
Analysis of the Adjoint Euler Equations as
used for Gradient-based Aerodynamic Shape

Optimization

Dylan Jude
Graduate Research Assistant

University of Maryland
AMSC 663/664

December 8, 2016



Abstract

I Adjoint methods are often used in gradient-based
optimization because they allow for a significant reduction
of computational cost for problems with many design
variables.

I The proposed project focuses on the use of adjoint methods
for two-dimensional airfoil shape optimization using
Computational Fluid Dynamics to solve the steady Euler
equations.
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Background Refresher

α

c

Airfoil Example Problem

Given n design variables α1, α2, α3...αn we can achieve a change
in airfoil shape:
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Background Refresher

We want to minimize a
cost function Ic in the
design process

Mathematically:

Ic(α) =

∮
airfoil

(P − Pd)2

[Nadarajah and Jameson(2002)]
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Background Refresher

We want the sensitivity of the cost function to the design
variables. Using a brute-force approach:

∂Ic
∂α1

=
Ic(α1 + ∆α1)− Ic(α1)

∆α1

For 2 variables, 3 expensive CFD flow calculations to find

Ic(α1,2), Ic(α1 + ∆α1), Ic(α2 + ∆α2)

The adjoint method instead can find N variable sensitivities in
with the cost of a single CFD flow-computation.
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Milestones

Functioning airfoil perturbation function in combination
with mesh generation and 2D Euler Solver.

Late Oct

Functioning brute-force method for sensitivity of Pres-
sure cost function to airfoil perturbation variables.

Early Nov

Auto-differentiation of Euler CFD solver. Late Nov

Validate auto-diff and brute-force method for simple
reverse-design perturbations.

Mid Dec

Hand-coded explicit discrete adjoint solver. Mid Jan

Implicit routine for discrete adjoint solver. Early Feb

Validate discrete adjoint solver against auto-diff and
brute-force methods.

Late Feb

Test discrete adjoint solver with full reverse-design cases. Mid Mar
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Milestone: Late October

Mesh Generation:

1 # ---------------------------------------------
2 # Airfoil Surface
3 #
4 ktot = 64
5 half = 93
6 airfoil = naca.naca4(’0012’, half, False, True)
7
8 # ---------------------------------------------
9 # Mesh Generation

10 #
11 mg = libflow.MeshGen(airfoil, ktot, 5.0)
12 mg.poisson(500)
13 xy = mg.get_mesh()
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Source Terms to Mesh-Generation Equations

2-Dimensional mesh generation is traditionally done by solving
the Poisson equation:

ξxx+ξyy= P

ηxx+ηyy= Q

Where ξ and η are coordinates of a mapped, equispaced grid
(beyond the scope of this project).

Previous solver was without P and Q (Laplace equation). Steger and Sorenson
[Steger and Sorenson(1979)] suggest source terms for P and Q to improve the grid
quality near deformed surfaces.
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Comparing Mesh-Generator Source Terms
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Comparing Mesh-Generator Source Terms
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Milestone: Late October

Airfoil Perturbation: [Hicks and Henne(1977)]

b(x) = a

[
sin

(
πx

log(0.5)
log(t1)

)]t2
, for 0 ≤ x ≤ 1

t1 locates the maximum of the “bump” in 0 ≤ x ≤ 1
t2 controles the width of the “bump”

1 #---------------------------------------------
2 # Hicks Henne Perturbation
3 #
4 design_vars = np.array([[ 0.25, 0.50 , 0.75 ],
5 [ 0.25, 0.50 , 0.75 ],
6 [ 0.01, -0.005, 0.01 ],
7 [-0.02, 0.01 , 0.005]])
8
9 airfoil = perturb(airfoil,design_vars)
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Airfoil Perturbations
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Airfoil Perturbations
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Milestone: Late October
Euler Solver:

1 # -------------------------------------------------
2 # Start CFD
3 inputs = euler_utils.read_inputs("input.yaml")
4 euler = libflow.Euler(grid, yaml.dump(inputs))
5 euler.take_steps(1000)
6 pressure = euler.pressure()

Pressure coefficient contours around
the airfoil

Pressure coefficient distribution over
the airfoil
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Milestone: Early November
Functioning brute-force method for sensitivity of Pressure cost
function to 3 airfoil perturbation variables: α1, α2, α3

∂Ic
∂αi

=
Ic(αi + ∆αi)− Ic(αi)

∆αi
, i = 1, 2, 3
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Milestone: Late November

In auto-differentiation of Euler CFD solver, define the “dot”
and “bar” operators:

ẋ :=
∂x

∂α
x̄ :=

(
∂x

∂I

)T
for x in {α,X,Q, I}

Foreward α̇ → Ẋ → Q̇ → İ

Reverse ᾱ ← X̄ ← Q̄ ← Ī

design vars grid flow soln cost func

Using the Tapenade suite of auto-differentiation software, can
auto differentiate in forward or reverse mode.
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Tapenade Auto-Differentiation

Create a pre-compilation step in the makefile for
reverse-differentiation:

1 pressure_cost_b.c : cost.c
2 ${TPN} -reverse \
3 -inputlanguage c \
4 -outputlanguage c \
5 -I ../include \
6 -head "pressure_cost(I)/(q)" \
7 -adjfuncname "_b" \
8 -o pressure_cost \
9 cost.c

resulting code is often not pretty but readable
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Auto-differentiation Results

To simplify the design problem, let’s temporarily use a different
cost function to look at airfoil lift. This allows us to:

I use a test case for comparison with inviscid thin-airfoil
theory

I use a single design variable α = angle-of-attack

Slightly change our cost function from before

Ic(α) =

∮
airfoil

(P − Pd)2 → Ic(α) =

∮
airfoil

(−P · d~n)

∂I

∂α
=

(
∂CL
∂α

)
thin-airfoil theory

≈ 2π for small α
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Auto-differentiation Results
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Brute Force 0.1◦ 6.9893

Adjoint - 6.9839

Theory - 6.2832
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Auto-differentiation Results

Case conditions:

Airfoil Thickness 12%

Mach Number 0.5

Angle of attack 2◦

Grid Dimensions 187× 64

A few comments on these results:

I The 2π result from thin-airfoil
theory is for an infinitely thin airfoil
in incompressible flow.

I Thick airfoils should have ∂I
∂α

< 2π

I But with increased Mach number →
∂I
∂α

> 2π

I First-order spacial accuracy on
relatively coarse mesh
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Looking Forward

Auto-differentiation of Euler CFD solver. Late Nov

Validate auto-diff and brute-force method for
simple reverse-design perturbations.

Mid Dec

Hand-coded explicit discrete adjoint solver. Mid Jan

Implicit routine for discrete adjoint solver. Early Feb

Validate discrete adjoint solver against auto-diff
and brute-force methods.

Late Feb

Test discrete adjoint solver with full reverse-
design cases.

Mid Mar
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Thank you!
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Appendix: Hicks Henne Function
With 6 bumps, 12 random variables: 3 t1, 3 a for each the top
and bottom of the airfoil, t2 = 1.0
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