i.e., element by element)
 b) Row-oriented approach
 c) Column-oriented approach

3. Verify your “function codes” against MATLAB operation $c = A \cdot b$ using

 \[
 nA = \sqrt{3} \cdot [1:1:3]';
 mA = \sqrt{2} \cdot [0:1:3];
 mb = [1 4 5 2]';
 \]

 \[
 A = \sin(pi \cdot nA) \cdot \cos(pi \cdot mA);
 b = \cos(mb);
 \]

4. Plot
 a) $[1:1:M]$ vs a_r^n for $n=1:N$ in one figure with
 - x axis between [1 N] & y axis between [-1 1]
 b) a^c_m vs $[1:1:N]'$ or $m=1:M$ & b in one figure with
 - x axis between [-1 1] & y axis between [1 M]

For both figures
 - change color & add a circle at the data point for each line
 - put x and y labels with fontsize 12