Analysis of the Adjoint Euler Equations as used for Gradient-based Aerodynamic Shape Optimization

Dylan Jude
Graduate Research Assistant

University of Maryland AMSC 663/664

December 8, 2016

Abstract

- Adjoint methods are often used in gradient-based optimization because they allow for a significant reduction of computational cost for problems with many design variables.
- The proposed project focuses on the use of adjoint methods for two-dimensional airfoil shape optimization using Computational Fluid Dynamics to solve the steady Euler equations.

Background Refresher

Airfoil Example Problem

Given n design variables $\alpha_{1}, \alpha_{2}, \alpha_{3} \ldots \alpha_{n}$ we can achieve a change in airfoil shape:

Background Refresher

We want to minimize a cost function I_{c} in the design process

Mathematically:

$$
I_{c}(\alpha)=\oint_{\text {airfoil }}\left(P-P_{d}\right)^{2}
$$

Background Refresher

We want the sensitivity of the cost function to the design variables. Using a brute-force approach:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}=\frac{I_{c}\left(\alpha_{1}+\Delta \alpha_{1}\right)-I_{c}\left(\alpha_{1}\right)}{\Delta \alpha_{1}}
$$

For 2 variables, 3 expensive CFD flow calculations to find

$$
I_{c}\left(\alpha_{1,2}\right), \quad I_{c}\left(\alpha_{1}+\Delta \alpha_{1}\right), \quad I_{c}\left(\alpha_{2}+\Delta \alpha_{2}\right)
$$

The adjoint method instead can find N variable sensitivities in with the cost of a single CFD flow-computation.

Background Refresher

We want the sensitivity of the cost function to the design variables. Using a brute-force approach:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}=\frac{I_{c}\left(\alpha_{1}+\Delta \alpha_{1}\right)-I_{c}\left(\alpha_{1}\right)}{\Delta \alpha_{1}}
$$

For 2 variables, 3 expensive CFD flow calculations to find

$$
I_{c}\left(\alpha_{1,2}\right), \quad I_{c}\left(\alpha_{1}+\Delta \alpha_{1}\right), \quad I_{c}\left(\alpha_{2}+\Delta \alpha_{2}\right)
$$

The adjoint method instead can find N variable sensitivities in with the cost of a single CFD flow-computation.

Background Refresher

We want the sensitivity of the cost function to the design variables. Using a brute-force approach:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}=\frac{I_{c}\left(\alpha_{1}+\Delta \alpha_{1}\right)-I_{c}\left(\alpha_{1}\right)}{\Delta \alpha_{1}}
$$

For 2 variables, 3 expensive CFD flow calculations to find

$$
I_{c}\left(\alpha_{1,2}\right), \quad I_{c}\left(\alpha_{1}+\Delta \alpha_{1}\right), \quad I_{c}\left(\alpha_{2}+\Delta \alpha_{2}\right)
$$

The adjoint method instead can find N variable sensitivities in with the cost of a single CFD flow-computation.

Milestones

Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.	Late Oct	
Functioning brute-force method for sensitivity of Pressure cost function to airfoil perturbation variables.	Early Nov	
Auto-differentiation of Euler CFD solver.	Late Nov	
Validate auto-diff and brute-force method for simple reverse-design perturbations.	Mid Dec	
Hand-coded explicit discrete adjoint solver.	Mid Jan	
Implicit routine for discrete adjoint solver.	Early Feb	
Validate discrete adjoint solver against auto-diff and brute-force methods.	Late Feb	
Test discrete adjoint solver with full reverse-design cases.	Mid Mar	

Milestones

Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.	Late Oct	Ler
Functioning brute-force method for sensitivity of Pres- sure cost function to airfoil perturbation variables.	Early Nov	V.
Auto-differentiation of Euler CFD solver.	Late Nov	Vid
Validate auto-diff and brute-force method for simple reverse-design perturbations.	Mid Dec	Mid Jan
Hand-coded explicit discrete adjoint solver.	Early Feb	
Implicit routine for discrete adjoint solver.	Late Feb	
Validate discrete adjoint solver against auto-diff and brute-force methods.	Mid Mar	
Test discrete adjoint solver with full reverse-design cases.		

Milestone: Late October

Mesh Generation:

```
# --------------------------------------------------
# Airfoil Surface
#
ktot = 64
half = 93
airfoil = naca.naca4('0012', half, False, True)
# --------------------------------------------------
# Mesh Generation
#
mg = libflow.MeshGen(airfoil, ktot, 5.0)
mg.poisson(500)
xy = mg.get_mesh()
```


Source Terms to Mesh-Generation Equations

2-Dimensional mesh generation is traditionally done by solving the Poisson equation:

$$
\begin{aligned}
& \xi_{x x}+\xi_{y y}=P \\
& \eta_{x x}+\eta_{y y}=Q
\end{aligned}
$$

Where ξ and η are coordinates of a mapped, equispaced grid (beyond the scope of this project).

Previous solver was without P and Q (Laplace equation). Steger and Sorenson [Steger and Sorenson(1979)] suggest source terms for P and Q to improve the grid quality near deformed surfaces.

Comparing Mesh-Generator Source Terms

Comparing Mesh-Generator Source Terms

Milestone: Late October

Airfoil Perturbation: [Hicks and Henne(1977)]

$$
b(x)=a\left[\sin \left(\pi x^{\frac{\log (0.5)}{\log \left(t_{1}\right)}}\right)\right]^{t_{2}}, \quad \text { for } 0 \leq x \leq 1
$$

t_{1} locates the maximum of the "bump" in $0 \leq x \leq 1$
t_{2} controles the width of the "bump"

```
#---------------------------------------------------
# Hicks Henne Perturbation
#
design_vars = np.array([[ 0.25, 0.50 , 0.75 ],
        [ 0.25, 0.50, 0.75 ],
        [ 0.01, -0.005, 0.01 ],
        [-0.02, 0.01 , 0.005]])
    airfoil = perturb(airfoil,design_vars)
```


Airfoil Perturbations

Airfoil Perturbations

Milestone: Late October

Euler Solver:

```
1 
```


Pressure coefficient contours around the airfoil

Pressure coefficient distribution over the airfoil

Milestones

Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.	Late Oct	
Functioning brute-force method for sensitivity of Pressure cost function to airfoil perturbation variables.	Early Nov	
Auto-differentiation of Euler CFD solver.	Late Nov	
Validate auto-diff and brute-force method for simple reverse-design perturbations.	Mid Dec	
Hand-coded explicit discrete adjoint solver.	Mid Jan	
Implicit routine for discrete adjoint solver.	Early Feb	
Validate discrete adjoint solver against auto-diff and brute-force methods.	Late Feb	
Test discrete adjoint solver with full reverse-design cases.	Mid Mar	

Milestone: Early November

Functioning brute-force method for sensitivity of Pressure cost function to 3 airfoil perturbation variables: $\alpha_{1}, \alpha_{2}, \alpha_{3}$

$$
\frac{\partial I_{c}}{\partial \alpha_{i}}=\frac{I_{c}\left(\alpha_{i}+\Delta \alpha_{i}\right)-I_{c}\left(\alpha_{i}\right)}{\Delta \alpha_{i}}, \quad i=1,2,3
$$

Milestones

Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.	Late Oct	
Functioning brute-force method for sensitivity of Pressure cost function to airfoil perturbation variables.	Early Nov	
Auto-differentiation of Euler CFD solver.	Late Nov	
Validate auto-diff and brute-force method for simple reverse-design perturbations.	Mid Dec	
Hand-coded explicit discrete adjoint solver.	Mid Jan	
Implicit routine for discrete adjoint solver.	Early Feb	
Validate discrete adjoint solver against auto-diff and brute-force methods.	Late Feb	
Test discrete adjoint solver with full reverse-design cases.	Mid Mar	

Milestone: Late November

In auto-differentiation of Euler CFD solver, define the "dot" and "bar" operators:

$$
\dot{x}:=\frac{\partial x}{\partial \alpha} \quad \bar{x}:=\left(\frac{\partial x}{\partial I}\right)^{T} \quad \text { for } x \text { in }\{\alpha, X, Q, I\}
$$

Foreward	$\dot{\alpha}$	\rightarrow	\dot{X}	\rightarrow	\dot{Q}	\rightarrow	\dot{I}
Reverse	$\bar{\alpha}$	\leftarrow	\bar{X}	\leftarrow	\bar{Q}	\leftarrow	\bar{I}
	design vars		grid		flow soln		cost func

Using the Tapenade suite of auto-differentiation software, can auto differentiate in forward or reverse mode.

Milestone: Late November

In auto-differentiation of Euler CFD solver, define the "dot" and "bar" operators:

$$
\dot{x}:=\frac{\partial x}{\partial \alpha} \quad \bar{x}:=\left(\frac{\partial x}{\partial I}\right)^{T} \quad \text { for } x \text { in }\{\alpha, X, Q, I\}
$$

Foreward	$\dot{\alpha}$	\rightarrow	\dot{X}	\rightarrow	\dot{Q}	\rightarrow	\dot{I}
Reverse	$\bar{\alpha}$	\leftarrow	\bar{X}	\leftarrow	\bar{Q}	\leftarrow	\bar{I}
	design vars		grid		flow soln		cost func

Milestone: Late November

In auto-differentiation of Euler CFD solver, define the "dot" and "bar" operators:

$$
\dot{x}:=\frac{\partial x}{\partial \alpha} \quad \bar{x}:=\left(\frac{\partial x}{\partial I}\right)^{T} \quad \text { for } x \text { in }\{\alpha, X, Q, I\}
$$

Foreward	$\dot{\alpha}$	\rightarrow	\dot{X}	\rightarrow	\dot{Q}	\rightarrow	\dot{I}
Reverse	$\bar{\alpha}$	\leftarrow	\bar{X}	\leftarrow	\bar{Q}	\leftarrow	\bar{I}
	design vars		grid		flow soln		cost func

Using the Tapenade suite of auto-differentiation software, can auto differentiate in forward or reverse mode.

Tapenade Auto-Differentiation

Create a pre-compilation step in the makefile for reverse-differentiation:

```
pressure_cost_b.c : cost.c
    ${TPN} -reverse
    -inputlanguage c
    -outputlanguage c
    -I ../include
    -head "pressure_cost(I)/(q)"
    -adjfuncname "_b"
    -o pressure_cost
    cost.c
```

resulting code is often not pretty but readable

Milestones

Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.	Late Oct	
Functioning brute-force method for sensitivity of Pressure cost function to airfoil perturbation variables.	Early Nov	
Auto-differentiation of Euler CFD solver.	Late Nov	
Validate auto-diff and brute-force method for simple reverse-design perturbations.	Mid Dec	
Hand-coded explicit discrete adjoint solver.	Mid Jan	
Implicit routine for discrete adjoint solver.	Early Feb	
Validate discrete adjoint solver against auto-diff and brute-force methods.	Late Feb	
Test discrete adjoint solver with full reverse-design cases.	Mid Mar	

Auto-differentiation Results

To simplify the design problem, let's temporarily use a different cost function to look at airfoil lift. This allows us to:

- use a test case for comparison with inviscid thin-airfoil theory
- use a single design variable $\alpha=$ angle-of-attack

Slightly change our cost function from before

$$
\begin{gathered}
I_{c}(\alpha)=\oint_{\text {airfoil }}\left(P-P_{d}\right)^{2} \quad \rightarrow \quad I_{c}(\alpha)=\oint_{\text {airfoil }}(-P \cdot d \vec{n}) \\
\frac{\partial I}{\partial \alpha}=\left(\frac{\partial C_{L}}{\partial \alpha}\right)_{\text {thin-airfoil theory }} \approx 2 \pi \quad \text { for small } \alpha
\end{gathered}
$$

Auto-differentiation Results

Method	$\Delta \alpha$	$\frac{\partial I}{\partial \alpha}$
Brute Force	0.1°	6.9893
Adjoint	-	6.9839
Theory	-	6.2832

Auto-differentiation Results

Case conditions:

Airfoil Thickness	12%
Mach Number	0.5
Angle of attack	2°
Grid Dimensions	187×64

A few comments on these results:

- The 2π result from thin-airfoil theory is for an infinitely thin airfoil in incompressible flow.
- Thick airfoils should have $\frac{\partial I}{\partial \alpha}<2 \pi$
- But with increased Mach number \rightarrow $\frac{\partial I}{\partial \alpha}>2 \pi$
- First-order spacial accuracy on relatively coarse mesh

Looking Forward

Auto-differentiation of Euler CFD solver.	Late Nov	V
Validate auto-diff and brute-force method for simple reverse-design perturbations.	Mid Dec	(

Thank you!

References I

[Nadarajah and Jameson(2002)] Siva Nadarajah and Antony Jameson. Optimal Control of Unsteady Flows Using a Time Accurate Method. Multidisciplinary Analysis Optimization Conferences, (June):--, 2002. doi: 10.2514/6.2002-5436.
URL http://dx.doi.org/10.2514/6.2002-5436.
[Steger and Sorenson(1979)] J.L. Steger and R.L. Sorenson.
Automatic mesh-point clustering near a boundary in grid generation with elliptic partial differential equations.
Journal of Computational Physics, 33(3):405-410, 1979.
ISSN 0021-9991.
doi: http://dx.doi.org/10.1016/0021-9991(79)90165-7.
URL http:
//www.sciencedirect.com/science/article/pii/0021999179901657.
[Hicks and Henne(1977)] R. Hicks and P. Henne.
Wing design by numerical optimization.
Aircraft Design and Technology Meeting. American Institute of Aeronautics and Astronautics, Aug 1977.
doi: 10.2514/6.1977-1247.
URL http://dx.doi.org/10.2514/6.1977-1247.

Appendix: Hicks Henne Function

With 6 bumps, 12 random variables: $3 t_{1}, 3 a$ for each the top and bottom of the airfoil, $t 2=1.0$

