
AMSC/CMSC 664
Mid Term Report

March 7, 2017

Jon Dehn

Project Goal

• Build a framework for testing compute-intensive algorithms in air
traffic management

Flight
Intent

Trajectory
Generation Engine

4D
Trajectory

Conflict Detection

Optimal wind-aided
paths

Atmospheric
Model

Airframe
parameters

Use of Forecasted
Wind

First Semester

Use of Forecasted Wind/Temperature Data

• Current Operational Systems use only the current weather
information to build a trajectory

• Difference systems have different time horizons; accuracy of longer
flights in systems with longer time horizons may be improved by using
NOAA weather forecasts

Experiment:

• Select flight paths of varying duration, covering east/west and
north/south flight paths

• Determine time duration difference between using just current
weather conditions vs. using forecasted weather at appropriate time

• Compare time difference to intended use of the data to see if
difference is significant

How good is the forecast?

• Data collected for days in 2017 (so far)
• Four samples per day collected
• Difference between wind speed forecasted and time

T+5 hours and the actual wind reported at time T+5
hours calculated

• Accuracy varies by geography, east better than west
• A flight traveling across country, with an error of 3

knots in typical cruise speed of 420 knots, would be
2 minutes off in total flight time

• In practice, since flights don’t fly directly into the
wind and wind varies across the flight, error in
forecast accounts for at most 0.2 minutes of flight
time

Results – 178 samples of each flight

Wind Aided Trajectory - Overview

Overview description

• First iteration computes 5 paths, each with a difference starting
course, then computes the best path based on fuel burn

• Each path consists of fixed length segments (30 NMI in this case)

• Subsequent iterations choose 5 paths, centered on the previous best
path, with a smaller fanout

• Algorithm stops when some number (3) iterations have not improved
on best fuel burn

Optimal Wind-Aided Paths Refinements

• Algorithm used steps from starting point to ending point, determining a path to
take based on weights applied to

• Inertial course

• Wind direction

• Direction to end point

• Original plan determined end-point-direction weight as

𝑊𝑒 = (1 −
𝑑𝑖𝑠𝑡 𝑃, 𝐵

𝑑𝑖𝑠𝑡(𝐴, 𝐵)
)

• We is limited to >= 0.0; then apportioned remaining weight between wind
direction and inertial, according to some pre-determined ratio (70/30 was initial
guess)

• Once path is found to end point, full trajectory is built and fuel consumption
computed

Updated weights

• Initial end-point weight changed to reduce its contribution when far
away from end point (typical Q is 2.0):

𝑊𝑒 = (1 −
𝑑𝑖𝑠𝑡 𝑃,𝐵

𝑑𝑖𝑠𝑡(𝐴,𝐵)
)Q

• Again, (1 - distance_ratio) is limited to range 0.0 .. 1.0

• Wind/inertial split being used is 20/80.

• If wind direction is away from end point, wind weight is set to zero

• Path found by PSO is compared to brute force path varying initial
course and wind/inertial split with a range of values to arrive at these
values

Sample Results – iteration 1

Sample Results – iteration 2

Sample Results – iteration 3 (1.6 minute better)

Weight at 70/30: too much wind influence

Conflict Detection

• Each flight’s trajectory is composed of several (N) segments

• Aircraft-to-aircraft conflict detection checks one flight’s segments vs.
another flight’s segments (N*N compares)

• A full conflict detection scheme compares any changed/new flight
(the subject) to all existing (M) flights (the objects) (M*N*N
compares)

• In real time, a system must process this at the rate of changed/new
flights (in US busy systems, approximately 7/second)

Conflict Detection

• In practice, some compares can be skipped based on high level
checks:
• Do the flights overlap in time at all?

• Do the flights overlap in X/Y space at all?

• Using the parallel processing constructs in GPUs, several segment-to-
segment compares can be done simultaneously
• M*N*N becomes M*N*1

• High level checks can still be applied if necessary

CPU/GPU architecture

Design

• Initial design will store each existing flight’s data in GPU memory

• One Grid, one Block, one Thread per segment in the object trajectory

• In parallel, one segment in the subject’s trajectory will be compared
against all segments in the object trajectory

• All coding is done is C; subject and object trajectories are loaded from
json files generated from CMSC 663 work

Project Timeline

Date Milestone

November ✓ Complete basic capability of building a trajectory

December ✓ Analyze the use of forecasted weather

January ✓ Wind-aided optimal trajectories (using Particle Swarm Optimzation)

February  Initial implementation of conflict detection

April Final conflict detection, with speed measurements;

Mat Final presentation/documentation complete

Project Status

• Forecasted weather computations complete; paper abstract of this
work submitted to the Digital Avionics System Conference
(http://ieee-aess.org/conference/2017-ieeeaiaa-36th-digital-avionics-
systems-conference), September 16, 2017

• Wind Optimal trajectories algorithm created; further tuning of
parameters may occur. Paper abstract of this work submitted to DASC

• 80% of conflict detection coded in C. Some parallel processing has
been tested. Nvidia’s CUDA toolkit, along with Microsoft Visual
Studio, is used for this work. On track to complete by May.

http://ieee-aess.org/conference/2017-ieeeaiaa-36th-digital-avionics-systems-conference

