
Analysis of the Adjoint Euler Equations as
used for Gradient-based Aerodynamic Shape

Optimization

Second-Semester Midterm Report

Dylan Jude
Graduate Research Assistant

University of Maryland
AMSC 663/664

March 9, 2017

Abstract

I Adjoint methods are often used in gradient-based
optimization because they allow for a significant reduction
of computational cost for problems with many design
variables.

I The proposed project focuses on the use of adjoint methods
for two-dimensional airfoil shape optimization using
Computational Fluid Dynamics to solve the steady Euler
equations.

Adjoints in CFD 2/27

Background Refresher

α

c

Airfoil Example Problem

Given n design variables α1, α2, α3...αn we can achieve a change
in airfoil shape:

Adjoints in CFD 3/27

Background Refresher

We want to minimize a
cost function Ic in the
design process

Mathematically:

Ic(α) =

∮
airfoil

(P − Pd)2

[Nadarajah and Jameson(2002)]
Adjoints in CFD 4/27

Background Refresher

We want the sensitivity of the cost function to the design
variables. Using a brute-force approach:

∂Ic
∂α1

=
Ic(α1 + ∆α1)− Ic(α1)

∆α1

For 2 variables, 3 expensive CFD flow calculations to find

Ic(α1,2), Ic(α1 + ∆α1), Ic(α2 + ∆α2)

The adjoint method instead can find N variable sensitivities in
with the cost of a single CFD flow-computation.

Adjoints in CFD 5/27

Milestones

Auto-differentiation of Euler CFD solver. Late Nov

Validate auto-diff and brute-force method for simple
reverse-design perturbations.

Mid Dec

Hand-coded explicit discrete adjoint solver. Mid Feb
March 6

Implicit routine for discrete adjoint solver. Early
March

Validate discrete adjoint solver against auto-diff and
brute-force methods.

Late
March

Test discrete adjoint solver with full reverse-design cases. Mid April

Adjoints in CFD 6/27

Cost Function Variation

Recall our cost function comparing current and desired
pressures:

I(α) = I(q,X) =

∮
airfoil

(P − Pd)2

The variation of a cost function I can be broken down into the
sensitivity to the flow variables q and the grid coordinates X:

∂I =

[
∂I

∂q

]
δq +

[
∂I

∂X

]
δX = 0

Adjoints in CFD 7/27

Adjoint Formulation

Combine the variation of the cost function:

∂I =

[
∂I

∂q

]
δq +

[
∂I

∂X

]
δX

with the variation of the discrete Euler residual (detailed in
following slides):

∂R =

[
∂R

∂q

]
δq +

[
∂R

∂X

]
δX = 0

and adding a Lagrange multiplier ψ:

δI = δIq + δIX − ψ(δRq + δRX)

we want to eliminate dependince on q, so that

δIq − ψ(δRq) = 0 (1)

Adjoints in CFD 8/27

Plotted Adjoint Solution

Adjoints in CFD 9/27

Plotted Adjoint Solution

Adjoints in CFD 9/27

Plotted Adjoint Solution

Adjoints in CFD 9/27

Plotted Adjoint Solution

Adjoints in CFD 9/27

Discrete Euler Equations

Recall the Euler equations in coordinate directions ξ:

∂q

∂t
+
∂fc,i
∂ξi

= 0 , i = 1, 2 (2)

q = J−1



ρ

ρu1

ρu2

e


, fc = J−1



ρV1

ρu1V1 + ξ1,1p

ρu2V1 + ξ1,2p

(e+ p)V1


(3)

Vi = u1ξi,1 + u2ξi,2 (4)

Adjoints in CFD 10/27

Discrete Euler Residual

Let f denote flux in j-coordinate direction and g denote flux in
k-coordinate direction.

∂q

∂t
+
∂f

∂ξ1
+
∂g

∂ξ2
= 0

Let the Residual of the steady Euler Equation be defined as:

Rn =
qn+1 − qn

∆t
= 0 (5)

The Residual expanded in both dimensions j, k at time n is

Rn
j,k = −

(
fj+1/2,k − fj−1/2,k

)
−
(
gj,k+1/2 − gj,k−1/2

)
(6)

In addition there are artificial dissipation terms that are not shown here

(presented at the end of this presentation, time permitting).

Adjoints in CFD 11/27

Discrete Adjoint Formulation

δIq − ψ(δRq) = 0

This becomes the new PDE that we want to solve. The term
ψ(δRq) is what was auto-differentiated, since R can be viewed
as a computer function of variables q.

By hand, however, it is not trivial:

∂Rn
j,k = −

(
∂fj+1/2,k − ∂fj−1/2,k

)
−
(
∂gj,k+1/2 − ∂gj,k−1/2

)

Adjoints in CFD 12/27

Discrete Adjoint Formulation

∂Rn
j,k = −

(
∂fj+1/2,k − ∂fj−1/2,k

)
−
(
∂gj,k+1/2 − ∂gj,k−1/2

)

∂Rn
j,k =−

(
1

2
(∂fj,k + ∂fj+1,k)− 1

2
(∂fj−1,k + ∂fj,k)

)
−
(

1

2
(∂gj,k + ∂gj,k+1)− 1

2
(∂gj,k−1 + ∂gj,k)

)

∂Rn
j,k =− 1

2

[(
∂f

∂q
δq

)
j+1,k

+

(
∂f

∂q
δq

)
j,k

]
+

1

2

[(
∂f

∂q
δq

)
j,k

+

(
∂f

∂q
δq

)
j−1,k

]

− 1

2

[(
∂g

∂q
δq

)
j,k

+

(
∂g

∂q
δq

)
j,k+1

]
+

1

2

[(
∂g

∂q
δq

)
j,k−1

+

(
∂g

∂q
δq

)
j,k

]

Adjoints in CFD 13/27

Discrete Adjoint Formulation

We can use the definition of the flux Jacobian A and B:(
∂f

∂q
δq

)
j,k

= (Aδq)j,k ,

(
∂g

∂q
δq

)
j,k

= (Bδq)j,k

so that the equations simplify to

∂Rn
j,k =− 1

2

[
(Aδq)j+1,k + (Aδq)j,k

]
+

1

2

[
(Aδq)j,k + (Aδq)j−1,k

]
− 1

2

[
(Bδq)j,k + (Bδq)j,k+1

]
+

1

2

[
(Bδq)j,k−1 + (Bδq)j,k

]

Adjoints in CFD 14/27

Mistake Made: Flux Jacobian

I q is the mass, momentum, and energy at the cell center

I f (and A)requires information from the cell face

I f usually uses interpolated q values to the face

Initially I used Aj−1/2 with interpolated q values however found
this leads to incorrect terms.

Adjoints in CFD 15/27

Jacobian Discretization

A =
∂f

∂q
=



0 Sx Sy 0

Sxφ− uV V − a3Sxu Syu− a2Sxv a2Sx

Syφ− vV Sxv − a2Syv V − a3Syv a2Sy

V (φ− a1) Sxa1 − a2uV Sya1 − a2vV γV


where a1, a2, a3 are constants and

V = Sxu+ Syv , φ =
1

2
(γ − 1)(u2 + v2)

Since we have f at the cell interface (j + 1
2
) but q at the cell center, I

defined u, v, E at interfaces using interpolation

uj+ 1
2

=
1

2
(uj + uj+1) ← WRONG!

Adjoints in CFD 16/27

Jacobian Discretization

Instead, use the cell-interface geometry in both the “left” and
“right” Jacobian and average them over the face:

Aj+ 1
2

=

[
1

2
(Aj +Aj+1)

]
S@j+ 1

2

Note: In a continuous adjoint implementation, this would not
matter since we can discretize the adjoint equation however we
like. To best match our discretized Euler equations, however,
we must follow this methodology.

Adjoints in CFD 17/27

By-Hand Code

I 90 lines, with comments

I Actual code for Adjoint Flux

I Code executed at every point in
the mesh

I Distinctly see two “sections”: one
for each Jacobian Multiplication

Adjoints in CFD 18/27

Auto-Differentiated Code

I 195 lines

I Same routine as previous slide
but auto-differentiated

I This is from a “cleaned up”
routine

◦ Replace if statements with
boolean algebra

◦ Minimize square roots and
other branching code

I No longer any coherent structure

Adjoints in CFD 19/27

Mistake Made: Boundary Conditions

I Typically boundary conditions are applied to “ghost”
points across the boundaries of a mesh.

I In the discrete adjoint formulation, however, boundary
conditions are instead computed above the wall at real field
points.

I The adjoint variable ψ is then simply extrapolated to the
ghost cells

Initially I tried to apply the adjoint boundary conditions to the
ghost cells as is done in the Euler equations.

Adjoints in CFD 20/27

Results: Convergence

0 5000 10000 15000 20000
Iteration

10-9

10-8

10-7

10-6

10-5

10-4

10-3

L2
 R

e
si

d
u
a
l
N

o
rm

Comparing Auto-differentiated and By-hand Adjoint Convergence

Auto-Diff
By-Hand

I We expect these to be exactly the same
I Euler Explicit time marching restricts timestep size to be

very small

Adjoints in CFD 21/27

Analysis

Our original equation of interest was:

δI = δIq + δIX − ψ(δRq + δRX)

We solved the Adjoint relation

δIq − ψ(δRq) = 0

which leaves

δI = δIX − ψ(δRX)

There is one final differentiation of R but with respect to the
grid coordinates.

Adjoints in CFD 22/27

Grid Coordinate Sensitivity

0 5000 10000 15000 20000
Iteration

0.025

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

S
in

g
le

-V
a
ri

a
b
le

 M
e
sh

 S
e
n
si

ti
v
it

y

Comparing Auto-differentiated and By-hand Adjoint Mesh Sensitivity

Auto-Diff
By-Hand

I We expect these to be exactly the same (they are not)
I I have been having issues with getting this differentiation

to match exactly with the auto-differentiated result.

Adjoints in CFD 23/27

Comments: Dissipation

I The main reason for the mismatch between the
auto-differentiation result and by-hand result is the
dissipation in the flux routine

I If I remove the dissipation from the auto-differentiated
code, I get exactly the same sensitivity

Looking at just the j-direction:

Rj = −
(
fj+ 1

2
+ fj− 1

2

)
−
(
hj+ 1

2
+ hj− 1

2

)
Where the scalar dissipation term hj+ 1

2
is:

hj+ 1
2

= εσ (qj+1 − qj)

Adjoints in CFD 24/27

Dissipation Approximations

hj+ 1
2

= εσ (qj+1 − qj)

ε is a constant, approximately 0.25 [Nadarajah(2003)]. σ is the
spectral radius scaled by the face area:

σ = ||V ||+ c||Sj+ 1
2
||

and c is the speed of sound. Both V and c are functions of the
flow q however according to Nadarajah [Nadarajah(2003)], σ
does not vary significantly and can be considered constant in
deriving the adjoint dissipation terms. While this may be the
case for the variation of the residual with respect to q, my
results show this is not the case for the variation of the residual
with respect to X.

Adjoints in CFD 25/27

Next Steps and Comments

I Fix errors in X−differentiation of the residual

I Compare design variable sensitivities to auto-differentiated
and brute-force methods.

I Implement implicit routines to speed up convergence

◦ Tens of thousands of iterations not ideal (even if ∼ 1 min
runtime)

◦ Implicit routines do not have to exactly match
auto-differentiated version, since they only affect
convergence rate and not accuracy.

I Though auto-diff and by-hand results are the same
mathematically, the by-hand approach allows for further
potential speedup through parallelization (OpenMP, MPI,
CUDA).

Adjoints in CFD 26/27

References I

[Nadarajah and Jameson(2002)] Siva Nadarajah and Antony Jameson.
Optimal Control of Unsteady Flows Using a Time Accurate Method.
Multidisciplinary Analysis Optimization Conferences, (June):—-, 2002.
doi: 10.2514/6.2002-5436.
URL http://dx.doi.org/10.2514/6.2002-5436.

[Nadarajah and Jameson(2000)] Siva Nadarajah and Antony Jameson.
A comparison of the continuous and discrete adjoint approach to automatic
aerodynamic optimization.
Aerospace Sciences Meetings, (c):—-, 2000.
doi: 10.2514/6.2000-667.
URL http://dx.doi.org/10.2514/6.2000-667.

[Nadarajah(2003)] S. Nadarajah.
The Discrete Adjoint Approach to Aerodynamic Shape Optimization.
Stanford University PhD Dissertation, 2003.

Adjoints in CFD 27/27

http://dx.doi.org/10.2514/6.2002-5436
http://dx.doi.org/10.2514/6.2000-667

