AOSC 615 Project. Framework

- Building of a data assimilation system
 - Flexible for implementing several data assimilation methods
 - Validation & verification are crucial

\[\text{Step 1. Model Forecast} \]
Forecast (=background): \(x^b_k \)
\[
\begin{align*}
 x^b_k &= m_{k,k-1}(x^{a}_{k-1}) : x \in \mathbb{R}^N
\end{align*}
\]

\[\text{Observation} \]
Measurement: \(y^o_k \)
\[
\begin{align*}
 y_k &= h_k(x_k) : y_k \in \mathbb{R}^L
\end{align*}
\]

\[\text{Nature} \]
Truth: \(x^t_k \)
\[
\begin{align*}
 x^t_k &= m_{k,k-1}(x^{t}_{k-1}) : x \in \mathbb{R}^N
\end{align*}
\]

\[\text{Step 2. Analysis} \]
(Integration of \(x^b_k \) and \(y^o_k \))
Analysis: \(x^a_k = \text{func of } x^b_k \) and \(y^o_k \)

\[\text{Diagnostic Module: Validation of codes} \]
Analysis of the results
AOSC 615 Project. Model

❖ Recommended models
 ▪ Lorenz 40-Variable Model
 ▪ Lorenz 960-Variable Model
 • Lorenz, E. N., 2005: Designing Chaotic Models, J. Atmos. Sci. 62, 1574-1587
 ▪ Point Vortex Model with tracers
 ❖ Other models:
 ▪ Lorenz 3-Variable Model
 • Kalnay, K. and co-authors, 2007: 4-D-Var or Ensemble Kalman filter? Tellus, 59A, 758-773.
 ▪ SPEEDY Model
AOSC 615 Project. Framework

- Setup: Identical (or Semi-Identical) Twin Experiments
 - Idea: Use the same dynamic/computational model for nature & data assimilation system
- Main elements
 A. “nature run” (control/truth) by running the computational model.
 - Quite often under a “perfect model scenario”.
 B. “Observations” of the “nature run”.
 - Quite often adding Gaussian noise to nature run
 C. Data Assimilation System
 - Iterative process
 - Flexible so that one can change the methods
 D. Validation of the codes & analysis of the results, including visualization
- Evaluation
 - Presentation, except Project I
 - Report
 - Codes

AOSC 615 Project. Report Outline

- Typical report may consist of (but change as necessary)
 - Title: “AOSC 615. Project No. <...>”
 - Name
 - Abstract
 - Main text: sample
 1. Introduction / Background / Objectives
 2. System
 a. Model choice & nature run (how IC was generated, spin-up?, duration of nature run, output frequency of the nature run)
 b. Observations (what are/how often observed, noise characteristics)
 3. Data assimilation system
 a. Assimilation method (how forecast IC was generated, spin-up?, assimilation window size)
 b. Validation approach (how to verify your codes do what they are supposed to do)
 4. Experimental set-up
 5. Results (including visualization)
 a. Validation discussion
 b. Results
 6. Concluding discussion
 - References