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Abstract

Phase pattern decomposition of inorganic materials’ crystalline structure is ex-
tremely important for the unearthing of new properties such as superconductivity.
Previously, this process had meticulously been done by hand, so computer algorithms
have been developed to try and uncover these phases. They, however, have yet to
combine efficiency and accuracy together. The goal of this project is to do just that by
extending the Graph-based Endmember Extraction and Labeling algorithm (GREN-
DEL). We will implement algorithms to address physical constraints needed to increase
the accuracy of our phase composition results.

1 Background Information

Inorganic materials are compounds or mixtures of elements which do not contain any carbon.
Of particular interest are combinations of metal alloys called ternary systems. To make these
ternary systems, three different metallic compounds are heated up and combined into one,
also referred to as alloying the compounds together. Because of the heating and cooling
process, the crystalline structure of each individual metal has been altered, similar to how
an ice cube that is melted and refrozen will not be identical to the initial configuration.
This means the phase of the metal has changed, as the phase is defined as a region within
a material or compound where the crystal structure and composition is uniform [1]. This
means these phases have distinct properties, such as density and index of refraction. Within
different areas of the ternary alloy, there can be different phases of each metal as well due to
how the atoms restructured and the proportions of each compound at the given point. Each
point of this material is made of a different composition of the three input metals, meaning
there can be three phases present and at different proportions based on the mixing process
of the alloy. An example of a typical thin film sample of a ternary system is seen in Figure 1.

Figure 1: Image of a thin film of an Al-Mn-Ni ternary system, with the regions specified
by each color being the predominant areas of each of the composite metals; that is, where
each metal was initially introduced into the alloy and then mixed. This highlights how the
mixing throughout the material is not uniform, as we want to find all possible combinations
of constituent phases [2].
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Figure 2: A sample x-ray spectrum from the Fe-Ga-Pd ternary system, with the x-axis being
2θ = the scattering angle observed and the y-axis being the intensity of light detected. Peaks
on this plot represent material detection corresponding to given phases of our metals.

A given phase of a metal, as previously stated, has distinct properties, one of these being
a unique diffraction pattern. X-ray diffraction is used to probe a given material, sending
in beams of electrons and observing the outgoing spectra [1]. X-ray light has a wavelength
that is approximately the same as the distance between atoms in a crystal lattice, giving it
a better chance to hit the atoms within the structure. The light will hit an electron in the
metal, absorb energy, and bounce back at a given angle. Note that this energy exchange
only happens at certain incident angles, which is dictated by the Bragg equation,

2dsinθ = nλ, (1)

where d is the distance between atoms in the lattice, θ is the incoming scattering angle, λ is
the wavelength of the x-ray, and n is an integer. The absorbed energy is seen as diffraction
peaks at the given angles which satisfy equation (1). Note that since λ is fixed, the only
variable which determined the angle θ is the lattice spacing d.

But for an unknown phase, we do not know the distance d. Thus, both the source of
x-ray light and the detector rotate in order to record data over all possible scattering angles
2θ ∈ [0◦, 90◦] (2θ is defined as the angle between the detector and the incident beam rather
than the plane of the material, and will be twice that of θ according to Equation (1)).
Figure 2 shows an example of an x-ray spectrum for a single sampled point in a material.
The given pattern is called a waveform, where detection of certain phases is indicated by the
peaks in the diffraction waveform.

The are three aspects of a given diffraction peak. The scattering angle 2θ is the most
important one, as it is the primary marker that tells us about the particular phase and the
metal associated with it. The true scattering angle of a given basis phase is unique, and
thus is the criterion that tells us about the chemical properties which we are interested in
uncovering. The height and width of a given peak can tell us information regarding the
phase associated with that peak as well, yet also varies slightly based on the intensity of

2



Figure 3: An example of a phase diagram, represented as a simplex. Each vertex corresponds
to one of the original compounds in the alloy, colors correspond to similar phase structure
between those points, and the Greek symbols in the legend represent the different phases
seen in the material [1].

light used in the x-ray diffraction process. One can also notice a shifting of the position of
seen peaks over different light intensities, which is a source of error and something that has
to be accounted for. Using this data, we can recognize the constituent phases seen at each
point in the material along with their respective proportions, and a phase diagram can be
made like the one seen in Figure 3 [1]. The alloyed material we wish to sample is usually on
a circular thin film, yet we transform the data taken from this shape into a simplex, where
each vertex corresponds to the locations of the three initial compounds at the start of the
mixing process. Each dot or marker on the simplex corresponds to a probed sample point.
Different colors represent areas/clusters within the material where similar phase structure is
seen, indicating that these regions will have similar intrinsic chemical properties.

2 Project Objective

Previously, these phase diagrams were done by hand, eyeing the proportions of the con-
stituent phase composition. This process took so long that a library of materials, called the
Inorganic Crystal Structure Database, has already been created which have yet to be ana-
lyzed. Thus, the White House Materials Genome Initiative was started in order to encourage
development of an algorithm to take in this structure and composition data as an input and
produce the desired phase diagrams and phase composition data as output. More infor-
mation is available at https://www.whitehouse.gov/mgi). This algorithm must accurately
identify the individual basis phases as well as regions or clusters of similar phase composi-
tion while also obeying the laws of physics. Furthermore, it must do all of this in an efficient
manner so more materials can be evaluated [3].

Current attempts at algorithm development focus on pattern decomposition. Given a set
of diffraction patterns at N points of a given system, it is assumed these can be described
as a combination of D basis patterns. We seek to resolve these basis patterns, which in
this case are the D constituent phases that contribute to the diffraction patterns seen in the
material. In other words, if we think of the entire material’s diffraction spectrum as a vector
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space, we wish to find the basis vectors of the space. In the traditional method of pattern
decomposition, there are two main steps, the first being spectral clustering. Here a similarity
matrix is constructed to group points in the material with analogous diffraction patterns,
with each group of points being called a cluster. This splits up our entire dataset into
smaller subproblems, allowing the algorithm to run more efficiently. Second, nonnegative
matrix factorization is used to identify the constituent phases and their proportions within
each cluster [1]. These steps will be explained in detail in Section 3.

One example of such an algorithm is Graph-based Endmember Extraction and Labeling
(GRENDEL). Endmember is another word for the basis constituent phase which makes up
the diffraction pattern of a given point or region within the material, so both terms can be
used interchangeably. This method seeks to minimize an objective function during the pat-
tern decomposition process, which looks at how well our estimated phase proportions match
up with the raw diffraction patterns both within the clusters and over the entire material.
GRENDEL runs very fast, with computation times under a minute, but fails to properly
take into account physical constraints which leads to inaccuracy [3]. Another attempt at
an algorithm, Alternating Mixed Integer Quadratic Optimization (AMIQO), which uses a
combination of several mixed integer quadratic problems to minimize an error function, such
as the least squares error between the original structure data and the hypothesized phase
structure. Yet this method uses prior knowledge to add in physical constraints. It recognizes
certain pairs of points and phases that Must-Link and Cannot-Link together, which leads
to extremely accurate results [4] (Section 4.2 will explain in detail a similar Cannot-Link
procedure). AMIQO runs on the order of days, however, making it too slow for an ideal
method. The latest attempt of a pattern decomposition algorithm is AgileFD, which relies on
convolutive nonnegative matrix factorization, physical constraints, and lightweight update
rules of the basis phases derived from the Kullback-Leibler divergence loss function to obtain
accurate estimates of the basis phases in an efficient manner [5],[6]. Yet AgileFD omits the
clustering step of isolating regions of similar phase structure, so we wish to combine the
accuracy of AgileFD with the speed and clustering of GRENDEL.

In summary, current approaches at an algorithm are missing at least one key goal of the
White House Materials Genome Initiative. Our project objective is to address these issues
in one algorithm to combine speed and accuracy. To do so, will be working to extend the
GRENDEL algorithm. GRENDEL begins with a spectral clustering step in order to create
initial cluster assignments for all of our sample points within our given material dataset.
Then, an iterative two-step process of nonnegative matrix factorization and the Graph Cut
package is run to find a local minimum of the objective function while simultaneously updat-
ing cluster assignments for the entire material [7],[9],[8],[10]. Once convergence is attained,
GRENDEL will output cluster assignments for each of the sample points within the mate-
rial as well as a set of constituent basis phases/endmembers for each cluster [3]. From this
output, phase diagrams outlining regions of similar phase structure and constituent phase
compositions of each cluster can be generated, with an example of a desirable phase diagram
seen in Figure 3.

One of the new components which we will add to GRENDEL is a connectivity constraint
algorithm called Cannot Link, which is designed to generate our own novel constraint to
mirror those used by AMIQO [4]. Cannot Link seeks to induce a clustering result which will
abide by the law of physics, particularly the connectivity of clustering regions within the
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material. A more detailed explanation will be given in Section 4.2. The second algorithm
we wish to extend GRENDEL with is a version of nonnegative matrix factorization, called
ShiftNMF, which will take into account peak-shifting, a result of the alloying process used to
produce our ternary material [11]. This physical effect of material creation affects the scat-
tering angle in which our x-ray diffraction detector detects peaks. This leads to error in our
basis phase recognition via regular nonnegative matrix factorization. As stated previously,
the scattering angles of peaks is the primary feature of a basis phase we wish to unearth
for our application in materials science, so addressing peak-shifting in our algorithm is of
paramount importance. Further explanation of ShiftNMF is given in Section 4.3.

3 Algorithm - GRENDEL

Figure 4 is a flow chart of the current implementation of GRENDEL. As input, both structure
and composition data from the Inorganic Crystal Structure Database and other material
libraries can be utilized. If X is the input diffraction waveforms (labeled in Figure 4 as
“structure” data) for the whole material of N sample points, GRENDEL looks at each
individual sample diffraction waveform Xi. Xi is a vector with dimensions 1×M , where M
is the dimension of the waveform. Typically, M is either the number of scattering angles
observed or the number of grid points in the Q-spacing. Q-spacing is analogous to scattering
angles, yet can have a wider range of values than [0, 90]. Certain x-ray diffraction machines
record data with scattering angles, while others utilize Q-spacing. For uniformity, all of
the results described in this paper will have dimension M to refer to the unit-less general
length of the waveform our of initial data. Using this method, M can range between sample
materials, although typical values range from 500 to 2000.

A given element Xi,j is itself a scattering intensity value seen at the given jth scattering
angle by the detector. To graphically see where each of the N sample points are in terms
of our phase diagram, each marker seen on the simplex of Figure 3 is a sample point.
Composition data C of the material is used in Section 3.2 to place a given sample point
i in the correct position on the simplex. The cluster assignment of point i is seen as the
particular color of its corresponding marker.

3.1 Spectral Clustering

Spectral clustering seeks to separate the material data into regions or clusters of similar
structure, thus allowing the proceeding steps to be run on smaller subsets to speed up
computation. These clusters will also be areas of analogous chemical properties. First, a
similarity measure is used to compare how close the diffraction patterns are between two
given sample points [12]. This metric is the cosine distance between two sample point
waveform vectors Xi and Xj, given by

δcos(Xi, Xj) = 1− cos(Xi, Xj), (2)

where cos(Xi, Xj) is the cosine similarity between the two vectors, defined by

cos(Xi, Xj) =
Xi ·Xj

||Xi|| ||Xj||
. (3)
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Figure 4: A flow chart of the GRENDEL algorithm. Initial structure X and composition
C data is input, and spectral clustering is done to find areas of similar diffraction spectra.
Then, an iterative process of the Graph Cut algorithm and NMF (seen here in the last
column of the flow chart) is implemented in order minimize the objective function which
resolves cluster boundaries and the constituent phases within each cluster. Final output
plots are the phase diagram and constituent phase plot of the basis phase waveforms [3].

Here, · is the dot product and || · || is the L2 norm. Thus, the cosine distance between our
points Xi and Xj will be near zero if the diffraction patterns match well, near 1 if they are
orthogonal, and near 2 if they are completely contradictory [3]. Then, a matrix W is created
from these cosine distances,

Wij = e
−δcos(Xi,Xj)

2σ2 , (4)

referred to as a similarity matrix, where θSC = σ is the spectral clustering bandwidth
parameter specific to the given material being observed. Thus, W is a N ×N matrix.

With this, a diagonal matrix G is created by summing the rows of W . Then, eigenvalue
decomposition used on the Graph Laplacian defined by

L = G−1W (5)

to find the eigenvectors corresponding to the K smallest nontrivial eigenvalues of L. Here, K
is an input parameter specifying how many different clusters are expected to be seen. This
varies from material to material, and is usually determined by the user in conjunction with
analyzing results of previous experiments with the materials. For example, it is advised to
select the number of clusters K to be similar to the number of basis phases expected, which
is on the order of 5 to 7.

With these K eigenvectors of length N , GRENDEL utilizes the K-means function within
MATLAB to identify individual clusters of points with similar structures. The eigenvectors
are assigned to columns of a given matrix Z (so each row of Z corresponds to a data point
in the material), and clustering is initialized by finding the K cluster means (note these are
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vectors of length K as well). The first is chosen at random from the rows of Z. The other
initial means are then chosen from the remaining rows of Z randomly with a probability
weighted proportionally to the cosine distance metric between each row and its most-similar
cluster mean already selected. The mean initial composition of the kth cluster is given by
v̄k. With these, an initial clustering assignment can be made for all N points by assigning
each row of Z, where the ith row of Z is zi, to the cluster whose mean composition v̄ is most
similar by means of cosine distance:

C(i) = arg min
1≤k≤K

δcos(zi, v̄k), (6)

where C(i) is the current clustering assignment of the ith data point. C(i) ranges from 1 to
K.

Then, the cluster means v̄ are updated by minimizing the total cosine distance sum
between the each zi in the kth cluster Ck and the desired cluster mean composition vk,

min
C,{v̄k}K1

K∑
k=1

Nk

∑
C(i)=k

δcos(zi, v̄k), (7)

where Nk is the number of points assigned to the kth cluster currently. This two-step process
defined by equations (6) and (7) is repeated until the cluster assignments no longer change.
The final output of this spectral clustering step is the K ×N cluster membership matrix U ,
where Uk,i = 1 if the ith data point belongs to the kth cluster [12]. Furthermore, GRENDEL
finds the mean spectral composition X̄k of each cluster by averaging the spectral data of all
points within the kth cluster.

3.2 Creating the Simplex

The “Create Graph” portion of the flow chart in Figure 4 refers to a transformation of the
input spatial composition data C for each data point into respective coordinates on the
simplex. The simplex is created using the Delaunay tessellation function in MATLAB yet
only including edge connections to nearest neighbors of each point. This transforms the
circular thin film shape of our structure data into a simplex via triangulation. The vertices
of the simplex correspond to the three initial metal compounds used to make the ternary
system, meaning points closer to these vertices implies the primary component in the mixture
at this point will be this particular compound [3].

3.3 PCOMMEND - Lightweight Nonnegative Matrix Factoriza-
tion

The main portion of GRENDEL is minimizing the objective function, defined as follows:

J(X,E, P, U) =
K∑
k=1

( N∑
i=1

uki(Xi − pkiEk)T (Xi − pkiEk) + α
D−1∑
h=1

D∑
l=h+1

(ekh − ekl)T (ekh − ekl)
)

(8)
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Here, Xi is the 1×M diffraction spectrum for the ith sample point in the material, K is the
number of estimated clusters, N is the number of sample points, and uki is an element of the
binary cluster membership matrix U that is 1 if the ith point belongs to cluster number k
and 0 otherwise. In addition, D is the number of endmembers (another word for constituent
basis phases) in a given cluster, and Ek is a D×M matrix where the rows are the individual
basis phase waveforms that make up the set of basis phases of the ith cluster. That is, the
hth column of Ek, symbolized as ekh, is the diffraction spectra of the hth phase of the kth

cluster. Moreover, pki is a 1 × D vector of the proportion values for each basis phase used
for the ith sample point. Thus, pki is a row vector of proportion weights for the basis phases
of the kth cluster of the ith sample point. The parameter α is set to 0.0001 to balance the
importance of each of the summations [7].

The key assumption is that the input diffraction data at each sample point, Xi, can be
approximated as a linear combination of the basis phases. Thus, {pki} is the set of proportion
weights applied to the basis phases Ek to make up this combination

Xi ≈ pki Ek. (9)

The first summation term in (8) corresponds to a least-squares residual between our input
diffraction patterns Xi and the desired linear combination, pkiEk, while the second summa-
tion can be thought of as a volume constraint on the basis waveform vectors themselves.
As stated previously, the position/scattering angle of the peaks within the waveform are
determined by the lattice spacing term d in the Bragg Equation (1). Since d is a fixed value
at a given point in the material, then logically the position of the peaks for each basis phase
observed at this point should be approximately equal. If this is not the case, the second
summation will be large, implying error in the estimate of the basis phases.

Note that the objective function requires matrices X,U, P, and E. We already have
X and an initial guess at U from spectral clustering. We create an initial guess for P by
setting all proportions equal to 1/D, and an initial E is obtained using the nnmf function of
MATLAB, which outputs a guess at the basis phases themselves for each cluster by seeking
to minimize the first summation in Equation (8). Note that since proportions and basis
phases are necessary for each cluster, the matrix P is K ×N ×D and E is K ×D ×M .

To save computation time, GRENDEL applies lightweight update rules for the matrices
E and P using the Piece-wise Convex Multiple Model Endmember Detection algorithm [7].
The PCOMMEND method is utilized to quickly find the local minimum of the objective
function. First, the equation ∂J/∂Ek = 0 is solved to update our guess for the basis phase
matrix of the kth cluster, yielding the equation

Ek =
( N∑
i=1

ukip
T
kipki + 2α(DID×D − 1D×D)

)−1( N∑
j=1

ukjp
T
kjXj

)
, (10)

where I and 1 are the D×D identity and ones matrices, respectively. We assume endmem-
bers/basis phases must be positive in order to resemble a physically-accurate diffraction
pattern, so if an element of Ei is negative, that value is set to zero and the matrix is recom-
puted via Equation (10).

Second, Equation (8) is minimized with respect to pki. Our proportions of basis phases
in cluster i must sum to 1 for each sample point Xi in the cluster in order to be physically
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realistic as well,
∑D

h=1 pkih = 1. To ensure this, a Lagrange multiplier λk is used. Proportions
must be nonnegative as well, so our update of pij becomes

pki = max
(
{(EkET

k )−1(EkX
T
i − λk1D×1)}T , 0

)
(11)

with

λk =
11×D(EkE

T
k )−1EkX

T
i − 1

11×D(EkET
k )−11D×1

(12)

If a particular proportion value is chosen to be 0 because the first term in Equation (11) is
negative, then the other proportions for the ith sample point must be normalized in order to
have them sum to one.

These two updates are repeated for all K clusters and over multiple iterations along
with Graph Cut, to be explained in Section 3.4, to try and locally minimize our objective
function (8) [7]. By finding a local minimum, it is understood that the steepest descent-like
nature of our updates mean that GRENDEL cannot guarantee convergence to the absolute
minimum of the objective function, only that the objective function is minimized within a
certain neighborhood of potential solutions for E and P . Depending on different initial seed
guesses at U , P , and E, our PCOMMEND update procedures may converge to different final
results, although the previous authors of GRENDEL only used the initialization procedure
described above [3].

3.4 Graph Cut Algorithm

Now that GRENDEL updated its basis phases E and proportions P , Graph Cut is used
to compute the update of these cluster membership matrix U each iteration of GREN-
DEL [3],[9],[8],[10]. The PCOMMEND updates described above also have an update rule
for U along with E and P ; however, Graph Cut is chosen to make our cluster membership
guess U more accurate. We use a specific MATLAB wrapper available online at

http://www.wisdom.weizmann.ac.il/∼bagon/matlab.html.

The update of U is done by minimizing a cost function, V . The general cost V of the cluster
labeling of all input spectral data Xi, i ∈ [1, N ], is described as

V = λd

N∑
i

V i(Li) + λs

N∑
i=1

all neighbors∑
j=neighbor

V i,j(Li, Lj), (13)

where Li = k is the cluster index of point i, corresponding to Uki = 1 if point i is in the
k cluster. V i(Li) is the data cost for a point i, or the cost to assign a cluster label Li to
i, and V i,j(Li, Lj) is the smoothness cost, or the cost to assign the labels Li and Lj to the
neighboring points i and j. Note that the values of L range from 1 to K, corresponding to
the K clusters. Referring to Figure 4, the Graph Cut parameters thetaGC are the scalars λd
and λs, the data cost and smoothness cost weights. These are parameters chosen to balance
the smoothness cost, which emphasizes connectivity of clusters so they are all closed regions,
and data cost, which emphasizes the similarity of points within a given cluster.
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The data cost in Equation (13) is given by

V j(Li = k) =
3

4
δcos(Xi, X̄k) +

1

4

||Xi − pkiEk||L2∑
k ||Xi − pkiEk||L2

, (14)

where δcos(Xi, X̄k) is the cosine distance between diffraction peaks of sample point i and
the mean spectra of the currently assigned cluster Li = k, || · ||L2 is the L2 norm, and Ek
and pki are defined as in Section 3.3. The first term makes sure that the spectral data
(diffraction pattern) of a point Xi matches with the assigned cluster’s mean spectra, similar
to the spectral clustering step. The second term makes sure that this cluster’s basis phase
composition correctly represents the sample point’s spectral data Xi, similar to the first
summation of the objective function in Equation (8).

The smoothness cost V i,j(Li, Lj) is 0 if points i and j belong to the same cluster and 1
if they do not. As seen in Equation (13), the smoothness cost summation is restricted to
only neighboring points i and j rather than summing over all possible pairs of points. This
makes sense- for smooth and continuous clusters, it is expected that most of the adjacent
data points to sample point i should also be in the same cluster unless it is on a boundary.
Adding these two terms together, V is minimized and all sample points are reassigned into
the clusters based on this minimized result.

To minimize V , however, Graph Cut utilizes something called the Max Flow Algo-
rithm [9]. This iterates over all K clusters, and looks at all N data points at one time.
In one iteration, looking at cluster κ (κ ∈ {1, 2, ..., K}), then for each point data point Xi

Max Flow looks at the cost of assigning this point into cluster κ versus its current cluster
assignment. Specifically, it takes the residual between these two costs, and uses this to de-
termine if it should switch the current cluster assignment to cluster κ. The residual refers to
the difference in the total costs (data cost + smoothness cost) between a given point i being
in its current cluster assignment versus being assigned to cluster κ. Thus, if the residual
for point i is positive, Max Flow would say that it is more costly to keep the point in its
current cluster, and the cluster assignment of point i should be changed to cluster κ. But if
the residual is negative, i should be kept in its current cluster.

The novel idea though is to think of the points in cluster κ as belonging to a “source”
tree of flow (positive residuals), and the points remaining in their original cluster assignment
as belonging to a ‘sink’ tree (negative residuals). There must be a continuous path from the
highest-level parent nodes of the source and sink tree. This idea is illustrated in Figure 5 [9].
The “A” and “P” labels of the points correspond to whether or not a point is an active
or passive node in the tree, which is just terminology to say whether or not nodes are on
the boundary of their respective trees (or the boundary of the cluster itself, thinking about
the ternary diagram like in Figure 1). Note, however, that while this does enforce semi-
connectivity of cluster assignments of the entire material, there are certain points (seen as
the white points in Figure 5) that may be disconnected in terms of cluster assignment. This
warrants more connectivity constraints to ensure the laws of physics are obeyed.

One might notice in column 2 of the flowchart for GRENDEL (Figure 4), that there
seems to be a performance of Graph Cut prior to going into this iterative loop. A simpler
version Graph Cut is run prior to this, yet without an initial guess of the matrices E and
P . For this run of Graph Cut, the data cost matrix is defined to be only the cosine distance
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Figure 5: Illustration of the methodology of Graph Cut to update cluster assignments of
sample data points. The red points belong to the source tree corresponding to cluster κ,
while the blue points belong to the sink tree corresponding to all other cluster assignments.
Note the highlighted path of “max flow” between the source and sink parent nodes [9].

metric,
V j(Lj = i)simple = δcos(Xj, X̄i), (15)

with all other aspects of Graph Cut described above remaining unchanged. This is meant
to create a better initial guess at U prior to running the nonnegative matrix factorization
portion of GRENDEL.

If, after Graph Cut, there is a cluster where less than 3 data points are assigned mem-
bership, these near-empty clusters are eliminated and Graph Cut is re-run. This is meant
to overcome potential over-fitting of cluster memberships if our initial guess of the number
of clusters, K, is too large.

Graph Cut, along with the nonnegative matrix factorization updates in Section 3.3, are
repeated over a certain number of iterations until the convergence criterion of the condition
number is met. The condition number for iteration iter is just the summation of the norms
of the difference between the E,P, and U matrices from iteration iter and iter− 1, that is,
how much our guesses at these three matrices have changed in one update. If this condition
number does not change by a certain threshold (10−10) between iterations, the authors of
GRENDEL take this to mean that the algorithm is switching between solutions around a
local minimum and the algorithm is stopped. Note, however, that the original GRENDEL
algorithm does not guarantee convergence, one of the pitfalls of the algorithm. This is seen
in Figure 25.

4 Approach to Extend GRENDEL

4.1 Constraint Already Applied - Gibbs’ Phase Rule [1]

One example of a physical constraint is the Gibbs phase rule. Our material is considered
to be in equilibrium or steady-state. That is, it is not undergoing any chemical processes
such as melting or evaporation, and the chemical composition is stable. At equilibrium, a
compound or element must be in a set crystalline structure, corresponding to a set phase.
Thus, within our ternary system there can only be three phases seen at a given point due
to the three input compounds. Every point assigned to a given cluster k should also be
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represented by the same set of endmember basis phases Ek, so this means that at most 3
phases can be seen in a given cluster [1]. As D is defined as the number of basis phases seen
in a given cluster, this constraint is written as

D ≤ 3. (16)

Thus, this law of physics is already applied in GRENDEL by us setting D = 3 (so the matrix
of basis phases Ek, is 3 ×M , and pki is a 1 × 3 vector) during our updates as defined in
Section 3.3. No validation is required, although if our sample material only had 2 input
metal compounds, D ≤ 2.

4.2 Connectivity - Cannot Link Algorithm

Due to the continuity of the mixing and alloying process of creating the ternary system of
metal compounds, another law of physics that must be upheld is connectivity of the regions
within the material with the same basis phases present. In GRENDEL, this means that
the clusters themselves within the material must be fully connected, as each cluster should
compromise of the same 3 basis phases. A way of visualizing this is through mixing colors
while painting. If one mixes red and yellow paint loosely together with a paintbrush, knowing
that you started with all of the red paint on the left side of the pallet and yellow on the right,
one would expect areas of red, orange, and yellow. But one would not see a two regions of red
paint completely isolated from each other without at least connecting path of orange paint
(a mixture of red and yellow). Otherwise, it would mean that these red regions somehow
split without leaving some sort of trail between them, which is physically impossible. In that
same vein, if we mix three metallic compounds, we expect a continuous distribution/path
for each of them throughout the entire alloyed material. The basis phases seen at a given
point in the material correspond to these input metal compounds (hence Gibbs’ phase rule
requires D = 3), so we expect connected regions of these basis phases as well.

While the utilization of Graph Cut does a decent job of initially enforcing connected
cluster regions, discontinuity of certain clusters may occur as we update matrices E and
P through nonnegative matrix factorization. To prevent this, we use “prior knowledge” to
enforce greater connectivity of clusters. By prior knowledge, we mean that the constraints
used are not exactly a scientific or physical law, but the methodology utilized makes our
results enforce the laws of physics. We talked about the AMIQO algorithm in Section 2,
which applies something called Must-Link and Cannot-Link pairs of data points. Essentially,
if the user of the AMIQO algorithm knows prior to analysis that a certain pair of points i
and j, having spectra Xi and Xj, are in the same cluster, then they say that these two points
in the material must be linked together, regardless of what cluster this pair is assigned into.
And if we know that a pair of points are not contained in the same cluster, then this pair
cannot be linked in the same cluster [4].

The issue with this method of constraints is that this requires omniscience regarding
cluster assignments of certain data points within the material. Therefore, we use our own
algorithm, CannotLink, which determines pairs of points that cannot be linked in the same
cluster using methodology similar the spectral clustering step described in Section 3.1. Here,
we used the cosine distance between two input diffraction waveform vectors, δcos(Xi, Xj), as
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a similarity metric. To determine which particular pairs of points that cannot be linked
together in the same cluster, we assume that the cosine distance between the two waveforms
must be large. We assign the top ρ% of pairs into a Cannot Link array, given by CL (so
CL is a P × 2 matrix, where P = 0.01ρ

∑N−1
i=1 i), and check to make sure no CL pairs

are assigned into the same cluster after the Graph Cut portion in GRENDEL. If they are,
whichever point in the pair was the latest to switch into the shared cluster is reverted to the
cluster assignment of the previous iteration. Cannot Link is only run after each Graph Cut
step, as Cannot Link requires the cluster membership matrix U outputted by Graph Cut.

In summary, the Cannot Link algorithm is described below:

for i = 1 : size(CL, 1)

if CL(i, 1) and CL(i, 2) are in the same cluster;

if point CL(i, 1) changed cluster assignment last

U(:, CL(i, 1)) = Uold(:, CL(i, 1));

else

U(:, CL(i, 2)) = Uold(:, CL(i, 2));

end

end

end

If both the previous iteration’s cluster membership, Uold, and the current cluster mem-
bership, U , have a CL pair in the same cluster, we eliminate that CL pair from our array.
Also, because a given data point i can have multiple Cannot Link pairs, the order in which
we loop through the CL pairs can lead to situations where, at the end of the algorithm,
certain pairs of points have reverted cluster assignments to again be in the same cluster.
This only happens in the first iteration of Graph Cut unless an empty cluster is eliminated
at some point in the process. Thus, the algorithm seen above is ran in a while loop. After
each run of the Cannot Link algorithm, a check is done to see if any pairs of points in CL
are still paired together. If this is the case, Cannot Link is ran until all CL pairs are indeed
not in the same clusters.

The parameter ρ should be tested for its optimal value for each given sample material.
For our data sets, to be described later, this turned out to be ρ = 75. We assumed ρ should
be approximately the 1 minus the ratio of the size of the largest cluster to N , the overall
number of data points. For our synthetic data set seen in Figure 10, the largest cluster had
61 data points, and with N = 219, mean ρ ≈ 1− 61/219 = .7215, or 72.15%. Both ρ = 70%
and ρ = 75% were tested as well as multiple other values to ensure our logic was sound, with
ρ = 75% creating consistently connected results.

4.3 Peak Shifting

The last physical constraint needed to be implemented concerns peak-shifting of the input
waveforms in X. It was described in Section 1 how the scattering angle of a given peak an
x-ray diffraction pattern is dependent upon the lattice spacing of the material’s crystalline
structure. It is also assumed that the lattice is flat and uniform, that is, no bumps or
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aberrations. But due to the alloying process, the material may not have a perfect lattice
structure once it has cooled back down, and thus the lattice spacing may be a little bit off or
nonuniform at a given point in the material. This creates a shifting of the diffraction peaks
in the waveforms of our sample points, Xi, and this generates error considering the exact
location of the peaks of the sample point’s waveform is needed to determine its exact basis
phases.

An analogy to help understand this can be made with ice cubes. Say you have a perfect
ice cube, completely uniform in atomic structure at every point. It is then melted into
water, and this water is put into a ice cube tray to be put back in the freezer. Once the ice
is solidified again though, the new ice cube may not be exactly the same as the old one - air
bubbles may have been trapped in the water during the freezing process, or the tray may
not have been completely level when put into the freezer. This would distort the ice cube’s
atomic structure slightly. A similar idea occurs when alloying the three ternary compounds
together. Slight shifts in the atomic lattice structure, while unnoticeable to the naked eye,
can be seen through the shifting of peaks in the waveform. This can cause GRENDEL to
incorrectly say we have two separate basis phases present in the material, when in reality
they are just shifted versions of the same one. This error must be accounted for in order to
have accurate clustering diagrams as well as accurate guesses at the basis phase patterns.

To extend GRENDEL to account for peak-shifting, we implement a version of a previously-
published algorithm, ShiftNMF [11], which is short for Shifted Nonnegative Matrix Factoriza-
tion. ShiftNMF takes into account peak-shifting through applying a peak-shifting parameter
value to the basis phases corresponding to each individual data point. While both our ver-
sion and the original authors’ ShiftNMF is based upon the same mathematical principles,
we seek to make our algorithm more robust and geared to adapt to diffraction patterns of
materials. The original ShiftNMF is used for signal processing and includes nuances such as
regularization and smoothing, yet does not do well with noisy data. Our version cuts out
some extra features of the original ShiftNMF to for use in GRENDEL. Most importantly,
our version is set up to allow for constraints to be added in order to account for Gibbs Phase
Rule. While a constraint algorithm for Gibbs Phase Rule could not be implemented in the
timeline of the semester, it is a subject of future work. For now, we seek to just replicate
results in accordance with the original authors.

Compared to the objective function of GRENDEL’s nonnegative matrix factorization
step, Equation (8), ShiftNMF uses a least-squares objective function

JLS(X,E, P, T ) =
1

2
||X − PE||2L2

=
1

2β
||Xf − (P · exp (iωT ))Ef ||2L2

(17)

Note, Equation (17) does not take into account clustering or the matrix U . ShiftNMF
can be run inside a given cluster on a subset of the full initial data X that is assigned to that
given cluster, something that will be explored in Section 8.1 . X is still our input diffraction
patterns matrix, with dimension N×M for the N data points and M being the dimension of
the waveforms. E is the basis phase matrix, with dimension D×M for the D basis phases,
while P is our proportion matrix, or the weights applied to the phases in E in order to make
the linear combination of of basis phases meant to reconstruct our initial data. Thus, P is
N × D, with weights for each data point or all basis phases. What is new is T , which is
a matrix for a value/magnitude of peak-shifting. It is N × D, to quantify the amount of
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peak-shifting for each basis phases for each data point.
The subscript f is used to indicate that the Discrete Fourier Transform of a given matrix

has been applied. The peak-shifting values are incorporated in Fourier space using the
exponential exp(iωT ), with ω a given frequency in Fourier space, which upon applying a
Inverse Fourier Transform, equates to a linear shift in the basis phases. The frequencies
correspond to the M discrete data points of the waveforms. Both of the representations of
our new objective functions, outside and inside Fourier space, are equivalent due to Parseval’s
identity, which states that the sum of a square of a function, such as least-squares error, is
equal to sum the of the square of its Fourier transform, scaled by a parameter β. For our
discrete case, β = M , the length of the waveform.

We seek to minimize the objective function (17) in the same way that regular nonnegative
matrix factorization does so. Note all of the following explanations of our update rules of
P,E, and T matrices, for brevity and clarity, have been written in vectorized form. Yet in
reality, these derivations are done element-wise for each matrix, as this is the only way for
the dimensions of X,P,E, and T to match up in Fourier space. Part of the computation
rigor of implementing this algorithm is finding clever ways of vectorizing these update rules.

To update the matrix E, our method is as follows:

PT = P · exp (iωT )

gradE =
−1

M
PH
T (Xf − PTEf )

grad+
E =

1

M
PH
T PTEf

grad−E =
1

M
PTXf

G+ = ifft(grad+
E), G− = ifft(grad−E)

E = E ·
(G−
G+

)α
If Jnew ≥ Jold, then reduce α until Jnew < Jold

To explain, we apply Discrete Fourier Transforms to our X and E matrices using the fft
function in MATLAB, apply the peak-shifting values T to the matrix P , and set ∂J/∂Ef = 0
in Fourier space to get the gradient. A superscript H denotes the conjugate transpose of
the given matrix. We then separate this gradient into the positive and negative term (lines
3 and 4 seen above, respectively) and apply Discrete Inverse Fourier Transforms using the
ifft function in MATLAB. E is then updated by element-wise multiplication of E with the
ratio of the negative to positive parts of the gradient ∂J/∂E to the power α, which is a
convergence parameter. α is tuned to ensure that the objective function is reduced each
iteration.
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In the same vein, our method to update P is:

Ef,T = Ef · exp (iωT )

ET = ifft(Ef,T )

gradP = −(X − PET )E ′T
grad−P = XE ′T
grad+

P = PETE
′
T

P = P ◦
(grad−P

grad+
P

)α
Guaranteed convergence for α = 1

Here, we apply a Fourier Transform to E and then apply the peak-shifting values. After
taking an Inverse Fourier Transform to get back E, only this time with the basis phases
shifted, we set ∂J/∂P = 0. To avoid confusion with the matrix T , the transpose of ET , the
basis phases with peak-shifting applied, is denoted by E ′T . As this gradient is taken in real
space, this update rule has been shown to be always convergent for α = 1 [11].

To update our peak-shifting matrix T , we utilize the Newton-Raphson method. Again,
note that the following method is abbreviate in vector form, but in order to take all gradients
and Hessians, element-wise derivatives must be taken:

PT = P · exp (iωT )

Qf = PTEf

Yf = Xf −Qf

gradT = g =
−1

M

∑
ω

2ωIm[QfY
∗
f ]

HessianT = B =

{ −2
M

∑
ω ω

2Re[QfQ̄f ], for diagonal entries
−2
M

∑
ω ω

2Re[Qf (Q̄f + Ȳf )], else

}
T = T − ηB−1g

If Jnew ≥ Jold, then reduce η until Jnew < Jold

The terms Qf and Yf are used to simplify the visualization of the gradient and Hessian,
and Q̄f and Ȳf denotes the conjugate of the respective matrix. Similar to our update of E,
η is a convergence parameter tuned each iteration to ensure the objective function is always
reduced.

Due to the complexity of minimizing the objective function (17) when matrix dimensions
get large, this iterative method is subject to finding solutions which are local minima. In
order to try and combat this, a cross-correlation step is applied every 20 iterations to mix
up the peak-shifting values within T . This seeks to update each individual element of the
matrix T , as opposed to the vectorized version of the T update above:
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Randomly select d′ phase, n′ data point

Let Xn′,f = fft(X) at n′

Let Ed′,f = fft(E) at d′

Rn′,f = Xn′,f −
∑
d 6=d′

Pn′,fEd,f · exp (iωTn′,d)

Cn′,f = R∗n′,fEd′,f

C ′n = ifft(Cn′,f )

t = arg maxCn′

Tn′,d′ = t (transformed to fit range of possible peak-shifting values)

In words, the cross-correlation step does a random permutation of all data points and
all basis phases, with n′ and d′ denoting the data point and basis phases indices for the
given iteration. We take the Fourier Transform of X and E, and then subtract out all
contributions from the other basis phase combinations, with peak-shifting applied (seen as
Rn′,f ). This is equivalent to the contribution of the d′ basis phase for a given diffraction
pattern for sample point n′. The cross-correlation between the basis phase d′ and the n′

diffraction pattern is given by Cn′,f . We take the Inverse Fourier Transform to this to get
Cn′ , which is a 1×M vector. The index of the maximum value of Cn′ is then taken to be the
new peak-shifting value for the d′ phase for point n′, after transforming this positive index
to range from [−M,M ].

The updates for P,E, and T matrices are repeated iteratively, with the convergence
progress being updated each iteration. The convergence criteria for ShiftNMF is defined as:

R2 =
SST− SSE

SST
, (18)

with SST defined as
SST = ||X||L2

and SSE

SSE =
1

2M
||Xf − (Pf • exp (iωT ))Ef ||2L2

What we denote as R2 is really the percent of the variance in the initial data explained by our
reconstructed solution, PE. In statistics, R2 is the coefficient of determination, the square
of the correlation coefficient between two data sets. Our definition is not the true R2 in this
sense, although we have used this terminology to illustrate the fact that both interpretations
are the percent of the variance of an initial dataset explained by reconstructed solution. The
only difference is that the coefficient of determination is bounded by [0, 1], whereas our R2

is not bounded in the negative direction if our reconstruction solution has extreme error.
The key, however, is as both versions of R2 approach a value of 1, it implies convergence to
complete agreement between the initial data and our reconstructed solution.

Thus, to summarize, this paper defines R2 to be a percent of the variance in our initial
data X explained by our reconstructed solution of P,E, and T . A value of R2 being 1
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means that our solution is a perfect linear combination of basis phases for our data X. Our
iterative process of updating P,E, and T is repeated until a maximum number of iterations
is reached, or if the change in the objective function (least squares error) between iterations
is under a certain threshold (10−8).

5 Implementation

The overall GRENDEL algorithm and all of the constraint programming is written in MAT-
LAB R2017a. The Graph Cut portion is coded in C++, yet our goal is to not change this
function as it has been optimized over years of research [9],[8],[10]. Both the Cannot Link
and ShiftNMF algorithm were writted in MATLAB R2017a. THe attempts to fit ShiftNMF
into GRENDEL, outlined in Sections 8.1 and 9, were written in MATLAB as well. The code
is run on a personal ASUS laptop with a 2.4 GHz Intel processor and 8 GB of RAM.

Statistic analysis, including the calculation of p-values discussed in Section 8.1, was done
using the Data Analysis package in Excel 2013.

6 Datasets

Four different data sets are used. The first is a synthetic data set given to us by the creators
of the GRENDEL algorithm [3],[1]. This diffraction data has been generated for validation
testing purposes, as we know the basis phase patterns in E, the proportion of basis phases
P , and the cluster membership U for each given data point in the material. For validation
of the Cannot Link algorithm, we use the (Fe-Al-Li)Ox data set, which is known to have
k=7 clusters and 6 basis phases.

The second set of data is taken from the Inorganic Crystal Structure Database (ICSD),
a large library of material data. Diffraction spectral data and spatial composition data for
the Fe-Ga-Pd ternary system from the ICSD courtesy the authors of GRENDEL [3]. This
the true phases of this material, however, is not known and thus validation cannot be done
on this dataset. An example of the pattern decomposition of the Fe-Ga-Pd ternary system
from the original GRENDEL algorithm Figure 6. After validation, we wish to test ShiftNMF
on this data set, as it is the only diffraction data that has noise, a physically realistic element
of diffraction patterns.

The last two data sets are synthetic spectral data used to validate our version ShiftNMF.
One of the initial data sets, generated by the authors of the original ShiftNMF algorithm, is
in accordance with the validation procedure of the original authors of ShiftNMF [11], while
the other data set was generated by us for further validation.

7 Validation Methods

7.1 Cannot Link

Running the original algorithm, prior to applying the connectivity constraint Cannot Link,
the results of GRENDEL on the (Fe-Al-Li)Ox ternary system is seen in Figures 7 and 8.
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Figure 6: Left: the Fe-Ga-Pd system ternary diagram, illustrating the clustering of a pre-
vious GRENDEL experiment. Right: the constituent phase plot of the 10 basis phases seen
in the material [3]. Since we do not know true values for this data set, this material will be
analyzed after validation procedures are completed.

Figure 7: The ternary clustering diagram for the (Fe-Al-Li)Ox system for the original
GRENDEL algorithm.
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Figure 8: The basis phase waveforms for each of the k=7 clusters. The legend to the right
is to associate the given spectral phase plots to their respective cluster color in Figure 7.
See that at most 3 waveforms are seen in each cluster, verifying Gibbs Phase Rule has been
upheld.
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Figure 9: Ternary clustering diagram after adding in Cannot Link algorithm. Note that all
k=7 clusters are fully connected now.

Gibb’s Phase Rule is seen when looking at Figure 8, the spectral basis phase plots for each of
the k=7 clusters. Each cluster is represented by a subplot, and at most three waveforms are
seen (indicated by the orange, yellow, and blue waveforms). The plots are labeled accordingly
by cluster corresponding to the colored regions seen in Figure 7.

Regarding validation of the Cannot Link, the number of Cannot-Link pairs in the array
CL which belonged to the same array after each iteration was documented, as well as the
final count of Cannot-Link pairs in the same cluster at the end of the algorithm. Replicated
for 50 trials, absolutely zero CL pairs were in the same cluster. This makes sense, as the
construction of the Cannot Link algorithm requires this fact in order to advance further. To
prove this fact, validation of Cannot Link is built-in as an output of all codes to be delivered
in conjunction with this project.

For further visualization of how Cannot Link increases connectivity of clusters, see Fig-
ure 9. This is in comparison to the original GRENDEL’s clustering, which we see has the
disconnected yellow cluster in Figure 7. Over the 50 trials, only 3% to 4% of the CL pairs
needed to be eliminated from our array, implying the ρ parameter for the percent of CL
pairs is not too large. Note that our clustering does not exactly match up with the true
clustering scheme seen in the ternary diagram of Figure 10, yet note this is not possible until
peak-shifting has been accounted for.

7.2 ShiftNMF

To validate our version of the ShiftNMF algorithm, we tested it on the synthetic data set
used in [11]. This set consisted of N = 9 data points, D = 3 basis phases, and a waveform
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Figure 10: The true ternary clustering diagram for the (Fe-Al-Li)Ox synthetic data set.

length M = 1400. Again, note that for plotting purposes, M is a dimensionless grid spacing
representing either scattering angle or Q-spacing of the diffraction pattern. The intensity
values (y-axis) was scaled for comparison purposes. Note in all of the proceeding figures,
the key aspect to analyze is the exact position of the basis phases recognized by ShiftNMF
in comparison to the true values. Regardless of the height/intensity of the basis phase, the
scattering angle/Q-spacing value of the peaks of a given basis phase provide the information
about the chemical properties of the material which we desire in application. Figures 11 and
12 show that our reconstructed solution of the P,E, and T matrices match the true values.

To further show our version of ShiftNMF can resolve the true basis phases, proportions,
and peak-shifting values, we also tested it on a harder data set, seen in Figure 13. This
data set had N = 12, D = 4,M = 1500. Again, our reconstructed solution matches with the
true values, in particular with the basis phases. The 12th data point is the only source of
error in our solution; however this error manifested in the proportions and the peak-shifting
values rather than the basis phases. As ShiftNMF is not deterministic due to the random
component of our convergence methods, this will not be the case for every run of ShiftNMF.
As a part of this project, code will be delivered with the specific seeds of the random number
generation included in order to replicate these figures.
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Figure 11: True values of P,E, T for the 3 basis phases.

Figure 12: Results P,E, T of ShiftNMF, after 2000 iterations. An R2 value of 1.0000 was
observed.
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Figure 13: True values of P,E, T for the 4 basis phases.

Figure 14: Results P,E, T of ShiftNMF, after 1743 iterations. An R2 value of 0.9993 was
observed.
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Figure 15: The two options of implementing ShiftNMF within GRENDEL. To the left,
applying ShiftNMF without any clustering. To the right, replacing the original nonnegative
matrix factorization step with ShiftNMF, yet keeping the initial clustering steps.

8 Testing

8.1 Testing ShiftNMF within GRENDEL

The Cannot Link algorithm has already been implemented in GRENDEL, yet ShiftNMF still
has to integrated. There are two options we explored, seen in the flow charts in Figure 15.
First, we tested just running ShiftNMF on our synthetic spectral data set (Fe-Al-Li)Ox

without clustering. Note though, this idea does not adhere to Gibbs Phase Rule, a major
law of physics violation.

The second option is to replace the nonnegative matrix factorization step described in
Section 3.3 with ShiftNMF and keep just the initial clustering steps, the spectral clustering
and the run of the simpler version of Graph Cut. As a reminder, the data cost function of
this simpler version of Graph Cut is defined in Equation (15). In the step of the project, we
were testing whether or not it is advantageous to cluster before or after running ShiftNMF
in the constructs of GRENDEL. So, we decided to cut out all advanced Graph Cut steps, as
we had yet to alter the data cost function described in Equation 14 to take into account the
peak-shifting values T . This method of using ShiftNMF with clustering adheres to Gibbs
Phase Rule, yet the initial clustering steps do not take into account the peak-shifting error.

Both of the strategies, ShiftNMF without clustering and ShiftNMF with clustering, were
coded and tested in comparison to GRENDEL. As the ShiftNMF algorithm had to be altered
in each testing method, to validate that the two new strategies still performed as they should,
the synthetic data set with N = 9 points and D = 3 phases used to originally test ShiftNMF
was again replicated, only with new true values of P and T for each data point [11]. These
correspond to Figures 16, 17, 18, and 19.

We looked at specifically how well the variance in the initial data is explained by our
reconstructed solution with P,E, and T . As stated in Section 4.3, we call this our R2 statistic.
Specifically, we ran 30 trials of ShiftNMF without clustering, ShiftNMF with clustering, and
the original GRENDEL code. This was run for two types of initialization of the matrices
P and E - randomized numbers, in accordance to the initial conditions of ShiftNMF, and
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Figure 16: True values of P,E, T for the 3 basis phases used to validate ShiftNMF within
Strategy 1 (without clustering).

Figure 17: Results P,E, T of Strategy 1, ShiftNMF without clustering, after 2000 iterations.
An R2 value of 1.0000 was observed.
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Figure 18: True values of P,E, T for the 3 basis phases used to validate ShiftNMF within
Strategy 2 (with clustering).

Figure 19: Results P,E, T of Strategy 2, integrating ShiftNMF within the GRENDEL clus-
tering scheme, after 2000 iterations. An R2 value of 1.0000 was observed.
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using the initial conditions of the original GRENDEL algorithm (uniform proportions for P ,
using the output of nnmf MATLAB function).

The results of the testing are summarized below:

Implementation Initialization Procedure Mean R2 t-statistic p-value

GRENDEL Randomized 0.9493 N/A N/A
GRENDEL nnmf 0.9450 N/A N/A

ShiftNMF without clustering Randomized 0.9607 6.308 3.91e-7
ShiftNMF without clustering nnmf 0.9721 30.385 9.41e-28

ShiftNMF with clustering Randomized 0.9872 77.236 3.71e-45
ShiftNMF with clustering nnmf 0.9867 97.088 6.70e-66

We see that the mean values of R2 are indeed higher for our two strategies compared
to the original GRENDEL. Yet this does not tell us as much the t-statistic and p-values
that were calculated through 2-sample t-tests with unequal variances. This is an example
of hypothesis testing. For this, we create a null hypothesis, in this case, that the final mean
R2 values our ShiftNMF strategies is the same as the mean R2 of GRENDEL’s output.
Assuming this null hypothesis to be true. A probability distribution is then created to
mirror this null hypothesis. Because the true mean and standard deviation in the results
of GRENDEL are not known, we use what is known as a t-distribution. This is similar
to a standard normal distribution, only it accounts for our lack of prior knowledge of the
mean and standard deviation. Using this probability model, we test our null hypothesis by
taking the difference in our mean R2 values. After scaling this by the standard error, a
combination of the standard deviations of each of the R2 data sets, we are given a t-statistic
value. This statistic directly corresponds to the probability that this magnitude of difference
(or larger differences) in mean R2 values would be seen in the t-distribution assuming the
null hypothesis, which is the p-value.

In general, a p-value of 0.05, or a 5% probability that the results seen can be explained
by the null hypothesis, is seen as statistically significant. By that, we mean that we can
reject the null hypothesis and say that the mean R2 between GRENDEL and each of our
ShiftNMF strategies are not equal. For example, the p-value of 3.91e-7 implies that, assuming
a probability distribution that the mean R2 values are equal, that there is a probability of
0.000000391% that the observed mean R2 difference in the algorithms are explained by the
null hypothesis. Thus, for both initializations and for both strategies, we can reject the null
hypothesis, and we can say our implementations of ShiftNMF yield different R2, specifically
that our strategies yield better R2 convergence results.

This, however, does not take into account certain physical aspects of our solutions in
each strategy. To illustrate a key point, see Figure 20. Particularly when implementing
ShiftNMF within clustering, the clustering portion of GRENDEL does not take into account
peak-shifting prior to running ShiftNMF. This leads to error when calculating the basis
phases - there is over-fitting and we see many more unique phases than the desired solution.
Only a few of phases overlap between the clusters, which is an unacceptable physical result.

In comparison, when running ShiftNMF outside of clustering, we see the correct number
of basis phases. Looking at Figure 21, we have been able to recognize some of the true phases
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Figure 20: Basis phases of a single run of the strategy of ShiftNMF with clustering. Note
that the majority of the 21 phases, spanning 3 phases for each of the 7 clusters, are unique.
That is, running ShiftNMF with clustering yields more than the true number of basis phases.

Figure 21: Basis phases of a single run of the strategy of ShiftNMF without clustering (right)
compared to the true basis phases of the (Fe-Al-Li)Ox synthetic data set. Notice that some
agreement is even seen between the experimental basis phases and true phases.
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of the (Fe-Al-Li)Ox synthetic data set. This leads us to believe that, prior to clustering, that
ShiftNMF needs to run in order to take into account peak-shifting prior to any clustering
step.

More evidence of a need to implement ShiftNMF prior to clustering is seen when running
the two strategies in the real material data from the ICSD, Fe-Ga-Pd. This is important as
this real diffraction data contains noise, something our implementation of ShiftNMF must
address in order to be valuable. Random initial conditions were used and ran for 10 trials
each. For ShiftNMF without clustering, we set the number of basis phases to be D = 8.
The number of clusters in GRENDEL and ShiftNMF with clustering were set to be 5. The
results are summarized below:

Implementation Mean R2 t-statistic p-value

GRENDEL 0.8871 N/A N/A
ShiftNMF without clustering 0.9138 23.491 9.45e-11

ShiftNMF with clustering 0.9055 17.450 6.89e-9

We still see statistically-significant p-values for both of our strategies, but now Shift-
NMF without clustering performs better in terms of the mean R2 statistic. This real data
set includes more data points and less clustering, meaning less over-fitting when running
ShiftNMF within the GRENDEL clustering scheme.

9 New Algorithm - ShiftGRENDEL

With these conclusions in hand, we have developed a new algorithm to try and combine
Cannot Link and ShiftNMF into GRENDEL to take into account peak-shifting in both
basis phase recognition as well as clustering. We call this ShiftGRENDEL, and a flowchart
explaining the methodology is seen in Figure 22.

To summarize, ShiftNMF is run first after initializing the CL array and P,E, and T
matrices. The number of basis phases D is also an input, and we output P,E, and T
from ShiftNMF. Then, we assign cluster memberships of each of the data points based on
the outputted basis phases and proportions for each data point. The output is the cluster
membership matrix U as well as the number of unique clusters seen k. Of importance is that
we recognize that Gibbs Phase Rule is not enforced in ShiftNMF outside of clustering. This
causes most data points Xi to be a linear combination of 4 or 5 phases. This is a focus of
future work on this project, to be discussed later. For now, cluster membership is assigned
by selecting the 3 basis phases with the highest proportions for a given data point i. Note
that within each cluster now, only 3 basis phases are seen, so within each cluster Gibbs
Phase Rule is applied similar to the original GRENDEL code.

Then, after cluster membership is assigned, ShiftNMF is now ran within each cluster.
This is ran with the entire input data set X in all clusters. Within each cluster, we set the
basis phases to be constant, meaning we skip over the E update in ShiftNMF. This updates
the proportions P and peak-shifting values T for each of the data points, if we were to assign
them into that cluster. The reason for this is to be able to formulate the cost of a given data
point i to be assigned into each of the clusters, something necessary to run Graph Cut. The
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Figure 22: A visual representation of the ShiftGRENDEL algorithm.

data cost function described in Equation (14) is then appended to apply the peak-shifting
values T , similar to our ShiftNMF objective function in Equation (17).

After this, Cannot Link is run to update cluster membership. As a convergence check/stopping
criterion, we check to see if there are any empty clusters (in the implementation of shift-
GRENDEL in my deliverables, this is defined to be clusters with less than 15 data points).
Empty clusters are removed if they are present, and Graph Cut and Cannot Link are ran
again. Once all clusters are non-empty, ShiftGRENDEL stops.

To validate ShiftNMF within ShiftGRENDEL runs as it should, again the ShiftNMF
synthetic data set from [11] was used as input, with Figures 23 and 24. This data set has
D = 3 basis phases, so by definition Gibbs Phase Rule was upheld with clustering.

To test to see how ShiftGRENDEL performs in terms of convergence, 30 trials were ran
on the (Fe-Al-Li)Ox data set. The R2 statistic was recorded after the initial ShiftNMF,
prior to clustering. Because of our insufficient method of enforcing Gibbs Phase Rule when
clustering after ShiftNMF, misclassification of cluster membership is very high. This leads
to inaccurate reconstruction results of P and T within clusters. Once Gibbs Phase Rule is
enforced, we will be able to look at statistics such as R2 after running ShiftNMF in clusters
and Graph Cut.

GRENDEL had a mean R2 value of 0.9484, while ShiftGRENDEL had a mean R2 of
0.9609. This led to a t-statistic, after doing a 2-sample t-test with unequal variances, of
6.779, corresponding to a p-value of 4.90e-8. Again, we see that we can reject the null
hypothesis that the mean R2 values of GRENDEL and ShiftGRENDEL are assumed to be
equal. Thus, we see a better reconstruction of the input data X using the outputted P,E,
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Figure 23: True values of P,E, T for the 3 basis phases used to validate ShiftNMF within
ShiftGRENDEL.

Figure 24: Results P,E, T of the ShiftNMF scheme within ShiftGRENDEL. And R2 value
of 1.000 was observed.
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Figure 25: R2 values at each iteration step for GRENDEL, ShiftNMF without clustering,
and ShiftNMF with clustering. Note that convergence to a set R2 value tends to occur earlier
than 500 iterations. This also illustrates a flaw of GRENDEL, that is does not guarantee
convergence from iteration to iteration.

and T matrices of ShiftGRENDEL.
While this is nice, it is in no way a satisfactory result yet. Gibbs Phase Rule must be

implemented in order to get physically realistic solutions. The next step in this project, to
be completed this summer, will be to implement a LASSO-type L1 regularization procedure
to restrict the number of basis phases seen at each point within the initial ShiftNMF step,
prior to clustering. Also, we have yet to talk about the speed of each of the algorithms.
Averaging over 10 trials for 500 iterations, the mean run-time of the original GRENDEL
code was 30.1 seconds. Strategy 1 of ShiftNMF without clustering ran in 174.8 seconds, and
ShiftNMF within clustering ran in 147.7 seconds. Yet ShiftGRENDEL, due to the repeated
running of ShiftNMF, the most computationally-expensive part of the algorithm, ran in
1281.3 seconds, much too high. Future work will also address this. A first idea will be to
parallelize the running of ShiftNMF within each cluster, as we can coded this to be able to
run independently and simultaneously with affecting results. Second, Figure 25 shows how
R2 converges to a stable value in a seemingly quick fashion. An idea is to see just how many
iterations of ShiftNMF is needed in order to achieve acceptable results.

10 Timeline

The project timeline had to be appended several times, with the final revision being early this
semester after recognizing the complexity of applying methods to account for peak-shifting.
We were able to complete nearly every part of this timeline established:

1. Fully understand GRENDEL, replicate the previous results (mid/late October) com-
pleted
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2. Connectivity constraint - Cannot Link

(a) Write Cannot Link algorithm (November) completed

(b) Validate and optimize parameters (December) completed

3. Peak-shifting - ShiftNMF

(a) Locate and understand algorithm, ShiftNMF (January) completed

(b) Write own version of ShiftNMF (February) completed

(c) Validation (March) completed

4. Implementing Cannot Link and ShiftNMF within GRENDEL

(a) Test options for ShiftNMF within GRENDEL (April) completed

(b) Generate ShiftGRENDEL algorithm (early May) completed

(c) Collect final results (May) completed

(d) Optimize run-time of ShiftGRENDEL (May) incomplete

11 Deliverables

I will be delivering packages of each of the algorithms discussed during this project. These will
include the Cannot Link algorithm, ShiftNMF, both strategies of implementing ShiftNMF
into GRENDEL, and the final ShiftGRENDEL code. Zip files will be created corresponding
to packages to validate ShiftNMF outside of GRENDEL on both data sets discussed, as well
as the three methods of combining ShiftNMF and GRENDEL set to run the code with the
synthetic (Fe-Al-Li)Ox data as well as the ICSD Fe-Ga-Pd data. A readme.txt file will also
be attached that will include directions regarding how to run each code for each data set.
All data sets used will be included, as well as an Excel spreadsheet of data taken regarding
the testing described in Section 8.1, both included in this report as well as extra statistics
taken.
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