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Background Information –

Materials Sciences

 Mixtures of metal alloys – ternary systems

 Composition of metals varies through material

 Different composition = unique crystalline structure

 Different chemical properties

 Pattern Decomposition

 Given a system of N sample points of numeric data (Ex: light intensity)

 Want to find K basis “phase patterns” that describe data at all points

 Like finding basis of a vector space

 Phases tell us about the chemical properties of the material

Ni

Mn

Al

Takeuchi I. (2016) MRS Meeting



Background Information –

Pattern Decomposition

 Given material is sampled using electron probe

 X-ray light is diffracted back at a certain angle

 Based on lattice spacing

 Output is a continuous waveform

 X - Scattering angle

 Y - Intensity of diffracted light

 Determine composition via waveform

 Like human fingerprint

 Combination of basis waveforms

Top figure: http://physics.bu.edu/py106/notes/Resolution.html



Background Information –

Phase diagrams

 After probing all sample points of a material, a simplex can be 

created

 Illustration of phase composition at a given point

 Colors = clusters (similar phase structure)

 Results must uphold to laws of physics (constraints)

 Gibbs phase rule

 Connectivity (continuity of phases in space)

 Peak Shifting (effect of alloying process)

LeBras et al (2011) AAAI  CP’11 508-522 



Project Goal Part 1

 White House Materials Genome Initiative

 Develop algorithm to take in diffraction/composition data, output phase structure 

of materials

 Algorithm must:

 Obey physical constraints (laws of physics)

 Identify regions/clusters of similar phase composition within material

 Identify basis phases accurately (≤3 per cluster)

 Be efficient – short run times so more materials can be analyzed



GRENDEL Algorithm

Kusne et al (2015) AAAI 26(44) 444002  

Step 1 Step 2

Step 3
inputs

outputs



Project Goal Part 2 –

Extending GRENDEL

 Take existing GRENDEL code, apply strategies to make the algorithm better

 Increase accuracy of clustering and basis phase detection results by 

incorporating constraints

 Laws of physics

 “Expert” prior knowledge of material

 Affects cluster analysis and overall phase composition

 Decrease time needed to probe given material in the lab

 Minimize data points needed to resolve constituent phases



Algorithm – GRENDEL

Step 1 – Spectral Clustering

 Input diffraction data – X, NxD matrix

 N = # of data points

 D = # of scattering angles sampled (length of waveform)

 Takes in diffraction data, creates a similarity matrix W

 i,j – sample points

 δcos(Xi, Xj) – cosine distance (1 – cosine of waveform vectors)

 σ – spectral clustering bandwidth parameter (θsc)

 Spectral Clustering Algorithm:

 G = diagonal matrix summing rows of W

 Find k smallest nontrivial eigenvectors of Graph Laplacian, L = G-1W

 use MATLAB k-means function to group points into clusters

 U (kxN) – cluster membership matrix, U(c,i) = 1 if point i is in cluster c



Algorithm – GRENDEL

Step 2 – Nonnegative Matrix Factorization

 The goal of GRENDEL is to minimize the ‘Objective Function’ each 

iteration:

 Assume X can be approximated by P*E 

 Ei (MxD) – basis phases of ith cluster (unknown), eij is jth row of Ei

 pij (1xM) – phase proportions of ith cluster for jth sample point (unknown)

 U (KxN) – cluster membership 

 Peak shifting physical constraints added here



Algorithm – GRENDEL

Step 2 – NMF updates

 Minimize Objective Function to update E, P matrices

 Set derivatives with respect to E,P equal to zero to obtain:



Algorithm – GRENDEL

Step 3 – Graph Cut

 General “cost” equation to minimize:

 Smoothness cost (2) is 0 if cluster labels match, 1 otherwise, Data cost matrix (1):

 Minimize V through Max Flow Algorithm (see figure)

 Uses residuals of V to find best cluster assignment 

for whole connected material

 One cluster at a time

 Iterates over all cluster assignments to find

minimized configuration, update U

 Connectivity constraints added here

Boykov et al (2004) PAMI 26(9) 1124-1137

(1) (2)



Implementation

 Language - MATLAB R2015a

 Graph Cut written in C++

 Hardware - personal computer 

 ASUS, 8 GB RAM

 Data sets – Inorganic Crystal Structure Database (Fe-Ga-Pd)

 Synthetic spectral and structural data from previous research efforts ((Fe-Al-Li)Ox)

 X – input spectral waveform data (NxD, N ≈ 200, D≈500-2000)

 C – input composition data (spatial coordinates on ternary diagram)



Unexpected Events

 Bugs in GRENDEL code

 Learning C++

 Synthetic data sets not originally compatible with our code

 Peak shifting

 Expected phases/clusters are extremely similar

 Gibb’s phase rule already enforced in GRENDEL



Results – Original GRENDEL

 Plot to the left is ternary diagram (showing the 7 different clusters/colors)

 Plot to the right are the spectral (waveform) plots of the constituent phases 

for each cluster



Comparison to True Values

 We know the clustering and basis phases for this synthetic data set

 Colors/clusters in the diagrams don’t completely correspond



Results – Algorithm 0 

‘Cannot Link’ Expert Constraints

 Expert knowledge – certain pairs of sample points in material ‘Cannot Link’ 

 Algorithm:

Compute cosine distance between all pairs

Assign top p% dissimilar pairs to ‘Cannot Link’ array

After Graph Cut:

Loop through all CL pairs

If pair in same cluster

If 1st point changed cluster

Revert cluster assignment of 1st point to old cluster

Else

Revert 2nd point’s cluster assignment

end

end



Results – Algorithm 0 

‘Cannot Link’ Expert Constraints



Results – Algorithm 0 

‘Cannot Link’ Expert Constraints



Results – Algorithm 1

‘Cannot Link’ Approach Using Cost Matrix

 Tried to use Cost matrix of Graph Cut to 

enforce this constraint

 If a CL pair is in the same cluster, look at 

Data cost of other cluster assignments

 Switch the point has minimum cost to move 

into another cluster to that cluster

 Set old cluster to have data cost ~ Infinity

 Violates connectivity due to not trusting 

spectral clustering



Results – Algorithm 0b

Optimizing Cannot Link

 Analysis of algorithm – NMF updates of E and P are what violate connectivity

 To become more efficient, eliminated CL pairs from array that are paired in 

initial Graph Cut (we assume this to be correct)



Comparison to True Values



Comparison to Original GRENDEL



Results – Algorithm 0b_connect

Adding Harder Connectivity Constraint

 Every iteration of Graph Cut, use NotConnected function:

NotLinked = U*(S – I).*U 

% nonzero values in ith row are the neighbors of ith point in the same cluster

Sum rows of NotLinked

% value of 1 corresponds to point with no neighbors in the same cluster

Find that cluster assignment of NotLink data points

Switch it to another cluster with smallest Data cost

Set old cluster Data cost to ~ Infinity



Results – Algorithm 0b_connect

Adding Harder Connectivity Constraint

 Similar results to 0b algorithm, but condition number (change in results 

between iterations) much higher  slower convergence, longer CPU time



Current Work – Physical Constraints

Peak Shifting

 Seen in algorithm 0b, peak shifting is an issue for the synthetic data

 Topological Data Analysis – Mode Clustering

 Goal: Create confidence intervals of peaks in basis phases, use these to identify phases who 
are the same shifted waveform

 Not fully implemented yet

 PeakShift function:

Iterate over phases of all cluster, compare each of them:

Use MATLAB findpeaks() to find peak location, width, birth time (amplitude), and death time

Only look at peaks with amplitude at least β% of max peak

Cluster Interval = location ± 0.5*width

If overlap of cluster intervals is below ratio γ AND (birthtime – deathtime) agree within ζ% 

Average waveforms of both peaks (make them the same)

end



Current Work – Physical Constraints

Peak Shifting

 Only running this every 25 iterations, get same ternary/cluster diagram

 Unshifted Spectral Plots vs. Shifted Plots:



Optimizing Parameters and

Validation Statistics

 Tested parameter values for every algorithm

 How often to run CannotLink function (every iteration)

 Spectral Bandwidth (σ = 1e5)

 Data cost and smoothness cost weight (Dc = 1e5, Sc = 10)

 CannotLink Percentage (75%)

 Cutting off portions of waveform, adding noise to waveform (no help)

 Also tried Must Link algorithm, terrible results

 Use confusionmatStats MATLAB package for validation statistics, takes into 

account cluster-splitting

 (Weighted) Accuracy – % of correctly assigned labels (weighted by size of cluster)

 ‘F-score’ - % of points in correct cluster (no cluster-splitting)



Validation Statistics of Each Algorithm

Algorithm
||PEGRENDEL – PEtrue||/ ||PEtrue||

Accuracy
Weighted

Accuracy
F-score

CPU-time 

(s)

Original 
GRENDEL

.8462 0.8552 0.8519 0.3406 37.05

0 (Cannot Link) .8460 0.8774 0.8751 0.4339 59.74

1 (Data Cost) 1.0447 0.8082 0.7964 0.2179 50.35

0b (Optimizing 
CL)

.8434 0.8774 0.8758 0.4562 57.46

0b_connect .8398 0.8774 0.8751 0.4339 61.14

0b_shift .7786 0.8774 0.8751 0.4339 71.40



Timeline/Milestones (OLD)

 Fully understand, replicate previous code/results – mid/late October

 Phase 1 – Constraint Programming

 Add constraints/prior knowledge, increase accuracy of results for one sample material –

mid November

 Generalize constraints, increase accuracy for all data sets given – early/mid December

 Phase 2 – Active Learning

 Have algorithm to predict next best point to sample – early/mid February

 Optimize the sampling algorithm for one material – early/mid March

 Optimize algorithm for all material data given – mid/late April



Timeline/Milestones (NEW)

 Fully understand, replicate previous code/results – mid/late October

 Phase 1 – Constraint Programming

 Add connectivity constraints, expert prior knowledge for given samples - November

 Add constraints for peak shifting - January

 Potential addition of other physical laws, Mixed Integer Programming - February

 Phase 2 – Active Learning

 Have algorithm to predict next best point to sample – March

 Optimize the sampling algorithm for one material – mid April

 Optimize algorithm for all material data given – late April



Deliverables

 Final code/algorithm

 Results for given materials

 Phase diagrams

 Spectral graphs

 Constituent phase compositions

 End of the year report and presentation
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