Analysis of the Adjoint Euler Equations as
used for Gradient-based Aerodynamic Shape
Optimization

Final Presentation

Dylan Jude

Graduate Research Assistant

QERSI7)
A

|18 56

L) VASK
41{\/'&&

University of Maryland
AMSC 663/664

May 4, 2017

Abstract

» Adjoint methods are often used in gradient-based
optimization because they allow for a significant reduction
of computational cost for problems with many design
variables.

» The project focuses on the use of adjoint methods for
two-dimensional airfoil shape optimization using
Computational Fluid Dynamics to solve the steady Euler
equations.

Adjoints in CFD 2/36

Design Problem

We can change the shape of an airfoil by prescribing sinusoidal
“bumps” along the surface of the airfoil:

—

S ——

Known as Hicks-Henne “bumps”, both the location and the
height of the bumps can be changed to alter the airfoil shape.
[Hicks and Henne(1977)]

Adjoints in CFD 3/36

Design Problem

We would want to alter an airfoil to obtain more favorable
aerodynamic properties. A simple example would be to
approach a desired pressure distribution.

Mathematically, we want
to minimize the cost
function:

1
I = ¢ PR

where « is the set of ® Pressure (P)
. . ® Desired Pressure (P_d)
design variables and

rer — ——

[Nadarajah and Jameson(2002)]
Adjoints in CFD 4/36

Pressure Coefficient

Design Problem

For a single variable representing the location of one bump on
the surface of the airfoil

—

I

a parametric sweep of the cost function for a given desired
pressure distribution shows

1-Dimensional Design

0.0024

0.0022 -

0.0020 -

Cost Function

0.0018 -

0.0016 A

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Adjoints in CFD Design Variable 5/36

Design Problem

1-Dimensional Design

0.0024 4

0.0022 -

0.0020 -

Cost Function

0.0018 4

0.0016 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Design Variable

> The goal of airfoil optimization is to obtain the design variable (airfoil
geometry) where the cost function is a minimum.

» As shown, it is possible to have local minima in the cost function.
This can be a challenge for gradient-based optimization methods.

o This will be discussed in a few slides

> Parametric sweeps of the design space (as shown above) are very
expensive for multiple variables.

Adjoints in CFD 6/36

Computing the Cost Function

» Most design cases will have many variables.

» Computing the value of the cost function is an expensive
process because it requires solving the Euler Equations
(using Computational Fluid Dynamics or CFD) to find the
pressure.

» Knowing the gradient of the cost function is often required
for gradient-based optimization methods however finding
the gradient is non-trivial and expensive.

Adjoints in CFD 7/36

Computing the Cost Function

We want the gradient of the cost function with respect to the
design variables. Using a brute-force approach:

ol. B Ic(al + Aal) — Ic<a1)

oo Aoy

For 2 variables, 3 expensive CFD flow calculations are
required to find

I(a12), Ic(ar+Aay), I(az+ Aaz)

The adjoint method instead can find N variable sensitivities
with the cost of a single CFD flow-computation and an
additional adjoint.

Adjoints in CFD 8/36

Discrete Euler Equations

The Euler equations in coordinate directions &:

3(1 8fcz .
ot o8, » +=h (1)
p pVi
pu1 purVi +&1,1p
q:‘]_l ’ fC:J_l (2)
PUs2 puaVi + &1,2p
e] | (e+pW1
Vi=wé&1 + u2bio (3)

Note: Conventional usage of p, u;, e, p for density, velocity, energy, and pressure

Adjoints in CFD

9/36

Discrete Euler Residual

Let f denote flux in j-coordinate direction and ¢ denote flux in
k-coordinate direction.

Let the Residual of the steady Euler Equation be defined as:

qn—l—l o qn
pr=1 4

N)

The Residual expanded in both dimensions j, k at time n is

R == (Fisiyon — Fimiyon) — (Gjms12 — Gig—1/2) =0 (5)

Adjoints in CFD 10/36

Approach: Adjoint Equation

For our flow solution ¢ and airfoil geometry X = X (o, ...

our cost function is

IC - IC(Q: X)

and a perturbation of the cost function is represented as:

oIt oIt
= 45X
D — 5q 5q + 5x

A perturbation of the flow residual R is represented as:

OR OR
= = pr—
o [8q} o4+ [ax] 0X =0

G Ofe
ot " o6

Adjoints in CFD

11/36

Using the method of Lagrange multipliers:

_ort, oIt r [[OR AR

If the adjoint equation is satisfied:

OR _8[r[OR] OIT
[aq] V=0 T Maq

- (G- 2] o

then

Adjoints in CFD 12/36

In this final equation:

(a1 L [OR
o= {ox 7 Lax)}

the cost function is independent of the flow solution. This
means we can calculate all sensitivities

ol ol
80[1 ’ 80&2

from “simply” solving the adjoint equation (same cost as Euler
equations)

o4
dq dq

Adjoints in CFD 13/36

Adjoint and Euler Problem

» The 2-D problems covered in this project are relatively
simple in terms of memory requirements and
computational cost.

» The selected 2D grid dimensions are:

o 181 (around airfoil) x 60 (normal to airfoil) for a total of
10860 points, 43440 degrees of freedom.

o Euler solver with implicit routine converges 8-orders in 1000
iterations in ~ 10 seconds (Intel i7 : 3.2 GHz).

» This problem size is intended to be small. More common
2D problems will have O(1 x 10°) degrees of freedom.

Adjoints in CFD 14/36

Summary of Methodology

» An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

Adjoints in CFD 15/36

Summary of Methodology

» An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

» The Euler code has been Auto-Differentiated using
TAPENADE [Hascoét and Pascual(2004)]

Adjoints in CFD 15/36

Summary of Methodology

» An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

» The Euler code has been Auto-Differentiated using
TAPENADE [Hascoét and Pascual(2004)]

» The discrete adjoint has been derived for the Euler
equations.

Adjoints in CFD 15/36

Summary of Methodology

» An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

» The Euler code has been Auto-Differentiated using
TAPENADE [Hascoét and Pascual(2004)]

» The discrete adjoint has been derived for the Euler
equations.

» The discrete adjoint equations have been hand-coded and
validated against auto-differentiated and brute-force
gradients.

Adjoints in CFD 15/36

Summary of Methodology

» An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

» The Euler code has been Auto-Differentiated using
TAPENADE [Hascoét and Pascual(2004)]

» The discrete adjoint has been derived for the Euler
equations.

» The discrete adjoint equations have been hand-coded and
validated against auto-differentiated and brute-force
gradients.

» Gradients from the adjoint solutions have been applied to
multi-variable airfoil optimization.

Adjoints in CFD 15/36

Comparing Hand-Coded vs. Auto-Diff Adjoint

» Use of TAPENADE very convenient for auto-differentiation
however

o Unable to auto-differentiate certain, more complicated
section of code (ie. Implicit routines of the Euler solver)
o Creates complex code more difficult to read, optimize, and
parallelize with OpenMP
» Hand-coded Adjoint was challenging to implement but
gives full control over memory usage and code optimization

Auto-Diff By-hand By-hand + OpenMP

Time (s) 126.3 120.5 15.1

Speedup 1.0 1.05 8.36

Timing Results for 10000 Adjoint iterations (8-core CPU)

Adjoints in CFD 16/36

Optimization Algorithm

» The final step for airfoil optimization is to use the
gradients from the adjoint solution in a gradient-based
optimization algorithm

o Entire courses are taught on optimization algorithms
o Many algorithms are readily available in pre-packaged
libraries

» The Scientific Python “SciPy” optimization library has
been specifically for use with:

o Conjugate Gradient (CG) method, variant of the
Fletcher-Reeves method [Nocedal and Wright(2006)]

o Sequential Least SQuares Programming (SLSQP)
[Kraft(1988)]

Adjoints in CFD 17/36

1-Variable Results

Recall the 1-variable case of moving a single bump along the
surface of an airfoil

—

I

1-Dimensional Design

0.0024

0.0022 4

0.0020

Cost Function

0.0018

0.0016 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Design Variable

Adjoints in CFD 18/36

1-Variable Results

Recall the 1-variable case of moving a single bump along the
surface of an airfoil

—

I

1-Dimensional Design

0.0024

Initial Airfoil

0.0022 4

0.0020

Cost Function

0.0018

0.0016 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Design Variable

Adjoints in CFD 18/36

1-Variable Results

1-Dimensional Design

0.0024 -

Initial Airfoil

0.0022 -

0.0020 -

Cost Function

0.0018 -

0.0016 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Design Variable

Brute-Force Auto-Diff Adjoint By-Hand Adjoint

Gradients | -0.0054687 -0.0054693 -0.0055054

Note: difference in by-hand adjoint from approximation of dissipation flux

Adjoints in CFD 19/36

Optimization Method: SLSQP

Sequential Least Squares Programming

—©— SLsSQP
0.0024 -

0.0022 -

0.0020 -

Cost Function

0.0018 -

0.0016 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Design Variable

» The Sequential Least SQuares Programming (SLSQP)
method for gradient-based optimization is effectively
Newton’s method for unconstrained problems.

> 4-iterations: 5 Adjoint calls, 5 Euler calls, 209.7 seconds

Adjoints in CFD 20/36

Optimization Method: Conjugate Gradient

Conjugate Gradient Method

- CG
0.0024 -

0.0022 -

0.0020 -

Cost Function

0.0018 -

0.0016 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Design Variable

» The Conjugate Gradient (CG) method of non-linear

» Possibly multiple function calls and adjoint calls per
iteration.

» 4-iterations: 14 Adjoint calls, 14 Euler calls, 469.7 seconds

Adjoints in CFD 21/36

Optimization Methods: Comments

» Both CG and SLSQP only found local minima of the
single-variable cost function.

» CG converged faster to the solution with 4 “iterations”
however each iteration required more function and adjoint
calls.

» Because SLSQP required less function and adjoint calls,
the 4 iterations ran in less wall-clock time.

Adjoints in CFD

22/36

Optimization: Local Minima

Sequential Least Squares Programming

—©— SLSQP
0.0024 -

0.0022 A

0.0020

Cost Function

0.0018

0.0016 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Design Variable

» By changing the location of the initial guess, a different
local minima is reached

Adjoints in CFD 23/36

6-Variable Results

» 3 bumps on the lower surface, 3 on the upper surface

» Location of the bumps fixed at 25%, 50%, and 75% along
the airfoil

> Only bump amplitudes are changed — 6 total design
variables

Initial Gradients:

08I /0an 01 /0a oI /das OI/0ay oI /das oI /dag

Brute-Force -0.8495 | -0.4387 | -0.1935 | -3.588 | -0.8853 | -0.1000

AD Adjoint -0.8495 | -0.4389 | -0.1937 | -3.588 | -0.8855 | -0.1003

Adjoint -0.8549 | -0.4365 | -0.1851 | -3.635 | -0.8902 | -0.0946

Note: Discrepancy between AD adjoint and by-hand adjoint from approximation
of dissipation terms

Adjoints in CFD 24/36

Pressure Coefficient

Pressure Coefficient

SLSQP 6-variable Results

Pressure at Iteration 1

~154

~1.01

—~0.51

0.0

0.5 1

=== Solution
—=—~- Original

Pressure at Iteration 3

-1.5+4

~1.01

—~0.5

0.0

0.5+

=== Solution
=== Original

0.0 0.2 0.4 0.6 0.8 1.0

Adjoints in CFD

Pressure Coefficient

E
o
Q

o
L
H
2
@
L
-

Pressure at Iteration 2

.

-=~- Solution
- Original

0.0 0.2 0.4 0.6 0.8 1.0

Pressure at Iteration 4

25/36

SLSQP 6-variable Results

Airfoil at Iteration 1 Airfoil at Iteration 2
0.075 === Solution 0.075 —=- Solution
————— < ——~- Original _—————— —=—~- Original
0.050 = 0.050 1 = S
0.025 0.025 1
0.000 0.000
-0.025 —0.025 1
—0.050 —0.050 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
Airfoil at Iteration 3 Airfoil at Iteration 4
0.075 === Solution 0.075 4 —-=-- Solution
-------- === Original ==~ Original
0.050 0.050 1
0.025 0.025 1
0.000 0.000 4
-0.025 —0.025 4
—0.050 ~0.050] i
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Adjoints in CFD 26/36

Multi-variable Results: Comments

» Pressure matched relatively well except at trailing edge

» By adding additional bumps near the trailing edge this
should help the solution

0.3 Pressure at Iteration 4

=== Solution
—0.2 1 === Original

0.3

0.86 0.88 090 092 094 096 098 1.00

Adjoints in CFD 27/36

8-Variable Results

One more bump added on both the upper and lower surface at
95% along airfoil helps to reduce the error at the trailing edge.
The solution after 7 SLSQP iterations is shown below.

Pressure at Iteration 7

sy
—-1.5 L —-—- Solution
—=—=- Original
-1.01
0544 T=SI3s
- |t . T==I==

0.0 1 Cemmmm s e _ T8
0.5 1
1.0 A

0.0 0.2 0.4 0.6 0.8 1.0

X

Adjoints in CFD 28/36

8-Variable Results

One more bump added on both the upper and lower surface at
95% along airfoil helps to reduce the error at the trailing edge.
The solution after 7 SLSQP iterations is shown below.

03 Pressure at Iteration 7

——- Solution
—0.2 1 ——- Original

0.3

0.86 0.88 090 092 094 096 0.98 1.00
X

Adjoints in CFD 28/36

Summary / Discussion

» Use of adjoint methods significantly reduces the cost of
computing gradients of a cost function where the Euler
equations must be solved.

» Use of both the auto-differentiated and by-hand Adjoint
codes provide accurate gradients of a cost function with
respect to a set of variables.

» These gradients can be used with gradient-based

optimization methods to approach local minima of the cost
function
o Converging to a local minima is sufficient for aerodynamic
shape optimization problems since commonly engineers are
interested in incremental changes from an initial, trusted
guess.

Adjoints in CFD 29/36

Milestones

Functioning airfoil perturbation function in combination with | Late Oct
mesh generation and 2D Euler Solver.

Functioning brute-force method for sensitivity of Pressure cost | Early Nov
function to airfoil perturbation variables.

Auto-differentiation of Euler CFD solver. Late Nov

Validate auto-diff and brute-force method for simple reverse- | Mid Dec
design perturbations.

AR SR ERNER NANERNERN

Hand-coded explicit discrete adjoint solver. MidFeb
March 6
Tmphieit—routine OpenMP Acceleration for discrete adjoint | Mereh
solver. Early April
Validate discrete adjoint solver against auto-diff and brute- | Mareh
force methods. Mid April
Test discrete adjoint solver with full reverse-design cases. Mid-—Aprib
Early May

Adjoints in CFD 30/36

Deliverables

» Bitbucket GIT Repository of
o Euler, Grid-Generation, and Airfoil perturbation code in
Python Framework
o Auto-differentiated Adjoint Code
o Hand-differentiated Adjoint Code
» Equations of hand-derived Adjoint relations for flux and
dissipation terms.

» Sample run files for Euler-only, Adjoint-only, and full
design case.

Adjoints in CFD

31/36

References 1

[Hicks and Henne(1977)] R. Hicks and P. Henne.
Wing design by numerical optimization.
Aircraft Design and Technology Meeting. American Institute of Aeronautics
and Astronautics, Aug 1977.
doi: 10.2514/6.1977-1247.
URL http://dx.doi.org/10.2514/6.1977-1247.

[Nadarajah and Jameson(2002)] Siva Nadarajah and Antony Jameson.
Optimal Control of Unsteady Flows Using a Time Accurate Method.
Multidisciplinary Analysis Optimization Conferences, (June):—-, 2002.
doi: 10.2514/6.2002-5436.

URL http://dx.doi.org/10.2514/6.2002-5436.

[Hascoét and Pascual(2004)] Laurent Hascoét and Valérie Pascual.
TAPENADE 2.1 user’s guide.
2004.
URL http://www.inria.fr/rrrt/rt-0300.html.

[Nocedal and Wright(2006)] Jorge Nocedal and Stephen J. Wright.
Numerical optimization.
Springer series in operations research and financial engineering. Springer, New
York, 2006.

Adjoints in CFD 32/36

http://dx.doi.org/10.2514/6.1977-1247
http://dx.doi.org/10.2514/6.2002-5436
http://www.inria.fr/rrrt/rt-0300.html

References I1

[Kraft(1988)] Dieter Kraft.
A software package for sequential quadratic programming.
Technical Report DFVLR-FB 88-28. Institut fur Dynamik der Flugsysteme,
Oberpfaffenhofen, July 1988.

[Nadarajah(2003)] S. Nadarajah.
The Discrete Adjoint Approach to Aerodynamic Shape Optimization.
Stanford University PhD Dissertation, 2003.

Adjoints in CFD 33/36

Appendex

Additional Slides

Adjoints in CFD 34/36

Comments: Dissipation

» The main reason for the mismatch between the
auto-differentiation result and by-hand result is the
dissipation in the flux routine

» If I remove the dissipation from the auto-differentiated
code, I get exactly the same sensitivity

Looking at just the j-direction:
Ry==(Fy +4iy) = (g +1soy)
Where the scalar dissipation term h i+l is:
2

hip1 = €0 (g1 — qj)

Adjoints in CFD 35/36

Dissipation Approximations

hjp1 = €0 (gj41 = ¢j)

€ is a constant, approximately 0.25 [Nadarajah(2003)]. o is the
spectral radius scaled by the face area:

o=V + ¢S 1]l

and c is the speed of sound. Both V' and c are functions of the
flow ¢ however according to Nadarajah [Nadarajah(2003)], o
does not vary significantly and can be considered constant in
deriving the adjoint dissipation terms. While this may be the
case for the variation of the residual with respect to ¢, my
results show this is not the case for the variation of the residual
with respect to X.

Adjoints in CFD 36/36

