
AMSC/CMSC 663/664
Mid Year Report

December 1, 2016

Jon Dehn

Project Goal

• Build a framework for testing compute-intensive algorithms in air
traffic management

Flight
Intent

Trajectory
Generation Engine

4D
Trajectory

Conflict Detection

Other trajectory-
based algorithms

Atmospheric
Model

Airframe
parameters

Progress

• Flight Intent (cruise altitude, speed, aircraft type, 2D path) is accessed
by screen-scraping the Flight Aware website (flightaware.com)

• Atmospheric Model is obtained from NOAA (using 40 km grid;
pressure levels):
• ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/rap/prod

• Airframe Parameters are obtained from Eurocontrol’s BADA website
(license for this project obtained November 17)

• Trajectory Generation Engine has been coded in Python
• Approximately 5000 source lines of code in 30 files in 6 packages

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/rap/prod

Review – essential trajectory generation
equation

𝑑𝐻𝑝

𝑑𝑡
=

𝑇 − ∆𝑇

𝑇

𝑇ℎ𝑟 − 𝐷 𝑉𝑇𝐴𝑆
𝑚𝑔

𝑓 𝑀

• Python code implements this with first order Runge-Kutta (higher
order Runge-Kutta still to be implemented)

• All low-level physics computations were compared against existing
“Air Traffic Control (ATC)” code for correctness

• The generated trajectory was then be compared against a result
obtained from prototype ATC code

Results – General trajectory profile
(Altitude vs. Distance)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350

A
lt

it
u

d
e

 (
Fe

et
)

Along Route Distance (NMI)

Python Generated Trajectory
Boeing 735 - Cruise Alt 35,000

Results – compared to ATC version

0

5000

10000

15000

20000

25000

30000

35000

40000

80 100 120 140 160 180 200

A
lt

it
u

d
e

 (
Fe

et
)

Along Route Distance (NMI)

Python Implementation vs. ATC Implementation
Boeing B735 - Cruise alt 35,000

ATC

Python

Python version accelerates to desired descent speed faster; this is correct (a bug
found in the ATC version)

Python version has a different
destination airport, hence ends at a
different altitude

Results – with wind, without wind

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350

A
lt

it
u

d
e

 (
fe

e
t)

Along Route Distance (NMI)

Altitude vs. Distance

no wind

with wind

• Climb/Descent rate is identical; so top of climb is achieved at the same time, but sooner in distance with wind
(Rate of Climb/Descent depends on true airspeed, not ground speed)

• Cruise phase takes longer in time, flying into a head wind
• Total flight time is more than 6 minutes longer

0

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30 40 50 60

A
lt

it
u

d
e

 (
fe

e
t)

Time (minutes)

Altitude vs. Time

Challenges

• Learning Python (including the python numpy package for numeric
processing); especially choosing time-efficient implementations

• Accessing NOAA “GRIB2” files from python on windows
• Used a utility from NOAA (“degrib”) to convert to text CSV files to read in

python

• One hour weather data takes approximately 3 minutes to process; once done,
it can be used in trajectory generation repeatedly

• Processing includes reading CSV file, and constructing a spherical earth model
version of that by interpolating the values in the file (which are in a Lambert
Conformal Conic grid)

Particle Swarm Optimization (PSO) Algorithm

• Intent is to find the optimal (least fuel usage) trajectory between two
fixed points, given the presence of winds

• PSO examines several possibilities through a field from point A to B,
measuring fuel used for each path. Each possibility is a “particle”;
examining all particles is one iteration.

• Points A and B will typically be after take off and before landing, as
departure from and approach to airports are dictated by runway
configurations

• PSO algorithms don’t guarantee that minimum solution will be found;
rather they hope to find an acceptable solution in finite time

More PSO

• Path generation from A to B contain an element of randomness

• After PSO computes lat/long points, trajectories will be generated
following those points, and fuel consumption will be calculated. The
best choice for that iteration is then known.

• Subsequent iterations randomly vary starting points around that best
choice, and algorithm concludes when the improvement is less than
some epsilon.

Points A and B exist in a wind grid

Initialization

Each segment (starting at A) is the same length.

Initial step determines the first point

Three courses are used; θi (for inertia)

θf (for fuel used)

θe (for end-point)

Next Point

• The exit course from our current point is a weighted sum of these
three courses:

𝜃 = 𝑊𝑖𝜃𝑖 +𝑊𝑒𝜃𝑒 +𝑊𝑓𝜃𝑓

The sum of all weights = 1.0

We is chosen to increase as the end point is approached:

𝑊𝑒 = (1 −
𝑑𝑖𝑠𝑡 𝑃, 𝐵

𝑑𝑖𝑠𝑡(𝐴, 𝐵
)

Weights

• Once We is determined, the other two weighting factors are chosen to
make up the remainder of the weight, according to a pre-determined
percentage; for example the fuel weight could get 70% of the
remaining and the inertia weight could get 30%

• Increasing We as we get closer to point B ensures the path will
converge on B.

• Resultant path will be some zig-zag line between A and B; this is then
smoothed (as airplanes don’t fly in zig-zags), a trajectory is generated
following those points, and total fuel consumption calculated

• Finally, the trajectory with the lowest fuel consumption is chosen as
the “best” path

Summary

• Work to date has produced a Trajectory Generation Engine that is
good enough to perform other experiments

• Originally proposed four experiments:
• Use of forecasted weather – on track for a December completion

• Create optimal wind-aided trajectories using PSO – initial implementation to
be done by end of January; final implementation by end of semester

• Multi-threaded, perhaps on GPU cores, conflict detection – initial
implementation to be done by end of February, final by end of semester

• Compare BADA 3 vs. BADA 4 (which adds additional parameters to the
thrust/drag equations) – this will be lower priority (it will require another
Eurocontrol license request), and may not be achieved

