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Background Information –

Materials Sciences

 Mixtures of metal alloys – ternary systems

 Composition varies through material

 Different composition = unique crystalline structure

 Different chemical properties

 Pattern Decomposition

 Given a system of N sample points of numeric data (Ex: light intensity)

 Want to find K basis “phase patterns” that describe data at all points

 Like finding basis of a vector space

 Phases tell us about the chemical properties of the material

Takeuchi I. (2016) MRS Meeting
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Background Information –

Pattern Decomposition

 Given material is sampled using electron probe

 X-ray light is diffracted back at a certain angle

 Based on lattice spacing

 Output is a continuous waveform

 X axis - Scattering angle

 Y axis - Intensity of diffracted light

 Determine composition via waveform

 Like human fingerprint

 Combination of basis waveforms

Top figure: http://physics.bu.edu/py106/notes/Resolution.html



Background Information –

Phase diagrams

 After probing all sample points of a material, a simplex can be 

created

 Illustration of phase composition at a given point

 Colors = clusters (similar phase structure)

 Results must uphold to laws of physics (constraints)

 Gibbs phase rule

 Connectivity (continuity of phases in space)

 Peak Shifting (effect of alloying process)

LeBras et al (2011) AAAI  CP’11 508-522 



What is the Computational Problem?

 White House Materials Genome Initiative

 Develop algorithm to take in diffraction/composition data, output phase structure 

of materials

 Algorithm must:

 Obey physical constraints (laws of physics)

 Identify regions/clusters of similar phase composition within material

 Identify basis phases accurately (≤3 per cluster)

 Be efficient – short run times so more materials can be analyzed



Project Goal–

Extending GRENDEL

 Take existing GRENDEL (Graph-based Endmember Extraction and Labeling)  

code, apply strategies to make the algorithm more accurate and precise

 GRENDEL does not adhere to physical laws and phenomenon, yielding inaccurate results

 Increase accuracy of clustering and basis phase detection results by 

incorporating constraints

 Laws of physics

 “Expert” prior knowledge of material

 Affects cluster analysis and overall phase composition



GRENDEL Algorithm

Kusne et al (2015) AAAI 26(44) 444002  
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Algorithm – GRENDEL

Step 1 – Spectral Clustering

 Input diffraction data – X, NxM matrix

 N = # of data points

 M = # of scattering angles sampled (length of waveform)

 Takes in diffraction data, creates a similarity matrix W

 i,j – sample points

 δcos(Xi, Xj) – cosine distance (1 – cosine of waveform vectors)

 σ – spectral clustering bandwidth parameter (θsc)

 Spectral Clustering Algorithm:

 G = diagonal matrix summing rows of W

 Find k smallest nontrivial eigenvectors of Graph Laplacian, L = G-1W

 use MATLAB k-means on X to group points into k clusters corresponding to eigenvectors

 U (kxN) – cluster membership matrix, U(c,i) = 1 if point i is in cluster c



Algorithm – GRENDEL

Step 2 – Nonnegative Matrix Factorization

 The goal of GRENDEL is to minimize an objective function:

 E (DxM) – basis phases of ith cluster (unknown), eij is jth row of Ei

 P (NxD) – phase proportions of ith cluster for jth sample point (unknown)

 U (KxN) – cluster membership 

 Assume X can be approximated/reconstructed by P*E 

 Set derivative of J with respect to E,P to update/output these matrices

 CURRENT WORK – REPLACING THE OBJECTIVE FUNCTION ABOVE FOR 
PEAKSHIFTING



Algorithm – GRENDEL

Step 3 – Graph Cut

 General “cost” equation to minimize:

 Require X, P, E, and U as inputs

 Smoothness cost (2) is 0 if cluster labels match, 1 otherwise, Data cost matrix (1):

 Minimize V through Max Flow Algorithm

 Minimizes the entirety of V, not for each data point

 Figure: Thickness of arrows = less cost to be in

that colored cluster (‘source’ and ‘sink’)

 Finds ‘border’ between clusters where cost

to be in either adjacent cluster is most 

similar

Boykov et al (2004) PAMI 26(9) 1124-1137

(1) (2)



Implementation

 Language - MATLAB R2015a

 Hardware - personal computer 

 ASUS, 8 GB RAM

 Data sets:

 Inorganic Crystal Structure Database (Fe-Ga-Pd, from Kusne et al.)

 Synthetic diffraction, structural data from previous research efforts ((Fe-Al-Li)Ox from Gregoire et al.)

 X – input spectral waveform data (diffraction patterns)

 C – input composition data (spatial coordinates)

 NEW - Synthetic Spectral Data from ShiftNMF (Morup M. and Madsen K. H.)



Results – Original GRENDEL

 Plot to the left is ternary diagram (showing the 7 different clusters/colors)

 Plot to the right are the spectral (waveform) plots of the constituent phases 

for each cluster



Recap of Last Semester –

Cannot Link Constraint Algorithm
 Analysis of algorithm – NMF updates of E and P are what violate cluster connectivity requirement

 Algorithm:

Compute cosine distance between all pairs

Assign top p% dissimilar pairs to ‘Cannot Link’ array

After initial Graph Cut:

Remove pairs in CL which are initially clustered together

After all subsequent Graph Cut iterations:

Loop through all CL pairs:

If pair in same cluster

If 1st point changed cluster

Revert cluster assignment of 1st point to old cluster

Else

Revert 2nd point’s cluster assignment

end

end



Validation of Cannot Link

 Two different local minimums at GRENDEL converged to

 Had 3.92% and 4.01% of CL pairs deleted after initial Graph Cut

 After every iteration, 0% of remaining CL pairs were in the same cluster

 Data replicated for 50 trials



Validation of Cannot Link

 One local minimum, 3.30% of CL pairs removed after initial Graph Cut

 Over 50 trials, after every iteration, 0% of CL pairs were in the same cluster

 Cluster connectivity constraint adhered to again



Comparison to True Values

 Basis phases (E), Proportions (P), and Clustering (U) are previously known with 

synthetic data set

 GRENDEL – poor agreement with true clustering



Current Work – ‘Peakshifting’ 

Expert Constraint



Peakshifting – ShiftNMF Algorithm

 Novel idea – T (NxD) is matrix of ‘shifting delays’ at each data point for each 

basis phase

 Apply delays in Fourier space (Xf, Pf, Ef = Fourier transform of X, P, and E)

 New Least Squares objective function (ω is frequency vector in Fourier space): 

 Parceval’s identity – allows us minimize error in both spaces

 Run iteratively until convergence is reached

 General Method to find update P, E, and T:

 Apply Fast Fourier Transform (fft), add time delays T to either P or E

 Find the derivative(s) of J with respect to the matrix we wish to update

 Use gradients to create multiplicative update rules



ShiftNMF Algorithm – E and P update



ShiftNMF Algorithm – T update

 Utilizes Newton-Raphson method:

 T = T – ηB-1g

 η – step size parameter

 B – Hessian

 g - gradient



ShiftNMF Algorithm – Cross-Correlation 

Step

 Due to complexity of the objective function, local minima are abundant

 To avoid these, every 20 iterations we run a ‘cross-correlation step’

 Done for each element in T in random permutation to shake up our T matrix



Validation of ShiftNMF – Input # 1

 Utilizing input data from previous authors of 

ShiftNMF

 We wish to compare original ShiftNMF to my 

version

 Seek to achieve comparable convergence 

statistics and plots

 Wish to test robustness of the two algorithms

 Does not always converge to global minimum

 ShiftNMF does not always 100% reconstruct 

correct values of P, E, and T for complex 

diffraction patterns

 N = 12, D = 3, M = 1400 (Best-case scenario of 

input data)





Validation of ShiftNMF – Input # 2

 N = 12, D = 4, M = 1700 (Good scenario of input data)

True P1

True P2

True P3

True P4 True E4

True E3

True E2

True E1





Validation of ShiftNMF – Input # 3

 N = 20, D = 5, M = 1880 (Poor/messy scenario of input data)





ShiftNMF Statistics

 R2 = (SST – SSE)/SST, Cost = Least Squares Cost

Algorithm Input Data R2 statistic Final LS Cost
Number of 

Iterations

Original

1

1.0000 0.0112

2000

New 1.0000 0.0176

Original

2

0.9937 2.02

3000

New 0.9909 2.99

Original

3

0.9904 14.09

1000

New 0.9965 2.40



ShiftNMF Statistics

 150 iterations, 50 for each type of input phases E, randomized P and T matrices

 Took difference in final R2 values of each algorithm

 Also counted number of runs where the algorithms converged to R2 > 0.99

 Null hypothesis: R2 values and number of runs with R2 > 0.99 are equal

 Note: New ShiftNMF version works better for more complex/noisy inputs (more 

realistic) while original algorithm performs better with smoother data

Data Used
Value 

Observed
Type of Statistical Test T-statistic P-value

Mean of difference 

between R2 values
0.040

2-sample t-test with unequal 

variances
0.1208 0.452

Difference in number of 

runs where R2 > 0.99
8/150 2-sample proportion t-test 0.0419 0.4833



ShiftNMF Reproducibility

 Ran 10 trials for each input data set, each with exact same E, P, and T inputs 

and initializations for ShiftNMF

 Maximum standard deviation of R2 for any input data set  2.3e-16

 Maximum R2 difference between any two trials  less than 1e-15

 Reproduces same result given with same initialization close to machine error



Future Work

 My version of ShiftNMF runs twice as slow as previous authors’ code

 Must increase efficiency of algorithm

 Must replace current NMF steps of GRENDEL with ShiftNMF

 Align ShiftNMF with Graph Cut

 We wish to change Graph Cut’s objective function

 ShiftNMF allows Graph Cut to not be run iteratively

 Testing proper order of spectral clustering, ShiftNMF, and Graph Cut

 Ensure Gibbs’ Phase Rule is applied to ShiftNMF

 Create looping mechanism to ensure convergence

 Stop ShiftNMF and restart if convergence is to an incorrect local minimum

 Must weight accuracy with trade-off in extra CPU time



Timeline/Milestones (OLD)

 Fully understand, replicate previous code/results – mid/late October

 Phase 1 – Constraint Programming

 Add connectivity constraints, expert prior knowledge for given samples - November

 Add constraints for peak shifting - January

 Potential addition of other physical laws, Mixed Integer Programming - February

 Phase 2 – Active Learning (Time permits)

 Have algorithm to predict next best point to sample – March

 Optimize the sampling algorithm for one material – mid April

 Optimize algorithm for all material data given – late April



Timeline/Milestones (Final Revision)

 Fully understand, replicate previous code/results – mid/late October

 Stage 1 – Connectivity Constraint

 Write Cannot Link algorithm – November

 Validate and optimize parameters – December

 Stage 2 – Peakshifting Constraint

 Locate and understand algorithm, ShiftNMF – January

 Write ShiftNMF algorithm – February

 Validation – March

 Stage 3 – Optimization of GRENDEL

 Develop method to integrate ShiftNMF with Graph Cut - April

 Collect final results, decrease run time of algorithm - May



Deliverables

 Final code/algorithm

 Results for given materials

 Phase diagrams

 Spectral graphs

 Constituent phase compositions

 End of the year report and presentation
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