
Analysis of the Adjoint Euler Equations as
used for Gradient-based Aerodynamic Shape

Optimization

Final Presentation

Dylan Jude
Graduate Research Assistant

University of Maryland
AMSC 663/664

May 4, 2017

Abstract

I Adjoint methods are often used in gradient-based
optimization because they allow for a significant reduction
of computational cost for problems with many design
variables.

I The project focuses on the use of adjoint methods for
two-dimensional airfoil shape optimization using
Computational Fluid Dynamics to solve the steady Euler
equations.

Adjoints in CFD 2/36

Design Problem

We can change the shape of an airfoil by prescribing sinusoidal
“bumps” along the surface of the airfoil:

Known as Hicks-Henne “bumps”, both the location and the
height of the bumps can be changed to alter the airfoil shape.
[Hicks and Henne(1977)]

Adjoints in CFD 3/36

Design Problem
We would want to alter an airfoil to obtain more favorable
aerodynamic properties. A simple example would be to
approach a desired pressure distribution.

Mathematically, we want
to minimize the cost
function:

Ic(α) =

∮
airfoil

1

2
(P−Pd)2

where α is the set of
design variables and
P = P (α)

[Nadarajah and Jameson(2002)]
Adjoints in CFD 4/36

Design Problem
For a single variable representing the location of one bump on
the surface of the airfoil

a parametric sweep of the cost function for a given desired
pressure distribution shows

Adjoints in CFD 5/36

Design Problem

I The goal of airfoil optimization is to obtain the design variable (airfoil
geometry) where the cost function is a minimum.

I As shown, it is possible to have local minima in the cost function.

This can be a challenge for gradient-based optimization methods.

◦ This will be discussed in a few slides

I Parametric sweeps of the design space (as shown above) are very
expensive for multiple variables.

Adjoints in CFD 6/36

Computing the Cost Function

I Most design cases will have many variables.

I Computing the value of the cost function is an expensive
process because it requires solving the Euler Equations
(using Computational Fluid Dynamics or CFD) to find the
pressure.

I Knowing the gradient of the cost function is often required
for gradient-based optimization methods however finding
the gradient is non-trivial and expensive.

Adjoints in CFD 7/36

Computing the Cost Function

We want the gradient of the cost function with respect to the
design variables. Using a brute-force approach:

∂Ic
∂α1

=
Ic(α1 + ∆α1)− Ic(α1)

∆α1

For 2 variables, 3 expensive CFD flow calculations are
required to find

Ic(α1,2), Ic(α1 + ∆α1), Ic(α2 + ∆α2)

The adjoint method instead can find N variable sensitivities
with the cost of a single CFD flow-computation and an
additional adjoint.

Adjoints in CFD 8/36

Discrete Euler Equations

The Euler equations in coordinate directions ξ:

∂q

∂t
+
∂fc,i
∂ξi

= 0 , i = 1, 2 (1)

q = J−1

ρ

ρu1

ρu2

e

, fc = J−1

ρV1

ρu1V1 + ξ1,1p

ρu2V1 + ξ1,2p

(e+ p)V1

(2)

Vi = u1ξi,1 + u2ξi,2 (3)

Note: Conventional usage of ρ, ui, e, p for density, velocity, energy, and pressure

Adjoints in CFD 9/36

Discrete Euler Residual

Let f denote flux in j-coordinate direction and g denote flux in
k-coordinate direction.

∂q

∂t
+
∂f

∂ξ1
+
∂g

∂ξ2
= 0

Let the Residual of the steady Euler Equation be defined as:

Rn =
qn+1 − qn

∆t
= 0 (4)

The Residual expanded in both dimensions j, k at time n is

Rnj,k = −
(
fj+1/2,k − fj−1/2,k

)
−
(
gj,k+1/2 − gj,k−1/2

)
= 0 (5)

Adjoints in CFD 10/36

Approach: Adjoint Equation

For our flow solution q and airfoil geometry X = X(α1, ..., αn)
our cost function is

Ic = Ic(q,X)

and a perturbation of the cost function is represented as:

δI =
∂IT

∂q
δq +

∂IT

∂X
δX

A perturbation of the flow residual R is represented as:

δ

[
∂~q

∂t
+
∂ ~fc,i
∂ξi

]
= δR =

[
∂R

∂q

]
δq +

[
∂R

∂X

]
δX = 0

Adjoints in CFD 11/36

Using the method of Lagrange multipliers:

δI =
∂IT

∂q
δq +

∂IT

∂X
δX − ψT

{[
∂R

∂q

]
δq +

[
∂R

∂X

]
δX

}

If the adjoint equation is satisfied:[
∂R

∂q

]T
ψ =

∂I

∂q
→ ψT

[
∂R

∂q

]
=
∂IT

∂q

then

δI =

{
∂IT

∂X
− ψT

[
∂R

∂X

]}
δX

Adjoints in CFD 12/36

In this final equation:

δI =

{
∂IT

∂X
− ψT

[
∂R

∂X

]}
δX

the cost function is independent of the flow solution. This
means we can calculate all sensitivities

∂Ic
∂α1

,
∂Ic
∂α2

from “simply” solving the adjoint equation (same cost as Euler
equations) [

∂R

∂q

]T
ψ =

∂I

∂q

Adjoints in CFD 13/36

Adjoint and Euler Problem

I The 2-D problems covered in this project are relatively
simple in terms of memory requirements and
computational cost.

I The selected 2D grid dimensions are:

◦ 181 (around airfoil) × 60 (normal to airfoil) for a total of
10860 points, 43440 degrees of freedom.

◦ Euler solver with implicit routine converges 8-orders in 1000
iterations in ∼ 10 seconds (Intel i7 : 3.2 GHz).

I This problem size is intended to be small. More common
2D problems will have O(1× 105) degrees of freedom.

Adjoints in CFD 14/36

Summary of Methodology

I An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

I The Euler code has been Auto-Differentiated using
TAPENADE [Hascoët and Pascual(2004)]

I The discrete adjoint has been derived for the Euler
equations.

I The discrete adjoint equations have been hand-coded and
validated against auto-differentiated and brute-force
gradients.

I Gradients from the adjoint solutions have been applied to
multi-variable airfoil optimization.

Adjoints in CFD 15/36

Summary of Methodology

I An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

I The Euler code has been Auto-Differentiated using
TAPENADE [Hascoët and Pascual(2004)]

I The discrete adjoint has been derived for the Euler
equations.

I The discrete adjoint equations have been hand-coded and
validated against auto-differentiated and brute-force
gradients.

I Gradients from the adjoint solutions have been applied to
multi-variable airfoil optimization.

Adjoints in CFD 15/36

Summary of Methodology

I An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

I The Euler code has been Auto-Differentiated using
TAPENADE [Hascoët and Pascual(2004)]

I The discrete adjoint has been derived for the Euler
equations.

I The discrete adjoint equations have been hand-coded and
validated against auto-differentiated and brute-force
gradients.

I Gradients from the adjoint solutions have been applied to
multi-variable airfoil optimization.

Adjoints in CFD 15/36

Summary of Methodology

I An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

I The Euler code has been Auto-Differentiated using
TAPENADE [Hascoët and Pascual(2004)]

I The discrete adjoint has been derived for the Euler
equations.

I The discrete adjoint equations have been hand-coded and
validated against auto-differentiated and brute-force
gradients.

I Gradients from the adjoint solutions have been applied to
multi-variable airfoil optimization.

Adjoints in CFD 15/36

Summary of Methodology

I An Euler code, mesh generator, and adjoint code have been
written in C++ and wrapped in a Python framework for
communication.

I The Euler code has been Auto-Differentiated using
TAPENADE [Hascoët and Pascual(2004)]

I The discrete adjoint has been derived for the Euler
equations.

I The discrete adjoint equations have been hand-coded and
validated against auto-differentiated and brute-force
gradients.

I Gradients from the adjoint solutions have been applied to
multi-variable airfoil optimization.

Adjoints in CFD 15/36

Comparing Hand-Coded vs. Auto-Diff Adjoint

I Use of TAPENADE very convenient for auto-differentiation
however

◦ Unable to auto-differentiate certain, more complicated
section of code (ie. Implicit routines of the Euler solver)

◦ Creates complex code more difficult to read, optimize, and
parallelize with OpenMP

I Hand-coded Adjoint was challenging to implement but
gives full control over memory usage and code optimization

Auto-Diff By-hand By-hand + OpenMP

Time (s) 126.3 120.5 15.1

Speedup 1.0 1.05 8.36

Timing Results for 10000 Adjoint iterations (8-core CPU)

Adjoints in CFD 16/36

Optimization Algorithm

I The final step for airfoil optimization is to use the
gradients from the adjoint solution in a gradient-based
optimization algorithm

◦ Entire courses are taught on optimization algorithms
◦ Many algorithms are readily available in pre-packaged

libraries

I The Scientific Python “SciPy” optimization library has
been specifically for use with:

◦ Conjugate Gradient (CG) method, variant of the
Fletcher-Reeves method [Nocedal and Wright(2006)]

◦ Sequential Least SQuares Programming (SLSQP)
[Kraft(1988)]

Adjoints in CFD 17/36

1-Variable Results
Recall the 1-variable case of moving a single bump along the
surface of an airfoil

Adjoints in CFD 18/36

1-Variable Results
Recall the 1-variable case of moving a single bump along the
surface of an airfoil

Adjoints in CFD 18/36

1-Variable Results

Brute-Force Auto-Diff Adjoint By-Hand Adjoint

Gradients -0.0054687 -0.0054693 -0.0055054

Note: difference in by-hand adjoint from approximation of dissipation flux

Adjoints in CFD 19/36

Optimization Method: SLSQP

I The Sequential Least SQuares Programming (SLSQP)
method for gradient-based optimization is effectively
Newton’s method for unconstrained problems.

I 4-iterations: 5 Adjoint calls, 5 Euler calls, 209.7 seconds

Adjoints in CFD 20/36

Optimization Method: Conjugate Gradient

I The Conjugate Gradient (CG) method of non-linear

I Possibly multiple function calls and adjoint calls per
iteration.

I 4-iterations: 14 Adjoint calls, 14 Euler calls, 469.7 seconds

Adjoints in CFD 21/36

Optimization Methods: Comments

I Both CG and SLSQP only found local minima of the
single-variable cost function.

I CG converged faster to the solution with 4 “iterations”
however each iteration required more function and adjoint
calls.

I Because SLSQP required less function and adjoint calls,
the 4 iterations ran in less wall-clock time.

Adjoints in CFD 22/36

Optimization: Local Minima

I By changing the location of the initial guess, a different
local minima is reached

Adjoints in CFD 23/36

6-Variable Results

I 3 bumps on the lower surface, 3 on the upper surface

I Location of the bumps fixed at 25%, 50%, and 75% along
the airfoil

I Only bump amplitudes are changed → 6 total design
variables

Initial Gradients:

∂I/∂α1 ∂I/∂α2 ∂I/∂α3 ∂I/∂α4 ∂I/∂α5 ∂I/∂α6

Brute-Force -0.8495 -0.4387 -0.1935 -3.588 -0.8853 -0.1000

AD Adjoint -0.8495 -0.4389 -0.1937 -3.588 -0.8855 -0.1003

Adjoint -0.8549 -0.4365 -0.1851 -3.635 -0.8902 -0.0946

Note: Discrepancy between AD adjoint and by-hand adjoint from approximation
of dissipation terms

Adjoints in CFD 24/36

SLSQP 6-variable Results

Adjoints in CFD 25/36

SLSQP 6-variable Results

Adjoints in CFD 26/36

Multi-variable Results: Comments

I Pressure matched relatively well except at trailing edge

I By adding additional bumps near the trailing edge this
should help the solution

Adjoints in CFD 27/36

8-Variable Results

One more bump added on both the upper and lower surface at
95% along airfoil helps to reduce the error at the trailing edge.
The solution after 7 SLSQP iterations is shown below.

Adjoints in CFD 28/36

8-Variable Results

One more bump added on both the upper and lower surface at
95% along airfoil helps to reduce the error at the trailing edge.
The solution after 7 SLSQP iterations is shown below.

Adjoints in CFD 28/36

Summary / Discussion

I Use of adjoint methods significantly reduces the cost of
computing gradients of a cost function where the Euler
equations must be solved.

I Use of both the auto-differentiated and by-hand Adjoint
codes provide accurate gradients of a cost function with
respect to a set of variables.

I These gradients can be used with gradient-based
optimization methods to approach local minima of the cost
function

◦ Converging to a local minima is sufficient for aerodynamic
shape optimization problems since commonly engineers are
interested in incremental changes from an initial, trusted
guess.

Adjoints in CFD 29/36

Milestones

Functioning airfoil perturbation function in combination with
mesh generation and 2D Euler Solver.

Late Oct

Functioning brute-force method for sensitivity of Pressure cost
function to airfoil perturbation variables.

Early Nov

Auto-differentiation of Euler CFD solver. Late Nov

Validate auto-diff and brute-force method for simple reverse-
design perturbations.

Mid Dec

Hand-coded explicit discrete adjoint solver. Mid Feb
March 6

Implicit routine OpenMP Acceleration for discrete adjoint
solver.

March
Early April

Validate discrete adjoint solver against auto-diff and brute-
force methods.

March
Mid April

Test discrete adjoint solver with full reverse-design cases. Mid April
Early May

Adjoints in CFD 30/36

Deliverables

I Bitbucket GIT Repository of

◦ Euler, Grid-Generation, and Airfoil perturbation code in
Python Framework

◦ Auto-differentiated Adjoint Code
◦ Hand-differentiated Adjoint Code

I Equations of hand-derived Adjoint relations for flux and
dissipation terms.

I Sample run files for Euler-only, Adjoint-only, and full
design case.

Adjoints in CFD 31/36

References I

[Hicks and Henne(1977)] R. Hicks and P. Henne.
Wing design by numerical optimization.
Aircraft Design and Technology Meeting. American Institute of Aeronautics
and Astronautics, Aug 1977.
doi: 10.2514/6.1977-1247.
URL http://dx.doi.org/10.2514/6.1977-1247.

[Nadarajah and Jameson(2002)] Siva Nadarajah and Antony Jameson.
Optimal Control of Unsteady Flows Using a Time Accurate Method.
Multidisciplinary Analysis Optimization Conferences, (June):—-, 2002.
doi: 10.2514/6.2002-5436.
URL http://dx.doi.org/10.2514/6.2002-5436.

[Hascoët and Pascual(2004)] Laurent Hascoët and Valérie Pascual.
TAPENADE 2.1 user’s guide.
2004.
URL http://www.inria.fr/rrrt/rt-0300.html.

[Nocedal and Wright(2006)] Jorge Nocedal and Stephen J. Wright.
Numerical optimization.
Springer series in operations research and financial engineering. Springer, New
York, 2006.

Adjoints in CFD 32/36

http://dx.doi.org/10.2514/6.1977-1247
http://dx.doi.org/10.2514/6.2002-5436
http://www.inria.fr/rrrt/rt-0300.html

References II

[Kraft(1988)] Dieter Kraft.
A software package for sequential quadratic programming.
Technical Report DFVLR-FB 88-28. Institut fur Dynamik der Flugsysteme,
Oberpfaffenhofen, July 1988.

[Nadarajah(2003)] S. Nadarajah.
The Discrete Adjoint Approach to Aerodynamic Shape Optimization.
Stanford University PhD Dissertation, 2003.

Adjoints in CFD 33/36

Appendex

Additional Slides

Adjoints in CFD 34/36

Comments: Dissipation

I The main reason for the mismatch between the
auto-differentiation result and by-hand result is the
dissipation in the flux routine

I If I remove the dissipation from the auto-differentiated
code, I get exactly the same sensitivity

Looking at just the j-direction:

Rj = −
(
fj+ 1

2
+ fj− 1

2

)
−
(
hj+ 1

2
+ hj− 1

2

)
Where the scalar dissipation term hj+ 1

2
is:

hj+ 1
2

= εσ (qj+1 − qj)

Adjoints in CFD 35/36

Dissipation Approximations

hj+ 1
2

= εσ (qj+1 − qj)

ε is a constant, approximately 0.25 [Nadarajah(2003)]. σ is the
spectral radius scaled by the face area:

σ = ||V ||+ c||Sj+ 1
2
||

and c is the speed of sound. Both V and c are functions of the
flow q however according to Nadarajah [Nadarajah(2003)], σ
does not vary significantly and can be considered constant in
deriving the adjoint dissipation terms. While this may be the
case for the variation of the residual with respect to q, my
results show this is not the case for the variation of the residual
with respect to X.

Adjoints in CFD 36/36

