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Overview of Pattern Decomposition 

and Phase Recognition

 Mixtures of 3 metals – ternary metal alloy

 Non-uniform chemical composition

 Unique structure  Unique chemical properties

 Pattern Decomposition 

 N data points

 Expressed as linear combination k basis vectors 

(phases)

 Phases tell us chemical properties

Ni

Mn

Al

Top: Takeuchi I. (2016) MRS Meeting;    Bottom: http://emptyeasel.com/2014/03/10/3-

essential-color-mixing-techniques-for-watercolor-painters/ 2



X-ray Diffraction Patterns 

to Basis Phase Diagrams

 Input data – X-ray light diffracted back at certain 

angles

 Based on structure of material (basis phases)

 Phase diagrams

 Same colors  areas of uniform composition 

same basis phases

 Physical constraints on our solution

 Gibbs Phase Rule

 Connectivity of clusters

 Peakshifting (error due to alloying process)

Diffraction/Scattering Angle
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Top: Kusne et al (2015) AAAI 26(44) 44400;  Bottom: LeBras et al (2011) AAAI  CP’11 508-522 
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Overall Project Goal

 Develop algorithm to:

 Obey physical constraints

 Output clusters, phase diagrams

 Identify basis phases

 Extend GRENDEL 

 (Graph-based Endmember Extraction and Labeling)

 Develop methods/algorithms to make algorithm 

results more physically realistic 

 Constraint programming

Clustering
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Original GRENDEL 

Algorithm

 Step 1: Spectral Clustering

 Diffraction “pattern”  diffraction 

“spectrum”

 X – input sample data

 Similarity metric to group data points

 Cosine Distance, 1 – cos(Xi, Xj)

 For two sample point diffraction 

patterns, Xi, Xj :

 Output: initial clustering U

 Ui,k = 1  sample point i belongs to cluster k
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Original GRENDEL 

Algorithm






 Step 2: Nonnegative Matrix Factorization 

(NMF)

 X is approximately P*E

 Linear combination of basis phases

 Find P, E by minimizing objective 

function

 Ex: Least Squares Error



 Set derivative of J w.r.t. P, E equal to 

zero to create update rules for each 

matrix

 Done within each cluster
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Original GRENDEL 

Algorithm

 Step 3: Graph Cut

 Tries to minimize “cost” function over the 

entire material to update U

 Cost = Data Cost + Smoothness Cost

 Given data point j in cluster i:

 Data Cost:

 Smoothness Cost: 0 if neighboring data 

points in same cluster, 1 otherwise

 Balances similarity metrics (Data Cost) 

with smoothness/connectivity of clusters 

(Smoothness Cost)

 Convergence check  end program if 

change between iterations of P, E, U is 

below threshold
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Summary of Project

 Written in MATLAB 2017a

 Data sets:

 Synthetic diffraction data ((Fe-Al-Li)Ox from Gregoire et al.)

 Synthetic spectral data from ShiftNMF (Morup M. and Madsen K. H.)

 Inorganic Crystal Structure Database (Fe-Ga-Pd, from Kusne et al.)

 Last Semester: Cannot Link (connectivity)

 This Semester (previous): ShiftNMF (peakshifting)

 Final Step: Implementing ShiftNMF within existing GRENDEL code
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Cannot Link (Review)

 Used cosine distance as dissimilarity metric, creates array of the p% most 

dissimilar pairs of data points (CL)

 Algorithm Overview: After Graph Cut step, makes sure CL pairs are not put in 

same cluster
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ShiftNMF (Review)

 Algorithm Overview: alter NMF to detect 

peakshifting within basis phases

 New Objective function:

 T – matrix of ‘peakshifting’ delays/values, 

applied to P, E in Fourier Space

 P, E update rules – set derivative of J 

w.r.t. P, E equal to zero, respectively

 Utilizes ratio of negative/positive parts of 

each gradient

 T update – Newton-Raphson method

 Cross-correlation step to escape local 

minima of J
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Implementing ShiftNMF within GRENDEL

 Two options:

1. Adding in ShiftNMF outside of clustering (spectral, Graph Cut)

2. Using ShiftNMF with clustering steps

1  add ShiftNMF, 

eliminate Spectral 

Clustering and 

Graph Cut

2  add ShiftNMF, 

keep all clustering
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Experimental Statistics (Random Initial 

Conditions)

Implementation Input Data Max R2 Mean R2 T-statistic (w.r.t. 

GRENDEL stats)
P-value

Original GRENDEL
Original 0.9512 0.9493

N/A N/A
Zero-padded 0.9508 0.9481

ShiftNMF without 

clustering

Original 0.9764 0.9607 6.308 3.91E-7

Zero-padded 0.9765 0.9583 5.537 2.27E-6

ShiftNMF with 

clustering

Original 0.9893 0.9872 77.236 3.71E-45

Zero-padded 0.9894 0.9873 53.539 4.03E-35
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Experimental Statistics (nnmf() Initial 

Conditions)

 (Fe-Al-Li)Ox synthetic data

 nnmf() – MATLAB nonnegative matrix factorization function

 Both ShiftNMF strategies yield better results

Implementation Max R2 Mean R2 T-statistic (w.r.t. 

GRENDEL stats)
P-value

Original GRENDEL 0.9545 0.9450 N/A N/A

ShiftNMF without 

clustering
0.9771 0.9721 30.385 9.14E-28

ShiftNMF with 

clustering
0.9888 0.9867 97.088 6.70E-66
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Experimental Statistics – Fe-Ga-Pd data 

set

 Inorganic Crystal Structure Database (real sample, true values unknown)

 Zero-padded the input data X

 More data points  Makes clustering attempts more inaccurate!

 What could be the issue?

Implementation Max R2 Mean R2 T-statistic (w.r.t. 

GRENDEL stats)
P-value

Original GRENDEL 0.8871 0.8840 N/A N/A

ShiftNMF without 

clustering
0.9155 0.9138 23.491 9.45E-11

ShiftNMF with 

clustering
0.9065 0.9055 17.450 6.89E-09
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Q-spacing

Adding ShiftNMF in with Clustering 

Creates Error

 Clustering is performed without peakshifting delays T

 Result: Anywhere from 15-18 out of 21 distinct phases (not 6 as it should be)

15Q-spacing
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Q-spacingQ-spacing

Comparing Basis Phases of Adding in 

ShiftNMF without Cluster to True Values

 See agreement with certain basis phases, even without adhering to Gibbs 

Phase Rule in ShiftNMF

 Have the same about of basis phases (6) we expect
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New Algorithm - ShiftGRENDEL
 Attempt to formulate an algorithm that ensures correct number of basis 

phases, incorporates peakshifting delays T into clustering:














17



Testing ShiftGRENDEL

 Tested on (Fe-Al-Li)Ox synthetic data

 Original GRENDEL:

 Mean R2
 0.9484

 Max R2
 0.508

 ShiftGRENDEL

 Mean R2
 0.9752

 Max R2
 0.9609

 T-statistic  6.779

 P-value  4.90E-8
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Timing Data, Speeding Up ShiftGRENDEL

 Average run-times (500 iterations)

 Original GRENDEL – 30.1 (seconds)

 ShiftNMF without clustering – 174.8

 ShiftNMF with clustering – 147.7

 ShiftGRENDEL – 1281.3

 How to speed up:

 Running ShiftNMF in the separate clusters 

parallelizable

 Figure: Solution reached in < 500 iterations, 

do not need to run algorithm that long
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Recap of AMSC 663/664 Work

 Cannot Link algorithm  increased connectivity of clusters

 “Expert knowledge” constraint – based on observation, not law of physics

 ShiftNMF algorithm  takes peakshifting into account to correctly identify 

basis phases

 Physical constraint – based on fundamental concept of physics/chemistry

 ShiftGRENDEL algorithm  alter GRENDEL program by incorporating Cannot 

Link and ShiftNMF

 Provides framework to create first physically realistic basis phase recognition of 

inorganic materials, except …
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Unresolved Issues – Summer Work

 Gibbs Phase Rule yet to be incorporated properly

 LASSO method to implement constraint

 Develop mechanism to stop algorithm when algorithm is seen reaching local 

minimum

 Attempt to save time, restart when undesirable result is detected early

 If both of these steps are successfully executed  First ever unsupervised 

method to identify clustering and basis phases of inorganic materials
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Timeline/Milestones (OLD)

 Fully understand, replicate previous code/results – mid/late October

 Phase 1 – Constraint Programming

 Add connectivity constraints, expert prior knowledge for given samples - November

 Add constraints for peak shifting - January

 Potential addition of other physical laws, Mixed Integer Programming - February

 Phase 2 – Active Learning (Time permits)

 Have algorithm to predict next best point to sample – March

 Optimize the sampling algorithm for one material – mid April

 Optimize algorithm for all material data given – late April
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Timeline/Milestones (Final Revision)

 Fully understand, replicate previous code/results – mid/late October

 Stage 1 – Connectivity Constraint

 Write Cannot Link algorithm – November

 Validate and optimize parameters – December

 Stage 2 – Peakshifting Constraint

 Locate and understand algorithm, ShiftNMF – January

 Write ShiftNMF algorithm – February

 Validation – March

 Stage 3 – Optimization of GRENDEL

 Develop method to integrate ShiftNMF with Graph Cut - April

 Collect final results, decrease run time of algorithm - May
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Deliverables

 Codes:

 Original GRENDEL (with Cannot Link included)

 ShiftNMF algorithm (with demo to test ShiftNMF on its own)

 Algorithm adding ShiftNMF into GRENDEL without clusters

 Algorithm adding ShiftNMF with clustering

 ShiftGRENDEL

 All data sets used in testing

 Sample phase diagrams, basis phase spectral plots seen in reports
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Appendix: Cannot Link Constraint Algorithm

 Analysis of algorithm – NMF updates of E and P are what violate cluster connectivity requirement

 Algorithm:

Compute cosine distance between all pairs

Assign top p% dissimilar pairs to ‘Cannot Link’ array

After initial Graph Cut:

Remove pairs in CL which are initially clustered together

After all subsequent Graph Cut iterations:

Loop through all CL pairs:

If pair in same cluster

If 1st point changed cluster

Revert cluster assignment of 1st point to old cluster

Else

Revert 2nd point’s cluster assignment

end

end
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Appendix B: ShiftNMF – P, E update rules

P update rule E update rule
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Appendix C: ShiftNMF – T update rule

 Utilizes Newton-Raphson method:

 T = T – ηB-1g

 η – step size parameter

 B – Hessian

 g - gradient
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Appendix D: ShiftNMF – Cross-Correlation 

Step

 Due to complexity of the objective function, local minima are abundant

 To avoid these, every 20 iterations we run a ‘cross-correlation step’

 Done in random permutation order to shake up our T matrix
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