Exercise 2. Construction of Static Background Covariance Matrix

Expected for Upcoming Projects: No Due Date

1. Using a data of limited size \(M \) generated from the Gaussian pdf \((x_0, P_0)\),
 - reconstruct the parameters of the Gaussian pdf \((x_R, P_R)\) and
 - study behavior of \((x_R, P_R)\) wrt \((x_0, P_0)\) as \(M \) increases

 for i) case by case & ii) statistical sense:

 a. 1D Gaussian: \((x_0, P_0) = (0, 1)\)

 b. 2D Gaussian:

 \[x_0 = (0, 0)^T \quad \text{&} \quad P_0 = U_0 S_0 U_0^T \]

 with \((\sigma_{01}^2, \sigma_{02}^2) = (2^2, 1^2)\)

 (i) zero cross-correlation \(\theta_0 = 0 \)

 (ii) non-zero cross-correlation \(\theta_0 = 30^\circ \)

 \[
 S_0 = \begin{pmatrix}
 \sigma_{01}^2 & 0 \\
 0 & \sigma_{02}^2
 \end{pmatrix}, \quad U_0 = \begin{pmatrix}
 \cos \theta_0 & \sin \theta_0 \\
 -\sin \theta_0 & \cos \theta_0
 \end{pmatrix}
 \]

2. In data assimilation, background covariance \(B \) (of \(P^b \)) may be constructed from data obtained by the model integration. Read the paper and understand how the “NMC method” works (so that you will be able to improvise & implement)