
CS663 - Program Design

This document contains design notes for the various programs created for CS 663/664.

It is not an exhaustive set of documentation for the programs (most of that is in commentary in the

source code), but augments those comments.

1 Python Package Structure
The Python code is subdivided into several packages, all named with a short name:

1. AER – Aeronautical Information

2. BDA – BADA equations

3. FUN – Fundamental items, not relying on any of the other Python code

4. GEO – Geographic definitions and transformations

5. PSO – algorithms associated with finding an optimal wind-aided trajectory using Particle Swarm

Optimization techniques

6. RTE – Route processing algorithms; at present contains only the parser for the flight aware web

site

7. TRJ – routines to build trajectories

8. UTILITIES – main programs for various purposes; other main programs that relate only to a

particular package are contained within that package

9. WTH – weather processing, including building the spherical weather products from GRIB files

2 Weather File Processing
All RAP files downloaded from ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/rap/prod

These are stored locally for processing in a local directory identified in wth/config.py, name WX_DIR;

typically this is C:\UMD\CS663\wx. Under this directory there is a directory named 'raw' (indicating it

contains raw data by date), then subdirectories by date; named in the form 2016-11-21.

The files are interest are named rap.t[HH]z.awp236pgrbf[FF].grib2, where HH is the hour of the actuals

or forecast (00-23) and FF is the relative hour from there; 00 is the actual data from that hours, 01-10

are the forecasts made at that HH for some number of hours in the future.

Weather files are processed separately from the trajectory build program, in order to create a set of

weather files per hour. In order to efficiently store the data in numpy arrays, there is one array for each

measurement; hence there are arrays for temperature, east winds and north winds. This processed

data is stored in WX_DIR\processed\YYYY-MM-DD, in files named HH_FF_[t,ew,nw].npy. These separate

files per forecast hour are combined into a single file per type, name HH_[t,ew,nw].npy.

Also in WX_DIR is a subdirectory name 'tmp'; this stores temporary files produced during the weather

processing.

2.1 Building Processed Files
There is a one-time step to create the mapping file from the Lambert grids contained in the grib2 files to

the spherical grid used by the trajectory build program. The output from this program is stored in

WX_DIR\map; and consists of two files:

1) lam_to_sph_map.npy -- this contains entries for each 2D entry in the spherical grid, with a set of

information mapping that point to a cell in the lambert grid

2) lam_to_sph_info.npy -- this is a python dictionary, listing important information such as grid size

and starting point.

2.2 Mapping between Lambert and Spherical
The data from the GRIB2 file is processed by the ‘degrib’ tool, which converts to geodetic coordinates

(lat/long), and lists data by grid point in a lambert grid. Note that in the lambert grid the longitude of all

cells in a ‘column’ is not the same, hence there needs to be a mapping to translate from the lambert grid

to the spherical grid.

Zooming in on one particular grid cell, the overlap looks like this (the skew between lambert and

geodetic is exaggerated here). The value for the spherical grid point in green is calculated from the four

surrounding lambert grid points (in blue). A strict bi-linear interpolation cannot be used because the

lambert grid cell is not rectangular. Instead, each of the four lambert grid points are given a weight

based on their distance from the spherical grid point; those four lambert points are then averaged based

on those weights. Since the juxtaposition of the lambert and spherical grids is fixed, these weights can

be pre-computed for each cell and not re-calculated each time a weather file is processed.

2.3 Using Interpolation to find Points in time and space
A weather grid, once read into the python program, is a four dimensional grid, with dimensions of

longitude (x), latitude (y), altitude (z) and time (t). The time axis varies from current time (index 0) to

some number of forecasted hours (currently 5 are stored). Altitude layers vary by 1000 feet. The size of

the x/y grid is set so that a grid cell at the mid-latitude point of the continental US is approximately

equal in width (latitude) to the size of the lambert cell; in our case 40 KM.

This gives us a spherical grid of size 327 x 206 x 60 x 6 (assuming one current hour and 5 forecasted

hours). There are three values stored, north wind speed, east wind speed and temperature. Hence the

total storage consumed by the usual weather grid is 327 x 206 x 60 x 6 x 3 x 8 (8 bytes per value), or 582

megabytes. Thankfully, modern address space sized can accommodate this easily.

The grid gives values at specific points in space and time. Given an arbitrary point in space and time, the

following interpolations are used to find an approximate value at that point:

1) First, use a bi-linear interpolation in x and y to find a value for a given latitude and longitude, at

the fixed altitude layer below the point in question and at the hour just before the point in

question (‘hour 0’).

2) Assuming the altitude given isn’t a multiple of 1000 feet, use a second bi-linear interpolation to

find a value for the given latitude and longitude at the next higher altitude.

3) Use linear interpolation to find the value at the specific altitude needed.

4) Finally, assuming the time given isn’t on an exact hour, use steps 1-3 to find a second value at

the subsequent hour (‘hour 1’). Use linear interpolation between the values for hour 0 and hour

1 to get the final result.

The bi-linear interpolation finds a value for a point P

with coordinates x and y in the two-dimensional

plane. Each value in the surrounding corners (A, B, C

and D) are used to find the value for P; a weight is

assigned to each corner depending on the distance

from P:

wa = (x1 –x) * (y1-y)

wb = (x1-x) * (y – y0)

wc = (x – x0) * (y1-y)

wd = (x – x0) * (y – y0)

Value of P = A*wa + B*wb + C*wc + D*wd

3 Flight Intent
Flight intent is obtained from the FlightAware web site, by the fa_parse.py program.

You have to know what flight you are looking for (currently); the parameters to this program are:

1) -acid <aircraft id>

2) -date <YYYYMMDD>

3) -time <HHMM>

4) -dep <departure airport ICAO code>

5) -dst <destination airport ICAO code>

Airport ICAO codes, for major airports, typically start with "K" and are 4 characters

Flights used for this exercise:

1) SWA387 - KBWI => KALB: 20161202, 0320

2) SWA3060 - KALB => KMCO (Orlando): 20161202, 1130

3) SWA2321 - KMCO => KALB: 20161202, 1400

4) SWA994 - KBWI => KSAN: 20161201, 1305

5) SWA577 - KSAN => KBWI: 20161201, 2145

6) DAL433 – KJFK => KSEA: 20161223, 0025Z

7) DAL1997 – KSEA => KJFK: 20161223, 0654Z

8) SWA5828 – KSEA => KSAN: 20161223, 0635Z

9) SWA5842 – KSAN => KSEA: 20161223, 0520Z

4 Wind Differential Database

The data collected by the ‘create_stats’ program is stored in a SQL Lite database. This has one record

for each Flight/Date/Hour analyzed. Each row has the following columns:

 Column Name Description

0 Acid The Flight’s call sign

1 Wx_Date The date of the weather file; e.g 2017-01-03

2 Wx_Hour The hour of day for the weather file (2,7,12,17 in our case)

3 Avg_Spd The average speed at hour zero over the cruise segments

4 Absolute Avg Speed The average of the absolute speed at hour zero over the
cruise segments

5 Avg_Act_Fore_Diff The average difference in speed between hour zero and
hour five, averaged over all cusps in the trajectory

6 Max_Act_Cruise_Wind The maximum value of the head wind at cruise altitude, at
hour zero

7 Min_Act_Cruise_Wind The minimum value of the head wind at cruise altitude, at
hour zero

8 Max_Fore_Cruise_Wind The maximum value of the head wind at cruise altitude, at
the proper hour according to the cusp time

9 Min_Fore_Cruise_Wind The minimum value of the head wind at cruise altitude, at
the proper hour according to the cusp time

10 Cruise_Len The length of the cruise segment, in NMI

11 Cruise_Time The time spent in the cruise segment, with no wind

12 Avg_Spd_Diff The average speed difference from using current wind vs.
forecasted wind, averaged over all cusps. Negative and
positive times at cusps will cancel each other out

13 Avg_Abs_Spd_Diff The average speed difference from using current wind vs.
forecasted wind, averaged over all cusps. Absolute values
of the speed at each cusp is used.

14 Cruise_Time_Diff Time difference of trajectory with current wind vs. using
the appropriate forecasted wind, in seconds

15 Fore_Act_Time_Diff Time Difference in trajectory using forecasted wind 5
hours into the future vs. using actual wind 5 hours into the
future

5 Wind Gradients
Both a horizontal wind gradient and vertical wind gradient are calculated for a set of example

trajectories. These are created via the create_gradient.py program in utl.

These are stored in a set of files in the grads/ directory. Each file is named with the aircraft ID, the date,

and the hour of data in that day; for example grads/DAL433/2017-03-01-02.npy.

Each file is a 2D numpy array of floats; one row for each cusp in the trajectory (the trajectory created

with no wind from the “trjs” directory), column zero is the vertical gradient, column one is the horizontal

gradient.

Given these definitions:

1) LL = lat/long of current cusp

2) LL+1 = lat/long of the cusp after the current cusp

3) ARW = along route wind

4) ARD = ARD of current cusp

5) ARD+1 = ARD of cusp after the current cusp

The vertical gradient is defined as:

(ARW(LL, alt + 1000) – ARW(LL, alt-1000)) / 2, in knots/1000 feet. If the altitude at the cusp is less than

1000 feet, no gradient will be calculated.

The horizontal gradient is defined as:

(ARW(LL+1) – ARW(LL)) / (ARD+1 – ARD), in knots/nm. There will be no value for the last cusp.

All wind values are taken from the wind grid, interpolated in the horizontal and vertical dimensions. In

order to tell if a cusp is in the climb, cruise or descent segment, the trajectory must be queried.

The “create_gradient.py” program will create the individual gradient arrays for each flight of interest,

for each date and hour of interest. These files can then be analyzed.

The “gradient_summary.py” program will do some analysis on the data; finding (for each flight) the one

cusp that had the highest vertical and horizontal gradient, and the weather set that yielded the largest

average gradient (averaged over all cusps). For the purpose of this analysis, only vertical gradients for

climb and descent segments are included, and only horizontal gradients for level (cruise) segments are

included.

Flights used for this exercise:

Num ACID Dep Dest Date HHMM

1 AAL1147 KMIA KLAX 3/23 0149

2 AAL134 KMIA KSEA 3/23 0057

3 AAL2046 KMSP KCLT 3/23 ????

4 AAL2245 KMIA KSAN 3/22 0001

5 AAL23 KJFK KLAX 3/23 0215

6 DAL1579 KMSP KBWI 3/23 1350

7 DAL1587 KBIS KMSP 3/23 1140

8 DAL1938 KMSP KSFO 3/23 1705

9 DAL2865 KMSP KSEA 3/23 1355

10 JBU208 KJFK KPWM 3/23 1403

11 LOF4628 KBIS KDEN 3/23 1120

12 SWA1493 KMDW KLAX 3/23 1030

13 SWA1652 KDEN KPHX 3/23 1255

14 SWA1688 KMDW KHOU 3/23 1145

15 SWA1715 KMCI KHOU 3/23 1040

16 SWA1786 KATL KDEN 3/23 0955

17 SWA2321 KMCO KALB 12/02 1400

18 SWA314 KDAL KSEA 3/23 ????

19 SWA325 KBOI KOAK 3/23 1245

20 SWA336 KBOS KHOU 3/22 1550

21 SWA4650 KBOI KPHX 3/22 1755

22 SWA561 KMDW KSAN 3/22 0020

23 SWA5828 KSEA KSAN 12/23 0635

24 SWA653 KMCI KOAK 3/22 1635

25 SWA806 KMDW KFLL 3/23 1105

26 SWA994 KBWI KSAN 12/01 1305

6 Conflict Probe
Conflicts found (regardless of the version) are stored in the following data structure:

Flight_t

Cusps

D_cusps

nCusps

acid

conflicts

Flight_t

Cusps

D_cusps

nCusps

acid

conflicts
Cusp_t

coord

alt

rocd

accel

spd

tm

Cusp_t

coord

alt

rocd

accel

spd

tm

Pointer to an array of cusp_t, on host

Pointer to an array of cusp_t, on the device

Flights: array of flight_t,
statically defined in main

Flt_conflict_t

Flt_idx

next

C_list

Flt_conflict_t

Flt_idx

next

C_list

Pointer to a linked list of flt_conflict_t

Points to next flt_conflict_t in list for this flight

Conflict_list_t

St_tm

End_tm

next

Conflict_list_t

St_tm

End_tm

next

Pointer to a linked list of conflict_list_t

Points to next conflict_list_t in list for this flight-to-
flight conflict

Version 2 of conflict probe performs all the segment comparisons of one flight with another flight in

parallel.

The number of grids used is the same as the number of segments in the “new” (subject) trajectory. The

number of threads is the number segments in the object trajectory. Each kernel compares one subject

segment to one object segment.

There is one conflict array in thread-shared storage to accumulate the conflicts for the single subject

segment. A thread sync operation is performed by the kernel, which will sync an operation of one

subject segment to all object segments. At the conclusion of the sync; thread ID 0 will accumulate the

conflicts found into global storage, and place the number of conflicts for that subject segment in a global

array (that global array has an entry for each subject segment).

Once all kernels have completed, the conflict count array is copied back to the host. Then for any non-

zero count, that many conflicts are retrieved from global storage. Hence only real conflicts are copied

back to the host. This is depicted below:

1 2 ... B1 2 ... B 1 2 ... B1 2 ... B

1 2 ... Max1 2 ... Max

22

BB

...

Max conflicts/Segment

Conflict count per subject seg:Conflict count per subject seg:

Conflict Info:

1 2

1

3 Consolidate Conflicts

1 Memcpy1 Memcpy

2
Memcpy for each

subject with conflicts
2

Memcpy for each
subject with conflicts

CPU (host) GPU (device)

Version 3 changes this so that there is just one memcpy at the conclusion of the process, not one per

subject segment in conflict. This is done at the expense of adding another kernel call to accumulate all

conflicts in general purpose device storage. This looks like:

1 2 ... B1 2 ... B

Conflict count per subject seg:

1

CPU (host) GPU (device)

1 2 ... Max1 2 ... Max

1 2 ... Max1 2 ... Max

22

BB

...

Max conflicts/Segment

Conflict Info:

1 2 ... Max

2

B

...

Max conflicts/Segment

Conflict Info:

1
Kernel call to

consolidate conflicts
1

Kernel call to
consolidate conflicts

Memcpy to get
count of conflicts

2
Memcpy to get

count of conflicts
2

Memcpy of
consolidated conflicts

3
Memcpy of

consolidated conflicts
3

1 2 ... Max1 2 ... Max

