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Abstract

Adjoint methods are often used in gradient-based optimization because they allow
for a significant reduction of computational cost for problems with many design vari-
ables. The proposed project focuses on the use of adjoint methods for two-dimensional
airfoil shape optimization using Computational Fluid Dynamics to model the Euler
equations.
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1 Background

Airfoil shape optimization is the process of improving aerodynamic properties of an airfoil
by altering its shape. The lift, drag, or pressure distribution are all examples of aerodynamic
properties that can be used to analyze airfoil performance. Aerodynamic properties can be
formalized mathematically as a cost function. Semantically this is introduced with the goal
of minimizing the “cost” of an airfoil shape, and therefore minimizing the cost function.

Both design variables can also be mathematically defined to parameterize the shape of an
airfoil. As an example, figure 1 shows an airfoil whose general shape can be altered using
two variables α and c.

α

c

Figure 1: Example Airfoil Design Variables

1.1 Choosing a Cost Function

Assuming an existing airfoil shape and corresponding two-dimensional mesh, Computational
Fluid Dynamics (CFD) can be used to solve the Euler equations over this mesh. From the
airfoil, the flow solution is obtained using CFD, and the flow solution returns a pressure at
every point on the airfoil. A simple cost function typically chosen in airfoil shape optimiza-
tion compares the pressure distribution obtained from a flow solution to a desired pressure
distribution. This is illustrated in figure 2. The x-axis follows the chord of the airfoil and
therefore the two lines of each color represent the pressure at that location along the airfoil
on the top and bottom surfaces. Other examples of cost functions could be to maximize the
airfoil lift, or minimize the airfoil drag.

A mathematical formulation of a cost function for this comparison could be:

Ic(α) =

∮
airfoil

1

2
(P − Pd)2ds (1)

where α is a set of design variables used to obtain the airfoil shape, P is the resulting pressure
distribution along the airfoil, and Pd is a desired or target pressure distribution. For an airfoil
defined by a set of N discrete points, for convenience we can force the X-coordinates of each
airfoil to be the same. This would result in the X-coordinate of each pressure curve to also
be the same so that we can simplify the cost function:

Ic(α) =
N∑
i=0

1

2
(Pi − Pd,i)2 (2)
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Figure 2: Comparison of a pressure distribution with the desired distribution [1]

where there are N points on the airfoil and i is the ith point.

1.2 Finding Sensitivities

For an example problem with two design variables α1 and α2, the sensitivity of the cost
function Ic to these design variables is

∂Ic
∂α1

,
∂Ic
∂α2

(3)

Each of these partial derivatives could be approximated using a finite-difference, or “brute-
force” approach where for each variable

∂Ic
∂α1

=
Ic(α1 + ∆α1)− Ic(α1)

∆α1

(4)

For two design variables, this requires three CFD calculations for Ic(α1,2) , Ic(α1 + δα1), and
Ic(α2+δα2). Especially for complex, three-dimensional flow problems, obtaining the solution
using CFD can take on the order of hours or days. Using brute-force finite differences to find
the sensitivities of many design variables would therefore be a long and painstaking process.

The goal of using adjoint methods, as presented in the following section, is to eliminate the
dependence of the cost function Ic on the flow solution so that all design variable sensitivities
can be solved at once.

3



2 Approach

Since the adjoint Euler equations are derived from the Euler equations, this section will start
with an overview of the Euler equations as solved by an in-house CFD solver. This overview
will be followed by a brief derivation of the Adjoint Euler equations for the interior domain
and boundary. For this project, only steady flow is considered; the time-derivative terms are
kept in the initial derivation of the Euler and adjoint terms for completeness.

2.1 Euler Equations

The Euler equations are a simplification of the compressible Navier-Stokes equations for
inviscid flow. For two-dimensional, these equations consist of four equations: one for the
conservation of mass, two for the conservation of momentum in x and y, and one for the
conservation of energy. In the following description of the flow equations, standard usage of
flow variables are used. ρ is the fluid density, ~u is the fluid velocity composed of u1andu2, E
is total energy (internal and kinetic), and p is pressure.

2.1.1 Conservation of mass

Over a volume Ω, the conservation of mass in integral form is

d

dt

∫
Ω

ρdΩ = 0 (5)

which using the Reynolds Transport Theorem can be re-written as

∫
Ω

[
∂ρ

∂t
+∇ · (ρ~u)

]
dΩ = 0 (6)

2.1.2 Conservation of Momentum

The time rate of change of momentum in volume Ω in the direction xi is

d

dt

∫
Ω

ρuidΩ =

∫
S

FidS

where Fi represents the stresses acting on the surface S of the domain. Again the Reynolds
Transport Theorem can be used to simplify the equation to

d

dt

∫
Ω

ρuidΩ =

∫
Ω

[
ρ
Dui
Dt

]
dΩ (7)

where D
Dt

is the material derivative, sometimes called the convective derivative.
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For inviscid flow, there are no viscous stresses and the only force acting on the surface of the
domain is pressure p. Since pressure acts inward,∫

S

FidS =

∫
S

−pδkinkdS

Using Gauss’ theorem, the surface integral is converted to a volume integral∫
S

−pδkinkdS =

∫
Ω

− ∂

∂xk
(pδki)dΩ

and combining with equation (7), we obtain the integral form of the momentum equation:

∫
Ω

[
ρ
Dui
Dt

+
∂p

∂xi
= 0

]
dΩ (8)

2.1.3 Conservation of Energy

The conservation of energy in a control volume without body forces and without a heat
source is related to the thermodynamic work done on the surface of the control volume from
pressure and the rate of heat loss through the surface.

d

dt

∫
Ω

ρEdΩ =

∫
S

pδkiuknkdS −
∫
S

−qknkdS (9)

In the above equation, qk is defined by the Fourier law of heat conduction as qk = −κ(∂T/∂xk).
Again using the Reynolds Transport theorem, Gauss’ theorem, and the definition of the ma-
terial derivative, the energy equation can be simplified to:

∫
Ω

[
ρ
D

Dt
(E) +

∂

∂xk
(−pkiui + qk)

]
dΩ = 0 (10)

2.1.4 Euler Equations

The Euler equations for the conservation of mass, momentum, and energy can be written in
conservative form as

∂ ~Q

∂t
+
∂ ~Fc,i
∂xi

= 0 in domain Ω, i = 1, 2 (11)
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~Q =



ρ

ρu1

ρu2

ρE


, ~Fc,1 =



ρu1

ρu2
1 + p

ρu1u2

(ρE + p)u1


, ~Fc,2 =



ρu2

ρu1u2

ρu2
2 + p

(ρE + p)u2


(12)

To close the equations, the pressure is defined by the equation of state

p = ρ(γ − 1)

[
E − 1

2
||~u||2

]
(13)

where γ is the ratio of specific heats. Using a transformation to a Cartesian grid of coordi-
nates ξi, the Euler equations can be written as

∂~q

∂t
+
∂ ~fc,i
∂ξi

= 0 (14)

~q = J−1



ρ

ρu1

ρu2

e


, ~fc,1 = J−1



ρV1

ρu1V1 + ξ1,1p

ρu2V1 + ξ1,2p

(e+ p)V1


(15)

where J is the Jacobian of the coordinate transformation and Vi is the contravariant velocity
in the ξi direction:

Vi = u1ξi,1 + u2ξi,2 (16)

The discretization and mapping between Cartesian and curvilinear domains is covered in
detail in the work of J. Blazek [2].

For this project the steady Euler equations are solved by performing transient iterations to
make the residual ∂~q/∂t = 0. This is done using local-timestepping to allow for the solution
in each cell to advance with a constant Courrant-Friedrichs-Lewy (CFL) number, defined by
the cell spacing (∆x), timestep (∆t) and local wave speed (a):

CFL =
∆t

∆x
a (17)

The Euler equations are discretized explicitly using a first-order difference in both space and
time. In one-spacial dimension, the explicit discretization for finding time n+ 1 is
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~qn+1 − ~qn

∆t
= −

(
~fnc,i+1/2 − ~fnc,i−1/2

)
−Dn (18)

where D is artificial dissipation from the Roe-flux difference splitting scheme [3] or scalar
dissipation [1].

The Euler equations are also discretized implicitly in time

~qn+1 − ~qn

∆t
= −

(
~fn+1
c,i+1/2 − ~fn+1

c,i−1/2

)
−Dn+1 (19)

which can be approximately factored into a Diagonal Alternating Direction Implicit (DADI)
scheme, outlined in detail by Pulliam and co-authors [4].

2.1.5 Boundary Conditions

For a “O” mesh topology, a 2D grid is defined by coordinates j and k, illustrated in figure 3.
The jmin and jmax boundaries are periodic boundaries and the far-field can be approximated
by a Dirichlet boundary by setting free-stream conditions. At the airfoil wall, the flow
tangency condition must be satisfied:

(~u · ~nwall) = 0 (20)

where ~nwall is the outward pointing wall-normal vector.

2.2 Continuous Adjoint Euler Equations

The adjoint to a set of equations is usually defined in one of two ways. The first uses a linear
algebra approach to define the problem and the other uses the method of Lagrange variables.
Since both methods are equivalent and previous studies in computational aerodynamic design
tend to prefer the Lagrangian multiplier approach [5], this section will also motivate the use
of adjoint methods using Lagrangian multipliers. There are two ways of implementing the
adjoint equations in a code. The first is to take the adjoint of the continuous Euler equations
and discretize at the end. The second method takes the adjoint of the already discretized
Euler equations. The continuous adjoint is presented first as it is a more general form for
the equations.

2.2.1 General Derivation

As presented in a previous section, we can define a cost function to minimize during the
design process. This cost function can be a defined over the whole domain and/or over the
boundary of the domain. The cost function is a function of both the flow solution q and
geometry X and can be written as
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Figure 3: O-Mesh Topology with coordinates j and k

δI =

∫
B

δM(q,X)dB +

∫
D

δP (q,X)dD (21)

where M is the contribution to the cost function from the boundary (B) and P is the
contribution from the interior domain (D).

For simple problems, X could be the vector of design variables however more generally it
represents the geometry of the grid. In CFD, the grid geometry consists of the cell volumes,
face areas, and face vectors. These metrics appear directly in the flow equations as ξi, shown
in equation (16), and J in equation (15).

Equation (21) can be further broken down into parts dependent on q and X:

δI = δIq + δIX

=

∫
B

[
∂M

∂q
δq +

∂M

∂X
δX

]
dB +

∫
D

[
∂P

∂q
δq +

∂P

∂X
δX

]
dD

Now recalling the steady Euler equations, we can define the residual R and its dependence
on q and X as:
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R =

[
∂fi
∂ξi

]
= 0

∂R =

[
∂R

∂q

]
δq +

[
∂R

∂X

]
δX= 0

Since this is equal to 0, we can subtract this from equation (21) with a Lagrangian multiplier
ψ:

δI = δIq + δIX − ψ(δRq + δRX)

To eliminate dependence on q we focus on choosing ψ so that

δIq + ψ(δRq) = 0

R =
∂fi
∂ξi

= 0

∂R

∂q
δq =

∂

∂q

[
∂

∂ξi
δfi

]
= 0

As an integral over the whole domain, introducing the Lagrange multiplier ψ as the weak
form variable: ∫

D

∂

∂ξi
δfi =

∫
D

ψT
∂

∂ξi
δfi = 0

integrating by parts

∫
B

[
niψ

T δfi
]
dB −

∫
D

[
∂ψ

∂ξi
δfi

]
dD = 0

since this is zero, we can subtract it from the δI equation. ψ is then a Lagrangian multiplier
for the optimization of I with constraint equation R = 0.

δI =

∫
B

δM(q,X)dB +

∫
D

δP (q,X)dD

−
∫
B

[
niψ

T δfi
]
dB +

∫
D

[
∂ψ

∂ξi
δfi

]
dD

we then pick ψ to eliminate all dependence on δq.
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2.2.2 Interior Equations

Our cost function, as previously presented in equation (2), involves only an integral of
pressure over the surface of the airfoil. Since the surface of the airfoil is along the boundary,
the P for this case is 0. The interior equation then becomes:

∫
D

[
∂ψ

∂ξi

∂fi
∂q

]
dD =0

∂ψ

∂ξi

∂fi
∂q

= 0

using the definition of flux Jacobian Ai = ∂fi/∂q, the adjoint residual is

[Ai]
T ∂ψ

∂ξi
= 0 (22)

This form looks very similar to the original Euler equation residual, which was

∂f

∂ξi
= [Ai]

T ∂q

∂ξi
= 0

2.2.3 Boundary Equations

We also want to eliminate the dependence on q over the boundary. This is done very similarly
to the interior equations however since M 6= 0, it remains in the formulation:

∫
B

∂M

∂q
δqdB −

∫
B

[
niψ

T ∂fi
∂q

δq

]
dB = 0

∂M

∂q
= niψ

T ∂fi
∂q

2.3 Discrete Adjoint Euler Equations

The discrete adjoint is derived directly from the discrete Euler equations. This results in
more terms for the final code however has the benefit of being consistent with sensitivities
obtained from brute-force Euler computations.

2.3.1 Flux Terms

As a slight modification from the Euler derivation in section 2.1, let f denote flux in j-
coordinate direction and g denote flux in k-coordinate direction.
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∂q

∂t
+
∂f

∂ξ1

+
∂g

∂ξ2

= 0

Let the residual of the steady Euler Equation be defined as:

Rn =
qn+1 − qn

∆t
= 0 (23)

The residual expanded in both dimensions j, k at time n is

Rn
j,k = −

(
fj+1/2,k − fj−1/2,k

)
−
(
gj,k+1/2 − gj,k−1/2

)
(24)

Similar to the continuous relation, the method of Lagrange multipliers is applied to the cost
function subject to the Euler equation (residual R) as a constraint:

δIq − ψ(δRq) = 0

This becomes the new PDE to solve. The term ψ(δRq) can be auto-differentiated or derived
by-hand:

∂Rn
j,k = −

(
∂fj+1/2,k − ∂fj−1/2,k

)
−
(
∂gj,k+1/2 − ∂gj,k−1/2

)
∂Rn

j,k = −
(
∂f

∂q
δq

)
j+1/2,k

+

(
∂f

∂q
δq

)
j−1/2,k

−
(
∂g

∂q
δq

)
j,k+1/2

+

(
∂g

∂q
δq

)
j,k−1/2

(25)

Using the definition of the flux Jacobian A and B:(
∂f

∂q
δq

)
j,k

= (Aδq)j,k ,

(
∂g

∂q
δq

)
j,k

= (Bδq)j,k

so that the equations simplify to

∂Rn
j,k = − (Aδq)j+1/2,k + (Aδq)j−1/2,k − (Bδq)j,k+1/2 + (Bδq)j,k−1/2 (26)

Recall from the definition of the flux in equation (15) that the flux f contains both infor-
mation from the conservative vector q as well as the cell metrics ξ1, ξ2. The cell metrics can
more easily be though of as the cell geometry and can be directly related to the cell face vec-
tors Sj,k. The Euler equations require information at the cell face, for example fj+1/2, which
is a combination of face geometry and interpolated values of the cell-centered conservative
information.

To be consistent with the discretization of the Euler equations, the interface flux jacobian
must be defined as
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Figure 4: Illustration of cell-center location where conservative variables are stored and face
location where geometry is well defined

Aj+ 1
2

=

[
1

2
(Aj + Aj+1)

]
S@j+ 1

2

(27)

2.3.2 Dissipation Terms

Numerical dissipation terms must be added to the Euler equations for stability. Typically a
Roe Flux-difference splitting scheme results in very good numerical stability and accuracy in
regions with shocks [3]. As a first-pass, however, scalar dissipation can be used to approxi-
mate the flux jacobian matrix as the magnitude of the largest eigenvalue. This methodology
is outlined in detail in the work of Nadarajah [1]. The dissipation to the Euler equation
is also applied at cell interfaces. In one-dimension, the dissipation h applied to the Euler
residual appears as:

Rj = −
(
fj+ 1

2
+ fj− 1

2

)
−
(
hj+ 1

2
+ hj− 1

2

)
Where the scalar dissipation term hj+ 1

2
is

hj+ 1
2

= εσ (qj+1 − qj)

,

ε ≈ 0.25 [1] and σ is the spectral radius scaled by the face area

σ = ||V ||+ c||Sj+ 1
2
||

and c is the speed of sound. Both V and c are functions of the flow q however according to
Nadarajah [1], σ does not vary significantly and can be considered constant in deriving the
adjoint dissipation terms.

∂Rn
j,k = ... −

(
∂h

∂q
δq

)
j+1/2,k

−
(
∂h

∂q
δq

)
j−1/2,k

(28)
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∂h

∂q j+1/2,k

=
1

2

[(
∂h

∂q

)
j

+

(
∂h

∂q

)
j+1

]
S@j+1/2

(29)

∂h

∂q j
= −εσ ,

∂h

∂q j+1

= εσ (30)

While σ may be held constant in the variation of the residual with respect to q, after the
adjoint solution is found the residual is differentiated with respect to X to find the final
sensitivity. For this differentiation, the variation of the residual with respect to the metrics
X cannot be ignored.

2.4 Auto-Differentiation

The previous section deriving the by-hand discrete adjoint equations showed a term-by-term
breakdown of the flux and dissipation differentiation to find the adjoint equations. This term-
by-term differentiation can also be accomplished by automatic (or sometimes referred to as
algorithmic) differentiation. Many research groups have shown successful implementations
of adjoint methods using auto-differentiation [6]. These methods tend to be less efficient
than by-hand adjoint solvers however have shown to produce accurate results [7].

As a first pass at implementing adjoint methods, it is convenient to rely upon auto-differentiation
software such as Tapenade [8] to quickly develop an adjoint solver. This can be compared
with sensitivities from finite-difference (“brute-force”) gradients.

Auto-differentiation can be done in two directions: forward (sometimes called tangent) and
backward (sometimes called adjoint or reverse). The forward-mode is the more mathemat-
ically intuitive way of defining sensitivities. Given design variables α, which affect the grid
X, which affect the flow solution Q, which affects the cost function Ic:

∂Ic
∂α

=
∂Ic
∂Q

∂Q

∂X

∂X

∂α
(31)

Using “dot” notation to denote the partial derivative of a variable with respect to α, the
above equation is executed in the order:

α̇ → Ẋ → Q̇ → İ

In contrast the adjoint formulation is represented mathematically as:

(
∂Ic
∂α

)T
=

(
∂X

∂α

)T (
∂Q

∂X

)T (
∂Ic
∂Q

)T
(32)

Using “bar” notation to denote the partial derivative of the cost function Ic with respect to
a variable, equation (32) is executed backwards:
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ᾱ ← X̄ ← Q̄ ← Ī

This methodology is outlined in much greater detail in the work of Giles, Ghate, and Duta
[9]. One highlighted result of the authors’ paper is that the “dot” and “bar” quantities can
be combined at any step to recover the desired cost function sensitivity:

İc =
∂Ic
∂α

= Q̄T Q̇ = X̄T Ẋ = ᾱT α̇ (33)

This is especially convenient since the code developer may want to only auto-differentiate
the computationally expensive routines and use intuitive forward differentiation for the rest.
This procedure will be used for this project where auto-differentiation is only carried out to
compute X̄. Since grid generation is relatively cheap, Ẋ can be easily computed in forward
mode through finite differences.

2.5 Gradient-based optimization

The previous section on auto-differentiation mentions the forward differentiation of the grid
variation for each design variable (∂I/∂X). A very similar final step is required for the
hand-derived adjoint Euler equations. From the solution to the adjoint Euler equations, the
last step involves solving for the variation of the cost function with the geometry X but
holding q constant:

δI =

{
∂IT

∂X
− ψT

[
∂R

∂X

]}
δX

This equation depends on grid geometry X, which as shown in section (2.2) is not typically
a simple array of the design variables. Instead the above sensitivities are found with respect
to grid metrics X, and the variation of X with the design variables αi can be found through
brute-force finite-difference grid generation. Re-generating meshes for every design variable
α is typically fast compared to a flow calculation, especially in 2D cases considered for this
project.

Once the sensitivities are computed using this approach, each design variable can be altered
in a gradient-based algorithm to approach a local minimum. The details and implementation
of a gradient-based optimization algorithm are beyond the scope of this project. Many
aerodynamic optimization codes use external libraries such as SNOPT [10]. For simplicity,
since the Adjoint and Euler codes are wrapped in python for communication, the python
SciPy optimization library was used with both the Sequential Least Squares Programming
(SLSQP)[11] and Conjugate Gradient (CG) [12] optimization methods.
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2.6 Hicks-Henne Bump Functions

The entire airfoil design process relies upon a chosen set of design variables to alter the airfoil
shape. The design variables need to be defined by continuous functions in order for gradient-
based optimization to work well. One such method of parameterizing airfoil perturbations
was presented by Hicks and Henne in 1977, and is commonly referred to as “Hicks-Henne
Bump Functions”[13]. These bump functions are sinusoidal perturbations applied at different
locations along the airfoil. A commonly used form is

b(x) = a
[
sin
(
πx

log(0.5)
log(t1)

)]t2
, for 0 ≤ x ≤ 1 (34)

In this bump equation, t1 locates the maximum of the bump in 0 ≤ x ≤ 1, t2 controls
the width of the bump, and a controls the bump amplitude. Each bump has three design
variables. Figure 5 shows an example of 3 random perturbations made to t1 and a on 6
bumps while keeping t2 constant. From the original shape (dotted line), this example with 6
bump function, a total of 12 variables, were able to significantly alter the shape of an airfoil.
For simplicity the 12 design variables for each of the 3 random perturbation are not given
here however examples values for the Hicks-Henne design variables are given in section 3.1.3.
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Figure 5: Hicks-Henne Bump functions with random variable perturbations
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3 Results

3.1 Framework Setup

The initial milestones for this project were to set up a framework that could be used for
gradient-based airfoil optimization for the Euler equations using the Adjoint to compute
gradients. An overview of the framework is illustrated in figure 6. The numbers in this
figure correspond to both the order in which the modules were implemented as well as the
function call order for a single step of the design optimization process.

Figure 6: Overview of Adjoint-Euler Framework wrapped in Python

3.1.1 Grid Generation

Two-dimensional mesh generation is traditionally done by solving the Poisson equation:

ξxx+ξyy = Ps

ηxx+ηyy= Qs

The notation for ξ and η here are ξ1 and ξ2 from the grid metric terms as presented in
equation (15). Source terms Ps and Qs are marked with the subscript to be distinguished
from the flow variables or pressure while keeping consistency with the notation from Steger
and Sorenson [14]. A mesh generation code had previously been developed for CFD 2 (ENAE
685) but instead using the Laplace equation (Ps = Qs = 0)[15]. The source terms derived
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by Steger and Sorenson are meant to improve the mesh for CFD computations by enforcing
uniform spacing near boundaries and orthogonality at solid-wall surfaces. The source terms
are not given in this work but are described in great detail in the original paper by Steger
and Sorenson [14].

Figure 7: Grid generation without source
terms.

Figure 8: Grid generation with Steger-
Sorenson source terms shows more uniform
spacing normal to the wall.

Figures 7 and 8 show how the grid quality is improved especially near the wall when the
Steger-Sorenson source terms are introduced. A simplified geometry was used here to high-
light the especially poor mesh in the near-body for the Laplace equation in concave regions.

The mesh-generation C++ class was wrapped in python for convenience. The code to
generate a NACA0012 with 93 points on the upper surface and 64 points in the normal
direction with initial wall-spacing of 0.001 is shown in the following listing.

1 # ---------------------------------------------

2 # Airfoil Surface

3 #

4 airfoil = naca.naca4(’0012’, 93, False , True)

5 # ---------------------------------------------

6 # Mesh Generation

7 #

8 mg = libflow.MeshGen(airfoil , 64, 0.001)

9 mg.poisson (500)

10 xy = mg.get_mesh ()

3.1.2 Airfoil Perturbation

Airfoil perturbations are done using the Hicks-Henne “bump” function described in an earlier
section, governed by equation (34). Each bump is parameterized by three variables; one for
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the location, one for the amplitude, and one for the width of the bump. Furthermore bumps
must be specified for both the upper and lower surfaces of the airfoil. The following python
listing shows example code to create 6 bumps: 3 on the bottom and 3 on the top of the
airfoil. The width of the bump in this case is fixed and only the location and amplitude are
design variables. The first and second lines of the design variable array are the locations of
the bumps on the lower and upper surface respectively. The third and fourth lines are the
amplitudes of the bumps on the lower and upper surface respectively. Figure 9(a) shows the
original NACA0012 airfoil, and figure 9(b) shows the airfoil grid after perturbations.

1 #---------------------------------------------

2 # Hicks Henne Perturbation

3 #

4 design_vars = np.array ([[ 0.25, 0.50 , 0.75 ], # lower loc

5 [ 0.25, 0.50 , 0.75 ], # upper loc

6 [ 0.01, -0.005, 0.01 ], # lower amp

7 [-0.02, 0.01 , 0.005]]) # upper amp

8

9 airfoil = perturb(airfoil ,design_vars)

(a) Original NACA0012 grid (b) Perturbed grid with 6 bumps

Figure 9: Comparison between perturbed and un-perturbed grid

3.1.3 2D Euler Code

An in-house 3D Navier-Stokes code was trimmed down into a 2D Euler solver. The Euler
solver is not intended to be a high-order accuracy code and therefore only employs first-order
flux reconstruction at cell interfaces. The code can be run with explicit time marching or
with implicit time marching using a Diagonalized Alternating Direction Implicit (DADI)
inversion routine.

As an example test case for validation, the 2D Euler solver was compared with the original
3D in-house code for a NACA0012 airfoil at 1.25◦ angle of attack in Mach 0.8 flow. The 3D
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code was run in without viscous terms and also with only a first-order flux reconstruction.
Running a 2D case in a 3D solver is accomplished by extruding the 2D grid and applying
periodic boundary conditions in the Z-direction. Figure 10(a) shows the solution pressure
contours from the 2D flow solver and figure 10(b) shows the comparison with the trusted
3D reference code. As expected, the results are exactly the same. Figure 10(c) shows the
convergence of the 2D Euler solver. Realistically only a few orders of convergence is required;
convergence to machine zero is shown for completeness.

The developed solver was wrapped in Python for convenience and modular connectivity with
other parts of the adjoint framework. The python code to read inputs, take 1000 timesteps,
and get the surface pressure is shown in the following listing.

1 # -------------------------------------------------

2 # Start CFD

3 inputs = euler_utils.read_inputs("input.yaml")

4 euler = libflow.Euler(grid , yaml.dump(inputs ))

5 euler.take_steps (1000)

6 pressure = euler.pressure ()
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(a) Example solution pressure con-
tours
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Figure 10: Example solution of Euler equation for transonic airfoil

3.1.4 Adjoint Solvers

Both the Auto-Differentiated and By-Hand Adjoint solvers have the same routine names and
can be thought of as two separate implementations of the same class. Either version of the
adjoint code can be used to compute gradients and the solution from one adjoint code can
be saved, then read by the other adjoint code for debugging purposes. This works because
in theory both adjoint codes solve exactly the same discrete adjoint equations. In reality
the only difference between codes is that the auto-differentiated code does not make the
simplification of the dissipation derivatives presented in section 2.3.2.

Auto-differentiation of the Euler code was conducted using Tapenade[8]. Support for the C
programming appears to be new for Tapenade and while there are a few unsupported features
and warning messages, by simplifying some of the routines in Euler solver the software worked
as expected for the explicit routines. It was shown in section 2.4 that auto-differentiation in
adjoint mode for a code presents itself as differentiating the code in reverse starting at the
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cost function and ending at the design variables. The routines within the Euler solver are
roughly structured as follows:

1 while(n < nsteps ){

2

3 boundary_conditions(Q, X);

4

5 flux(Q, R, X);

6

7 for(i=0; i<all_pts; i++)

8 Q[i] = Q[i] + R[i]*dt[i];

9

10 n++;

11 }

12 compute_cost_function(Q, I);

In this pseudo-code, Q is the vector of flow variables, X is the grid, and R is the residual.
Reverse differentiation will find the “bar” of each of these variables using the suffix “b” (Q̄
= Qb) by differentiating each of the three shown subroutines. When auto-differentiating in
reverse mode, Tapenade also adds a “ b” suffix to the function name. The resulting adjoint
code looks like this:

1 Ib = 1.0

2 compute_cost_function_b(Q, Qb , I, Ib);

3 while(n < nsteps ){

4

5 flux_b(Q, Qb , R, Rb, X, Xb);

6

7 boundary_conditions_b(Q, Qb, X, Xb);

8

9 for(i=0; i<all_pts; i++)

10 Rb[i] = Rb[i] + Qb[i]*dt[i];

11

12 n++;

13 }

The first line of the above adjoint pseudo-code is Ī = 1.0. This is because Ī = ∂I/∂I = 1.
The rest of the “bar” variables start at zero and are updated from the cost function, flux
routines, and boundary conditions in that order. The end goal of reverse-differentiation is
to obtain X̄ =Xb because, again from section 2.4

∂I

∂α
= X̄T Ẋ
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where Ẋ is still computed in forward-mode using finite differences since grid-generation is
computationally inexpensive:

Ẋ =
∂X

∂αi
≈ X(αi + ∆αi)−X(αi)

∆αi

3.2 Gradient Computation

Analysis of gradients for 6-design variable case was conducted using brute-force Euler, auto-
differentiated adjoint, and by-hand adjoint methods. The term “gradient” here is sometimes
referred to “sensitivity” because the gradient of the cost function with respect to the design
variable can also be thought of as the sensitivity of the cost function to that design variable.
The terms “gradient” and “sensitivity” will be used interchangeably in this section.

For the 6-variable case, the location of the bumps are held fixed at 25%, 50%, and 75% along
the airfoil chord and only the amplitude of the bumps is allowed to change. The airfoil chord
is defined as the length from the nose of the airfoil to the tail. Both initial and final airfoils
are slight variations from the NACA0012 airfoil, the Mach number of the flow is 0.5 and the
angle of attach is 5.0 degrees.

Table 1 shows the tabulated gradients of the cost function with respect to all 6 design
variables. The sensitivities are shown for different finite-difference values of each variable
∆α. Using ∆α ≥ 10−4 appears to be too large to approximate the gradients for both the
brute-force and adjoint methods. Also values of ∆α < 10−14 start showing variations from
round-off error.

Gradients from the brute-force and AD adjoint methods match very well with each other.
The by-hand adjoint, however, does not match exactly with the AD adjoint only because
of the approximation of the dissipation flux. This approximation was presented in section
2.3.2. If the auto-differentiated routine is used for the dissipation flux in the by-hand code,
both adjoint methods return the same gradients to machine precision.

22



∆α ∂I/∂α1 ∂I/∂α2 ∂I/∂α3 ∂I/∂α4 ∂I/∂α5 ∂I/∂α6

Brute-Force

10−4 -0.1228517 -0.0530909 -0.1132482 -1.2072553 -0.0690058 0.1432287

10−6 -0.1242372 -0.0544189 -0.1160899 -1.2186430 -0.0717039 0.1404430

10−8 -0.1242511 -0.0544322 -0.1161184 -1.2187570 -0.0717309 0.1404151

10−10 -0.1242515 -0.0544327 -0.1161186 -1.2187583 -0.0717313 0.1404148

10−12 -0.1242348 -0.0544265 -0.1161202 -1.2188544 -0.0717290 0.1403521

10−14 -0.1265480 -0.0598045 -0.1235123 -1.2189468 -0.0741594 0.1357421

AD Adjoint

10−4 -0.1242607 -0.0545077 -0.1161888 -1.2188952 -0.0718753 0.1403117

10−6 -0.1242597 -0.0545077 -0.1161888 -1.2188960 -0.0718753 0.1403117

10−8 -0.1242597 -0.0545077 -0.1161888 -1.2188960 -0.0718753 0.1403117

10−10 -0.1242601 -0.0545082 -0.1161890 -1.2188961 -0.0718757 0.1403112

10−12 -0.1242750 -0.0545194 -0.1162164 -1.2189904 -0.0718894 0.1402322

10−14 -0.1259956 -0.0570447 -0.1235461 -1.2210666 -0.0736178 0.1374561

Hand Adjoint

10−4 -0.1253349 -0.0538379 -0.1134897 -1.2354522 -0.0732670 0.1439928

10−6 -0.1253339 -0.0538378 -0.1134897 -1.2354525 -0.0732670 0.1439928

10−8 -0.1253339 -0.0538378 -0.1134897 -1.2354525 -0.0732670 0.1439928

10−10 -0.1253342 -0.0538389 -0.1134903 -1.2354524 -0.0732669 0.1439923

10−12 -0.1253448 -0.0538821 -0.1135104 -1.2355791 -0.0732398 0.1439078

10−14 -0.1305186 -0.0598827 -0.1242959 -1.2386824 -0.0762561 0.1402745

Table 1: Adjoint and brute-force gradient comparison
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Both the brute-force and adjoint methods of finding the design variable sensitivities rely
upon an approximation of the first derivative using a finite-difference formula derived from
the Taylor series expansion. In the adjoint approach, the Taylor expansion is performed for
the grid coordinates X:

∂X

∂αi
=
X(αi + ∆αi)−X(αi)

∆αi
− ∆α

2

∂2X

∂α2
+O(∆α2) (35)

In the brute-force approach, the Taylor expansion is performed for the cost function Ic:

∂Ic
∂αi

=
Ic(αi + ∆αi)− Ic(αi)

∆αi
− ∆α

2

∂2Ic
∂α2

+O(∆α2)p (36)

From table 1, at a glance it appears the adjoint methods gives better sensitivities than the
brute-force approach because the sensitivities show less variation. This can be analyzed
more rigorously by looking at the truncation error from the Taylor expansions above. In the
brute-force method Taylor series, the dominant error is the second derivative term of Ic:

Errorbrute-force ∼
∆α

2

∂2Ic
∂α2

(37)

In the adjoint equation, the truncated second order derivative term from the expansion of
X is combined with the backwards differentiated X̄:[

∂Ic
∂αi

]
adjoint

= X̄T Ẋ

Erroradjoint ∼ X̄T ∆α

2

∂2X

∂α2
(38)

In both cases, the second derivative can be approximated with the finite difference formula:

∂2Ic
∂α2

≈ Ic(α + ∆α)− 2Ic(α) + Ic(α−∆α)

∆α2

∂2X

∂α2
≈ X(α + ∆α)− 2X(α) +X(α−∆α)

∆α2

The comparison of the computed truncation error for a single variable, α3 was conducted for
∆α = 10−8. The results, summarized in table 2, confirm that the adjoint truncation is less
than that of the brute-force approach for variable α3. We expect the truncation error would
behave similarly for other variables.
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Brute-Force Truncation Error ∆α
2
∂2Ic
∂α2 3.653466e-05

Adjoint Truncation Error X̄T ∆α
2
∂2X
∂α2 1.668839e-08

Table 2: Approximate truncation error for adjoint and brute-force method

3.3 Timing Results and Parallelization

One major advantage of using a by-hand adjoint is having full control over memory usage for
optimization. Whereas the auto-differentiated adjoint is difficult to parallelize with OpenMP,
doing so for the by-hand adjoint is trivial and shows tremendous improvement over a serial
implementation. On a 8-core Intel i7 desktop, the results for 10000 adjoint iterations are
compared in table 3. Note the speedup in this table is computed with respect to the auto-
differentiated adjoint, which is why it is larger that 8×.

The ability to parallelize the adjoint solver is very useful especially since the adjoint solver is
lacking implicit routines that allow for larger time steps. The “implicit routines” refer to the
Diagonalized Alternating Direction Implicit (DADI) routines briefly mentioned in section
3.1.3 for the Euler solver. Initially in the project proposal the implicit routines were to be
differentiated however from limitations of Tapenade and a lack of literature on the subject,
the implicit routines were not implemented in the adjoint solver.

Auto-Diff By-hand By-hand + OpenMP

Time (s) 126.3 120.5 15.1

Speedup 1.0 1.05 8.36

Table 3: Timing Results for 10000 Adjoint iterations (8-core CPU)

3.4 Single-Variable Design

A preliminary design case was chosen with a single variable representing the location of one
hicks-henne bump along the surface of an airfoil. Typically doing a parametric sweep of the
design space is very expensive since each point requires a solution of the Euler equations. For
a single-variable case, however, this is not too computationally expensive and the results are
shown in figure 11. This design problem was chosen specifically to highlight the possibility
of local minima in the design space.

For the starting point shown in red in figure 11, the gradient was computed using the brute-
force, AD adjoint, and by-hand adjoint methods. The results are summarized in table 4.
As mentioned in the previous section, the gradient from the by-hand adjoint differs slightly
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Figure 11: Example design space for 1 design-variable

from the other method from the dissipation approximation.

Choosing Sequential Least SQuares Programming (SLSQP) as the optimization algorithm,
the progression of the solution is shown in figure 12(a) and the Conjugate Gradient (CG)
results in figure 12(b). These results are plotted along side the parametric sweep of the
design space to show that both gradient-based methods converge to a local minimum and
not a global minimum. This is a common issue encountered with gradient-based methods.
The most common way to check for local minima is by altering the starting guess for the
optimization. Figure 12(c) shows that with the starting guess with the bump closer to 70%
along the airfoil chord, the optimization method converges to the global minimum.

Figure 12(d) shows the convergence result plotted against design iteration number. The con-
jugate gradient method clearly shows faster convergence to the local minimum of the cost
function. This result is slightly misleading, however, since the conjugate gradient method
requires more that 1 function call (for bot the Euler and Adjoint routines) per design itera-
tion. The run times and function-calls are tabulated in table 5 showing SLSQP as requiring
significantly fewer function calls for this case. One possible explanation is that a line-search
method within the CG algorithm is attempting to run multiple Euler and adjoint solutions
to better estimate the step direction. An important factor to consider is that the 1-design
variable case was chosen with a particularly poor desired pressure distribution in order to
show the possibility of local minima. As shown in the following section, more feasible design
cases will behave more expectedly.

Brute-Force Auto-Diff Adjoint By-Hand Adjoint

Gradients -0.0054687 -0.0054693 -0.0055054

Table 4: Gradients at the initial guess using different methods
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(a) SLSQP Method (b) CG Method

(c) Alternate Starting Guess with SLSQP (d) Convergence of both Methods

Figure 12: SLSQP and CG method overlayed with design space

Design Iterations Adjoint Calls Euler Calls Total Time (s)

SLSQP 4 5 5 209.7

CG 4 14 14 469.7

Table 5: Summary of timing results for SLSQP and CG methods for single design variable
case

3.5 Six-Variable Design

Unlike with the single design variable case, a 6 design variable case is not easily visualized
in two or even three-dimensions. A parametric sweep of the design space would also be
extremely costly since a range of N points per variable results in N6 executions of the
Euler solver. This design problem therefore more clearly highlights the advantage of adjoint
methods for shape optimization.
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The six-design variable case fixes 3 bumps on both the upper and lower surface of the airfoil
at the 25%, 50%, and 75% chord (along the airfoil from nose to tail). Only the amplitudes of
the 6 bumps are altered, resulting in 6 design variables. The starting airfoil is a NACA0012,
a commonly used symmetric airfoil. The NACA2312 is used to obtain the desired pressure
distribution. This is a realistic case since the NACA2312 has camber of 2% located at 30%
along the chord and has significantly better lifting properties. The initial and desired airfoils
are shown as dotted lines in figure 16. Similarly the initial and desired pressure are shown
in figure 14.

Table 6 shows the gradient of the cost function at the initial guess where the airfoil is a
NACA0012. Again the gradients match very well between the AD adjoint and the brute-
force methods but differ slightly for the by-hand adjoint from the dissipation approximation.
The gradients are still more that accurate enough to for use in gradient-based optimization
libraries to converge toward a minimum of the cost function.

∂I/∂α1 ∂I/∂α2 ∂I/∂α3 ∂I/∂α4 ∂I/∂α5 ∂I/∂α6

Brute-Force -0.8495 -0.4387 -0.1935 -3.588 -0.8853 -0.1000

AD Adjoint -0.8495 -0.4389 -0.1937 -3.588 -0.8855 -0.1003

Adjoint -0.8549 -0.4365 -0.1851 -3.635 -0.8902 -0.0946

Table 6: Adjoint and brute-force sensitivity comparison

Figure 13 shows the convergence of 5 iterations of the SLSQP and CG algorithms. Unlike
with the one-variable case, the six-variable convergence looks almost indistinguishable be-
tween both algorithms. Also unlike the one-variable case, the 5 design iterations required 6
function calls each of the Euler and adjoint solvers for both SLSQP and CG methods. This
behavior is unexpected and will require further investigation to explain. For this project,
because the results are so similar, only SLSQP results for the airfoil and pressure distribution
are shown.

Using a desired pressure distribution in the cost function:

Ic(α) =
N∑
i=0

1

2
(Pi − Pd,i)2

is referred to as a reverse-design problem because the solution to the minimization is known,
namely where P = Pd and Ic = 0. The convergence of the cost function shown in figure
13 indicates the solution is approaching the correct answer as the cost function approaches
0. In theory, an infinite number of design variables for an infinite number of bumps along
the surface of one airfoil can be used to exactly match the shape of another airfoil. The
six bumps used in this case are unable to exactly match the solution airfoil geometry. The
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convergence therefore approaches zero but flattens out at a finite value representing the error
of the resulting geometry.

The development of the airfoil geometry and pressure distributions over 5 SLSQP iterations
are shown in figures 16 and 14. After 5 iterations, only the tail region of the airfoil shows
large deviation from the desired distribution. A zoomed-in region of the plots is shown in
figure 15. The closest bump location to the tail is at 75% of the chord however the deviation
occurs closer to 93% along the airfoil. The 6 bumps used for this case are likely not enough
to fully match the desired airfoil geometry however this can easily be remedied by adding
more bumps along the airfoil.

Figure 13: Cost function convergence
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 5

Figure 14: Pressure Development: SLSQP, and Cost Function Convergence

(a) Tail Pressure (b) Tail Airfoil

Figure 15: Tail Pressure and Airfoil geometry after 5 iterations
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 5

Figure 16: Airfoil Development: SLSQP

4 Conclusions

The discrete adjoint-Euler equations were derived and implemented both by-hand and through
auto-differentiation within a Python-C++ framework. The presented analysis has shown:

• Fast, two-dimensional elliptic grid generation in combination with a two-dimensional
Euler solver accessible through Python provides a flexible and extensible framework.

• Hicks-Henne bump functions are useful to perturb airfoil geometries.

• Tapenade as auto-differentiation software can be used to quickly develop an adjoint-
Euler code. Tapenade was written for Fortran and can be challenging to work with in
C/C++.

• Derivation and implementation of the discrete adjoint terms is not mathematically dif-
ficult but involves a large number of terms and bug-prone code. Certain simplifications
can be made, for example in the dissipation terms, to reduce complexity.
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• Having full control over memory and operations in the by-hand code allows paralleliza-
tion through OpenMP.

• Computed gradients from both the auto-differentiated and by-hand adjoint solvers
match with brute-force gradients computed directly from a finite difference of Euler
solutions.

• From within Python, the Euler and adjoint routines provide the cost function and
gradient respectively for use with the SciPy optimization library. This allows easy
access to optimization methods such as sequential least squares programming (SLSQP)
or conjugate gradient.

• The conjugate gradient method demonstrates better convergence than the SLSQP
method for a one-design variable airfoil shape optimization case. SLSQP takes less
wall-clock time because it required less function calls.

• For a six-design variable case, SLSQP and the conjugate gradient method converge
equally well and require the same number of function calls. The cost function is
successfully reduced and both the airfoil shape and pressure distribution closely match
the known solution.

4.1 Milestones

A summary of the accomplished milestones is shown in table 7. Modifications from the
original dates or achievements are crossed out and replaced with actual dates or altered
milestones. The right-most column indicates the milestone was completed on the indicated
date.
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Milestone Date

Functioning airfoil perturbation function in combination
with mesh generation and 2D Euler Solver.

Late Oct

Functioning brute-force method for sensitivity of Pres-
sure cost function to airfoil perturbation variables.

Early Nov

Auto-differentiation of Euler CFD solver. Late Nov

Validate auto-diff and brute-force method for simple
reverse-design perturbations.

Mid Dec

Hand-coded explicit discrete adjoint solver. Mid Feb March 6

Implicit routine OpenMP Acceleration for discrete ad-
joint solver.

March Early April

Validate discrete adjoint solver against auto-diff and
brute-force methods.

March Mid April

Test discrete adjoint solver with full reverse-design cases. Mid April Early May

Table 7: Milestone Accomplishments

Note: the initial project proposal stated subsonic and transonic cases would be tested how-
ever only subsonic cases were actually run. This is because the dissipation function was
simplified to the scalar dissipation routine recommended from literature [1]. Without proper
up-winding or flux splitting, the scalar dissipation will very poorly resolve shocks that appear
in transonic cases.

4.2 Deliverables

The proposal for this project set forth the following deliverables:

• Bitbucket GIT Repository of

– Euler, Grid-Generation, and Airfoil perturbation code in Python Framework

– Auto-differentiated Adjoint Code

– Hand-differentiated Adjoint Code

• Equations of hand-derived Adjoint relations for flux and dissipation terms.

• Sample run files for Euler-only, Adjoint-only, and full design case.
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• Results from a full airfoil reverse design case ( pressure matching NACA2312 )

All of these can be found either in this report and as part of the Bitbucket repository at
https://bitbucket.org/djude/amsc663-664/src. The repository includes a history of all
commits made for the project with timestamps as well as the entire code framework of C,
C++, and python files. The only items missing from the repository are headers required by
Tapenade to auto-differentiate the code.
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