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Abstract

» Adjoint methods are often used in gradient-based
optimization because they allow for a significant reduction
of computational cost for problems with many design
variables.

» The proposed project focuses on the use of adjoint methods
for two-dimensional airfoil shape optimization using
Computational Fluid Dynamics to solve the steady Euler
equations.
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Background Refresher

Airfoil Example Problem

Given n design variables aq, as, as...cr, we can achieve a change
in airfoil shape:

R—)
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Background Refresher

We want to minimize a
cost function I, in the
design process

Pressure Coefficient

Mathematically:

® Pressure (P)

Ic(OZ) = f (P — Pd)2 ® Desired Pressure (P_d)
air foil

I

[Nadarajah and Jameson(2002)]
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Background Refresher

We want the sensitivity of the cost function to the design
variables. Using a brute-force approach:

0l,  I(on + Aay) — I(as)

8041 Aa1

For 2 variables, 3 expensive CFD flow calculations to find

I(a12), Ic(ar+Aay), I.(az+ Aaz)

The adjoint method instead can find IV variable sensitivities in
with the cost of a single CFD flow-computation.
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Milestones

Auto-differentiation of Euler CFD solver. Late Nov \/
Validate auto-diff and brute-force method for simple | Mid Dec \/
reverse-design perturbations.
Hand-coded explicit discrete adjoint solver. Mid—Feb \/
March 6
Implicit routine for discrete adjoint solver. Early
March
Validate discrete adjoint solver against auto-diff and | Late
brute-force methods. March
Test discrete adjoint solver with full reverse-design cases. | Mid April
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Cost Function Variation

Recall our cost function comparing current and desired
pressures:

@)= 1(0.X) = §. PRy

The variation of a cost function I can be broken down into the
sensitivity to the flow variables ¢ and the grid coordinates X:

oI oI
[ =|— — | 0X =
0 [8(1]5(]4—[8)(}5 0
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Adjoint Formulation

Combine the variation of the cost function:

ol ol
or =[] 50+ [ 2]

with the variation of the discrete Euler residual (detailed in
following slides):

OR OR
S P L P

and adding a Lagrange multiplier :

0I =0I,+ 6Ix —Y(dR;+ 0Rx)

we want to eliminate dependince on ¢, so that

(614 = $(0R,) = 0 M)
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Plotted Adjoint Solution
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Plotted Adjoint Solution

I IR PR ISR ST R R S |
02 0 0.2 0.4X 06 08 1 1.2
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Plotted Adjoint Solution
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Plotted Adjoint Solution

ol b b b bl
02 0 02 0.4X 06 08 1 12
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Discrete Euler Equations

Recall the Euler equations in coordinate directions &:

q Ofci

=0 ,=1,2 2
£ e , i=1, (2)
p pVi
puq purlVi +&11p
q:J_l s fc:J_l (3)
pUs puzVi + &1 2p
e (6 +p)V1
Vi=u1&i1 + u2éi2 (4)
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Discrete Euler Residual

Let f denote flux in j-coordinate direction and ¢ denote flux in
k-coordinate direction.

04 0f , 09

ot | 0 852:0

Let the Residual of the steady Euler Equation be defined as:
R'=-——"=0 (5)

The Residual expanded in both dimensions j, k at time n is

;‘L,k = - (fj+1/2,k - fjfl/Q,k) - (gj,k+1/2 - gj,k71/2) (6)

In addition there are artificial dissipation terms that are not shown here

(presented at the end of this presentation, time permitting).
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Discrete Adjoint Formulation

51, — b(0R,) = 0

This becomes the new PDE that we want to solve. The term
Y(0R,) is what was auto-differentiated, since R can be viewed
as a computer function of variables q.

By hand, however, it is not trivial:

ORYy, = — (0fit1/2k — Ofi—1/20) — (09 k4172 — O9jk—1/2)
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Discrete Adjoint Formulation

IR}y = — (0fjs1/2 — Ofj—1/2,6) — (09j k4172 — OFjk—1/2)

R 1 1
OR} ) = — (5(3fj,k +0fj+1.k) — 5(3fj—1,k + 3fj,k))

1 1
- (5(39M +99j.k+1) = 5(9gj. -1 + 3gj,k)>

e (), i) o2 [ (Ga), - (5o)
OR", =— = | (L6 + (756 Ls +( 7=6
Ik 2 |:(8q ¢ j+1,k 8q e g,k 8(] 1 ik 8(] ¢ j—1,k
0

1 g dg Jdyg dg
_ 75(1) + (—6q) (—5q) + (—&1
2 [(3‘1 ik NO4 ) 00"/ jar \OT 7/ 5

!
2
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Discrete Adjoint Formulation

We can use the definition of the flux Jacobian A and B:

") (5271
— (A0q)., . 5q) = (Bdq).
<aq ik ( Q)‘%k a q ik ( Q)J,k

so that the equations simplify to

IRy, == o [(A60);1 5+ (A60), | +5 |(400), .+ (A0),_y ]

l\D\D—‘[\D\H
M‘HM\H

— 5 |(B30), .+ (B3q) 0| +5 [ (BOg) 5 + (BOG)
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Mistake Made: Flux Jacobian

Sj.1/2

j j+l
j+2

» ¢ is the mass, momentum, and energy at the cell center
» f (and A)requires information from the cell face

» f usually uses interpolated ¢ values to the face

Initially T used A;_; /5 with interpolated ¢ values however found
this leads to incorrect terms.
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Jacobian Discretization

0 S, S, 0

of B Sz —uV V —a3Szu Syt — a2Szv  a25:

9q Syd —vV  Szv—a25yv V —a3Syv a2Sy

V(p—a1) Szai —auV  Syai —avV AV
where a1, a2, as are constants and

1
V=Su+Swv , ¢= 5(771)(u2+02)

Since we have f at the cell interface (5 + %) but g at the cell center, I
defined u, v, E/ at interfaces using interpolation

1
Ui L= 5(’% +ujt1) <+ WRONG!

Adjoints in CFD 16/27



Jacobian Discretization

Instead, use the cell-interface geometry in both the “left” and
“right” Jacobian and average them over the face:

I T
SQj+3

Note: In a continuous adjoint implementation, this would not

matter since we can discretize the adjoint equation however we

like. To best match our discretized Euler equations, however,

we must follow this methodology.
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By-Hand Code

et ter

st}

wit
Sripsi i

i
i ARl e
S R & R

) © RS RGN

v

90 lines, with comments
Actual code for Adjoint Flux

Code executed at every point in
the mesh

1/7a 1100
21741101
B/ 1101

v

v

E
A — 191 “ 1 7.
s > Distinctly see two “sections”: one

for each Jacobian Multiplication

i)

£rI8) = AIOMOI dpsi0 + ALIIOI dosi] + AZTO1 apsi2 + AL 01 dpsi3:
(P12 AOIT1oabeio + ALY 11ogpeid + ALSI 110 apaiz + ASI L1 pais:
P21 2 AOIZIodpei0 + ALI(Z1odpeid + ATZI21"dpeiz + A3I 21 dpat3:
FES] 2 AOI3Ioapeio © ALLI(31vapeii + AL2I31+apaiz + AI 131 apais:

»

Adjoints in CFD 18/27



Auto-Differentiated Code

195 lines

Same routine as previous slide
but auto-differentiated

This is from a “cleaned up”
routine

v

v

v

o Replace if statements with
boolean algebra

o Minimize square roots and
other branching code

v

No longer any coherent structure
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Mistake Made: Boundary Conditions

» Typically boundary conditions are applied to “ghost”
points across the boundaries of a mesh.

» In the discrete adjoint formulation, however, boundary
conditions are instead computed above the wall at real field
points.

» The adjoint variable v is then simply extrapolated to the
ghost cells

Initially I tried to apply the adjoint boundary conditions to the
ghost cells as is done in the Euler equations.
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Results: Convergence

Comparing Auto-differentiated and By-hand Adjoint Convergence
T T T

w— Auto-Diff
== By-Hand

L2 Residual Norm

H H H
0 5000 10000 15000 20000
Iteration

» We expect these to be exactly the same
» Euler Explicit time marching restricts timestep size to be
very small
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Analysis

Our original equation of interest was:

0 =61+ 6Ix —(0R;+ 0Rx)
We solved the Adjoint relation
0, —Y(0Ry) =0
which leaves

61 = 6Ix — (SRx)

There is one final differentiation of R but with respect to the
grid coordinates.
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Grid Coordinate Sensitivity

Comparing Auto-differentiated and By-hand Adjoint Mesh Sensitivity
= Auto-Diff
== By-Hand ||

0.015

0.010

0.005

0.000

—0.005

—-0.010 B

Single-Variable Mesh Sensitivity

—-0.015 : : 1

-0.020 : B

—-0.025

H H H
0 5000 10000 15000 20000
Iteration

» We expect these to be exactly the same (they are not)
» [ have been having issues with getting this differentiation
to match exactly with the auto-differentiated result.
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Comments: Dissipation

» The main reason for the mismatch between the
auto-differentiation result and by-hand result is the
dissipation in the flux routine

» If I remove the dissipation from the auto-differentiated
code, I get exactly the same sensitivity

Looking at just the j-direction:
Ry==(Fy +4iy) = (g +1soy)
Where the scalar dissipation term h i+l is:
2

hip1 = €0 (g1 — qj)
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Dissipation Approximations

hjp1 = €0 (gj41 = ¢j)

€ is a constant, approximately 0.25 [Nadarajah(2003)]. o is the
spectral radius scaled by the face area:

o=V + ¢S 1]l

and c is the speed of sound. Both V' and c are functions of the
flow ¢ however according to Nadarajah [Nadarajah(2003)], o
does not vary significantly and can be considered constant in
deriving the adjoint dissipation terms. While this may be the
case for the variation of the residual with respect to ¢, my
results show this is not the case for the variation of the residual
with respect to X.
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Next Steps and Comments

» Fix errors in X —differentiation of the residual

» Compare design variable sensitivities to auto-differentiated
and brute-force methods.
» Implement implicit routines to speed up convergence

o Tens of thousands of iterations not ideal (even if ~ 1 min
runtime)

o Implicit routines do not have to exactly match
auto-differentiated version, since they only affect
convergence rate and not accuracy.

» Though auto-diff and by-hand results are the same
mathematically, the by-hand approach allows for further
potential speedup through parallelization (OpenMP, MPI,
CUDA).
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