
University of Maryland, College Park

AMSC 663/664

Pattern Decomposition of Inorganic
Materials: Optimizing Computational

Algorithm

Author:
Graham Antoszewski

ganto@math.umd.edu

Supervisor:
Dr. Hector Corrada-Bravo

Center for Bioinformatics and
Computational Biology
University of Maryland,

Department of Computer
Science

hcorrada@umiacs.umd.edu

December 16, 2016



Abstract

Phase pattern decomposition of inorganic materials’ crystalline structure is ex-
tremely important for the unearthing of new properties such as superconductivity.
Previously, this process had meticulously been done by hand, so computer algorithms
have been developed to try and uncover these phases. They, however, have yet to
combine efficiency and accuracy together. The goal of this project is to do just that
by extending the Graph-based endmember extraction and labeling algorithm (GREN-
DEL). Phase one will be to incorporate physical constraints and prior knowledge to
increase the accuracy of our phase composition results, and phase two will be to utilize
active learning to minimize the number of sample points needed to analyze a given
material to increase efficiency.

1 Background Information

Inorganic materials are compounds or mixtures of elements which do not contain any carbon.
Of particular interest are combinations of metal alloys called ternary systems, where three
different metallic compounds are heated up and combined into one. Because of the heating
and cooling process, the crystalline structure of each individual metal has been altered,
similar to how an ice cube that is melted and refrozen will not be identical to the initial
configuration. This means the phase of the metal has changed, as the phase is defined
as a region within a material or compound where the crystal structure and composition is
uniform [1]. This means these phases have distinct properties, such as density and index of
refraction. Within different areas of the ternary alloy, there can be different phases of each
metal as well due to how the atoms restructured and the proportions of each compound at
the given point. Each point of this material is made of a different composition of the three
input metals, meaning there can be three phases present and at different proportions based
on the mixing process of the alloy. An example of a typical thin film sample of a ternary
system is seen in Figure 1.

A given phase of a metal, as previously stated, has distinct properties, one of these being
a unique diffraction pattern. X-ray diffraction is used to probe a given material, sending
in beams of electrons and observing the outgoing spectra [1]. X-ray light has a wavelength
that is approximately the same as the distance between atoms in a crystal lattice, giving it
a better chance to hit the atoms within the structure. The light will hit an electron in the
metal, absorb energy, and bounce back at a given angle. Note that this energy exchange
only happens at certain incident angles, which is dictated by the Bragg equation,

2dsinθ = nλ, (1)

where d is the distance between atoms in the lattice, θ is the incoming scattering angle, λ is
the wavelength of the x-ray, and n is an integer. The absorbed energy is seen as diffraction
peaks at the given angles which satisfy equation (1). Note that since λ is fixed, the only
variable which determined the angle θ is the lattice spacing d.

But for an unknown phase, we do not know the distance d. Thus, both the source of
x-ray light and the detector rotate in order to record data over all possible scattering angles
2θ ∈ [0◦, 90◦] (2θ is defined as the angle between the detector and the incident beam rather

1



Figure 1: Seen is a thin film of an Al-Mn-Ni ternary system, with the regions specified
by each color being the predominant areas of each of the composite metals. That is, where
each metal was initially introduced into the alloy and then mixed. This highlights how the
mixing throughout the material is not uniform, as we want to find all possible combinations
of constituent phases [2].

than the plane of the material, and will be twice that of θ according to Equation (1)).
Figure 2 shows an example of an x-ray spectrum for a single sampled point in a material.
The given pattern is called a waveform, with peaks in the diffraction spectrum indicating a
detection of a certain phase.

The are three main aspects of a given diffraction peak. The scattering angle 2θ tells us
about the metal observed and its particular phase, while the height and width of a given
peak can tell us about the given proportion of that phase in the mixture of metals that make
up the alloy at the sampled point. One can also notice a shifting of the position of seen
peaks over different light intensities, which is a source of error and something that has to be
accounted for. Using this data, we can recognize the constituent phases seen at each point
in the material along with their respective proportions, and a phase diagram can be made
like the one seen in Figure 3 [1]. The alloyed material we wish to sample is usually on a
circular thin film, yet we transform the data taken from this shape into a simplex, where
each vertex corresponding to the locations of the three initial compounds at the start of the
mixing process. Different colors represent areas/clusters within the material where similar
phase structure is seen, indicating these whole regions will have the same intrinsic chemical
properties. Each dot or marker on the simplex corresponds to a probed sample point.

2 Project Objective

Previously, these phase diagrams were done by hand, eying the proportions of the constituent
phase composition. This process took so long that a library of materials has already been
created which have yet to be analyzed. Thus, the White House Materials Genome Initiative
was started in order to encourage an algorithm to take in this structure and composition
data as an input and output the desired phase diagrams and phase composition data (more
information available at https://www.whitehouse.gov/mgi. This algorithm must obey the
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Figure 2: A sample x-ray spectrum from the Fe-Ga-Pd ternary system, with the x-axis being
2θ = the scattering angle observed and the y-axis being the intensity of light detected. Peaks
on this plot represent material detection corresponding to given phases of our metals.

Figure 3: An example of a phase diagram, represented as a simplex. Each vertex corresponds
to one of the original compounds in the alloy, colors correspond to similar phase structure
between those points, and the Greek symbols in the legend represent the different phases
seen in the material [1].
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laws of physics while also accurately identifying the individual phases, regions or clusters of
similar phase composition, and do all of this in an efficient manner so more materials can be
evaluated [3].

Current attempts at an algorithm focus on pattern decomposition. Given a set of diffrac-
tion patterns at N points of a given system, it is assumed these can be described as a
combination of K basis patterns. We seek to resolve these basis patterns, which in this case
are the K constituent phases that contribute to the diffraction patterns seen in the material.
In other words, if we think of the entire material’s diffraction spectrum as a vector space, we
wish to find the basis vectors of the space. There are two main steps, the first being spectral
clustering. Here a similarity matrix is constructed to group points in the material with anal-
ogous diffraction patterns, with each group of points being called a cluster. This splits up
our entire dataset into smaller subproblems, allowing the algorithm to run more efficiently.
Second, nonnegative matrix factorization is used to identify the constituent phases and their
proportions within each cluster [1]. These steps will be explained in detail in Section 3.

One example of such an algorithm is Graph-based endmember extraction and labeling
(GRENDEL). Endmember is another word for the basis constituent phase which make up
the diffraction pattern of a given point or region within the material, so both terms can be
used interchangeably. This method seeks to minimize an objective function during the pat-
tern decomposition process, which looks at how well our estimated phase proportions match
up with the raw diffraction patterns both within the clusters and over the entire material.
GRENDEL runs very fast, with computation times under a minute, but fails to properly
take into account physical constraints which leads to inaccuracy [3]. Another attempt at an
algorithm, Alternating Mixed Integer Quadratic Optimization, uses mixed integer quadratic
problems to minimize the error. Essentially, this boils down to minimizing norms regard-
ing residuals between the original structure and our hypothesized phase structure, yet this
method uses prior knowledge to add in physical constraints. It recognizes certain pairs of
points and phases that Must-Link and Cannot Link together, which leads to extremely ac-
curate results [4]. AMIQO runs on the order of days, however, making it too slow for an
ideal method. The latest attempt of a pattern decomposition algorithm is AgileFD, which
relies on convolutive nonnegative matrix factorization, physical constraints, and lightweight
update rules of the basis phases derived from the Kullback-Leibler divergence loss function
to obtain accurate estimates of the basis phases in an efficient manner [5],[6]. Yet AgileFD
omits the clustering step of isolating regions of similar phase structure, so we wish to combine
the accuracy of AgileFD with the speed and clustering of GRENDEL.

Furthermore, it takes about a half hour to obtain a full x-ray diffraction spectrum for
each point in a material, meaning it can take over a week to go through an entire material.
Another goal then must be to find a way to have our algorithm use a minimal number of
data points to evaluate an entire material, as an algorithm that runs quickly does no good
if the input data cannot be collected quickly too. This requires a program that, rather than
taking entire material’s spectrum as input, iteratively takes in individual sample points and
suggests the most informative point in the material to be the next to be probed.

In summary, current approaches at an algorithm are missing a key goal of the Whit
House Materials Genome Initiative. In addition, the sampling process of retrieving new
x-ray diffraction data takes too long so even if our program runs quickly, we still cannot
do rapid analysis of new materials. Our project objective is to address these issues in one
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algorithm to combine speed, accuracy, and an optimized sampling process. To do so, will be
working to extend the GRENDEL algorithm. GRENDEL begins with a spectral clustering
step in order to create initial cluster assignments for all of our sample points within our given
material dataset. Then, an iterative two-step process of nonnegative matrix factorization
and the Graph Cut package is run to find a local minimum of the objective function while
simultaneously updating cluster assignments for the entire material [7],[9],[8],[10]. Once
convergence is attained, GRENDEL will output cluster assignments for each of the sample
points within the material as well as a set of constituent basis phases/endmembers for each
cluster [3]. From this output, phase diagrams outlining regions of similar phase structure
and constituent phase compositions of each cluster can be generated, with an example of a
phase diagram seen in Figure 3.

The two new components which we will add to GRENDEL is constraint programming
and active learning. Constraints can be added to the objective function, which can be laws
of physics or properties of the material that we know prior to computation, to make our
solution more accurate and physically realistic. The objective function already has certain
constraints, and the challenge of this optimization strategy is uncovering the most important
constraints to use, as adding constraints tends to increase the run time of GRENDEL. Further
explanation of these new features of GRENDEL are explained in Section 4.1.

Active learning pertains to optimization of the sampling process. Rather than using
all sample points of a given material, we now realize that our algorithm will be running
in conjunction with the sampling process, meaning the input spectral data will be read in
iteratively point by point. We will take a small subset of sample points, run GRENDEL to
output the current guess of clusters and phases/endmembers, then generalize this analysis
to create a predictive phase diagram for the whole material. To estimate the basis phase
composition of unknown regions of the material where we have not probed, we do a distance-
weighted average from the results at the data points we do have. The next point to sample
is then chosen by determining the area of highest cluster uncertainty, coinciding with this
region’s estimated basis phase composition conflicting with the cluster compositions output
by GRENDEL. This will typically fall at cluster boundaries, as the endmembers of neigh-
boring clusters will differ and overlap to create error [11]. The goal is to probe these areas
of uncertainty and skip probing areas that may be superfluous, such as a middle of a large
cluster whose basis phase composition is already known, to reduce the number of points we
need to achieve minimization of the objective function. The active learning component of
the project is to be implemented in the upcoming semester, and thus will not be focused
on in this mid-year report. More discussion can be found in Section 8.4. Before going any
further into the implementation of the constraint programming done so far, however, the
current GRENDEL algorithm must be explained in detail.

3 Algorithm - GRENDEL

Figure 4 illustrates the flow of the current implementation of GRENDEL. As an input, both
structure and composition data from the Inorganic Crystal Structure Database and other
material libraries can be utilized. If X is the input diffraction waveforms (labeled in Figure 4
as ‘structure’ data) for the whole material of N sample points, we will look at each individual
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Figure 4: A flow chart of the GRENDEL algorithm. Initial structure X and composition
C data is input, and spectral clustering is done to find areas of similar diffraction spectra.
Then, an iterative process of the Graph Cut algorithm and NMF (seen here in the last
column of the flow chart) is implemented in order minimize the objective function which
resolves cluster boundaries and the constituent phases within each cluster. Final output
plots are the phase diagram and constituent phase plot of the basis phase waveforms [3].

sample diffraction waveform Xi. Xi is a vector with dimensions 1×D, where D is the number
of scattering angles observed. For example, we know 2θ ∈ [0, 90], so if data is taken with
resolution of 0.1◦, then D = 900. A given element Xi,j is itself a scattering intensity value
seen at the given jth scattering angle by the detector. To graphically see where each of the
N sample points are in terms of our phase diagram, each marker seen on the simplex of
Figure 3 is a sample point. Composition data C of the material is used in Section 3.2 to
place a given sample point i in the correct position on the simplex, whereas the spectral data
Xi is used to determine the cluster assignment and basis phase composition of each cluster,
seen as the different colors for each of the markers [3].

3.1 Spectral Clustering

Spectral clustering seeks to separate the material data into regions or clusters of similar
structure, thus allowing the proceeding steps to be run on smaller subsets to speed up
computation. These clusters will also be areas of analogous chemical properties. First, a
similarity measure is used to compare how close the diffraction patterns are between two
given sample points [12]. This metric is the cosine distance between 2 sample point waveform
vectors Xi and Xj, given by

δcos(Xi, Xj) = 1− cos(Xi, Xj), (2)
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where cos(Xi, Xj) is the cosine similarity between the two vectors, defined by

cos(Xi, Xj) =
Xi ·Xj

||Xi|| ||Xj||
. (3)

Here, · is the dot product and || · || is the L2 norm. Thus, the cosine distance between our
points Xi and Xj will be near zero if the diffraction patterns match well, near 1 if they are
orthogonal, and near 2 if they are completely contradictory [3]. Then, we create a similarity
matrix from these cosine distances,

Wij = e
−δcos(Xi,Xj)

2σ2 , (4)

where σ is the spectral clustering bandwidth parameter specific to the given material we are
observing. Thus, W is a N ×N matrix.

With this, a diagonal matrix G is created by summing the rows of W . Then, eigenvalue
decomposition used upon the Graph Laplacian defined by

L = G−1W (5)

to find the eigenvectors corresponding to the K smallest nontrivial eigenvalues of L. Here,
K is an input parameter of how many different clusters we expect to have. This varies from
material to material, and is usually determined by the user in conjunction with analyzing
results of previous experiments with the materials. For example, it is advised to select the
number of clusters K to be similar as the number of basis phases you expect to see, between
5-7.

With these K eigenvectors of length N , we utilize the K-means function within MATLAB
to identify individual clusters of points with similar structures. The eigenvectors are assigned
to columns of a given matrix Z (so each row of Z corresponds to a data point in the material),
and we initialize the clustering by finding the K cluster means (note these are vectors of
length K as well). The first is chosen at random from the rows of Z. The other initial
means are then chosen from the remaining rows of Z randomly with a probability weighted
proportionally to the cosine distance metric between each row and its most-similar cluster
mean already selected. We denote the mean initial composition of the kth cluster to be v̄k.
With these, an initial clustering assignment can be made for all N points by assigning each
row of Z, where the ith row of Z is zi, to the cluster whose mean composition v̄ is most
similar by means of cosine distance:

C(i) = arg min
1≤k≤K

δcos(zi, v̄k), (6)

where C(i) is the current clustering assignment of the ith data point. C(i) ranges from 1 to
K.

Then, the cluster means v̄ are updated by minimizing the total cosine distance sum
between the each zi in the kth cluster Ck and the desired cluster mean composition vk,

min
C,{v̄k}K1

K∑
k=1

Nk

∑
C(i)=k

δcos(zi, v̄k), (7)
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where Nk is the number of points assigned to the kth cluster currently. This two-step process
defined by Equations (6) and (7) is repeated until the cluster assignments no longer change.
The final output of this spectral clustering step is the K ×N cluster membership matrix U ,
where Uk,i = 1 if the ith data point belongs to the kth cluster [12]. Furthermore, we can also
find the mean spectral composition X̄k of each cluster now by averaging the spectral data of
all points within the kth cluster.

3.2 Creating the Simplex

The ‘Create Graph’ portion the flow chart in Figure 4 references the transformation of the
input spatial composition data C for each data point into respective coordinates on the
simplex. The simplex is created using the Delaunay tessellation function in MATLAB, then
only including edge connections to nearest neighbors of each point. This transforms the
circular thin film shape of our structure data into a simplex via triangulation. The vertices
of the simplex correspond to the three initial metal compounds used to make the ternary
system, meaning points closer to these vertices implies the primary component in the mixture
at this point will be this particular compound [3].

3.3 PCOMMEND - Lightweight Nonnegative Matrix Factoriza-
tion

The main portion of GRENDEL is minimizing the objective function, defined as follows:

J(E,P ) =
K∑
i=1

( N∑
j=1

uij(Xj − pijEi)
T (Xj − pijEi) + α

M−1∑
h=1

M∑
l=h+1

(eih − eil)T (eih − eil)
)

(8)

Here, Xi is the spectral data for the ith sample point in the material, K is the number of
estimated clusters, N is the number of sample points, and uij is an element of the binary
cluster membership matrix U that is 1 if jth point belongs to cluster number i and 0 otherwise.
In addition, M is the number of endmembers (another word for constituent basis phases)
in a given cluster, Ei is a M × D matrix where the rows are the individual basis phase
waveforms that make up the set of basis phases of the ith cluster. That is, the hth column of
Ei, symbolized as eih, is the diffraction spectra of the hth phase of the kth cluster. Moreover,
pij is a 1 ×M vector of the proportion values for each endmember used for the ith sample
point. Thus, pij is the row vectors of proportion weights for the basis phases of the ith cluster
of the jth sample point α is a parameter set to 0.0001 to balance the importance of each of
the summations [7].

The key notion here is that we are assuming that the input diffraction data at each sample
point, Xi, can be approximated as a linear combination of the basis phases. Thus, pij are
the set of proportion weights applied to the basis phases Ei to make up this combination.
That is, represented as linear combinations of the basis phase patterns we wish to find:

Xj ≈ pi,j Ei. (9)

The first summation term in (8) corresponds to the norm of the residual between our input
diffraction patterns X and the linear combination we seek to obtain, pijEi, while the second
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summation can be thought of as a volume constraint on the basis waveform vectors them-
selves. As stated previously, the position/scattering angle of the peaks within the waveform
are determined by the lattice spacing term d in the Bragg Equation (1). Since d is a fixed
value at a given point in the material, the position of the peaks within each basis phase
should also be approximately similar. If this is not the case, the second summation will be
large, implying error in the estimate of the basis phases.

Note that we need matrices X,U, P, and E. We already have X and an initial guess
at U from spectral clustering. We create an initial guess for P by setting all proportions
equal to 1/M , and an initial E is obtained using the nnmf function of MATLAB, which
outputs a guess at the basis phases themselves for each cluster by seeking to minimize the
first summation in Equation (8). This function call takes up CPU time, which is why instead
of using this each iteration we apply lightweight update rules for the matrices E and P from
the PCOMMEND method of finding the local minimum of the objective function [7]. First
we solve ∂J/∂Ek = 0 to update our guess for the basis phase matrix of the ith cluster,
yielding the equation

Ei =
(∑

j

uijp
T
ijpij + 2α(MIM×M − 1M×M)

)−1(∑
i

uijp
T
ijXj

)
, (10)

where I and 1 are the M ×M identity and ones matrices, respectively. We assume end-
members/basis phases must be positive in order to resemble a physically-accurate diffraction
pattern, so if an element of Ei is negative, that value is set to zero and the matrix is recom-
puted via Equation (10).

Second, we try to minimize Equation (8) for pij. Our proportions of endmembers in
cluster i must sum to 1 for each sample point Xj in the cluster in order to be physically

realistic as well,
∑M

h=1 pijh = 1. To ensure this, we use a Lagrange multiplier λi. Proportions
must be nonnegative as well, so our update of pij becomes

pij = max
(

(EiE
T
i )−1(EiX

T
j − λi1M×1), 0

)
(11)

with

λi =
11×M(EiE

T
i )−1EiX

T
j − 1

11×M(EiET
i )−11M×1

(12)

If a particular proportion value is chosen to be 0 because the first term in Equation (11) is
negative, then the other proportions for the ith sample point must be normalized in order to
have them sum to one.

These two updates are repeated for all K clusters and over multiple iterations along
with Graph Cut, to be explained in Section 3.4, until convergence is reached for matrices
E and P , meaning we have minimized our objective function (8) [7]. By finding a local
minimum, we understand that the steepest descent-like nature of our updates mean that we
cannot guarantee our updating process converges to the absolute minimum of the objective
function, only that the objective function is minimized within a certain neighborhood of
potential solutions for E and P . Depending on different initial seed guesses at U , P , and
E, our PCOMMEND update procedures may converge to different final results, although in
our experience these different results vary only slightly.
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3.4 Graph Cut Algorithm

Now that we have updated our basis phases E and proportions P , we use Graph Cut to
compute the update of these cluster membership matrix U each iteration of GRENDEL.
Note that this is completely independent of the objective function (Equation (8)), contrary
to what had been asserted in the proposal. The PCOMMEND updates described above also
have an update rule for U along with E and P ; however, we choose to use Graph Cut to make
our cluster membership guess U more accurate. We use a specific MATLAB wrapper avail-
able online at http://www.wisdom.weizmann.ac.il/∼bagon/matlab.html [3],[9],[8],[10]. The
update of U is done by minimizing a cost function, V .

The general cost V of the cluster labeling of all input spectral data Xi, i ∈ [1, N ], is
described as:

V = λd
∑
j

V j(Lj) + λs
∑
j,l∈N

V j,k(Lj, Lk), (13)

where V j(Lj) is the data cost for a point i, or the cost to assign a cluster label Lj to j,
and V j,k(Lj, Lk) is the smoothness cost, or the cost to assign the labels Lj and Lk to the
neighboring points j and k. Note that the values of L range from 1 to K, corresponding to
the K clusters. λd and λs are data cost and smoothness cost weights, respectively, which are
parameters chosen to balance the smoothness cost, which emphasizes connectivity of clusters
so they are all closed regions, and data cost, which emphasizes the similarity of points within
a given cluster.

The data cost in Equation (13) is given by

V j(Lj = i) =
3

4
δcos(Xj, X̄i) +

1

4

||Xj − pijEi||2∑
i ||Xj − pijEi||2

, (14)

where δcos(Xj, X̄i) is the cosine distance between diffraction peaks of sample point j and
the mean spectra of the currently assigned cluster Lj = i, || · ||2 is the L2 norm, and Ei

and pij are defined as in Section 3.3. The first terms makes sure that the spectral data
(diffraction pattern) of a point Xi matches with the assigned cluster’s mean spectra, similar
to the spectral clustering step. The second term makes sure that this cluster’s basis phase
composition correctly represents the sample point’s spectral data Xi, similar to the first
summation of the objective function in Equation (8).

The smoothness cost V j,k(Lj, Lk) is 0 if points j and k belong to the same cluster and
1 if they do not. While it is not exactly noticeable in Equation (13), the smoothness cost
summation is restricted to only neighboring points j and k rather than summing over all
possible pairs of points. This makes sense, for if we want smooth and continuous clusters,
we expect most of the adjacent data points of sample point i to also be in the same cluster
unless it is on a boundary. Adding these two terms together, V is minimized and all sample
points are reassigned into the clusters based on this minimized result.

To minimize V , however, we utilize something called the Max Flow Algorithm [9]. This
iterates over all K clusters, and looks at all N data points at one time. In one iteration, if
we are looking at cluster κ, for each point data point Xj, it looks at the cost of this point
being assigned into cluster κ versus its current cluster assignment. Specifically, it takes the
residual between these two costs, and uses this to determine if it should switch the current
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Figure 5: A diagram illustrating the methodology of Graph Cut to update cluster assign-
ments of our sample data points. The red points belong to the source tree corresponding
to cluster κ, while the blue points belong to the sink tree corresponding to all other cluster
assignments. Note the highlighted path of ‘max flow’ between the source and sink parent
nodes [9].

cluster assignment to cluster κ. By residual, we mean the difference in the total costs (data
cost + smoothness cost) between a given point j being in its current cluster assignment
versus being assigned to cluster κ. Thus, if the residual for point j is positive, we would
say that it is more costly to keep the point in its current cluster, and we should change the
assignment of point j into cluster κ. But if the residual is negative, we should keep j in its
current cluster.

The novel idea though is to think of the points in cluster κ as belonging to a ‘source’ tree
of flow (positive residuals), and the points remaining in their original cluster assignment as
belonging to a ‘sink’ tree (negative residuals). There must be a continuous path from the
highest-level parent nodes of the source and sink tree. This idea is illustrated in Figure 5 [9].
The ‘A’ and ‘P’ labels of the points correspond to whether or not this point is a active or
passive node in the tree, which is just terminology to say whether o not the node is on the
boundary of their respective trees (or the boundary of the cluster itself, thinking about the
ternary diagram like in Figure 1). Note, however, that while this does enforce connectivity
of cluster assignments of the entire material, there are certain points (seen as the white
points in Figure 5) are can potentially been disconnected in terms of cluster assignment.
This warrants more connectivity constraints to ensure the laws of physics are obeyed.

As stated before, this is done using the MATLAB wrapper referenced above [3]. This,
along with the nonnegative matrix factorization updates in Section 3.3, are repeated over a
certain amount of iterations until the convergence of the condition number. The condition
number for iteration iter is just the summation of the norms of the difference between the
E,P, and U matrices from iteration iter and iter− 1, that is, how much our guesses at these
three matrices have changed in one update.

One might be noticing in column 2 of the flowchart for GRENDEL ( Figure 4), that there
seems to be a performance of Graph Cut prior to going into this iterative loop. A simpler
version Graph Cut is run prior to this, yet without an initial guess of the matrices E and
P . For this run of Graph Cut we only take the data cost matrix to be the cosine distance
metric:

V j(Lj = i)simple = δcos(Xj, X̄i), (15)
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with all other aspects of Graph Cut described above remaining unchanged. This is meant
to create a better initial guess at U prior to running the nonnegative matrix factorization
portion of GRENDEL.

4 Approach to Extend GRENDEL

4.1 Constraint Programming

First, we introduce constraint programming within GRENDEL. Using both the laws of
physics and prior knowledge, we will add constraints on certain matrices and variables which
will create more accurate results for our experimental results for the basis phases E, its
proportion/abundance matrix P , and cluster membership U .

4.1.1 Gibbs’ Phase Rule

One example of a physical constraint is the Gibbs phase rule. Our material is considered
to be in equilibrium or steady-state. That is, it is not undergoing any chemical processes
such as melting or evaporation, and the chemical composition is stable. At equilibrium, a
compound or element must be in a set crystalline structure, corresponding to a set phase.
Thus, within our ternary system there can only be three phases seen at a given point due
to the three input compounds. Every point assigned to a given cluster i should also be
represented by the same set of endmember basis phases Ei, so this means that at most 3
phases can be seen in a given cluster [1]. As M is defined as the number of endmembers
seen in a given cluster, this constraint is written as

M ≤ 3. (16)

Thus, this law of physics is already applied in GRENDEL by us setting M = 3 (so the
matrix of basis phases Ei, is 3×D, and pij is a 1× 3 vector) during our updates as defined
in Section 3.3. No validation is required, although if our sample material only had 2 input
metal compounds, note the M would change to 2 as a result.

4.1.2 Connectivity

Due to the continuity of the mixing and alloying process of creating the ternary system of
metal compounds, another law of physics that must be upheld is connectivity of the regions
within the material with the same basis phase present. Thus, this entails in GRENDEL
that the clusters themselves within the material must be fully connected, as each cluster
should compromise of the same 3 basis phases. A way of visualizing this is through mixing
colors while painting. If one mixes red and yellow paint loosely together with a paintbrush,
knowing that you started with all of the red paint on the left side of the pallet and yellow on
the right, one would expect areas of red, orange, and yellow. But one would not see a two
regions of red paint completely isolated from each other without at least connecting path of
orange paint (a mixture of red and yellow). If you did, then it would mean that these red
regions somehow split without leaving some sort of trail between them, which is physically
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impossible. In that same vein, if we mix three metallic compounds, we expect a continuous
distribution/path for each of them throughout the entire alloyed material. The basis phases
seen at a given point in the material correspond to these input metal compounds (Hence
why Gibbs’ phase rule requires us to set M = 3 in our algorithm), so we expect connected
regions of these basis phases as well.

While the utilization of Graph Cut does a decent job of initially enforcing connected
cluster regions, discontinuity of certain clusters begin as we update our E and P matrices
through nonnegative matrix factorization. To combat this, we seek to use ‘expert’ prior
knowledge constraints to enforce connectivity of clusters. By prior knowledge, we mean that
the constraints used are not exact law of physics, but the methodology utilized makes our
results uphold a certain law of physics. We talked about the AMIQO algorithm in Section 2,
which applies something called Must-Link and Cannot-Link pairs of data points. Essentially,
if the user of the AMIQO algorithm knows prior to analysis that a certain pair of points i
and j have spectra Xi and Xj that are in the same cluster, then they say that these two
points in the material must be linked together, regardless of what cluster this pair is assigned
into. And if we know that a pair of points are not contained in the same cluster, then this
pair cannot be linked in the same cluster [4]. Let bij be a binary variable that is 1 if the jth

sample point is in cluster i. The Must-Link and Cannot-Link constraints are written as

bi,jn ∈ {0, 1}, i ∈ [1, K], jn ∈ [1, N ] (17a)

bi,j1 = bi,j2 = 1, i ∈ [1, K], (j1, j2) ∈MustLink (17b)

bi,j1 + bi,j2 ≤ 1, k ∈ [1, K], (i, j) ∈ CannotLink (17c)

The issue with this method of constraints is that this requires omniscience regarding
cluster assignments of certain data points within the material. Therefore, we append this
idea using our own Cannot Link constraints that can be determined from data given in the
spectral clustering step described in Section 3.1. Here, we used the cosine distance between
two input diffraction waveform vectors, δcos(Xi, Xj), as a similarity metric. To determine
which particular pairs of points that cannot be linked together in the same cluster, we assume
that the cosine distance between the two waveforms must be large. We assign the top ρ%
of pairs into a Cannot Link array, given by CL (so CL is a Z × 2 matrix, where Z = ρ%∗
number of all possible pairs of points), and check to make sure no CL pairs are assigned into
the same cluster after the Graph Cut portion in GRENDEL. If they are, whichever point in
the pair was the latest to switch into the shared cluster is reverted to the cluster assignment
of the previous iteration.

But as stated before, the initial run of the simpler version of Graph Cut creates fully-
connected cluster regions, so we take the cluster membership after this step to be correct
in terms of knowing if a given pair of points is connected in the same cluster. Thus, we
eliminate any of our CL pairs that are actually in the same cluster from the CL array after
this initial Graph Cut in order to decrease CPU time.

In summary, to enforce the Cannot Link connectivity constraint, the procedure is de-
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scribed below:

Compute δcos(Xi, Xj) ∀ (i, j) ∈ [1, N ];

Assign top ρ% of unique (i, j) pairs into CL;

After initial run of Graph Cut:

for i = 1 : length(CL)

if CL(i, 1) and CL(i, 2) are in the same cluster

CL(i, :) ∈ deleteCL;

end

end

CL(deleteCL, :) = [ ];

∀ successive iterations of Graph Cut

for i = 1 : length(CL)

if CL(i, 1) and CL(i, 2) are in the same cluster;

if point CL(i, 1) changed cluster assignment last

U(:, CL(i, 1)) = Uold(:, CL(i, 1));

else

U(:, CL(i, 2)) = Uold(:, CL(i, 2));

end

end

end

The parameter ρ was tested for its optimal value, which turned out to be ρ = 75. We
assumed ρ should be approximately the 1 minus the ratio of the size of the largest cluster
to N , the overall number of data points. For our synthetic data set seen in Figure 11, the
largest cluster had 61 data points, and with N = 219, mean ρ ≈ 1 − 61/219 = .7215, or
72.15%. Both ρ = 70% and ρ = 75% were tested as well as multiple other values to ensure
our logic was sound, with ρ = 75% creating consistently connected results with the best
verification statistics (to be explained in Section 8.2).

To validate our constraint works properly, we expect to see full connectivity of the cluster
regions in our results. It is understood validation of the Cannot Link algorithm must be
done outside of the GRENDEL algorithm. This will be done immediately,as we will take
the true labeling for our (Fe-Al-Li)Ox data as input and run our Cannot Link algorithm
over multiple iterations where we randomly swap a certain amount of cluster labels each
time. Validation will be achieved if the algorithm successfully keeps Cannot-Link pairs of
data points outside of the same cluster assignment over all iterations.

4.1.3 Peak Shifting

The last physical constraint needed to be implemented regards the peak shifting of the input
waveforms in X. It was described in Section 1 how the scattering angle of a given peak an
x-ray diffraction pattern is dependent upon the lattice spacing of the material’s crystalline
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structure. But due to the alloying process, the material may not have a perfect lattice
structure once it has cooled back down, and thus the lattice spacing may be a little bit
off or nonuniform at a given point in the material. This creates a shifting of the peaks in
the waveform, and this generates error considering the exact location of the peaks of the
waveform for data point i, Xi is needed to determine its exact basis phases.

An analogy to help understand this can be done with ice cubes. Say you have a perfect ice
cube, completely uniform in atomic structure at every point. It is then melted into water,
and this water is put into a ice cube tray to be put back in the freezer. Once the ice is
solidified again though, the new ice cube may not be exactly the same as the old one - air
bubbles may have been trapped in the water during the freezing process, or the tray may
not have been completely level when put into the freezer. This would distort the ice cube’s
atomic structure slightly. A similar idea occurs when alloying the three ternary compounds
together. Slight shifts in the atomic lattice structure, while unnoticeable to the naked eye,
can be seen through the shifting of peaks in the waveform. This can cause GRENDEL to
incorrectly say we have two separate basis phases present in the material, when in reality
they are just shifted versions of the same one. This error must be accounted for in order to
have accurate clustering diagrams as well as accurate guesses at the basis phase patterns.

The algorithm AgileFD described in Section 2 takes into account peak shifting by allowing
for m additional shifted copies of a given basis phase. AgileFD also does not do clustering,
so say we have B basis phases present in a material. Then AgileFD allows B ∗ m basis
phases, as long as at most one of the shifted copies of a basis phase is present at the given
data point i [5],[6]. Note that this is an expert constraint rather than a law of physics, and
we will have to do much of the same.

Adding in constraints for peak shifting is still an ongoing project. An initial attempt at
doing so utilized topological data analysis, particularly something called mode clustering [13].
Looking at a sample waveform for the ith data point, Xi, the mode of each peak is the
scattering angle location, and each peak has a birth time, the maximum intensity value of
the peak, and a death time, the intensity value where the given peak overlaps with the next
peak in the waveform. Typically the death time corresponds to a light intensity of 0. Using
the mode, birth time, and death time of each peak, we can construct a confidence interval
about the mode of each peak.

Thus, looking at the basis phases in each cluster, we created confidence intervals for
each significant peak in the basis waveform. If we compared two waveforms and saw that
each of the confidence intervals overlapped for these phases, then we labeled these as peak-
shifted versions of the same basis phase pattern. Formal mathematical definitions mode
clustering using density functions of image pixels [13], yet while attempted to adapt this to
our waveform data and doing experiments with identifying cluster confidence intervals, we
realized that validation as well as implementation was infeasible in the current construct of
GRENDEL. As described in Section 3, we update our E and P matrices within each cluster.
That is, we update Ei and Pi for all i clusters, i ∈ [1, K].

Using the findpeaks function in MATLAB to find the peak locations, birth times, and
death times, we could construct rudimentary confidence intervals of all peaks for every basis
phase. Our method was able to successfully identify phase-shifted basis phases which had
peaks of high intensity, yet failed with phases with smaller intensity peaks. Furthermore,
there is no good way to correct for shifted peaks after we have identified them. Even
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allowing multiple copies of peak-shifted basis phases within each cluster similar to AgileFD’s
constraints would not work, as the main issue is that the initial spectral clustering and
Graph Cut steps have already clustered points into regions where the only difference is the
peak-shifted basis phases. A better explanation of this issue is found in Section 7 under
Figure 10. Major changes to GRENDEL may have to be implemented in order to implement
a peak shifting physical constraint, such as updating our E and P matrices for the entire
material at once rather than solving the smaller subproblem of Ei and Pi for cluster i for all
K clusters.

5 Implementation

The overall GRENDEL algorithm and all of the constraint programming is written in MAT-
LAB R2015a. The Graph Cut portion is coded in C++, yet our goal is to not change this
function as it has been optimized over years of research [9],[8],[10]. The code is run on a
personal ASUS laptop with a 2.4 GHz Intel processor and 8 GB of RAM. If needed a high-
performance computer may be used, although previous implementations have run well on
the current computer specifications.

6 Datasets

The datasets to be used to test this algorithm fall into one of two categories. The first
group of materials data will be taken from the Inorganic Crystal Structure Database, a
large library of material data. The ICSD will give us structural diffraction spectral data
and spatial composition data. These materials, however, have not been previously analyzed
before and thus validation cannot be done on this dataset. An example of the Fe-Ga-Pd
ternary system from the ICSD we wish to test on after validation of the entire constraint
programming portion of the project is seen in Figure 6.

The second group of material data we use is a synthetic data set given to us by the creators
of the GRENDEL algorithm [3]. This diffraction data has been generated for validation
testing purposes, as we know the basis phase patterns in E, the proportion of basis phases
P , and the cluster membership U for each given data point in the material. For validation
of the connectivity constraint programming done so far, we use the (Fe-Al-Li)Ox data set,
which is known to have k=7 clusters and 6 basis phases. The true ternary clustering diagram
for (Fe-Al-Li)Ox can be seen in Section 7 in Figure 11.

7 Validation Methods

Running the original algorithm, prior to applying the connectivity constraint programming,
the results of GRENDEL on the (Fe-Al-Li)Ox ternary system is seen in Figures 7 and 8.
Gibb’s phase rule is seen when looking at the spectral plots for each of the k=7 clusters. For
each cluster, at most three waveforms are seen (indicated by the orange, yellow, and blue
waveforms in each of the plots in Figure 8). The plots are labeled accordingly by cluster
corresponding to the colored regions seen in Figure 7.
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Figure 6: To the left, we have the Fe-Ga-Pd system ternary diagram, illustrating the clus-
tering of a previous GRENDEL experiment. To the right is the constituent phase plot of
the 10 basis phases seen in the material [3]. Since we do not know true values for this data
set, this material will be analyzed after validation procedures are completed.

Figure 7: The ternary clustering diagram for the (Fe-Al-Li)Ox system for the original
GRENDEL algorithm.
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Figure 8: The corresponding basis phase waveforms for each of the k=7 clusters. The legend
to the right is to associate the given spectral phase plots to their respective cluster color in
Figure 7.

Regarding validation of the cannot-link connectivity constraints, see Figures 9 and 10.
As stated earlier, validation of our connectivity constraints upholding the laws of physics
can be seen by each of the 7 clusters in the new ternary diagram being fully connected. This
is in comparison to the original GRENDEL’s clustering, which we see has the disconnected
yellow cluster in Figure 7. As stated in Section 4.1.2, verification outside of GRENDEL is
to be done as well.

But comparing our results to the true labeling of the synthetic data, seen in Figure 11,
we see that while are clusters are connected, they do not exactly match up with the true
clustering. Note that the colors between our GRENDEL results and the true clustering do
not match up. We can see the true maroon cluster is split up into our experimental red and
dark blue clusters. Cluster splitting was very evident in this synthetic data set, which after
analysis is a direct result of us not yet applying peak shifting constraints. Over half of the
true basis phases are extremely similar to one another, and once this constraint is put in the
colors regarding each of the clusters should match up. The key point for now, however, is
that the main cluster boundaries are resolved with the connectivity constraints applied to
GRENDEL.
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Figure 9: Ternary clustering diagram after adding in cannot link constraints. Note that all
k=7 clusters are fully connected now.

Figure 10: Basis phase waveforms for each of the 7 clusters, labeled accordingly to match
up the colored regions in Figure 9. Again, we see Gibb’s phase rule upheld.
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Figure 11: The true ternary clustering diagram for the (Fe-Al-Li)Ox synthetic data set.

8 Concluding Remarks

8.1 Parameter Optimization

In order to increase the accuracy of our GRENDEL results, we also made sure our parameter
values were optimized for the (Fe-Al-Li)Ox data set. Through multiple runs of the GREN-
DEL algorithm, we were able to determine that the ρ parameter for the percent of Cannot
Link pairs of our connectivity constraint should be set to 75. Furthermore, we verified that
other parameters such as the spectral bandwidth parameter (σ in Equation (4)), data cost
weight, and smoothness weight (λd and λs of Equation (14)) set in the original GRENDEL
code were optimized as well. By optimized we mean to say the ternary clustering diagram
upheld the desired physical constraints, and our confusion matrix metrics to be described
immediately were at their best values.

8.2 Verification Statistics

Due to cluster splitting in our experimental GRENDEL results due to unresolved peak
shifting, there is not a one-to-one correspondence between GRENDEL clusters and the true
clustering. Thus, we utilize a confusion matrix through the confusionmatStats MATLAB
package to take this into account. This program assigns each of our GRENDEL cluster to
correspond to the most-likely true cluster. For example, the dark blue and red clusters in
Figure 9 would both be paired with the maroon cluster in Figure 11. From this, we utilized
the weighted accuracy metric, which gives the percent agreement of correct true positive
and true negative cluster assignments. In other words, it calculates the percent of points

20



in the correct label and the percent of points correctly not assigned to an incorrect label,
and averages these values. We also used the F-score metric, which solely calculates the
percent of points in the material that are in the correct label, without taking into account
cluster-splitting.

For the original GRENDEL algorithm, we saw a weighted accuracy of 0.8519, while the
addition of connectivity constraints increased this value to 0.8758. The connectivity con-
straint also increased the F-score from 0.3406 to 0.4562, showing that our cluster assignments
did indeed get better even with peak shifting, the main issue, still to be resolved. While the
original GRENDEL ran in 37.05 seconds on the ASUS laptop, connectivity constraints only
increased the run time to 57.46 seconds, still below the desired threshold on one minute.

8.3 Other Unsuccessful Physical Constraint Algorithms

8.3.1 Connectivity Constraints using Data Costs

Another algorithm developed this semester attempting to satisfy the connectivity constraints
utilized appending the cost function to be minimized in Graph Cut. This allowed us to apply
this algorithm prior to Graph Cut every time, compared to the Cannot Link algorithm in
Section 4.1.2 needing to be implemented after at least one iteration of Graph Cut. It uses
the initial spectral clustering step’s cluster membership matrix U as the true clustering, so
we still require an initialization of clusters. When a Cannot Link pair of points was clustered
together, it would look over all other potential cluster assignments of the two points (2k− 2
clusters) and change the membership of the point with the minimum data cost value to move
to another cluster assignment. Next, the data cost of the old cluster assignment was set to
∞ to ensure it would not be reassigned to it. The algorithm applied was as follows:

21



Compute δcos(Xi, Xj) ∀ (i, j) ∈ [1, N ];

Assign top ρ% of unique (i, j) pairs into CL;

Prior to every Graph Cut:

for i = 1 : length(CL)

if CL(i, 1) and CL(i, 2) are in the same cluster

Find cluster c with minimum data cost to switch either CL(i, 1)/CL(i, 2) to it;

if DataCost(CL(i, 1) ∈ c) < DataCost(CL(i, 2) ∈ c)
U(c, CL(i, 1)) = 1

U(cold, CL(i, 1)) = 0

DataCost(CL(i, 1) ∈ cold) =∞
else

U(c, CL(i, 2)) = 1

U(cold, CL(i, 2)) = 0

DataCost(CL(i, 2) ∈ cold) =∞
end

end

end

This created terrible results regardless of the choice of parameter ρ. Checking all values
of ρ for the best test statistics, we were still only able to achieve an F-score of 0.2179 for
ρ = 30%, less than half of the F-score of the Cannot Link algorithm. Figure 12 shows the
ternary diagram for if ρ = 50. Attempting this method of constraint programming, however,
did show us that we needed to trust the initial Graph Cut cluster membership and that the
PCOMMEND updates of E and P are what caused a lack connectivity.

8.4 Active Learning

The probing process employed to create the x-ray diffraction spectra of a given material
takes half an hour per sample point. To allow for fast analysis of a large set of unknown
materials, one of the major goals of this project, we need to minimize the number of data
points necessary to create accurate analysis with our algorithm. Previously, GRENDEL used
the spectra of the entire sample as an input, but for this approach we must change the input
to iteratively read in single sample points of the material, so our value of N increases by
one for each run of GRENDEL. This simulates the algorithm running in conjunction with
the diffraction process. We start with a initial number of sample points of spectral data,
and GRENDEL is run on this small subset of points within the material to initially estimate
clusters and cluster basis phase composition as described in Section 3.

Then, these findings are utilized to predict the constituent basis phase composition over
the entire material. To do so, an unknown point in the material is assumed to have an basis
phase composition that is a Euclidean distance-weighted average of the phase/endmember
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Figure 12: Ternary diagram for our Data Cost Cannot Link algorithm. Note terrible results.

compositions of the already-sampled data. We can then assign a dissimilarity metric to isolate
a specific point within the material that is least similar to the mean phase compositions of
the current clusters, and take that as the next point to sample [11].

We currently believe we will utilize cosine distance again between hypothetical phase
composition and cluster basis phases as this metric. For example, if we define Xhyp,j to be
the estimate of the diffraction data at point j in the material through the distance-weighted
averaging of the X̄i cluster mean diffraction patterns for all i clusters, i ∈ [1, K] (for a
refresher on what this is, see Section 3.1 on spectral clustering), then we wish to sample
point j∗ ∈ [1, N ] which has the largest cosine distance value between it and its most-similar
mean cluster composition (meaning it does not match with any cluster well):

Xj∗ = arg max
j∈[1,N ]

(
arg min

i∈[1,K]
||Xhyp,j − X̄i||

)
(18)

.
At this stage in the project a formal mathematical equation/algorithm to describe this

process has yet to be formulated. While we understand we wish to use Euclidean distance
as the similarity metric to create the continuous phases distribution/composition over the
whole material, the exact methodology will depend on the peak shift constraint programming
described in Section 4.1.3, as the structure of the GRENDEL algorithm may change. In
addition, how we represent the basis phases and shifting in the matrix E may change the
mathematical process we want to use. A validation method must also be determined.

8.4.1 Harder Connectivity Constraints

We also wanted to see if our Cannot Link algorithm in Section 4.1.2 was strict enough. In
other words, we wanted to see if adding an additional constraint would help increase the
accuracy of our clustering output. We wanted to see if the Cannot Link algorithm correctly
made sure that all clusters were connected during every iteration of Graph Cut. After every
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iteration of graph cut, we checked the cluster membership of each data point to make sure
at least one of its neighboring points in the simplex had the same cluster membership. If
indeed there was a point j disconnected from its cluster, we then went through the same
Data Cost procedure as described above to find the most-likely cluster membership of the
clusters of j’s neighbors, reassigned point j to that cluster, and set the Data Cost of the old
cluster assignment to ∞.

Implementing this new constraint only showed though that our Cannot Link algorithm
does a satisfactory job of keeping connectedness of clusters over all iterations of GRENDEL.
While during the validation process we were able to isolate disconnected points in the sample
material, when applying this constraint along with Cannot Link there was never any discon-
nected points that Cannot Link did not already address. Thus, the ternary diagram of this
harder connectivity constraint is the same as that in Figure 9, and had the same F-score of
that of the Cannot Link algorithm. Yet this did prove that we have adequately addressed
the physical law of connectedness of clusters in order to focus on creating an algorithm to
constrain peak shifting.

9 Timeline

The project timeline had to be appended by this mid-year support, as we recognize finishing
the constraint programming portion is of the utmost importance. The project will still be
divided into three separate stages, with the first stage complete:

1. Fully understand GRENDEL, replicate the previous results (mid/late October) com-
pleted

2. Constraint Programming

(a) Add connectivity constraints and expert prior knowledge (November) completed

(b) Add constraints for peak shifting (January)

(c) Potential addition of other physical laws if necessary (February)

3. Active Learning

(a) Have an algorithm to predict the next best point to sample (March)

(b) Optimize the sampling algorithm for one material (mid April)

(c) Optimize algorithm for all given material data (late April)

10 Deliverables

I will be delivering my final algorithm, which will compute the constituent phase composition
and clustering. This code will also include the active learning component, so the number of
sample points needed to generate the desired results will be outputted as well. When avail-
able, percent agreement between our output and previously-generated phase decomposition
data will be available. Phase diagrams, spectral graphs, and numerical phase composition
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proportions will be generated for each of the given sample materials. In addition, an end of
the year report and presentation will be given per requirements of the course.
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