Analysis of the Adjoint Euler Equations as used for Gradient-based Aerodynamic Shape Optimization

> Dylan Jude Graduate Research Assistant



University of Maryland AMSC 663/664

December 8, 2016

### Abstract

- Adjoint methods are often used in gradient-based optimization because they allow for a significant reduction of computational cost for problems with many design variables.
- The proposed project focuses on the use of adjoint methods for two-dimensional airfoil shape optimization using Computational Fluid Dynamics to solve the steady Euler equations.



Airfoil Example Problem

Given *n* design variables  $\alpha_1, \alpha_2, \alpha_3...\alpha_n$  we can achieve a change in airfoil shape:



We want to minimize a cost function  $I_c$  in the design process

Mathematically:

$$I_c(\alpha) = \oint_{airfoil} (P - P_d)^2$$

Pressure Coefficient



We want the sensitivity of the cost function to the design variables. Using a brute-force approach:

$$\frac{\partial I_c}{\partial \alpha_1} = \frac{I_c(\alpha_1 + \Delta \alpha_1) - I_c(\alpha_1)}{\Delta \alpha_1}$$

For 2 variables, 3 **expensive** CFD flow calculations to find

$$I_c(\alpha_{1,2}), \quad I_c(\alpha_1 + \Delta \alpha_1), \quad I_c(\alpha_2 + \Delta \alpha_2)$$

The adjoint method instead can find N variable sensitivities in with the cost of a single CFD flow-computation.

We want the sensitivity of the cost function to the design variables. Using a brute-force approach:

$$\frac{\partial I_c}{\partial \alpha_1} = \frac{I_c(\alpha_1 + \Delta \alpha_1) - I_c(\alpha_1)}{\Delta \alpha_1}$$

For 2 variables, 3 expensive CFD flow calculations to find

$$I_c(\alpha_{1,2}), \quad I_c(\alpha_1 + \Delta \alpha_1), \quad I_c(\alpha_2 + \Delta \alpha_2)$$

The adjoint method instead can find N variable sensitivities in with the cost of a single CFD flow-computation.

We want the sensitivity of the cost function to the design variables. Using a brute-force approach:

$$\frac{\partial I_c}{\partial \alpha_1} = \frac{I_c(\alpha_1 + \Delta \alpha_1) - I_c(\alpha_1)}{\Delta \alpha_1}$$

For 2 variables, 3 expensive CFD flow calculations to find

$$I_c(\alpha_{1,2}), \quad I_c(\alpha_1 + \Delta \alpha_1), \quad I_c(\alpha_2 + \Delta \alpha_2)$$

The adjoint method instead can find N variable sensitivities in with the cost of a single CFD flow-computation.

# Milestones

| Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.               | Late Oct  |              |
|------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| Functioning brute-force method for sensitivity of Pres-<br>sure cost function to airfoil perturbation variables. | Early Nov |              |
| Auto-differentiation of Euler CFD solver.                                                                        | Late Nov  | $\checkmark$ |
| Validate auto-diff and brute-force method for simple reverse-design perturbations.                               | Mid Dec   |              |
| Hand-coded explicit discrete adjoint solver.                                                                     | Mid Jan   |              |
| Implicit routine for discrete adjoint solver.                                                                    | Early Feb |              |
| Validate discrete adjoint solver against auto-diff and brute-force methods.                                      | Late Feb  |              |
| Test discrete adjoint solver with full reverse-design cases.                                                     | Mid Mar   |              |

# Milestones

| Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.               | Late Oct  |              |
|------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| Functioning brute-force method for sensitivity of Pres-<br>sure cost function to airfoil perturbation variables. | Early Nov |              |
| Auto-differentiation of Euler CFD solver.                                                                        | Late Nov  | $\checkmark$ |
| Validate auto-diff and brute-force method for simple reverse-design perturbations.                               | Mid Dec   |              |
| Hand-coded explicit discrete adjoint solver.                                                                     | Mid Jan   |              |
| Implicit routine for discrete adjoint solver.                                                                    | Early Feb |              |
| Validate discrete adjoint solver against auto-diff and brute-force methods.                                      | Late Feb  |              |
| Test discrete adjoint solver with full reverse-design cases.                                                     | Mid Mar   |              |

### Milestone: Late October

#### Mesh Generation:

```
1
2
   # Airfoil Surface
3
4
   ktot = 64
5
   half = 93
6
   airfoil = naca.naca4('0012', half, False, True)
 7
8
9
    # Mesh Generation
    #
11
       = libflow.MeshGen(airfoil, ktot, 5.0)
    mq
12
    mq.poisson(500)
    xy = mg.get_mesh()
```

### Source Terms to Mesh-Generation Equations

2-Dimensional mesh generation is traditionally done by solving the Poisson equation:

$$\xi_{xx} + \xi_{yy} = P$$
$$\eta_{xx} + \eta_{yy} = Q$$

Where  $\xi$  and  $\eta$  are coordinates of a mapped, equispaced grid (beyond the scope of this project).

Previous solver was without P and Q (Laplace equation). Steger and Sorenson [Steger and Sorenson(1979)] suggest source terms for P and Q to improve the grid quality near deformed surfaces.

## Comparing Mesh-Generator Source Terms



## Comparing Mesh-Generator Source Terms



#### Milestone: Late October

Airfoil Perturbation: [Hicks and Henne(1977)]

$$b(x) = a \left[ sin\left( \pi x^{\frac{\log(0.5)}{\log(t_1)}} \right) \right]^{t_2}, \quad \text{for } 0 \le x \le 1$$

 $t_1$  locates the maximum of the "bump" in  $0 \le x \le 1$   $t_2$  controles the width of the "bump"

## Airfoil Perturbations



## Airfoil Perturbations



## Milestone: Late October

Euler Solver:

```
1 # -----
2 # Start CFD
3 inputs = euler_utils.read_inputs("input.yaml")
4 euler = libflow.Euler(grid, yaml.dump(inputs))
5 euler.take_steps(1000)
6 pressure = euler.pressure()
```





Pressure coefficient contours around the airfoil Adjoints in CFD Pressure coefficient distribution over the airfoil

# Milestones

| Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.               | Late Oct  |              |
|------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| Functioning brute-force method for sensitivity of Pres-<br>sure cost function to airfoil perturbation variables. | Early Nov |              |
| Auto-differentiation of Euler CFD solver.                                                                        | Late Nov  | $\checkmark$ |
| Validate auto-diff and brute-force method for simple reverse-design perturbations.                               | Mid Dec   |              |
| Hand-coded explicit discrete adjoint solver.                                                                     | Mid Jan   |              |
| Implicit routine for discrete adjoint solver.                                                                    | Early Feb |              |
| Validate discrete adjoint solver against auto-diff and brute-force methods.                                      | Late Feb  |              |
| Test discrete adjoint solver with full reverse-design cases.                                                     | Mid Mar   |              |

#### Milestone: Early November

Functioning brute-force method for sensitivity of Pressure cost function to 3 airfoil perturbation variables:  $\alpha_1, \alpha_2, \alpha_3$ 

$$\frac{\partial I_c}{\partial \alpha_i} = \frac{I_c(\alpha_i + \Delta \alpha_i) - I_c(\alpha_i)}{\Delta \alpha_i}, \quad i = 1, 2, 3$$



# Milestones

| Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.               | Late Oct  |              |
|------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| Functioning brute-force method for sensitivity of Pres-<br>sure cost function to airfoil perturbation variables. | Early Nov |              |
| Auto-differentiation of Euler CFD solver.                                                                        | Late Nov  | $\checkmark$ |
| Validate auto-diff and brute-force method for simple reverse-design perturbations.                               | Mid Dec   |              |
| Hand-coded explicit discrete adjoint solver.                                                                     | Mid Jan   |              |
| Implicit routine for discrete adjoint solver.                                                                    | Early Feb |              |
| Validate discrete adjoint solver against auto-diff and brute-force methods.                                      | Late Feb  |              |
| Test discrete adjoint solver with full reverse-design cases.                                                     | Mid Mar   |              |

### Milestone: Late November

In auto-differentiation of Euler CFD solver, define the "dot" and "bar" operators:

| $\dot{x} :=$ | $= \frac{\partial x}{\partial \alpha} \qquad \bar{x} :=$ | $=\left(\frac{\partial x}{\partial x}\right)$ | $\left(\frac{x}{I}\right)^{T}$ | for a         | $x 	ext{ in } \{\alpha, X,$ | Q, I          | }         |
|--------------|----------------------------------------------------------|-----------------------------------------------|--------------------------------|---------------|-----------------------------|---------------|-----------|
| Foreward     | $\dot{\alpha}$                                           | $\rightarrow$                                 | Ż                              | $\rightarrow$ | $\dot{Q}$                   | $\rightarrow$ | İ         |
| Reverse      | $\bar{\alpha}$                                           | $\leftarrow$                                  | $\bar{X}$                      | $\leftarrow$  | $\bar{Q}$                   | $\leftarrow$  | Ī         |
|              | design vars                                              |                                               | grid                           |               | flow soln                   |               | cost func |
| II.:         |                                                          | - C                                           |                                |               |                             | c             |           |

Using the *Tapenade* suite of auto-differentiation software, can auto differentiate in forward or reverse mode.

#### Milestone: Late November

In auto-differentiation of Euler CFD solver, define the "dot" and "bar" operators:

| $\dot{x} :=$ | $= \frac{\partial x}{\partial \alpha} \qquad \bar{x} :=$ | $\left(\frac{\partial x}{\partial x}\right)$ | $\left(\frac{x}{t}\right)^T$ | for a         | $x 	ext{ in } \{\alpha, X, $ | Q,I           | }         |
|--------------|----------------------------------------------------------|----------------------------------------------|------------------------------|---------------|------------------------------|---------------|-----------|
| Foreward     | $\dot{lpha}$                                             | $\rightarrow$                                | Ż                            | $\rightarrow$ | $\dot{Q}$                    | $\rightarrow$ | İ         |
| Reverse      | $ar{lpha}$                                               | $\leftarrow$                                 | $\bar{X}$                    | $\leftarrow$  | $ar{Q}$                      | $\leftarrow$  | Ī         |
|              | design vars                                              |                                              | grid                         |               | flow soln                    |               | cost func |

Using the *Tapenade* suite of auto-differentiation software, can auto differentiate in forward or reverse mode.

#### Milestone: Late November

In auto-differentiation of Euler CFD solver, define the "dot" and "bar" operators:

| $\dot{x} :=$ | $= \frac{\partial x}{\partial \alpha} \qquad \bar{x} :=$ | $\left(\frac{\partial x}{\partial x}\right)$ | $\left(\frac{r}{T}\right)^{T}$ | for a         | $x$ in $\{\alpha, X,$ | Q, I          | }         |
|--------------|----------------------------------------------------------|----------------------------------------------|--------------------------------|---------------|-----------------------|---------------|-----------|
| Foreward     | $\dot{lpha}$                                             | $\rightarrow$                                | Ż                              | $\rightarrow$ | $\dot{Q}$             | $\rightarrow$ | İ         |
| Reverse      | $ar{lpha}$                                               | $\leftarrow$                                 | $\bar{X}$                      | $\leftarrow$  | $ar{Q}$               | $\leftarrow$  | Ī         |
|              | design vars                                              |                                              | grid                           |               | flow soln             |               | cost func |

Using the *Tapenade* suite of auto-differentiation software, can auto differentiate in forward or reverse mode.

### Tapenade Auto-Differentiation

Create a pre-compilation step in the makefile for reverse-differentiation:

```
pressure_cost_b.c : cost.c
2
   ${TPN} -reverse
          -inputlanguage
                         C
4
          -outputlanguage c
                 ../include
          — T
         -head "pressure_cost(I)/(q)"
7
         -adjfuncname
                        " b"
8
          -o pressure_cost
9
          cost.c
```

#### resulting code is often not pretty but readable

# Milestones

| Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.               | Late Oct  |              |
|------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| Functioning brute-force method for sensitivity of Pres-<br>sure cost function to airfoil perturbation variables. | Early Nov |              |
| Auto-differentiation of Euler CFD solver.                                                                        | Late Nov  | $\checkmark$ |
| Validate auto-diff and brute-force method for simple reverse-design perturbations.                               | Mid Dec   |              |
| Hand-coded explicit discrete adjoint solver.                                                                     | Mid Jan   |              |
| Implicit routine for discrete adjoint solver.                                                                    | Early Feb |              |
| Validate discrete adjoint solver against auto-diff and brute-force methods.                                      | Late Feb  |              |
| Test discrete adjoint solver with full reverse-design cases.                                                     | Mid Mar   |              |

#### Auto-differentiation Results

To simplify the design problem, let's temporarily use a different cost function to look at airfoil lift. This allows us to:

- ▶ use a test case for comparison with inviscid thin-airfoil theory
- use a single design variable  $\alpha$  = angle-of-attack

Slightly change our cost function from before

$$I_c(\alpha) = \oint_{airfoil} (P - P_d)^2 \quad \to \quad I_c(\alpha) = \oint_{airfoil} (-P \cdot d\vec{n})$$

$$\frac{\partial I}{\partial \alpha} = \left(\frac{\partial C_L}{\partial \alpha}\right)_{\text{thin-airfoil theory}} \approx 2\pi \quad \text{for small } \alpha$$

## Auto-differentiation Results



| Method      | $\Delta \alpha$ | $\frac{\partial I}{\partial \alpha}$ |
|-------------|-----------------|--------------------------------------|
| Brute Force | $0.1^{\circ}$   | 6.9893                               |
| Adjoint     | -               | 6.9839                               |
| Theory      | -               | 6.2832                               |

# Auto-differentiation Results

#### Case conditions:

| Airfoil Thickness | 12%             |
|-------------------|-----------------|
| Mach Number       | 0.5             |
| Angle of attack   | $2^{\circ}$     |
| Grid Dimensions   | $187 \times 64$ |

A few comments on these results:

- The  $2\pi$  result from thin-airfoil theory is for an infinitely thin airfoil in **incompressible flow**.
- ▶ Thick airfoils should have  $\frac{\partial I}{\partial \alpha} < 2\pi$
- ► But with increased Mach number  $\rightarrow \frac{\partial I}{\partial \alpha} > 2\pi$
- First-order spacial accuracy on relatively coarse mesh

# Looking Forward

| Auto-differentiation of Euler CFD solver.                                          | Late Nov  | $\checkmark$ |
|------------------------------------------------------------------------------------|-----------|--------------|
| Validate auto-diff and brute-force method for simple reverse-design perturbations. | Mid Dec   |              |
| Hand-coded explicit discrete adjoint solver.                                       | Mid Jan   |              |
| Implicit routine for discrete adjoint solver.                                      | Early Feb |              |
| Validate discrete adjoint solver against auto-diff<br>and brute-force methods.     | Late Feb  |              |
| Test discrete adjoint solver with full reverse-<br>design cases.                   | Mid Mar   |              |

Thank you!

## References I

[Nadarajah and Jameson(2002)] Siva Nadarajah and Antony Jameson. Optimal Control of Unsteady Flows Using a Time Accurate Method. Multidisciplinary Analysis Optimization Conferences, (June):—-, 2002. doi: 10.2514/6.2002-5436. URL http://dx.doi.org/10.2514/6.2002-5436.

[Steger and Sorenson(1979)] J.L. Steger and R.L. Sorenson.

Automatic mesh-point clustering near a boundary in grid generation with elliptic partial differential equations.

```
Journal of Computational Physics, 33(3):405 – 410, 1979.
```

ISSN 0021-9991.

doi: http://dx.doi.org/10.1016/0021-9991(79)90165-7.

URL http:

//www.sciencedirect.com/science/article/pii/0021999179901657.

[Hicks and Henne(1977)] R. Hicks and P. Henne.

Wing design by numerical optimization. Aircraft Design and Technology Meeting. American Institute of Aeronautics and Astronautics, Aug 1977. doi: 10.2514/6.1977-1247. URL http://dx.doi.org/10.2514/6.1977-1247.

### Appendix: Hicks Henne Function

With 6 bumps, 12 random variables: 3  $t_1$ , 3 a for each the top and bottom of the airfoil,  $t_2 = 1.0$ 

