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Overview of Pattern Decomposition 

and Phase Recognition

 Mixtures of 3 metals – ternary metal alloy

 Non-uniform chemical composition

 Unique structure  Unique chemical properties

 Pattern Decomposition 

 N data points

 Expressed as linear combination k basis vectors 

(phases)

 Phases tell us chemical properties

Ni

Mn

Al

Top: Takeuchi I. (2016) MRS Meeting;    Bottom: http://emptyeasel.com/2014/03/10/3-

essential-color-mixing-techniques-for-watercolor-painters/ 2



X-ray Diffraction Patterns 

to Basis Phase Diagrams

 Input data – X-ray light diffracted back at certain 

angles

 Based on structure of material (basis phases)

 Phase diagrams

 Same colors  areas of uniform composition 

same basis phases

 Physical constraints on our solution

 Gibbs Phase Rule

 Connectivity of clusters

 Peakshifting (error due to alloying process)

Diffraction/Scattering Angle
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Top: Kusne et al (2015) AAAI 26(44) 44400;  Bottom: LeBras et al (2011) AAAI  CP’11 508-522 
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Overall Project Goal

 Develop algorithm to:

 Obey physical constraints

 Output clusters, phase diagrams

 Identify basis phases

 Extend GRENDEL 

 (Graph-based Endmember Extraction and Labeling)

 Develop methods/algorithms to make algorithm 

results more physically realistic 

 Constraint programming

Clustering

4
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Original GRENDEL 

Algorithm

 Step 1: Spectral Clustering

 Diffraction “pattern”  diffraction 

“spectrum”

 X – input sample data

 Similarity metric to group data points

 Cosine Distance, 1 – cos(Xi, Xj)

 For two sample point diffraction 

patterns, Xi, Xj :

 Output: initial clustering U

 Ui,k = 1  sample point i belongs to cluster k






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Original GRENDEL 

Algorithm






 Step 2: Nonnegative Matrix Factorization 

(NMF)

 X is approximately P*E

 Linear combination of basis phases

 Find P, E by minimizing objective 

function

 Ex: Least Squares Error



 Set derivative of J w.r.t. P, E equal to 

zero to create update rules for each 

matrix

 Done within each cluster
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Original GRENDEL 

Algorithm

 Step 3: Graph Cut

 Tries to minimize “cost” function over the 

entire material to update U

 Cost = Data Cost + Smoothness Cost

 Given data point j in cluster i:

 Data Cost:

 Smoothness Cost: 0 if neighboring data 

points in same cluster, 1 otherwise

 Balances similarity metrics (Data Cost) 

with smoothness/connectivity of clusters 

(Smoothness Cost)

 Convergence check  end program if 

change between iterations of P, E, U is 

below threshold






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Summary of Project

 Written in MATLAB 2017a

 Data sets:

 Synthetic diffraction data ((Fe-Al-Li)Ox from Gregoire et al.)

 Synthetic spectral data from ShiftNMF (Morup M. and Madsen K. H.)

 Inorganic Crystal Structure Database (Fe-Ga-Pd, from Kusne et al.)

 Last Semester: Cannot Link (connectivity)

 This Semester (previous): ShiftNMF (peakshifting)

 Final Step: Implementing ShiftNMF within existing GRENDEL code
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Cannot Link (Review)

 Used cosine distance as dissimilarity metric, creates array of the p% most 

dissimilar pairs of data points (CL)

 Algorithm Overview: After Graph Cut step, makes sure CL pairs are not put in 

same cluster
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ShiftNMF (Review)

 Algorithm Overview: alter NMF to detect 

peakshifting within basis phases

 New Objective function:

 T – matrix of ‘peakshifting’ delays/values, 

applied to P, E in Fourier Space

 P, E update rules – set derivative of J 

w.r.t. P, E equal to zero, respectively

 Utilizes ratio of negative/positive parts of 

each gradient

 T update – Newton-Raphson method

 Cross-correlation step to escape local 

minima of J

10
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Implementing ShiftNMF within GRENDEL

 Two options:

1. Adding in ShiftNMF outside of clustering (spectral, Graph Cut)

2. Using ShiftNMF with clustering steps

1  add ShiftNMF, 

eliminate Spectral 

Clustering and 

Graph Cut

2  add ShiftNMF, 

keep all clustering








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Experimental Statistics (Random Initial 

Conditions)

Implementation Input Data Max R2 Mean R2 T-statistic (w.r.t. 

GRENDEL stats)
P-value

Original GRENDEL
Original 0.9512 0.9493

N/A N/A
Zero-padded 0.9508 0.9481

ShiftNMF without 

clustering

Original 0.9764 0.9607 6.308 3.91E-7

Zero-padded 0.9765 0.9583 5.537 2.27E-6

ShiftNMF with 

clustering

Original 0.9893 0.9872 77.236 3.71E-45

Zero-padded 0.9894 0.9873 53.539 4.03E-35
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Experimental Statistics (nnmf() Initial 

Conditions)

 (Fe-Al-Li)Ox synthetic data

 nnmf() – MATLAB nonnegative matrix factorization function

 Both ShiftNMF strategies yield better results

Implementation Max R2 Mean R2 T-statistic (w.r.t. 

GRENDEL stats)
P-value

Original GRENDEL 0.9545 0.9450 N/A N/A

ShiftNMF without 

clustering
0.9771 0.9721 30.385 9.14E-28

ShiftNMF with 

clustering
0.9888 0.9867 97.088 6.70E-66
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Experimental Statistics – Fe-Ga-Pd data 

set

 Inorganic Crystal Structure Database (real sample, true values unknown)

 Zero-padded the input data X

 More data points  Makes clustering attempts more inaccurate!

 What could be the issue?

Implementation Max R2 Mean R2 T-statistic (w.r.t. 

GRENDEL stats)
P-value

Original GRENDEL 0.8871 0.8840 N/A N/A

ShiftNMF without 

clustering
0.9155 0.9138 23.491 9.45E-11

ShiftNMF with 

clustering
0.9065 0.9055 17.450 6.89E-09
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Q-spacing

Adding ShiftNMF in with Clustering 

Creates Error

 Clustering is performed without peakshifting delays T

 Result: Anywhere from 15-18 out of 21 distinct phases (not 6 as it should be)

15Q-spacing
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Q-spacingQ-spacing

Comparing Basis Phases of Adding in 

ShiftNMF without Cluster to True Values

 See agreement with certain basis phases, even without adhering to Gibbs 

Phase Rule in ShiftNMF

 Have the same about of basis phases (6) we expect
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New Algorithm - ShiftGRENDEL
 Attempt to formulate an algorithm that ensures correct number of basis 

phases, incorporates peakshifting delays T into clustering:













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Testing ShiftGRENDEL

 Tested on (Fe-Al-Li)Ox synthetic data

 Original GRENDEL:

 Mean R2
 0.9484

 Max R2
 0.508

 ShiftGRENDEL

 Mean R2
 0.9752

 Max R2
 0.9609

 T-statistic  6.779

 P-value  4.90E-8
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Timing Data, Speeding Up ShiftGRENDEL

 Average run-times (500 iterations)

 Original GRENDEL – 30.1 (seconds)

 ShiftNMF without clustering – 174.8

 ShiftNMF with clustering – 147.7

 ShiftGRENDEL – 1281.3

 How to speed up:

 Running ShiftNMF in the separate clusters 

parallelizable

 Figure: Solution reached in < 500 iterations, 

do not need to run algorithm that long
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Recap of AMSC 663/664 Work

 Cannot Link algorithm  increased connectivity of clusters

 “Expert knowledge” constraint – based on observation, not law of physics

 ShiftNMF algorithm  takes peakshifting into account to correctly identify 

basis phases

 Physical constraint – based on fundamental concept of physics/chemistry

 ShiftGRENDEL algorithm  alter GRENDEL program by incorporating Cannot 

Link and ShiftNMF

 Provides framework to create first physically realistic basis phase recognition of 

inorganic materials, except …
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Unresolved Issues – Summer Work

 Gibbs Phase Rule yet to be incorporated properly

 LASSO method to implement constraint

 Develop mechanism to stop algorithm when algorithm is seen reaching local 

minimum

 Attempt to save time, restart when undesirable result is detected early

 If both of these steps are successfully executed  First ever unsupervised 

method to identify clustering and basis phases of inorganic materials

21



Timeline/Milestones (OLD)

 Fully understand, replicate previous code/results – mid/late October

 Phase 1 – Constraint Programming

 Add connectivity constraints, expert prior knowledge for given samples - November

 Add constraints for peak shifting - January

 Potential addition of other physical laws, Mixed Integer Programming - February

 Phase 2 – Active Learning (Time permits)

 Have algorithm to predict next best point to sample – March

 Optimize the sampling algorithm for one material – mid April

 Optimize algorithm for all material data given – late April
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Timeline/Milestones (Final Revision)

 Fully understand, replicate previous code/results – mid/late October

 Stage 1 – Connectivity Constraint

 Write Cannot Link algorithm – November

 Validate and optimize parameters – December

 Stage 2 – Peakshifting Constraint

 Locate and understand algorithm, ShiftNMF – January

 Write ShiftNMF algorithm – February

 Validation – March

 Stage 3 – Optimization of GRENDEL

 Develop method to integrate ShiftNMF with Graph Cut - April

 Collect final results, decrease run time of algorithm - May
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Deliverables

 Codes:

 Original GRENDEL (with Cannot Link included)

 ShiftNMF algorithm (with demo to test ShiftNMF on its own)

 Algorithm adding ShiftNMF into GRENDEL without clusters

 Algorithm adding ShiftNMF with clustering

 ShiftGRENDEL

 All data sets used in testing

 Sample phase diagrams, basis phase spectral plots seen in reports
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Appendix: Cannot Link Constraint Algorithm

 Analysis of algorithm – NMF updates of E and P are what violate cluster connectivity requirement

 Algorithm:

Compute cosine distance between all pairs

Assign top p% dissimilar pairs to ‘Cannot Link’ array

After initial Graph Cut:

Remove pairs in CL which are initially clustered together

After all subsequent Graph Cut iterations:

Loop through all CL pairs:

If pair in same cluster

If 1st point changed cluster

Revert cluster assignment of 1st point to old cluster

Else

Revert 2nd point’s cluster assignment

end

end
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Appendix B: ShiftNMF – P, E update rules

P update rule E update rule
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Appendix C: ShiftNMF – T update rule

 Utilizes Newton-Raphson method:

 T = T – ηB-1g

 η – step size parameter

 B – Hessian

 g - gradient
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Appendix D: ShiftNMF – Cross-Correlation 

Step

 Due to complexity of the objective function, local minima are abundant

 To avoid these, every 20 iterations we run a ‘cross-correlation step’

 Done in random permutation order to shake up our T matrix
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