
 

Page 1 
 

A Framework for construction of and computations 

on Four-Dimensional Aircraft Trajectories 

 

CMSC 663-664 

2016-2017 

 

Author: 

Jon Dehn 

jondehn@umd.edu 

 

Advisor: 

Dr. Sergio Torres 

Fellow, Leidos Corporation 

Sergio.torres@leidos.com 

 

 

 

 

Mid Year Update – December 12, 2016 

  

mailto:jondehn@umd.edu
mailto:Sergio.torres@leidos.com


 

Page 2 
 

Abstract 

Air traffic control systems perform many functions in order to safely and efficiently move air 

traffic through the national and international airspace.  A key component of these systems is an 

accurate prediction of where the individual flights will be over time.  This project builds a 

framework to both do that prediction and use the prediction to examine various air traffic 

control algorithms for both accuracy and efficiency.  This framework is design for reuse, such 

that future research into ATC algorithms can be conducted with simple extensions to the 

system.  
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1 Introduction 
Global Air Traffic Control (ATC) is distributed among multiple Flight Information Regions (FIRs).  Each 

country is responsible for safely and efficiently handling traffic in their FIRs. Most countries have 1 FIR; 

due to the volume of air traffic and the complexity of its airspace, the US has 20. 

At the core of the FIR’s processing is building an estimate of each aircraft’s trajectory (a four dimensional 

description of the flight path, with dimensions of latitude, longitude, altitude and time). 

Once these trajectories are constructed, they are used for various purposes, such as conflict detection 

(which predicts whether two aircraft will be too close to each other, or if a single aircraft will fly into 

restricted airspace), workload planning for the human controllers separating air traffic, airport arrival 

and departure planning, etc. 

This project will examine different aspects of generating and using these trajectories, including 

performance aspects of using the trajectories in various applications. 

 

2 Project Goal 
The project will build a modular system where:  

1. Different trajectory generation algorithms can be tested 

2. Algorithms using those trajectories can be tested for performance and accuracy.  The specific 

algorithms selected have relevance to the state of the practice today. 

This framework can be used to explore new concepts for air traffic management. 

A secondary goal is that the project’s author becomes familiar with techniques of parallelizing 

computing algorithms, and becomes more proficient in the use of the Python programming language. 

As of December 2016 the initial framework has been created to generate trajectories; spring of 2017 will 

be dedicated to carrying out a set of experiments using those generated trajectories. 
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3 Approach 
The system to be built looks like this: 

 

The trajectory generation algorithm takes three major inputs: 

1) Flight intent, consisting of items such as route of flight, departure time, desired airspeed, type of 

aircraft and desired cruising altitude 

Flight Intent can be either synthetic for testing or derived from real-world data (via the publicly 

available “Aircraft Situation Display to Industry” (ASDI) data stream, or websites such as 

“FlightAware”[9]).  

2) An atmospheric model, listing temperatures, pressures and wind aloft values for the FIR’s 

geographic region.  One instance of this is a three-dimensional model, but multiple hour 

forecasts are available, which adds a fourth dimension.  This is publicly available from NOAA, 

and are distributed in “GRIB2” format[6]. These files typically use a Lambert conical projection, 

which would be transformed into a grid of fixed sized cells, with fixed sized latitude, longitude 

and altitude[8]. 

Initial testing can be done with a “null” model of zero winds. 

3) A set of airframe parameters, that indicate how particular aircraft types (such as a Boeing 737) 

will climb and descend.  For this, Eurocontrol’s Base of Aircraft Data (BADA) dataset[1] will be 

used (under the University of Maryland license).  There are two versions of this model in use; 

version 3 (which has a rich set of airframe parameters) and version 4 (which is more detailed but 

covers fewer airframes currently).  Time and licensing arrangements permitting, the differences 

between version 3 and 4 can be explored. 

These experiments are proposed; time constraints may preclude all four from being completed (these 

are listed in priority order): 

 

 

 

 

 

 

 

 

 

Atmospheric 

Model 

Airframe 

Parameters 

Trajectory Generation 

Algorithm 
Flight 

Intent 

4D 

Trajectory 

Conflict Detection 

Other 4D trajectory 

algorithms 

Figure 1 Framework Design 



 

Page 7 
 

1) The current US system uses current-hour weather model for all computations, even though a 

flight can last several hours. Implement a version that uses future weather forecasts and 

compare changes in long-duration trajectories 

2) Find an optimal wind-aided trajectory.  This will find an “optimal” trajectory between two points 

given non-zero wind patterns.  Initially, “optimal” will be define as the trajectory that uses the 

least fuel; other more complex definitions could be supplied. 

3) Parallelize conflict detection algorithms, measure complexity of implementation vs. speed 

tradeoffs for different parallel techniques 

4) Look at the increased accuracy of BADA version 3 vs. version 4 for identical aircraft types, 

balanced against the increase in complexity and computational load 

These are described in slightly more detail in Section 4.7 Proposed Experiments on page 15. 

 

4 Scientific Computing Algorithms 
The principal algorithm that is implemented is the generation of the 4D trajectory; this requires the 

solution of the ordinary differential equation to describe the climb and descent segments of the 

trajectory.  Some basic concepts are discussed first. 

4.1 Coordinate system 
Points on the earth’s surface are transformed to a Cartesian coordinate (x,y,z) on a unit sphere (radius = 

1.0). Given the radius of the earth, distances on the surface of the unit sphere are converted to nautical 

miles (NMI), for things like speed calculations (Knots). Other calculations such as intersection of great 

circle arcs are simplified when the unit sphere is used. 

Since we are concerned with a particular geographic area, an approximation of the earth’s radius for 

that area would be used in practice (perhaps slightly different for each FIR).  For this project, the mean 

radius of the earth will be used. 

All external latitude/longitudes are supplied in WGS 84 coordinates[2], which assumes the earth is an 

ellipsoid with specific major and minor axes (same as is used by the GPS).  Translation to the unit sphere 

is straight forward, and supplied as routines in many programming languages. 

Note that the Cartesian coordinate (x/y/z) is for the surface of the earth.  Altitude above the surface is 

separately specified (and forms one dimension of each trajectory point).  This simplifies the ODE to be 

solved, since it depends on altitude, not distance from the earth’s center. 

4.2 Speed Definitions 
The algorithms use several different “speed” values, as described below. 

True Airspeed (TAS) – speed of the aircraft relative to the surrounding air mass (which may be moving 

with respect to the earth’s surface) 

Ground speed – speed of the aircraft over the surface of the earth; this is the true airspeed adjusted by 

the winds moving the air mass.  If wind speed and TAS are given as vectors, VGS = VTAS + VWIND. 
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Calibrated airspeed (CAS) – airspeed as known to the aircraft’s instrumentation; this is based on a 

“calibration” that takes into account any known bias in the instruments.  For a constant CAS, TAS will 

vary depending on altitude 

Mach – speed of sound; important here because aircraft plan to hold CAS and Mach constant; there is a 

crossover altitude at above which planning is done based on Mach speed, CAS and Mach will be equal at 

that altitude.  

4.3 Trajectory Generation Basics – latitude and longitude dimension 
As noted above, the trajectory generator takes flight intent as an input.  This is supplied by the airline or 

pilot, and consists of: 

• The path (over the surface of the earth) to be followed 

• The desired cruise altitude 

• The desired cruise speed (true airspeed or Mach; in practice only military flights specify this in 

Mach) 

• The type of airplane (e.g. Boeing 737) 

• Departure time 

As an example, consider Southwest flight 3156 from Baltimore (airport code BWI) to Orlando (MCO): 

• altitude 40,000 feet 

• speed 452 knots 

• Boeing 737-300 

• Depart at 10:35 am 

The creation of the actual path from departure airport to destination airport is beyond the scope of this 

project; we start with the expanded set of points as an input.  This input defines a path on the earth’s 

surface, which starts at the departure airport, ends at the destination airport, and has intermediate 

waypoints.  The waypoints are connected by great circle arcs.  In order to more accurately follow the 

path of the flight, turn waypoints can be replaced with a number of smaller segments that more closely 

approximate the turn to be taken.  Whether this is done depends on the accuracy needed for other 

work. Figure 2 shows an example path from Baltimore to Orlando. 
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Figure 2 Horizontal path for sample flight 

 

4.4 Trajectory generation basics – altitude and time 
In order to turn the two-dimensional waypoints into points on a four-dimensional trajectory, altitude 

and time are calculated for each point.  This results in a vertical profile that looks something like Figure 

3. 

 

Figure 3 Vertical profile of sample flight 

Each trajectory point is called a cusp, and the segments that connect cusps have a constant rate of 

vertical velocity (climb or descent) and a constant rate of acceleration over the segment.  This, along 

with the starting ground speed for each segment, allows us to predict where a flight will be at any point 

in time. 
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This final representation of the trajectory has additional points added between the waypoints supplied 

as inputs, in order to assure that the above definition of constant acceleration/vertical velocity holds.  

For example, it is necessary to accelerate to the desired climb speed; when that acceleration is complete 

a cusp is added to the trajectory. 

4.5 Rate of Climb/Descent 
Calculation of the rate of climb (or descent) is described in detail in [1], and is summarized here. 

The basis of this rate is this conservation of energy equation: 

(Thr −  D) ∗  VTAS =   mg0

dh

dt
+ mVTAS

dVTAS

dt
(4.5 − 1) 

 

Where 

Thr Thrust supplied by the aircraft 
engines 

 m (mass) Mass of the aircraft, including 
fuel, passangers and baggage. 
This will decrease over the life 
of the flight 

D (Drag) Drag from movement through the 
atmosphere 

 g0 Gravitational acceleration 

VTAS Velocity in true airspeed   h Geodetic altitude 
 

Combine this equation with the assumption that, during climbs and descents, pilots hold speed (CAS or 

Mach) and throttle position constant, the above can be re-written as  

dh

dt
=  

(Thr −  D) ∗  VTAS

mg0
[1 + (

VTAS

g0
) (

dVTAS

𝑑ℎ
)]

−1

(4.5 − 2) 

 

The last term can be replaced by an “energy share factor” [3]; the ratio of energy allocated to climb vs. 

acceleration for a constant velocity; a function of Mach: 

𝑓{𝑀} =  [1 + (
VTAS

g0
) (

dVTAS

𝑑ℎ
)]

−1

(4.5 − 3) 

 

Hence, the rate of climb or descent (which is typically expressed in pressure altitude Hp, rather than 

geodetic altitude h), is 

𝑅𝑂𝐶𝐷 =  
𝑑𝐻𝑝

𝑑𝑡
=

𝑇 − ∆𝑇

𝑇
[
(Thr −  D) ∗ VTAS

mg0
] 𝑓{𝑀} (4.5 − 4) 

 

Where T is temperature at altitude, and ∆𝑇 is the temperature differential at that altitude from the 

International Standard Atmosphere (this is given by the atmospheric model). 



 

Page 11 
 

4.5.1 Energy Share Factor 
The energy share factor 𝑓{𝑀} is a function of Mach (M) and varies with altitude, and whether we are 

accelerating or decelerating in climb or descent.  As an example (to convey the complexity of the 

equation), below the crossover altitude when not accelerating, it is defined as: 

𝑓{𝑀} =  {1 +
𝜅𝑅𝛽𝑇,<

2𝑔0
𝑀2

𝑇 − ∆𝑇

𝑇
+ (1 +

𝜅 − 1

2
𝑀2)

−1
𝜅−1

{(1 +
𝜅 − 1

2
𝑀2)

𝜅
𝜅−1

} − 1}

−1

(4.5 − 5) 

 

Where  

𝜿 Adiabatic index of air = 1.4    
R Real gas constant for air =287.05287    

𝜷𝑻,< ISA temperature gradient below the tropopause - -0.0065    
 

The Mach number is based on the current speed at the current altitude, which may be a true airspeed.  

If so, that TAS is converted to a Mach value by dividing the VTAS by the speed of sound at the given 

altitude (the value for T is obtained from the weather model at the current altitude): 

𝑀 =
𝑉𝑇𝐴𝑆

√𝜅𝑅𝑇
(4.5 − 6) 

 

 

The full definition of the energy share factor can be found in [1]. 

4.5.2 Thrust 
Thrust depends on the engine type (Jet, Turboprop or Propeller), pressure altitude, airspeed (in some 

cases) and temperature differential. 

For example, for a jet engine, the maximum climb thrust would be: 

(𝑇ℎ𝑟max 𝑐𝑙𝑖𝑚𝑏)𝐼𝑆𝐴 =  𝐶𝑇𝐶,1 ∗ (1 − 
𝐻𝑝

𝐶𝑇𝐶,2
+  𝐶𝑇𝐶,3 ∗ 𝐻𝑝

2) (4.5 − 7) 

 

Where the coefficients Cx are given for the airframe type in the BADA dataset.  Note that in this case (of 

a jet engine) there is no term for airspeed. 

4.5.3 Drag 
Drag depends on the Drag Coefficient, which in turn depends on the lift coefficient. 

Lift coefficient:  

𝐶𝐿 =  
2 ∗ 𝑚 ∗ 𝑔0

𝜌 ∗ 𝑉𝑇𝐴𝑆
2 ∗ 𝑆 ∗ 𝑐𝑜𝑠∅

(4.5 − 8) 
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Drag Coefficient: 

𝐶𝐷 =  𝐶𝐷0,𝐶𝑅 +  𝐶𝐷2,𝐶𝑅 ∗ (𝐶𝐿)2 (4.5 − 9) 

 

And finally drag force: 

𝐷 =  
𝐶𝐷 ∗  𝜌 ∗  𝑉𝑇𝐴𝑆

2 ∗  𝑆

2
(4.5 − 10) 

 

S Wing surface area 
ρ Air density 
∅ Bank angle (zero, unless in a turn) 

 

4.5.4 Weather Model 
The weather model supplies some key data for the above equations.   Specifically, the following 

information is used from the NOAA-supplied data: 

1) North wind component 

2) East wind component 

3) Temperature (from which the ∆𝑇 can be calculated) 

4) Pressure 

4.6 Trajectory Generation Summary 

4.6.1 Flight Intent Source 
The FlightAware web site (www.flightaware.com) provides intent (airspeed, cruise altitude, route of 

flight, departure time) for all commercial flights in the US.  Once a pair of endpoint airports is selected, 

that site provides the fixes in the route for a variety of flights between those cities.  This data is screen-

scraped (using a developed Python program) to produce an intent file that can be used in various 

experiments.   

Flights of various durations and directions can therefore be added to the inventory of test data. 

4.6.2 Airframe Parameters 
Eurocontrol's BADA database is used (by extending the University's existing license for use on this 

project); version 3.13 is the latest version as of fall 2016; it is used for this effort. 

4.6.3 Atmospheric Model 
GRIB2 files, with atmospheric levels, are provided hourly by NOAA. Selected days data is captured and 

converted to a form usable by the program.   That conversion follows this process: 

1) The data from NOAA is provided in various resolutions; for this effort the 40 km grid is used, 

with the data covering the continental US. 

2) That data is processed by NOAA's "degrib" tool [10] to produce ASCII files (in comma-separated-

value format, CSV) containing: 
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a. Grid Coordinates (x/y) 

b. Latitude and Longitude (in geodetic coodinates) of that grid point 

c. Value for the parameter; the temperature, U wind value, V wind value and pressure 

values are used here 

3) Data in the CSV file is in the Lambert Conical Projection, with a secant line of 25 degrees north 

latitude.  When building a trajectory, fast access to weather data in a spherical (conformal) grid 

is needed.  Hence the data is transformed to a lat/long grid in equally-spaced conformal latitude 

and latitude, in equally spaced altitude bands of 1000 feet.   This data is then written to disk 

using the "numpy" Python package (which stores dense arrays of floating point data).  During 

trajectory generation, the particular set of weather data and these files are read for use during 

processing. Numpy is used in various places in this project, but (at this point) only for its efficient 

in memory representation of large arrays, and the load and store operations on those arrays. 

The transformation from Lambert to Spherical requires that a spherical grid be constructed that lies 

within the Lambert data.  The values of each parameter at the spherical grid points is an interpolated 

value from the Lambert grid.  In the horizontal direction, a bi-linear interpolation is used from the four 

surrounding Lambert grid points; these horizontal points (which are at pressure levels 1000 mb through 

100 mb) are then linearly interpolated in the vertical direction to give values at evenly spaced 1000 foot 

altitude bands.  This is the same technique as is detailed in "ERAM Flight Data Processing (FDP) and 

Weather Data Processing (WDP) Algorithms" [8]. 

The grids are shown in Figure 4.  This figure is shown with latitude distances unchanging with longitude 

(that is, no special projection).  The blue Lambert grid appears to expand towards the north, since in fact 

the longitudinal spacing will decrease as we go north.  The red spherical grid that is created by the 

program is designed to fit completely in inside the Lambert grid, so that only interpolation is needed to 

find point values.  The green box shows the extent of the lower 48 states; the part that is outside the red 

grid to the east is the eastern-most tip of Maine.   If this setup modeled a flight in that remote part of 

Maine, no wind or temperature information would be available. 
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Figure 4 Lambert vs. Spherical grids 

4.6.4 Trajectory Generation 
Using the above definitions, the ordinary differential equation given for ROCD (Equation 4.5-4) is solved 

using a Runge-Kutta technique (Python provides some existing code in this area, scipy.integrate.ode 

provides Runge-Kutta solutions for order 4 and 8 with configurable step size).  This describes the climb 

or descent phases; the cruise phase (moving at constant true airspeed) is simply following the route of 

flight from one waypoint to another. Note that the time associated with each cusp is calculated from the 

ground speed and ground speed acceleration applied to get from one cusp to the other.  Ground speed 

is derived from the true airspeed by applying the wind observed at the altitude of the cusp.   

While the descent phase also involves solving the ODE for ROCD, there is one additional complication; 

that equation requires mass to be known at each cusp.  In this case, we know where we want to end 

(the destination airport), but the point at which to start the descent is not precisely known.  An iterative 

technique is used: 

1) First, make a gross approximation of the top of descent point. 

2) Solve the ODE, descending to the destination airport’s altitude. 

3) If we are within a small epsilon of the airport, the iterations are done.  The choice of epsilon 

affects how many iterations are necessary; in this case, an epsilon of approximately 1000 feet 

(shorter than commercial airport runways) is appropriate. 
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4) Otherwise, move the top of descent point forward or backward along the route defined by the 

waypoints, in order to get closer to the destination airport, and repeat starting at step 2. 

The movement of the top of descent point can be summarized as follows: 

1) Let TODk represent the top of descent point for iteration “k”.  This is measured in distance along 

the route from the departure airport.  This is termed the “along route distance”, or ARD. 

2) Let AP represent the ARD of the destination airport; this is the known distance at the end of the 

trajectory 

3) On any iteration k, the ARD when the trajectory is modeled to reach the destination airport is 

denoted as Dk. 

4) Let function E, at any iteration k, represent the difference between the actual outcome (Dk) and 

the desired outcome (AP).  When this function is zero, we are done.  So Ek = (Dk – AP). 

5) The algorithm becomes: 

a. Take an initial guess at TOD0; this will be based on some standard descent rate. 

b. Calculate D0. 

c. Set TOD1 = TOD0 – E0 

d. Compute Ek (initially for k=1) 

e. If Ek is not sufficiently small, set 

𝑇𝑂𝐷𝑘+1 =  𝑇𝑂𝐷𝑘 −  
𝐸𝑘(𝑇𝑂𝐷𝑘 −  𝑇𝑂𝐷𝑘−1)

𝐸𝑘 −  𝐸𝑘−1

(4.6 − 1) 

f. and repeat steps (d) and (e) 

In practice, this algorithm converges in 2 or 3 iterations.  With complex weather patterns, it may take 

more, as these may introduce discontinuities in the relationship between TOD and total length of 

descent.  The program also limits the number of iterations to some large number (such as 50) in order to 

guard against endless loops (if these limits are reached; the trajectory generation process is abandoned). 

This yields the four-dimensional trajectory, which can be used in the proposed experiments listed below. 

4.7 Proposed Experiments 

4.7.1 Trajectory Generation 
Prior to any experiment using a trajectory, the trajectories have to be generated and verified. 

In general, the climb/cruise/descent phase is best depicted as a plot of altitude against either elapsed 

time from take, or distance from takeoff.  An example of Altitude vs. Distance is shown in Figure 5. 
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Figure 5 Typical Altitude vs. Distance Plot 

Each point on this plot is the end of a trajectory segment; each point has a latitude, longitude, altitude 

and time, and each segment has a rate of climb or descent and ground speed acceleration. 

4.7.2 Use of Weather Forecast Models 
A weather model (temperatures, pressures and wind speed) is essential for trajectory generating.  The 

current state of the practice uses the current weather model for the entire trajectory generation 

process, even though the trajectory itself may span many hours.  NOAA provides not only the current 

hour weather model, but predictions for future hours as well.   

This experiment will modify the trajectory generation process to use those forecast models, 

interpolating between hours to get an approximation of the variables at the cusp times in the trajectory.   

This increases the complexity (slightly) and the storage needed (more than slightly) of the algorithm, and 

the question to be answered is whether this substantially changes the produced trajectory, especially 

the duration of the trajectory. 

4.7.3 Wind Optimal Trajectories 
The trajectories as described above follow a known path along the surface of the earth between 

waypoints.  By following these paths, separating aircraft becomes somewhat simpler; especially to 

human air traffic controller who is used to aircraft following known paths. 
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By using the rigid path, however, the time in the air may be longer than necessary, especially if there are 

favorable wind conditions on other paths.  This experiment will use Particle Swarm Optimization (PSO) 

techniques [4][5] to find an optimal path from fixed end points (the departure and destination airports 

are fixed, obviously).  In this case, “optimal” can be defined as a function by an airline operator; the 

simplest choices are total flight time or fuel burned. 

Note that there have been debates in the air traffic community about so-called “free flight” (letting 

aircraft fly where they want to, rather than where the air traffic control system dictates).  This 

experiment will make no assumption on the future plans of the FAA to encourage or discourage free 

flight; rather the emphasis is applying PSO to this problem space. 

PSO is used to find paths between two points (A and B in this discussion).  Since the initial departure 

path from an airport is determined by available runways and wind conditions, point A will start at what 

is called the "Meter Fix"; a point after departing the airport.  Similarly, point B will be the meter fix on 

approach to the destination airport. 

PSO examines several paths from A to B.  A fuel usage value is calculated for each path, and PSO iterates 

until it appears that the improvements in additional paths is minimal.  PSO doesn't guarantee that a 

minimum value is found; rather the goal is to find an acceptable solution in a relatively small amount of 

time. 

The algorithm contains a bit of randomness (simulating the somewhat random behavior of a swarm), 

but learns from each iteration as to where the next iteration should concentrate.  The basic operation of 

the PSO algorithm is shown in Figure 6. 

One iteration of the algorithm will find many paths.  Any given path is determined by a set of points.  

Figure 6 shows 5 possible paths starting at point A.  The first iteration always proceeds this way; the 

number of paths and the range covered by those paths will be determined by experimentation.  One 

segment in one path is a straight line of a given distance, ending at point P in the figure.  The next 

segment will be of the same length; the direction of the segment is constructed based on three values: 

1) The course coming into point P. This is called Θi (for inertia).  There is some randomness 

introduced into this value, within a range +/- around the incoming course. 

2) The course with the optimal tail wind at point P.  This is called Θw (for wind). Recall that the 

wind values are in a three dimensional grid, so altitude matters when determing the wind.  For 

the departure segments from point A, altitude is determined from the ROCD calculations given 

in section 4.5.  For approach segments to point B, this is more difficult as the general algorithm 

includes an iterative approach to find the top of descent point (section 4.6.4).  As an 

approximation, a standard descent profile is built in the absence of winds, going from the cruise 

altitude to the altitude of point B, and once a new point P is within that (direct) distance of B, 

the altitude is retrieved from that standard profile at the distance (P -> B) from the end point.  

3) The course from P to the endpoint B.  This is called Θe (for end point). 
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Figure 6 PSO Algorithm 

These three courses are combined with a set of weights: 

𝜃 = 𝑊𝑖𝜃𝑖 + 𝑊𝑒𝜃𝑒 + 𝑊𝑤𝜃𝑤 (4.7.3 − 1) 

These weights sum to 1.0.  In order to converge on B, the weights are calculated as follows. 

𝑊𝑒 is calculated first, according to how close we are to the endpoint: 

𝑊𝑒 = (1 −  
𝑑𝑖𝑠𝑡(𝑃, 𝐵)

𝑑𝑖𝑠𝑡(𝐴, 𝐵)
) (4.7.3 − 2) 

 

Additionally, once 𝑊𝑒 is greater than a threshold (say, 0.95), it will be set to 1.0.  This ensures we 

eventually get directly to point B. 

Once 𝑊𝑒 is known, the remaining weight (1.0 - 𝑊𝑒) is divided between 𝑊𝑖 and 𝑊𝑤 based on pre-

determined percentages; say 70% for wind and  30% for inertia.  This ratio is subject to experimentation. 

When the ultimate course 𝜃 is known, a new point P can be calculated as the next step on the path. 

Each path in the iteration is calculated in this fashion.  This will result in a set of zig-zag lines.  These lines 

are smoothed to represent flyable paths, and the fuel consumption for each path is calculated. 

That concludes one iteration.  The lowest-fuel consumption path is chosen as the "best" path for that 

iteration. 

Any iterations after the first differ only in the starting courses.  Since a previous best path is known, the 

starting courses from point A are now chosen to cluster around that previous best path. 

Iterations proceed until the delta fuel usage for the best path between iterations is less than some 

selectable value epsilon. 
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4.7.4 Parallelizing Conflict Detection 
Once a flight information region has a set of trajectories (flights that are currently airborne or are 

scheduled to be airborne within some time horizon), the ATC systems must predict if any two aircraft 

will come too close to one another, or if any aircraft will enter restricted airspace. 

The aircraft-to-aircraft case is interesting in that it is a compute-intensive activity that might lend itself 

to parallelization. At its core, this process must compare any new or changed trajectory against all other 

trajectories in the FIR’s set of flights.  Since each trajectory consists of a set of segments, this entails 

many segment-to-segment comparisons.  A typical FIR may have 200 or so flights in its working set, each 

of those trajectories may have 200 or so segments.  A completely brute force approach would then, for 

a single new or modified flight, do 200 (segments in new trajectory) x 200 x 200 (segments in existing 

trajectories), or 8,000,000 comparisons. 

In practice [7], this is implemented as a sequential process where the vast number of comparisons is 

reduced by a set of filters (the filters weed out cases that could not possibly be in conflict).  The first two 

filters listed below are on the trajectories as a whole; the remaining are for each segment on the two 

trajectories being checked. 

These filters are: 

1) Trajectory level coarse time filter – if one trajectory ends before the other starts, they cannot be 

in conflict 

2) Trajectory level box filter – this compares the “box” constructed in three dimensions (latitude, 

longitude and altitude) for each of the two trajectories being compared, to see if there is 

overlap at that level 

3) Segment level vertical coarse filter – this checks to see if the two segments are within the same 

altitude band 

4) Segment level horizontal coarse filter – this checks the minimum approach distance in a 

horizontal direction 

5) Segment level horizontal middle filter – again checks for closest approach, but now considers 

where the aircraft might be within the segment 

6) Segment level vertical middle filter – again considers altitude, but only on the portion of the 

segments that come within the horizontal separation distances 

7) Segment level horizontal fine filter – checks for closest approach, but only the regions that have 

passed the previous filters 

A true conflict is one that passes all filters.  By parallelizing the ultimate checks done by the last filter, it 

may be possible to avoid some of the intermediate filters to achieve performance gains. 

4.7.5 BADA Version 4 Complexity vs. Accuracy 
Eurocontrol has published a version 4 of the BADA model.  This includes more complex equations, 

requiring more parameters per airframe type, in order to achieve a higher degree of accuracy.  If we can 

get access to the version 4 model (it is a separate licensing request to Eurocontrol), this experiment 

would compare the increase in complexity and run time vs. the accuracy gained by using version 4 vs. 

version 3. 
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5 Implementation 
The implement is done using the Python language.  It offers the following advantages: 

• Portable to many operating systems. 

• Has support for parallel processing, including packages that interface to GPUs. 

• Has the concepts of exception handling, classes, objects, modules, and packages. 

• Has a wealth of other packages for scientific computing. 

In spite of not being strongly typed or compiled before execution, this makes Python attractive for this 

effort.  

For an IDE, the PyDev Eclipse plug-in [11] is used.  Git [12] is used for configuration management.  

Python offers some limited documentation support in the language, but a separate design document is 

among the deliverables; this will discuss major code structure and design decisions. 

The development platform is a personal computer (desktop).  Tests will also be run on this 

configuration.  For the parallel processing experimentation, it will be necessary to obtain a high end 

graphics card (for use in a desktop computer); the Nvidia GEFORCE 960 graphics card is chosen for this 

purpose. 

If multiple general purpose CPUs networked together are needed, inexpensive Raspberry Pi computers 

can be used. 

 

6 Validation Methods 
Eurocontrol conveniently provides a tool that uses their version 3 equations to produce a 4D trajectory.  

This can be used to verify the basic trajectory generation engine.  This tool does not assume any 

weather model; adding a non-zero-wind model can be verified through spreadsheet analysis of the 

produced trajectories. 

The experiments that use a trajectory will be validated through careful construction of test cases (using 

alternative computations to ensure the necessary conditions are created), and then running those test 

cases to be sure the desired result is obtained. 

6.1 Trajectory Generation 
The verification occurs on two levels, and takes advantage of the fact that a known, proven 

implementation exists (from real air traffic control (ATC) systems).  First, the low level equations for 

thrust, drag, etc., are verified against existing implementations of those equations (same inputs should 

produce the same outputs).  Second, the overall trajectory that was generated is compared against a 

similar result from an ATC system simulator. 

This overall comparison for a descent segment is shown in Figure 7.   
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Figure 7 Trajectory Generation Comparison 

There are two places where there are noticeable differences: 

1) At the top of  descent, both cases shown a period of acceleration, during which the desired 

descent speed is attained (this speed is different than the cruise speed of the aircraft, requiring 

this period of acceleration).  During this period, the rate of descent will be smaller than normal, 

because energy is being used to change the speed.  The Python generated trajectory ends this 

period sooner than the ATC version.  A detailed analysis was undertaken for this; it revealed a 

bug in the ATC code (wrong value for acceleration was being used).   

2) The Python generated trajectory ends sooner than the ATC trajectory.  This is simply a function 

of the flight intent; the flight chosen for generation in Python was destined for an airport at 285 

feet above sea level; the ATC flight was going to an airport at 14 feet above sea level.  Hence the 

Python trajectory ends sooner. 

The above comparison is done without any wind (in order to have a valid comparison, wind data must 

be equal, and there is no way to use the same wind conditions in both cases). Another test is needed to 

show that the wind speeds are applied properly.  For this,  a "windy" day was chosen, where there was a 

significant head wind in the Python's flight direction.  This is expected to slow down the aircraft.  
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Figure 8 Effect of Wind on Trajectories 

  

In both plots, the blue line is the trajectory with the head wind applied; the red line shows the same 

flight without wind.  In an altitude vs. time plot, the climb and descent portions are identical (since the 

calculation of rate of climb/descent  (Equation 4-5.4) does not depend on ground speed, only true 

airspeed.   However, in this case, the cruise segment is elongated by more than 6 minutes due to the 

head wind.  The same information presented as an altitude vs. distance plot shows the flight is at cruise 

for a longer distance, as the ground speed at cruise is reduced by the head wind. 

7 Test Problems for Verification 

7.1 Use of Weather Forecast Models 
Several days of real weather models will be obtained by NOAA, especially ones where there are 

significant changes in wind speeds.  Starting with the same flight intent input, several trajectories can be 

generated using both the current forecast only and the future forecasts.  These trajectories will be 

chosen to traverse the FIR in different directions, in order to experience head and tail winds. 

The total flight time of each flight will be compared. 

7.2 Wind Optimal Trajectories 
Using both the weather models used above and synthetic models designed to have greatly varying wind 

speeds in different region, the Particle Swarm Optimization techniques will be used on a single flight. 

7.3 Parallelizing Conflict Detection 
An entire set of flights, as typically would be found in a FIR, is not needed for this experiment.  Rather, 

we just need pairs of flights that show various degrees of “closeness” to being in conflict with one 

another.   These will be run through a parallel algorithm, in order to validate the proof of concept (that 

is, what is the proper way to parallelize this problem). 

A full comparison would need to compare parallel techniques vs. state-of-the-practice techniques.  I 

don’t anticipate enough time in this course to complete that comparison. 
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7.4 BADA 3 vs 4 
The details of the BADA version 4 implementation are not known in detail (they won’t be known until 

we obtain a license for them). Hence the particular test cases where version 4 should be an 

improvement aren’t known at this time. 

Once a license is obtained, these tests can be defined. 

 

8 Results 
For these main experiments:  

1. Using future weather forecasts as opposed to only the current conditions should yield 

improvements in flight duration times at little computation or complexity expense; memory 

used would increase.  All these values can be quantified in the results. 

2. Optimal wind-aided trajectories should find “less expensive” trajectories than nominal case.  The 

reduction in expense can be quantified.  In addition, examining some real NOAA data can show 

how likely it is that alternate, less expensive routes can be found. 

3. Parallel solutions for the conflict detection algorithms should reduce computation time, perhaps 

meaning that simpler algorithms can be used in place of the existing state of the practice 

4. BADA version 3 vs version 4, it is expected that version 4 offers greater accuracy, especially in 

low altitude situations, but may not be worth the extra complexity and computation cost. Note: 

this requires an additional Eurocontrol license (to get the additional airframe data), and will be 

done as time allows. 

 

9 Conclusion 
The creation of a framework to produce trajectories, given the parameters found in a BADA dataset, can 

be used for many experiments of interest to ATC.  This project establishes that framework and conducts 

a few such experiments.  These experiments are designed to provide insight into situations confronting 

ATC today, and the framework can continue to be used for future work. 

 

Appendix A. Timeline 
 

Table 1 Proposed Schedule 

Timeframe Progress Achieved 

Thanksgiving Implement trajectory generation using BADA version 3 - completed 
Detail the particle swarm optimization algorithm to be used - completed 

December Implement and measure the use of forecasted weather 
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January Initial PSO algorithm for wind-aided trajectories 

February Initial parallel conflict detection algorithm 

March Additional parallel algorithm tests, tuning PSO algorithm 

May Final algorithms and analysis, produce final report 

If time allows Implement BADA 4, compare BADA 3 vs 4 

 

Appendix B. Milestones 
The milestones roughly follow the schedule presented, including these items: 

1) Basic Trajectory Generation algorithm implemented and tested 

2) Initial version of each algorithm implemented 

3) Final version of each algorithm implemented and tested 

4) Final report produced 

Appendix C. Deliverables 
1) Python Source Code 

2) Design documentation, including interface definitions 

3) Results 

4) Class presentations and reports 
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Appendix E. List of Abbreviations 
ASDI Aircraft Display for Industry 

ATC Air Traffic Control 

BADA Base of Aircraft Data 

CAS Calibrated Air Speed 

FAA Federal Aviation Administration 

FIR Flight Information Region 

GPS Global Positioning System 

GRIB Grid in Binary 

ISA International Standard Atmosphere 

NMI Nautical Miles 

NOAA National Oceanic and Atmospheric Administration 

PSO Particle Swarm Optimization 

ROCD Rate of Climb or Descent 

TAS True Air Speed 

WGS World Geodetic System 

 

 

 

 

 

 


