
Page 1

A Framework for construction of and computations

on Four-Dimensional Aircraft Trajectories

CMSC 663-664

2016-2017

Author:

Jon Dehn

jondehn@umd.edu

Advisor:

Dr. Sergio Torres

Fellow, Leidos Corporation

Sergio.torres@leidos.com

Final Report – May 12, 2017

mailto:jondehn@umd.edu
mailto:Sergio.torres@leidos.com

Page 2

Abstract

Air traffic control systems perform many functions in order to safely and efficiently move air

traffic through the national and international airspace. A key component of these systems is an

accurate prediction of where the individual flights will be over time. This project builds a

framework to both do that prediction and use the prediction to examine various air traffic

control algorithms for both accuracy and efficiency. This framework is designed for reuse, such

that future research into ATC algorithms can be conducted with simple extensions to the

system.

Page 3

Table of Contents
1 Introduction .. 6

2 Project Goal ... 6

3 Approach ... 7

4 Scientific Computing Algorithms ... 8

4.1 Background Concepts ... 8

4.1.1 Coordinate system .. 8

4.1.2 Speed Definitions .. 8

4.2 Trajectory Generation ... 9

4.2.1 Trajectory Generation Basics – latitude and longitude dimension 9

4.2.2 Trajectory generation basics – altitude and time ... 10

4.2.3 Rate of Climb/Descent .. 11

4.2.4 Trajectory Generation Inputs .. 14

4.2.5 Trajectory Generation Details ... 15

4.3 Use of Weather Forecast Models ... 16

4.4 Wind Optimal Trajectories .. 17

4.4.1 Version 1 ... 18

4.4.2 Version 2 ... 20

4.5 Parallelizing Conflict Detection ... 21

4.5.1 Time Filter ... 23

4.5.2 Horizontal Filter .. 24

4.5.3 Parallelization Strategies ... 27

5 Implementation .. 31

6 Validation Methods ... 31

7 Test Problems for Verification .. 33

7.1 Use of Weather Forecast Models ... 33

7.2 Wind Optimal Trajectories .. 33

7.3 Parallelizing Conflict Detection ... 33

8 Results ... 34

8.1 Use of Weather Forecasts ... 34

8.1.1 Quality of Forecast .. 34

8.1.2 Impact on Flight Time ... 35

8.2 Wind Optimal Trajectories .. 37

Page 4

8.3 Parallel Processing .. 37

9 Conclusion ... 40

Appendix A. Timeline ... 40

Appendix B. Milestones ... 40

Appendix C. Deliverables ... 41

Appendix D. Bibliography .. 41

Appendix E. List of Abbreviations ... 41

Page 5

List of Figures
Figure 1 Framework Design .. 7

Figure 2 Horizontal path for sample flight .. 10

Figure 3 Vertical profile of sample flight ... 11

Figure 4 Lambert vs. Spherical grids ... 15

Figure 5 Flights Paths for the Use of Forecasted Weather analysis.. 17

Figure 6 Wind Optimal Trajectories, Version 1 ... 19

Figure 7 Wind Optimal Trajectories, Version 2 ... 21

Figure 8 Conflict Detection Time Filter ... 23

Figure 9 Conflict Detection Altitude Filter .. 23

Figure 10 Conflict Detection Horizontal Filter - part 1 .. 24

Figure 11 Conflict Detection Horizontal Filter - part 2 .. 25

Figure 12 Conflict Detection Horizontal Filter - part 3 .. 25

Figure 13 Conflict Detection Horizontal Filter - part 4 .. 26

Figure 14 Conflict Detection Horizontal Filter - part 5 .. 26

Figure 15 Conflict Detection Horizontal Filter - part 6 .. 27

Figure 16 NVIDIA CPU/GPU Architecture.. 28

Figure 17 Memory moves for strategy 2 .. 29

Figure 18 Memory moves for strategy 3 .. 30

Figure 19 Trajectory Generation Comparison .. 32

Figure 20 Effect of Wind on Trajectories .. 33

Figure 21 Test flights used for Conflict Detection ... 34

Figure 22 Accuracy of Forecasted Wind Speed... 35

Figure 23 Distribution of flight time differences with forecasted weather .. 36

Figure 24 Summary of Flight Time Errors ... 37

file:///C:/UMD/cs663/final%20presentation/Dehn%20664%20Final%20Report.docx%23_Toc482686213

Page 6

1 Introduction
Global Air Traffic Control (ATC) is distributed among multiple Flight Information Regions (FIRs). Each

country is responsible for safely and efficiently handling traffic in their FIRs. Most countries have 1 FIR;

due to the volume of air traffic and the complexity of its airspace, the US has 20.

At the core of the FIR’s processing is building an estimate of each aircraft’s trajectory (a four dimensional

description of the flight path, with dimensions of latitude, longitude, altitude and time).

Once these trajectories are constructed, they are used for various purposes, such as conflict detection

(which predicts whether two aircraft will be too close to each other, or if a single aircraft will fly into

restricted airspace), workload planning for the human controllers separating air traffic, airport arrival

and departure planning, etc.

This project examines different aspects of generating and using these trajectories, including

performance aspects of using the trajectories in various applications.

2 Project Goal
The project has built a modular system where:

1. Different trajectory generation algorithms can be tested

2. Algorithms using those trajectories can be tested for performance and accuracy. The specific

algorithms selected have relevance to the state of the practice today.

This framework can be used to explore new concepts for air traffic management.

A secondary goal is that the project’s author becomes familiar with techniques of parallelizing

computing algorithms, and becomes more proficient in the use of the Python programming language.

Page 7

3 Approach
The system looks like this:

The trajectory generation algorithm takes three major inputs:

1) Flight intent, consisting of items such as route of flight, departure time, desired airspeed, type of

aircraft and desired cruising altitude

Flight Intent can be either synthetic for testing or derived from real-world data (via the publicly

available “Aircraft Situation Display to Industry” (ASDI) data stream, or websites such as

“FlightAware”[9]).

2) An atmospheric model, listing temperatures, pressures and wind aloft values for the FIR’s

geographic region. One instance of this is a three-dimensional model, but multiple hour

forecasts are available, which adds a fourth dimension. This is publicly available from NOAA,

and are distributed in “GRIB2” format[6]. These files typically use a Lambert conical projection,

which would be transformed into a grid of fixed sized cells, with fixed sized latitude, longitude

and altitude[8].

Initial testing can be done with a “null” model of zero winds.

3) A set of airframe parameters, that indicate how particular aircraft types (such as a Boeing 737)

will climb and descend. For this, Eurocontrol’s Base of Aircraft Data (BADA) dataset[1] is used

(under the University of Maryland license). There are two versions of this model in use; version

3 (which has a rich set of airframe parameters) and version 4 (which is more detailed but covers

fewer airframes currently). This project uses version 3.

These experiments were proposed; time constraints precluded completing the final experiment. The

first three were completed, and are discussed in this report.

Atmospheric

Model

Airframe

Parameters

Trajectory Generation

Algorithm
Flight

Intent

4D

Trajectory

Conflict Detection

Other 4D trajectory

algorithms

Figure 1 Framework Design

Page 8

1) The current US system uses current-hour weather model for all computations, even though a

flight can last several hours. Implement a version that uses future weather forecasts and

compare changes in long-duration trajectories

2) Find an optimal wind-aided trajectory. This will find an “optimal” trajectory between two points

given non-zero wind patterns. Initially, “optimal” will be define as the trajectory that uses the

least fuel; other more complex definitions could be supplied.

3) Parallelize conflict detection algorithms, measure complexity of implementation vs. speed

tradeoffs for different parallel techniques

4) Look at the increased accuracy of BADA version 3 vs. version 4 for identical aircraft types,

balanced against the increase in complexity and computational load

The algorithms for each experiment are described in the next section.

4 Scientific Computing Algorithms
The principal algorithm that is implemented is the generation of the 4D trajectory; this requires the

solution of the ordinary differential equation to describe the climb and descent segments of the

trajectory. Some basic concepts are discussed first.

4.1 Background Concepts

4.1.1 Coordinate system
Points on the earth’s surface are transformed to a Cartesian coordinate (x,y,z) on a unit sphere (radius =

1.0). Given the radius of the earth, distances on the surface of the unit sphere are converted to nautical

miles (NMI), for things like speed calculations (Knots). Other calculations such as intersection of great

circle arcs are simplified when the unit sphere is used.

Since we are concerned with a particular geographic area, an approximation of the earth’s radius for

that area would be used in practice (perhaps slightly different for each FIR). For this project, the mean

radius of the earth will be used.

All external latitude/longitudes are supplied in WGS 84 coordinates[2], which assumes the earth is an

ellipsoid with specific major and minor axes (same as is used by the GPS). Translation to the unit sphere

is straight forward, and supplied as routines in many programming languages.

Note that the Cartesian coordinate (x/y/z) is for the surface of the earth. Altitude above the surface is

separately specified (and forms one dimension of each trajectory point). This simplifies the ODE to be

solved, since it depends on altitude, not distance from the earth’s center.

4.1.2 Speed Definitions
The algorithms use several different “speed” values, as described below.

True Airspeed (TAS) – speed of the aircraft relative to the surrounding air mass (which may be moving

with respect to the earth’s surface)

Page 9

Ground speed – speed of the aircraft over the surface of the earth; this is the true airspeed adjusted by

the winds moving the air mass. If wind speed and TAS are given as vectors, VGS = VTAS + VWIND.

Calibrated airspeed (CAS) – airspeed as known to the aircraft’s instrumentation; this is based on a

“calibration” that takes into account any known bias in the instruments. For a constant CAS, TAS will

vary depending on altitude

Mach – speed of sound; important here because aircraft plan to hold CAS and Mach constant; there is a

crossover altitude at above which planning is done based on Mach speed, CAS and Mach will be equal at

that altitude.

4.2 Trajectory Generation

4.2.1 Trajectory Generation Basics – latitude and longitude dimension
As noted above, the trajectory generator takes flight intent as an input. This is supplied by the airline or

pilot, and consists of:

• The path (over the surface of the earth) to be followed

• The desired cruise altitude

• The desired cruise speed (true airspeed or Mach; in practice only military flights specify this in

Mach)

• The type of airplane (e.g. Boeing 737)

• Departure time

As an example, consider Southwest flight 3156 from Baltimore (airport code BWI) to Orlando (MCO):

• altitude 40,000 feet

• speed 452 knots

• Boeing 737-300

• Depart at 10:35 am

The creation of the actual path from departure airport to destination airport is beyond the scope of this

project; we start with the expanded set of points as an input. This input defines a path on the earth’s

surface, which starts at the departure airport, ends at the destination airport, and has intermediate

waypoints. The waypoints are connected by great circle arcs. In order to more accurately follow the

path of the flight, turn waypoints can be replaced with a number of smaller segments that more closely

approximate the turn to be taken. Whether this is done depends on the accuracy needed for other

work. Figure 2 shows an example path from Baltimore to Orlando.

Page 10

Figure 2 Horizontal path for sample flight

4.2.2 Trajectory generation basics – altitude and time
In order to turn the two-dimensional waypoints into points on a four-dimensional trajectory, altitude

and time are calculated for each point. This results in a vertical profile that looks something like Figure

3.

Page 11

Figure 3 Vertical profile of sample flight

Each trajectory point is called a cusp, and the segments that connect cusps have a constant rate of

vertical velocity (climb or descent) and a constant rate of acceleration over the segment. This, along

with the starting ground speed for each segment, allows us to predict where a flight will be at any point

in time.

This final representation of the trajectory has additional points added between the waypoints supplied

as inputs, in order to assure that the above definition of constant acceleration/vertical velocity holds.

For example, it is necessary to accelerate to the desired climb speed; when that acceleration is complete

a cusp is added to the trajectory.

4.2.3 Rate of Climb/Descent
Calculation of the rate of climb (or descent) is described in detail in [1], and is summarized here.

The basis of this rate is this conservation of energy equation:

(Thr − D) ∗ VTAS = mg0

dh

dt
+ mVTAS

dVTAS

dt
(4.2.3 − 1)

Where

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350

A
lt

it
u

d
e

 (
Fe

et
)

Along Route Distance (NMI)

Python Generated Trajectory
Boeing 735 - Cruise Alt 35,000

Page 12

Thr Thrust supplied by the aircraft
engines

 m (mass) Mass of the aircraft, including
fuel, passangers and baggage.
This will decrease over the life
of the flight

D (Drag) Drag from movement through the
atmosphere

 g0 Gravitational acceleration

VTAS Velocity in true airspeed h Geodetic altitude

Combine this equation with the assumption that, during climbs and descents, pilots hold speed (CAS or

Mach) and throttle position constant, the above can be re-written as

dh

dt
=

(Thr − D) ∗ VTAS

mg0
[1 + (

VTAS

g0
) (

dVTAS

𝑑ℎ
)]

−1

(4.2.3 − 2)

The last term can be replaced by an “energy share factor” [3]; the ratio of energy allocated to climb vs.

acceleration for a constant velocity; a function of Mach:

𝑓{𝑀} = [1 + (
VTAS

g0
) (

dVTAS

𝑑ℎ
)]

−1

(4.2.3 − 3)

Hence, the rate of climb or descent (which is typically expressed in pressure altitude Hp, rather than

geodetic altitude h), is

𝑅𝑂𝐶𝐷 =
𝑑𝐻𝑝

𝑑𝑡
=

𝑇 − ∆𝑇

𝑇
[
(Thr − D) ∗ VTAS

mg0
] 𝑓{𝑀} (4.2.3 − 4)

Where T is temperature at altitude, and ∆𝑇 is the temperature differential at that altitude from the

International Standard Atmosphere (this is given by the atmospheric model).

4.2.3.1 Energy Share Factor

The energy share factor 𝑓{𝑀} is a function of Mach (M) and varies with altitude, and whether we are

accelerating or decelerating in climb or descent. As an example (to convey the complexity of the

equation), below the crossover altitude when not accelerating, it is defined as:

𝑓{𝑀} = {1 +
𝜅𝑅𝛽𝑇,<

2𝑔0
𝑀2

𝑇 − ∆𝑇

𝑇
+ (1 +

𝜅 − 1

2
𝑀2)

−1
𝜅−1

{(1 +
𝜅 − 1

2
𝑀2)

𝜅
𝜅−1

} − 1}

−1

(4.2.3 − 5)

Where

𝜿 Adiabatic index of air = 1.4
R Real gas constant for air =287.05287

Page 13

𝜷𝑻,< ISA temperature gradient below the tropopause - -0.0065

The Mach number is based on the current speed at the current altitude, which may be a true airspeed.

If so, that TAS is converted to a Mach value by dividing the VTAS by the speed of sound at the given

altitude (the value for T is obtained from the weather model at the current altitude):

𝑀 =
𝑉𝑇𝐴𝑆

√𝜅𝑅𝑇
(4.2.3 − 6)

The full definition of the energy share factor can be found in [1].

4.2.3.2 Thrust

Thrust depends on the engine type (Jet, Turboprop or Propeller), pressure altitude, airspeed (in some

cases) and temperature differential.

For example, for a jet engine, the maximum climb thrust would be:

(𝑇ℎ𝑟max 𝑐𝑙𝑖𝑚𝑏)𝐼𝑆𝐴 = 𝐶𝑇𝐶,1 ∗ (1 −
𝐻𝑝

𝐶𝑇𝐶,2
+ 𝐶𝑇𝐶,3 ∗ 𝐻𝑝

2) (4.2.3 − 7)

Where the coefficients Cx are given for the airframe type in the BADA dataset. Note that in this case (of

a jet engine) there is no term for airspeed.

4.2.3.3 Drag

Drag depends on the Drag Coefficient, which in turn depends on the lift coefficient.

Lift coefficient:

𝐶𝐿 =
2 ∗ 𝑚 ∗ 𝑔0

𝜌 ∗ 𝑉𝑇𝐴𝑆
2 ∗ 𝑆 ∗ 𝑐𝑜𝑠∅

(4.2.3 − 8)

Drag Coefficient:

𝐶𝐷 = 𝐶𝐷0,𝐶𝑅 + 𝐶𝐷2,𝐶𝑅 ∗ (𝐶𝐿)2 (4.2.3 − 9)

And finally drag force:

𝐷 =
𝐶𝐷 ∗ 𝜌 ∗ 𝑉𝑇𝐴𝑆

2 ∗ 𝑆

2
(4.2.3 − 10)

S Wing surface area
ρ Air density
∅ Bank angle (zero, unless in a turn)

Page 14

4.2.3.4 Weather Model

The weather model supplies some key data for the above equations. Specifically, the following

information is used from the NOAA-supplied data:

1) North wind component

2) East wind component

3) Temperature (from which the ∆𝑇 can be calculated)

4) Pressure

4.2.4 Trajectory Generation Inputs

4.2.4.1 Flight Intent Source

The FlightAware web site (www.flightaware.com) provides intent (airspeed, cruise altitude, route of

flight, departure time) for all commercial flights in the US. Once a pair of endpoint airports is selected,

that site provides the fixes in the route for a variety of flights between those cities. This data is screen-

scraped (using a developed Python program) to produce an intent file that can be used in various

experiments.

Flights of various durations and directions can therefore be added to the inventory of test data.

4.2.4.2 Airframe Parameters

Eurocontrol's BADA database is used (by extending the University's existing license for use on this

project); version 3.13 is the latest version as of fall 2016; it is used for this effort.

4.2.4.3 Atmospheric Model

GRIB2 files, with atmospheric levels, are provided hourly by NOAA. Selected days data is captured and

converted to a form usable by the program. That conversion follows this process:

1) The data from NOAA is provided in various resolutions; for this effort the 40 km grid is used,

with the data covering the continental US.

2) That data is processed by NOAA's "degrib" tool [10] to produce ASCII files (in comma-separated-

value format, CSV) containing:

a. Grid Coordinates (x/y)

b. Latitude and Longitude (in geodetic coodinates) of that grid point

c. Value for the parameter; the temperature, U wind value, V wind value and pressure

values are used here

3) Data in the CSV file is in the Lambert Conical Projection, with a secant line of 25 degrees north

latitude. When building a trajectory, fast access to weather data in a spherical (conformal) grid

is needed. Hence the data is transformed to a lat/long grid in equally-spaced conformal latitude

and latitude, in equally spaced altitude bands of 1000 feet. This data is then written to disk

using the "numpy" Python package (which stores dense arrays of floating point data). During

trajectory generation, the particular set of weather data and these files are read for use during

processing. Numpy is used in various places in this project, but (at this point) only for its efficient

in memory representation of large arrays, and the load and store operations on those arrays.

The transformation from Lambert to Spherical requires that a spherical grid be constructed that lies

within the Lambert data. The values of each parameter at the spherical grid points is an interpolated

Page 15

value from the Lambert grid. In the horizontal direction, a bi-linear interpolation is used from the four

surrounding Lambert grid points; these horizontal points (which are at pressure levels 1000 mb through

100 mb) are then linearly interpolated in the vertical direction to give values at evenly spaced 1000 foot

altitude bands. This is the same technique as is detailed in "ERAM Flight Data Processing (FDP) and

Weather Data Processing (WDP) Algorithms" [8].

The grids are shown in Figure 4. This figure is shown with latitude distances unchanging with longitude

(that is, no special projection). The blue Lambert grid appears to expand towards the north, since in fact

the longitudinal spacing will decrease as we go north. The red spherical grid that is created by the

program is designed to fit completely in inside the Lambert grid, so that only interpolation is needed to

find point values. The green box shows the extent of the lower 48 states; the part that is outside the red

grid to the east is the eastern-most tip of Maine. If this setup modeled a flight in that remote part of

Maine, no wind or temperature information would be available.

Figure 4 Lambert vs. Spherical grids

4.2.5 Trajectory Generation Details
Using the above definitions, the ordinary differential equation given for ROCD (Equation 4.5-4) is solved

using a Runge-Kutta technique (Python provides some existing code in this area, scipy.integrate.ode

provides Runge-Kutta solutions for order 4 and 8 with configurable step size). This describes the climb

or descent phases; the cruise phase (moving at constant true airspeed) is simply following the route of

Page 16

flight from one waypoint to another. Note that the time associated with each cusp is calculated from the

ground speed and ground speed acceleration applied to get from one cusp to the other. Ground speed

is derived from the true airspeed by applying the wind observed at the altitude of the cusp.

While the descent phase also involves solving the ODE for ROCD, there is one additional complication;

that equation requires mass to be known at each cusp. In this case, we know where we want to end

(the destination airport), but the point at which to start the descent is not precisely known. An iterative

technique is used:

1) First, make a gross approximation of the top of descent point.

2) Solve the ODE, descending to the destination airport’s altitude.

3) If we are within a small epsilon of the airport, the iterations are done. The choice of epsilon

affects how many iterations are necessary; in this case, an epsilon of approximately 1000 feet

(shorter than commercial airport runways) is appropriate.

4) Otherwise, move the top of descent point forward or backward along the route defined by the

waypoints, in order to get closer to the destination airport, and repeat starting at step 2.

The movement of the top of descent point can be summarized as follows:

1) Let TODk represent the top of descent point for iteration “k”. This is measured in distance along

the route from the departure airport. This is termed the “along route distance”, or ARD.

2) Let AP represent the ARD of the destination airport; this is the known distance at the end of the

trajectory

3) On any iteration k, the ARD when the trajectory is modeled to reach the destination airport is

denoted as Dk.

4) Let function E, at any iteration k, represent the difference between the actual outcome (Dk) and

the desired outcome (AP). When this function is zero, we are done. So Ek = (Dk – AP).

5) The algorithm becomes:

a. Take an initial guess at TOD0; this will be based on some standard descent rate.

b. Calculate D0.

c. Set TOD1 = TOD0 – E0

d. Compute Ek (initially for k=1)

e. If Ek is not sufficiently small, set

𝑇𝑂𝐷𝑘+1 = 𝑇𝑂𝐷𝑘 −
𝐸𝑘(𝑇𝑂𝐷𝑘 − 𝑇𝑂𝐷𝑘−1)

𝐸𝑘 − 𝐸𝑘−1

(4.2.5 − 1)

f. and repeat steps (d) and (e)

In practice, this algorithm converges in 2 or 3 iterations. With complex weather patterns, it may take

more, as these may introduce discontinuities in the relationship between TOD and total length of

descent. The program also limits the number of iterations to some large number (such as 50) in order to

guard against endless loops (if these limits are reached; the trajectory generation process is abandoned).

This yields the four-dimensional trajectory, which can be used in the proposed experiments listed below.

4.3 Use of Weather Forecast Models
A weather model (temperatures, pressures and wind speed) is essential for trajectory generating. The

current state of the practice uses the current weather model for the entire trajectory generation

Page 17

process, even though the trajectory itself may span many hours. NOAA provides not only the current

hour weather model, but predictions for future hours as well.

This experiment modifies the trajectory generation process to use those forecast models, interpolating

between hours to get an approximation of the variables at the cusp times in the trajectory.

This increases the complexity (slightly) and the storage needed (more than slightly) of the algorithm, and

the question to be answered is whether this substantially changes the produced trajectory, especially

the duration of the trajectory.

The set of flights to analyze is chosen to span the range of short to long flights, and to cover the

continental US airspace. The coverage of these flights is shown in Figure 5 Flights Paths for the Use of

Forecasted Weather analysis.

Figure 5 Flights Paths for the Use of Forecasted Weather analysis

4.4 Wind Optimal Trajectories
The trajectories as described above follow a known path along the surface of the earth between

waypoints. By following these paths, separating aircraft becomes somewhat simpler; especially to

human air traffic controller who is used to aircraft following known paths.

Page 18

By using the rigid path, however, the time in the air may be longer than necessary, especially if there are

favorable wind conditions on other paths. This experiment will use Particle Swarm Optimization (PSO)

techniques [4][5] to find an optimal path from fixed end points (the departure and destination airports

are fixed, obviously). In this case, “optimal” can be defined as a function by an airline operator; the

simplest choices are total flight time or fuel burned.

Note that there have been debates in the air traffic community about so-called “free flight” (letting

aircraft fly where they want to, rather than where the air traffic control system dictates). This

experiment will make no assumption on the future plans of the FAA to encourage or discourage free

flight; rather the emphasis is applying PSO to this problem space.

PSO is used to find paths between two points (A and B in this discussion). Since the initial departure

path from an airport is determined by available runways and wind conditions, point A will start at what

is called the "Meter Fix"; a point after departing the airport. Similarly, point B will be the meter fix on

approach to the destination airport.

PSO examines several paths from A to B. A fuel usage value is calculated for each path, and PSO iterates

until it appears that the improvements in additional paths is minimal. PSO doesn't guarantee that a

minimum value is found; rather the goal is to find an acceptable solution in a relatively small amount of

time.

This work has been included in the paper “Wind Optimal Trajectories for UAS and Light Aircraft”, to be

presented at the Digital Avionics Systems Conference in September 2017. Please refer to that paper for

a complete description of the final algorithm. Contained below is a description of an initial

implementation and the final implementation as detailed in the referenced paper.

4.4.1 Version 1
The algorithm contains a bit of randomness (simulating the somewhat random behavior of a swarm),

but learns from each iteration as to where the next iteration should concentrate. The basic operation of

the PSO algorithm is shown in Figure 6.

One iteration of the algorithm will find many paths. Any given path is determined by a set of points.

Figure 6 shows 5 possible paths starting at point A. The first iteration always proceeds this way; the

number of paths and the range covered by those paths will be determined by experimentation. One

segment in one path is a straight line of a given distance, ending at point P in the figure. The next

segment will be of the same length; the direction of the segment is constructed based on three values:

1) The course coming into point P. This is called Θi (for inertia). There is some randomness

introduced into this value, within a range +/- around the incoming course.

2) The course with the optimal tail wind at point P. This is called Θw (for wind). Recall that the

wind values are in a three-dimensional grid, so altitude matters when determining the wind. For

the departure segments from point A, altitude is determined from the ROCD calculations given

in section 4.2.3. For approach segments to point B, this is more difficult as the general

algorithm includes an iterative approach to find the top of descent point (section 4.2.5). As an

approximation, a standard descent profile is built in the absence of winds, going from the cruise

altitude to the altitude of point B, and once a new point P is within that (direct) distance of B,

the altitude is retrieved from that standard profile at the distance (P -> B) from the end point.

Page 19

3) The course from P to the endpoint B. This is called Θe (for end point).

BAA

P

Θe

Θw

Θi

 Θi is chosen within a

range

First iteration starting

directions are chosen to cover

the possible solution space

Figure 6 Wind Optimal Trajectories, Version 1

These three courses are combined with a set of weights:

𝜃 = 𝑊𝑖𝜃𝑖 + 𝑊𝑒𝜃𝑒 + 𝑊𝑤𝜃𝑤 (4.4.1 − 1)

These weights sum to 1.0. In order to converge on B, the weights are calculated as follows.

𝑊𝑒 is calculated first, according to how close we are to the endpoint:

𝑊𝑒 = (1 −
𝑑𝑖𝑠𝑡(𝑃, 𝐵)

𝑑𝑖𝑠𝑡(𝐴, 𝐵)
) (4.4.1 − 2)

Additionally, once 𝑊𝑒 is greater than a threshold (say, 0.95), it will be set to 1.0. This ensures we

eventually get directly to point B.

Once 𝑊𝑒 is known, the remaining weight (1.0 - 𝑊𝑒) is divided between 𝑊𝑖 and 𝑊𝑤 based on pre-

determined percentages; say 70% for wind and 30% for inertia. This ratio is subject to experimentation.

When the ultimate course 𝜃 is known, a new point P can be calculated as the next step on the path.

Each path in the iteration is calculated in this fashion. This will result in a set of zig-zag lines. These lines

are smoothed to represent flyable paths, and the fuel consumption for each path is calculated.

That concludes one iteration. The lowest-fuel consumption path is chosen as the "best" path for that

iteration.

Any iterations after the first differ only in the starting courses. Since a previous best path is known, the

starting courses from point A are now chosen to cluster around that previous best path.

Page 20

Iterations proceed until the delta fuel usage for the best path between iterations is less than some

selectable value epsilon.

4.4.2 Version 2
Several deficiencies were noted in version 1:

• Head wind situation – first approach zero-ed out wind weight when flying into head wind. This

ignores some valuable information, as forward ground speed can still be optimized

• Magnitude of wind – first approach did not factor magnitude of the wind, just the direction

• Large perpendicular deviations – first approach did not penalize paths that were far off the

direct A-B path

• Smooth Behavior – first approach had some step functions (such as zeroing wind for head

winds) that gives discontinuous results. Sigmoid functions are used instead of step functions to

give smooth results

These were addressed by changing the method used to find the course to the next point; the equivalent

of the formula shown in 4.4.1-1.

In this formulation, a standard sigmoid function is used in a few places; the sigmoid function is defined

as:

𝑆𝑖𝑔(𝑥) =
1

1 + exp (
𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 − 𝑥

𝑠𝑙𝑜𝑝𝑒
)

(4.4.2 − 1)

The midpoint and slope values for each use of the sigmoid are tuned via experimentation.

The revised algorithm finds the next course as follows (refer to Figure 7 Wind Optimal Trajectories for

the definition of terms).

𝜃 = 𝑊𝑖 𝜃𝑓 + 𝑊𝑒𝜃𝑒 (4.4.2 − 2)

where

𝑊𝑒 = 𝑞2 + 𝑠 ∗ 𝑆𝑖𝑔(𝑞) (4.4.2 − 3)

𝑞 =

𝑑𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑑𝐴𝐵

𝑠 =
𝑑𝑝𝑒𝑟𝑝

𝐷
, where D = constant 20 nautical miles

 Normalize: 𝑊𝑒 =

𝑊𝑒

1+𝑠

Page 21

𝜃𝑓 = 𝜃𝑖 + (+ −⁄ 30º) ∗ 𝑆𝑖𝑔(𝑢) (4.4.2 − 4)

𝑢 =

𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 𝐴𝑙𝑜𝑛𝑔 𝑃𝑎𝑡ℎ

𝑉𝑇𝐴𝑆

1 = 𝑊𝑖 + 𝑊𝑒 (4.4.2 − 5)

(this allows 𝑊𝑖 to be found once 𝑊𝑒 is known)

A B

Pk-1

Pk

θi

θ i-30

θ i+30

d
p

er
p

θf will be in this

range

Figure 7 Wind Optimal Trajectories, Version 2

The other parts of the algorithm (iterations, multiple paths, etc) remained unchanged from version 1.

4.5 Parallelizing Conflict Detection
Once a flight information region has a set of trajectories (flights that are currently airborne or are

scheduled to be airborne within some time horizon), the ATC systems must predict if any two aircraft

will come too close to one another, or if any aircraft will enter restricted airspace.

Page 22

The aircraft-to-aircraft case is interesting in that it is a compute-intensive activity that might lend itself

to parallelization. At its core, this process must compare any new or changed trajectory against all other

trajectories in the FIR’s set of flights. Since each trajectory consists of a set of segments, this entails

many segment-to-segment comparisons. A typical FIR may have 200 or so flights in its working set, each

of those trajectories may have 200 or so segments. A completely brute force approach would then, for

a single new or modified flight, do 200 (segments in new trajectory) x 200 x 200 (segments in existing

trajectories), or 8,000,000 comparisons.

In practice [7], this is implemented as a sequential process where the vast number of comparisons is

reduced by a set of filters (the filters weed out cases that could not possibly be in conflict). The first two

filters listed below are on the trajectories as a whole; the remaining are for each segment on the two

trajectories being checked.

In the production system, these filters are:

1) Trajectory level coarse time filter – if one trajectory ends before the other starts, they cannot be

in conflict

2) Trajectory level box filter – this compares the “box” constructed in three dimensions (latitude,

longitude and altitude) for each of the two trajectories being compared, to see if there is

overlap at that level

3) Segment level vertical coarse filter – this checks to see if the two segments are within the same

altitude band

4) Segment level horizontal coarse filter – this checks the minimum approach distance in a

horizontal direction

5) Segment level horizontal middle filter – again checks for closest approach, but now considers

where the aircraft might be within the segment

6) Segment level vertical middle filter – again considers altitude, but only on the portion of the

segments that come within the horizontal separation distances

7) Segment level horizontal fine filter – checks for closest approach, but only the regions that have

passed the previous filters

A true conflict is one that passes all filters. As mentioned above, the first two are trajectory-wide and

would not be affected by parallelization, so are not further considered. The complexity of the remaining

filters is somewhat driven by the processing power available when this method was conceived (the early

1990s). The essential steps, which are described here, are:

1) A time filter; do the segments overlap in time?

2) An altitude filter; are the segments within the desired separation distance in altitude?

3) A horizontal filter; do two segments that have proven to be within time and altitude separation,

violate the lateral separation distance?

These three steps are contained in the prototype, and are described in further detail now. Recall that

each filter is comparing a segment from a “new” trajectory (called the subject trajectory) with a segment

from an existing trajectory (called the “object” trajectory).

Page 23

4.5.1 Time Filter
The time filter will eliminate segments that don’t overlap in time at all, and for the remaining pairs, trim

each segment to the start and end time of the overlap. As an example:

Figure 8 Conflict Detection Time Filter

After the time filter, the pairs that are still potentially in conflict are:

1) S1 and O1, from time t2 to t3

2) S1 and O2, from time t3 to t4

3) S2 and O2, from time t4 to t5

4) S2 and O3, from time t5 to t5

5) S3 and O3, from time t6 to t7

The trimmed segments that are still potentially in conflict are passed to the altitude filter.

4.5.1.1 Altitude Filter

The altitude filter is now dealing with pairs of segments that start at the same time, and end at a later

(same) time. The filter will retain any pairs that are within the separation altitude, and potentially again

trim the segments so that they cover only the time when the separation standard would be violated.

As an example of this:

Figure 9 Conflict Detection Altitude Filter

Page 24

In this example, the separation standard is 600 feet of altitude. A “band” around each segment is

constructed at +/- half of the separation standard (in this case, +/- 300 feet). If the bands overlap (as

shown by the shaded region in the figure), there is a potential conflict.

In the left-hand example, both flights are flying level, one at 35,000 feet and one at 34,500 feet. Since

they are only 500 feet apart, they are potentially in conflict for the entire segment and no trimming is

needed.

In the right-hand example, the object segment is climbing. The bands do not overlap for the entire

interval, so each segment will be trimmed to start at t2 and at the existing end point (t3).

Any segments still potentially in conflict are passed to the horizontal filter after trimming.

4.5.2 Horizontal Filter
The horizontal filter is the most complicated one, because it:

1) Compares two moving aircraft in the horizontal plane, and

2) Takes into account uncertainty in the aircraft’s position (this uncertainty is due to the fact that

we are predicting aircraft movement into the future, and various elements, for example the

wind, are not known with certainty). There is uncertainty in both forward/backward position

and side-to-side position.

The method for doing this comparison follows several steps. We are starting with a pair of segments,

each with two end points moving in some direction as shows in the left-hand side of this figure:

O1

O2

S1
S2

Rotate

S1

S2

O1

O2

S1

S2

O1

O2

Figure 10 Conflict Detection Horizontal Filter - part 1

Up to now all positions have been expressed as a cartesian coordinate on sphere (x,y,z). For short

distances (which we have here), a stereographic projection of these positions is used making this a two-

dimensional problem. The end point coordinates are projected onto a stereographic plane with tangent

point of “S1”. Then all coordinates are rotated so that the subject segment lies on the X axis, with point

S1 at location (0,0).

Next, the problem is shifted to the subject aircraft’s point of view, and the object segment is drawn

relative to a stationary subject aircraft at point S1:

Page 25

Figure 11 Conflict Detection Horizontal Filter - part 2

At this point, a simplistic approach would draw a circle with a radius of the horizontal standard (5 Nmi)

around the subject point, and see if the object segment intersected that circle. However, this doesn’t

account of the positional uncertainty. To do that, first a rectangle depicting the forward-backward and

side-to-side uncertainty is drawn around the subject position. At each of the corners of the rectangle,

similar rectangles (in the direction of the original object aircraft) are drawn, as shown below. The outer

edges of these rectangles show a region that, if avoided, account for the uncertainty in positions.

Figure 12 Conflict Detection Horizontal Filter - part 3

The outer edges form an octagon, as shown by the dotted line below:

Page 26

Figure 13 Conflict Detection Horizontal Filter - part 4

This region is expanded by the separation standard of 5 NMI:

Figure 14 Conflict Detection Horizontal Filter - part 5

Finally, to evaluate the possible conflict, we see if the relative object segment (with respect to the

stationary subject segment) intersections this outer octagon:

Page 27

Figure 15 Conflict Detection Horizontal Filter - part 6

In this example, we would have a conflict, starting at where O1-O2 first intersects the octagon and

ending where it exits the octagon at the bottom of the figure.

4.5.3 Parallelization Strategies
Given this basic algorithm, the challenge in using the GPU is what kind of memory transfers are done

between CPU and GPU (and back), and how much work is done by each “subroutine” (or kernel, in

NVIDIA’s documentation). Figure 16 NVIDIA CPU/GPU Architecture shows the basic architecture of

NVIDIA’s GPU display boards existing in a desktop PC. The conflict detection kernel that compares one

segment to another segment is part of program structures that will eventually do A*B*C compares,

where “A” is the total number of flights in the airspace, “B” is the average number of segments in the

newly-introduced flight (the subject flight) and “C” is the average number of segments in the existing

(object) flights. B and C are equal, so if we confine ourselves to one flight-to-flight compare, the

problem includes B*C comparisons.

Page 28

Figure 16 NVIDIA CPU/GPU Architecture

Three strategies were evaluated:

1) Have one call to a kernel done for each subject segment. This will mean that for any flight-to-

flight comparison, “B” kernel calls will be made; each of those calls will do “C” compares. The

results have to be communicated back to the CPU via a memory transfer across the CPU bus.

With this design, there would be one block containing “C” threads (or alternatively “C” blocks

with one thread each).

2) Have one call to a kernel done for each flight-to-flight comparison. Each kernel call does B*C

compares.

With this design, there would be “B” blocks, each doing “C” compares. The results are copied

back to the CPU at the conclusion, using this scheme show in Figure 17 Memory moves for

strategy 2. Using this strategy, there is one memory move to get an array of counts of conflicts

by subject segment (many of which will be zero). The a second set of memory moves, one for

each subject segment that had conflicts. Finally, on the CPU, these conflicts are “consolidated”

(that is, adjacent conflicts are merged into contiguous conflicts).

3) The same single kernel call is done as in option 2, but the design of the return values is slightly

different. In this case, the consolidation is done on the GPU via a new kernel call (this kernel is

run in just one grid/thread). A return parameter (which must be copied to the CPU) indicated

how many consolidated conflicts there are, and a final memory move gets an array of that many

conflicts.

Page 29

1 2 ... B1 2 ... B 1 2 ... B1 2 ... B

1 2 ... Max1 2 ... Max

22

BB

...

Max conflicts/Segment

Conflict count per subject seg:Conflict count per subject seg:

Conflict Info:

1 2

1

3 Consolidate Conflicts

1 Memcpy1 Memcpy

2
Memcpy for each

subject with conflicts
2

Memcpy for each
subject with conflicts

CPU (host) GPU (device)

Figure 17 Memory moves for strategy 2

Page 30

1 2 ... B1 2 ... B

Conflict count per subject seg:

1

CPU (host) GPU (device)

1 2 ... Max1 2 ... Max

1 2 ... Max1 2 ... Max

22

BB

...

Max conflicts/Segment

Conflict Info:

1 2 ... Max

2

B

...

Max conflicts/Segment

Conflict Info:

1
Kernel call to

consolidate conflicts
1

Kernel call to
consolidate conflicts

Memcpy to get
count of conflicts

2
Memcpy to get

count of conflicts
2

Memcpy of
consolidated conflicts

3
Memcpy of

consolidated conflicts
3

1 2 ... Max1 2 ... Max

Figure 18 Memory moves for strategy 3

Page 31

5 Implementation
Trajectory generation, Use of Forecasted Data and Wind Optimal Trajectories are implemented using

the Python language. It offers the following advantages:

• Portable to many operating systems.

• Has the concepts of exception handling, classes, objects, modules, and packages.

• Has a wealth of other packages for scientific computing.

In spite of not being strongly typed or compiled before execution, this makes Python attractive for this

effort.

For an IDE, the PyDev Eclipse plug-in [11] is used. Git [12] is used for configuration management.

Python offers some limited documentation support in the language, but a separate design document is

among the deliverables; this will discuss major code structure and design decisions.

The development platform is a personal computer (desktop). Tests will also be run on this

configuration.

The parallel processing experiment utilizes the processing features of a Graphics Processing Unit (GPU).

A sequential implementation is compared to the parallel implementation. For this experiment, the C

language is chosen. In order to fairly compare running the algorithm sequentially vs. in a parallel

configuration, the same language has to be used in both cases. Since the GPU must be programmed in C

(even if a different language is used to express the algorithm, it will ultimately get converted to C code

to run on the GPU), C is chosen for the CPU as well.

This is run on a desktop PC running windows, with an Nvidia GEFORCE 960 graphics card. The CPU has

multiple cores, but only core is used for the sequential version. The desktop processor has Intel i7-6700

processors with 4 cores and a clock speed of 3.40 GHz. The GEFORCE 960 has 8 floating point processors

with a clock speeds of 1.1 GHz.

6 Validation Methods
The experiments that use a trajectory will be validated through careful construction of test cases (using

alternative computations to ensure the necessary conditions are created), and then running those test

cases to be sure the desired result is obtained.

The basis for all this work is a valid trajectory. Trajectory verification occurs on two levels, and takes

advantage of the fact that a known, proven implementation exists (from real air traffic control (ATC)

systems). First, the low level equations for thrust, drag, etc., are verified against existing

implementations of those equations (same inputs should produce the same outputs). Second, the

overall trajectory that was generated is compared against a similar result from an ATC system simulator.

This overall comparison for a descent segment is shown in Figure 19.

Page 32

Figure 19 Trajectory Generation Comparison

There are two places where there are noticeable differences:

1) At the top of descent, both cases shown a period of acceleration, during which the desired

descent speed is attained (this speed is different than the cruise speed of the aircraft, requiring

this period of acceleration). During this period, the rate of descent will be smaller than normal,

because energy is being used to change the speed. The Python generated trajectory ends this

period sooner than the ATC version. A detailed analysis was undertaken for this; it revealed a

bug in the ATC code (wrong value for acceleration was being used).

2) The Python generated trajectory ends sooner than the ATC trajectory. This is simply a function

of the flight intent; the flight chosen for generation in Python was destined for an airport at 285

feet above sea level; the ATC flight was going to an airport at 14 feet above sea level. Hence the

Python trajectory ends sooner.

The above comparison is done without any wind (in order to have a valid comparison, wind data must

be equal, and there is no way to use the same wind conditions in both cases). Another test is needed to

show that the wind speeds are applied properly. For this, a "windy" day was chosen, where there was a

significant head wind in the Python flight’s direction. This is expected to slow down the aircraft.

0

5000

10000

15000

20000

25000

30000

35000

40000

80 100 120 140 160 180 200

A
lt

it
u

d
e

 (
Fe

et
)

Along Route Distance (NMI)

Python Implementation vs. ATC Implementation
Boeing B735 - Cruise alt 35,000

ATC

Python

Page 33

Figure 20 Effect of Wind on Trajectories

In both plots, the blue line is the trajectory with the head wind applied; the red line shows the same

flight without wind. In an altitude vs. time plot, the climb and descent portions are identical (since the

calculation of rate of climb/descent (Equation 4-5.4) does not depend on ground speed, only true

airspeed. However, in this case, the cruise segment is elongated by more than 6 minutes due to the

head wind. The same information presented as an altitude vs. distance plot shows the flight is at cruise

for a longer distance, as the ground speed at cruise is reduced by the head wind.

7 Test Problems for Verification

7.1 Use of Weather Forecast Models
Several months of real weather models has been obtained from NOAA. Starting with the same flight

intent input, several trajectories are generated using both the current forecast only and the future

forecasts. These trajectories are chosen to traverse the FIR in different directions, in order to

experience head and tail winds (see Figure 5 Flights Paths for the Use of Forecasted Weather analysis).

The total flight time of each flight will be compared.

7.2 Wind Optimal Trajectories
Using both the weather models used above and synthetic models designed to have greatly varying wind

speeds in different regions, the Particle Swarm Optimization techniques will be used on a single flight.

7.3 Parallelizing Conflict Detection
An entire set of flights, as typically would be found in a FIR, is not needed for this experiment. Rather,

we just need pairs of flights that show various degrees of “closeness” to being in conflict with one

another. These are run through both a sequential algorithm and the parallel algorithm. Conflicts

detected should be identical, and processing times can be compared. Since we are measuring both CPU

and GPU time, the same experiment was run many times and wall clock time from beginning to end was

compared.

0

10000

20000

30000

40000

0 20 40 60

A
lt

it
u

d
e

 (
fe

e
t)

Time (minutes)

Altitude vs. Time

0

10000

20000

30000

40000

0 100 200 300 400A
lt

it
u

d
e

 (
fe

e
t)

Along Route Distance (NMI)

Altitude vs. Distance

Page 34

A small set of conflicting flights was created, one pair of which has a lengthy conflict, as shown in Figure

21 Test flights used for Conflict Detection (the red flight and the orange flight conflict for a long period

of time in that diagram). The other pairs have typical fairly short overlaps.

Figure 21 Test flights used for Conflict Detection

8 Results

8.1 Use of Weather Forecasts
Several flights of varying lengths and directions across the continental US were processed versus several

months of weather data (usually 4 samples of weather collected per day). Not all days or all hours in a

day were collected due to occasional connectivity issues to the NOAA web site.

8.1.1 Quality of Forecast
The first question to be asked when proposing the use of a forecasted model is how good that forecast

is. To evaluate this question, the difference between wind speed forecasted at time T for time T+5

hours and the actual wind reported at time T+5 hours calculated. Data was collected over several days

and several hours in a day. The results vary by geography over the country. Figure 22 Accuracy of

Forecasted Wind Speed shows a plot of the difference in magnitude of wind speed (regardless of

direction of the wind).

Page 35

Figure 22 Accuracy of Forecasted Wind Speed

The upper northwest has the least accurate forecasts, probably due to the relatively fewer number of

sensors in that area.

A flight traveling across country, with a continuous error of 3 knots in typical cruise speed of 420 knots

would be 2 minutes off in total flight time. In practice, however, these errors aren’t continuous, and in

some cases cancel each other out (some forecasts are too fast, some are too slow). In addition, flights

rarely fly directly into a headwind or ahead of a tail wind. Analysis of the data shows that the forecast

error accounts for at most 0.2 minutes of flight time, which is acceptable when we are looking for

differences of two to three minutes.

8.1.2 Impact on Flight Time
Each flight in our set was analyzed against more than 400 weather samples. For each flight, results such

as shown in Figure 23 Distribution of flight time differences with forecasted weather is obtained, which

shows, for this one flight, the percentage of flights that are different by a particular amount. Two points

are highlighted; a difference of 2 minutes and a difference of 3 minutes. The scheduling of flights is

done in “slots” of one minute in duration. For the busiest airports, these slots are scheduled to be full,

so an error big enough to move to a different slot will cause scheduling problems (the schedule will have

to be adjusted in real time by having flights speed up, slow down or go into hold patterns). A flight that

Page 36

is off by 2 minutes will need to go to a different slot, and one off by 3 minutes will certainly cause more

re-ordering issues.

For the particular flight shown in the figure, about 25% of the instances of this flight will be off by two

minutes or more, and about 13% will be off by 3 minutes or more.

Figure 23 Distribution of flight time differences with forecasted weather

As one might expect, the error in flight time is greater for longer flights. For all the flights examined, an

aggregate picture of percent of flights exceeding the two and three minute thresholds can be found in

Figure 24 Summary of Flight Time Errors. This figure shows both the individual points and a trend line

created by fitting a second-order polynomial to the data. From this we can see that for longer flights (4

hours or more), we can expect 8% to be off by at least 3 minutes. This is a significant number, and

would argue that the increased precision that comes from using the forecasted data is merited in

applications that use predictions for these medium or long duration flights.

Page 37

Figure 24 Summary of Flight Time Errors

8.2 Wind Optimal Trajectories
Optimal wind-aided trajectories should find “less expensive” trajectories than the nominal case. The

reduction in expense can be quantified. In addition, examining some real NOAA data can show how

likely it is that alternate, less expensive routes can be found.

8.3 Parallel Processing
As each scheme was coded, it was measured and compared against the same processing being done

strictly in the CPU. The flight and conflict characteristics of the flights in conflict are summarized here:

Subject Segs (B) Object Segs (C) B x C Subject Segs in Conflict Seg Pairs in Conflict

137 154 21098 1 2

174 137 23838 4 8

174 154 26796 27 52

137 222 30414 0 0

222 154 34188 2 4

174 222 38628 2 4

Scheme 1, which made one kernel call for each subject segment, is compared against a CPU-only

solution:

Page 38

In this scheme, the kernel invocation overhead dominates and the GPU version performs much worse

that the CPU only version.

Schemes 2 and 3 reduce that kernel overhead by making just one call to do all comparisons:

0

5

10

15

20

25

30

35

40

45

20000 25000 30000 35000 40000

El
ap

se
d

 T
Im

e
 (

m
ill

is
e

co
n

d
s)

Number of Comparisons (B x C)

Conflict Detection on CPU vs. GPU - Scheme 1

CPU

GPU1

Page 39

The CPU line shows a fairly linear relationship between the number of comparisons and run time.

Schemes 2 and 3 have generally reduced the time to below what is achievable on the CPU, except for

the case with 26,796 comparisons. This is the case where there are many segments in conflicts. Scheme

2 will therefore do many array copies from GPU to CPU, and that copy overhead spikes the execution

time.

Scheme 3 moderates that overhead at the expense of a small amount of processing on the GPU for

conflict consolidation.

The GPU execution time also is growing with a flatter slope than the CPU scheme, probably because it

can better interleave short kernel executions with longer ones, while we are only using one core, and

hence one instruction pipeline, on the CPU.

Future work could serve to lower the GPU numbers more, by perhaps running all A*B*C comparisons

with one kernel call (utilizing several more grids) or perhaps using faster memory in the GPU (the GPU

has several difference classes of memory, all but the most general is limited in size or scope, and the

fastest is limited to being read-only in the GPU).

0

0.5

1

1.5

2

2.5

3

3.5

20000 22000 24000 26000 28000 30000 32000 34000 36000 38000 40000

El
ap

se
d

 T
im

e
 (

m
ill

is
e

co
n

d
s)

Number of Comparisons (B x C)

Conflict Detection on CPU vs. GPU - Schemes 2 and 3

CPU

Scheme 2

Scheme 3

Page 40

9 Conclusion
The creation of a framework to produce trajectories, given the parameters found in a BADA dataset, can

be used for many experiments of interest to ATC. This project established that framework and

conducted a few such experiments. These experiments were designed to provide insight into situations

confronting ATC today, and the framework can continue to be used for future work.

The primary benefit was to establish the framework and show experiments can effectively use it.

The “Use of Forecasted Weather” experiment has shown that for flights of longer than 3 hours,

forecasted weather will improve the estimates of arrival at the destination meter fix by enough that it

should be used; Figure 24 Summary of Flight Time Errors shows that 10% of flights of 3 hours or more

will be off by at least 2 minutes.

The “Wind Optimal Trajectories” experiment shows that, for light aircraft such as unmanned aerial

vehicles (drones), where the aircraft’s speed is not much greater than the fastest wind speed

encountered, a wind optimal trajectory can save significant time. The method presented is a compute-

efficient way to find those trajectories.

Finally, the “Parallel Conflict Probe” experiment shows that performance gains can be had by running

parts of the conflict probe algorithm on the multiple cores in a GPU, and the CUDA framework provides

a straight-forward way to do that.

Appendix A. Timeline

Table 1 Proposed Schedule

Timeframe Progress Achieved

Thanksgiving Implement trajectory generation using BADA version 3 - completed
Detail the particle swarm optimization algorithm to be used - completed

December Implement and measure the use of forecasted weather- completed

January Initial PSO algorithm for wind-aided trajectories- completed

February Initial parallel conflict detection algorithm- completed

March Additional parallel algorithm tests, tuning PSO algorithm- completed

May Final algorithms and analysis, produce final report- completed

If time allows Implement BADA 4, compare BADA 3 vs 4 – not attempted

Appendix B. Milestones
The milestones roughly follow the schedule presented, including these items:

1) Basic Trajectory Generation algorithm implemented and tested

2) Initial version of each algorithm implemented

3) Final version of each algorithm implemented and tested

Page 41

4) Final report produced

Appendix C. Deliverables
1) Python/C Source Code, with comments

2) Design documentation to augment commented code

3) Results

4) Class presentations and reports

5) Draft papers, to be presented at the DASC conference in September 2017

Appendix D. Bibliography

1. Eurocontrol Base of Aircraft Data (BADA), http://www.eurocontrol.int/services/bada

2. “World Geodetic System – 1984”,
www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf

3. Aircraft Modelling Standards for Future ATC Systems; EUROCONTROL Division E1,
Document No. 872003

4. Kennedy, J. and Eberhart, R. C. Particle swarm optimization. Proc. IEEE int'l conf. on
neural networks Vol. IV, pp. 1942-1948. IEEE service center, Piscataway, NJ, 1995.

5. http://www.swarmintelligence.org/tutorials.php

6. GRid in Binary (GRIB), the World Meteorological Organization (WMO) Standard for
Gridded Data, http://dao.gsfc.nasa.gov/data_stuff/formatPages/GRIB.html

7. “ERAM Conflict Management, Off-Line Problem Determination, and Utility
Algorithms”, FAA document FAA-ERAM-2008-0423

8. “ERAM Flight Data Processing (FDP) and Weather Data Processing (WDP) Algorithms”,
FAA document FAA-ERAM-2006-0045

9. “Filghtaware – Flight Tracking/Flight Status”, flightaware.com

10. National Digital Forecast Database GRID2 Decoder,
https://www.weather.gov/mdl/degrib_home

11. Python IDE for Eclipse, http://www.pydev.org

12. Git fast version control, https://git-scm.com

13. “CUDA By Example”, Sanders and Kandrot

14. “CUDA C Programming Guide”, Nvidia Corporation

Appendix E. List of Abbreviations
ARD Along Route Distance

ASDI Aircraft Display for Industry

ATC Air Traffic Control

BADA Base of Aircraft Data

CAS Calibrated Air Speed

CPU Central Processing Unit

http://www.eurocontrol.int/services/bada
http://www.swarmintelligence.org/tutorials.php
http://dao.gsfc.nasa.gov/data_stuff/formatPages/GRIB.html
https://www.weather.gov/mdl/degrib_home
http://www.pydev.org/
https://git-scm.com/

Page 42

CSV Comma Separated Values, a file format

FAA Federal Aviation Administration

FIR Flight Information Region

GPS Global Positioning System

GPU Graphics Processing Unit

GRIB Grid in Binary

IDE Integrated Development Environment

ISA International Standard Atmosphere

NMI Nautical Miles

NOAA National Oceanic and Atmospheric Administration

ODE Ordinary Differential Equation

PSO Particle Swarm Optimization

ROCD Rate of Climb or Descent

TAS True Air Speed

TOD Top Of Descent

WGS World Geodetic System

