
AMSC/CMSC 664
Final Presentation

May 9, 2017
Jon Dehn

Advisor: Dr. Sergio Torres, Leidos Corporation

Project Goal

• Build a framework for testing compute-intensive algorithms in air
traffic management

Flight
Intent

Trajectory
Generation Engine

4D
Trajectory

Conflict Detection

Optimal wind-aided
paths

Atmospheric
Model

Airframe
parameters

Use of Forecasted
Wind

First Semester

Project Parts

1. Build trajectory generation engine (Python, on Windows desktop
PC, 4 core 3.4 GHz Intel I7-6700 processors)

2. Analyze use of Forecasted wind and quantify wind gradient
characteristics (Python, on desktop)

3. Create algorithm for finding optimal wind-aided paths (using
particle swarm optimization techniques) (Python, on desktop)

4. Create faster implementation of conflict detection algorithms by
parallelizing algorithm (C, on Nvidia 980 GPU, 1.1 Ghz cores)

1. Trajectory Generation Engine

• Completed in first semester; coded in Python

• Solved this equation for climb/descent segments of trajectory:

𝑑𝐻𝑝

𝑑𝑡
=

𝑇 − ∆𝑇

𝑇

𝑇ℎ𝑟 − 𝐷 𝑉𝑇𝐴𝑆
𝑚𝑔

𝑓 𝑀

• Thr (thrust) supplied by aircraft engines

• D (Drag) from movement through atmosphere

• VTAS - Velocity in True Airspeed; that is, relative to
the air mass around the aircraft, which may be
moving

• m (mass) of the aircraft, including passengers and
fuel, decreases over time

• g – gravitational acceleration

• h – geodetic altitude

•
𝑑

𝑑𝑡
– time derivative

27

29

31

33

35

37

39

-83.00 -82.00 -81.00 -80.00 -79.00 -78.00 -77.00 -76.00 -75.00

La
ti

tu
d

e

Longitude

Latitude vs Longitude View

0

5000

10000

15000

20000

25000

30000

35000

40000

0:00 0:07 0:14 0:21 0:28 0:36 0:43 0:50 0:57

A
lt

it
u

d
e

(f
ee

t)

Time (Hours:Minutes)

Altitude vs. Time view

Typical 4-Dimensional Trajectory

2. Use of Forecasted Wind/Temperature Data

• Current Operational Systems use only the current weather (wind
speeds, temperature) information to build a trajectory

• Different systems have different time horizons; accuracy of longer
flights in systems with longer time horizons may be improved by using
NOAA weather forecasts

• Weather information is supplied in hourly forecast sets; weather at
intermediate points is interpolated from surrounding hourly sets

Forecast Weather Experiment:

• Select flight paths of varying duration, covering east/west and
north/south flight paths

• Determine time duration difference between using just current
weather conditions vs. using forecasted weather at appropriate time

• Compare time difference to intended use of the data to see if
difference is significant

Expanded set of flight paths since mid-term:

Results – 420 samples of each flight

3. Wind Aided Trajectory – Original plan

Choose a “next” direction based on three
pieces of information; inertial, direction to
end point and wind direction

𝜽 = 𝑾𝒊 𝜽𝒊 + 𝑾𝒘 𝜽𝒘 + 𝑾𝒆𝜽𝒆

Several paths are constructed, path with
minimum cost (fuel burn) is selected, a
new set of paths is constructed with
starting directions around that previous
best case path

Problems with initial approach

• Head wind situation – first approach zero-ed out wind weight when
flying into head wind. This ignores some valuable information, as
forward ground speed can still be optimized

• Magnitude of wind – first approach did not factor magnitude of the
wind, just the direction

• Large perpendicular deviations – first approach did not penalize paths
that were far off the direct A-B path

• Smooth Behavior – first approach had some step functions (such as
zeroing wind for head winds) that gives discontinuous results.
Sigmoid functions are used instead of step functions to give smooth
results

Sigmoid Function - Review

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

𝑆𝑖𝑔 𝑢 =
1

1 + exp
𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 − 𝑢

𝑠𝑙𝑜𝑝𝑒

Revised Implementation

A B

Pk-1

Pk

θi

θ i-30

θ i+30

d
p

er
p

Next direction now defined as
Θ = Wi Θf + We Θe

Where Θf is defined from inertial
direction and wind fields (see
following slide)

𝑊𝑒 = 𝑞2 + 𝑠 ∗ 𝑆𝑖𝑔(𝑞)

• 𝑞 =
𝑑𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑑𝐴𝐵

• 𝑠 =
𝑑𝑝𝑒𝑟𝑝

𝐷
, where D = constant 20 nautical miles

• Normalize: 𝑊𝑒 =
𝑊𝑒

1+𝑠

𝜃𝑓 = 𝜃𝑖 + (+/−30) ∗ 𝑆𝑖𝑔(𝑢)

• 𝑢 =
𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 𝐴𝑙𝑜𝑛𝑔 𝑃𝑎𝑡ℎ

𝑉𝑇𝐴𝑆

1 = 𝑊𝑖 + 𝑊𝑒

𝜽 = 𝑾𝒊 𝜽𝒇 + 𝑾𝒆𝜽𝒆

Overview description

• First iteration computes 5 paths, each with a different starting course
(within +/- 40º of A-B), then computes the best path based on fuel
burn

• Each path consists of fixed length segments (30 NMI in this case)

• Subsequent iterations choose 5 paths, centered on the previous best
path, with a smaller fanout (within +/- 20º of previous best)

• Algorithm stops when some number (3) iterations have not improved
on best fuel burn

Sample Results – iteration 1

Black solid line is best
path from iteration 1,
26.4KG of fuel saved
over A-B path

Sample Results – iteration 2

Black solid line is best
path from iteration 2.
10.7 KG less fuel than
iteration 1

Sample Results – iteration 3 (1.6 minute better)

Black solid line is best
path from iteration 3.
16.9 KG less fuel than
iteration 2, 63.0 KG
better than A-B path

No further improvement
with subsequent
iterations

4. Conflict Detection

• Each flight’s trajectory is composed of several (N) segments (as built
by trajectory generation engine)

• Aircraft-to-aircraft conflict detection checks one flight’s segments vs.
another flight’s segments (N*N compares). For clarity of presentation,
call this “B” subject segments and “C” object segments

• A full conflict detection scheme compares any changed/new flight
(the subject) to all existing (A) flights (the objects) (A*B*C compares)

• In real time, a system must process this at the rate of changed/new
flights (in US busy systems, approximately 7/second)

Conflict Detection – Time Filter

S1 overlaps O1 from t2 to t3
S1 overlaps O2 from t3 to t4
S2 overlaps O2 from t4 to t5

S2 overlaps O3 from t5 to t6
S3 overlaps O3 from t6 to t7

Conflict Detection – Altitude Filter

Subject and Object aircraft, with
separation distance of 600 feet, are in
conflict for entire interval

Object aircraft is climbing;
becomes in conflict at time t2 until
end of interval (t3)

Conflict Detection – Horizontal Filter 1

Segment endpoints are translated from geodetic coordinates to a stereographic
plane with a tangent point at S1.
Rotate both segments so that S1 -> S2 is along the X axis; S1 is placed at the origin
of the cartesian plane

Conflict Detection – Horizontal Filter 2

The problem is approached from the view of a stationary subject aircraft. Motion of object
aircraft relative to that stationary subject is calculated

Conflict Detection – Horizontal Filter 3

There is some uncertainty in the
location of the subject and
object, both in the forward and
sideways direction. This is
represented as a rectangle
around the predicted position.

To account for uncertainty of
both subject and object, a
rectangle is drawn around the
subject, and four rectangles,
centered at the four corners of
that rectangle, are drawn

Conflict Detection- Horizontal Filter 4

A bounding octagon is
drawn around the
outside corners of these
object rectangles

Conflict Detection – Horizontal Filter 5

To this, the separation
standard of 5 NMI is
added, giving an
expanded octagon

Conflict Detection – Horizontal Filter 6

Finally, the object
segment, relative to the
stationary subject, is
checked for intersection
with this larger octagon.

If there is an intersection,
there is a conflict.

The start and end times
of the conflict can be
determined given the
relative velocity of object-
to-subject.

Sample flights (with conflicts):

CPU/GPU architecture

Three different designs:

1. Each subject segment is compared vs. all object segments with one
call, hence B calls for one flight-to-flight compare
1. One Grid, one Block, C Threads per segment in the subject trajectory

2. All subject segments compared vs. all object segments with one
call, hence one call for a flight-to-flight compare
1. One Grid, B Blocks, C Threads utilized

2. Results are communicated back to CPU with memory moves for each
subject segment with conflicts

3. Same Grid/Block/Thread as in option 2, results consolidated on the
GPU then communicated back to CPU with one memory move

Run time comparisons – time per compare

0

5

10

15

20

25

30

35

40

45

20000 22000 24000 26000 28000 30000 32000 34000 36000 38000 40000

El
ap

se
d

 T
Im

e
 (

m
ill

is
e

co
n

d
s)

Number of Comparisons (B x C)

Conflict Detection on CPU vs. GPU - Scheme 1

CPU

GPU1

Kernel invocation
overhead dominates
run time

Run comparisons - continued

0

0.5

1

1.5

2

2.5

3

3.5

20000 22000 24000 26000 28000 30000 32000 34000 36000 38000 40000

El
ap

se
d

 T
im

e
 (

m
ill

is
e

co
n

d
s)

Number of Comparisons (B x C)

Conflict Detection on CPU vs. GPU - Schemes 2 and 3

CPU

Scheme 2

Scheme 3

One memory move
for all conflicts

One memory move
per subject
segment in conflict

Future Work

• Try to do all A*B*C compares with one call to GPU

• Current design uses General GPU Memory and Shared GPU Memory
(faster, smaller than General Memory, shared by threads within a
grid). See if there is a way to use the even more limited Constant
Memory on the GPU

• Try In-lining function calls made by kernel

• Explain the decrease time execution time for the 24,000 BxC case

Technical Summary

1. Trajectory Build Engine
• Framework to build trajectories for use in other experiments was a success;

used extensively in other parts

2. Use of Forecasted Weather
• For flights over two hours, use of forecasted weather is fairly simple

(interpolation between hour sets) and is justified given errors in current flight
times

3. Optimal Wind Aided Trajectory
• Through experimentation, an efficient algorithm that quickly finds a close-to-

optimal flight path was developed
• UAS operators (high wind-speed to aircraft speed ratio) would benefit from

such an algorithm

Technical Summary (continued)

4. Parallel Conflict Probe
• Using CUDA and GPU, time can be improved over single-core CPU execution

• Speedup was not as dramatic as I had hoped (more work to be done)

• CUDA primitives for synchronization of work make GPU program “simple” (in
my opinion, simpler than schemes in languages like Java that have thread
synchronization primitives)

Project Timeline

Date Milestone

November ✓ Complete basic capability of building a trajectory

December ✓ Analyze the use of forecasted weather

January ✓ Wind-aided optimal trajectories (using Particle Swarm Optimzation)
[This became version 1; improvements made in April/May]

January  Implement BADA 4.0 trajectory generation, compare to BADA 3.0

February ✓ Initial implementation of conflict detection

April ✓ Final conflict detection, with speed measurements;

May ✓ Final presentation/documentation complete

Deliverables

• Python Source Code
• Trajectory Generation

• Use of Forecasted Weather

• Wind Optimal Paths

• C Source Code
• Conflict Detection

• Design documentation

• Class presentations and reports

Final Thoughts

• Goals achieved:
• Built the Framework that is usable for general experiments
• Learned Python
• Learned basics of GPU programming

• Was more work than I might have liked

• Two papers co-authored with Dr. Torres accepted by the Digital
Avionics System Conference (http://ieee-aess.org/conference/2017-
ieeeaiaa-36th-digital-avionics-systems-conference), September 16,
2017
• “Wind Gradients and their Impact on Trajectory Prediction”
• “Wind Optimal Trajectories for UAS and Light Aircraft”

http://ieee-aess.org/conference/2017-ieeeaiaa-36th-digital-avionics-systems-conference

References
BADA Eurocontrol Base of Aircraft Data (BADA), http://www.eurocontrol.int/services/bada

WGS Eurocontrol Base of Aircraft Data (BADA), http://www.eurocontrol.int/services/bada

AMS Aircraft Modelling Standards for Future ATC Systems; EUROCONTROL Division E1, Document No.
872003, July 1987.

PSO1 Kennedy, J. and Eberhart, R. C. Particle swarm optimization. Proc. IEEE int'l conf. on neural networks
Vol. IV, pp. 1942-1948. IEEE service center, Piscataway, NJ, 1995.

PSO2 http://www.swarmintelligence.org/tutorials.php

GRIB GRid in Binary (GRIB), the World Meteorological Organization (WMO) Standard for Gridded Data,
http://dao.gsfc.nasa.gov/data_stuff/formatPages/GRIB.html

ERAM1 “ERAM Conflict Management, Off-Line Problem Determination, and Utility Algorithms”, FAA
document FAA-ERAM-2008-0423

ERAM2 “ERAM Flight Data Processing (FDP) and Weather Data Processing (WDP) Algorithms”, FAA
document FAA-ERAM-2006-0045

CUDA1 “CUDA By Example”, Sanders and Kandrot

CUDA2 “CUDA C Programming Guide”, Nvidia Corporation

http://www.eurocontrol.int/services/bada
http://www.eurocontrol.int/services/bada
http://www.swarmintelligence.org/tutorials.php
http://dao.gsfc.nasa.gov/data_stuff/formatPages/GRIB.html

