Project III. Extended Kalman Filter

- **Dates**
 - 10min presentation: 2013.03.28 & 04.02 in-class
 - Order to be announced
 - Report: 2013.04.03 5pm by email

- **Objectives:** Implementation of Extended Kalman Filter based on
 - Data Assimilation Framework developed in Project 1
 - Dynamic extension of OI in Project 2
 - Understanding of dynamic propagation of uncertainty using tangent linear model, and accuracy
 - Schemes to improve the performance: Inflation of the error covariance
 - Understanding of nonlinearity
 - Enhancement of diagnostic tools
Step 1. Forecast \((x^b_k, P^b_k)\)
- Obtained by integrating
 \[
 \frac{d}{dt} x = f(x, t), \quad \frac{d}{dt} P = FP + (FP)^T
 \]
 starting from \((x^a_{k-1}, P^a_{k-1})\) over \([t_k, t_{k+1}]\).

Step 1. Model Forecast
- \((x^b_k, P^b_k)\)
 - dyn. forecast from \((x^a_{k-1}, P^a_{k-1})\)

Observation
- Measurement: \(y^o_k\)
 \[
 y^o_k = h_k(x^t_k) + \epsilon^o_k : y \in \mathbb{R}^L, \epsilon^o_k \sim N(0, R^o_k)
 \]

Step 2. Analysis
- \(x^a_k = x^b_k + K_k \left(y^o_k - H_k x^b_k \right)\)
- \(P^a_k = (I - K_k H_k) P^b_k\)
- \(K_k = P^b_k H_k^T \left(H_k P^b_k H_k^T + R^o_k \right)^{-1}\)

Application of inflation to \(P^b\)
- Approach I in Step 1
 \[
 \frac{d}{dt} P = FP + (FP)^T + Q^b
 \]
- Approach II in Step 2
 a) \(P^b \Rightarrow P^b + Q^b T_w\) : Additive
 b) \(P^b \Rightarrow \rho^b P^b\) \(\rho > 1\) : Multiplicative

\(\epsilon^o_k \sim N(0, R^o_k)\)

\(d/dt x^t_k = f(x^t_k, t)\)

\(d/dt P = FP + (FP)^T + Q^b\)
Project III. Extended Kalman Filter

- **Specifics**
 - Implementation of Extended Kalman Filter (EKF)
 - Step 1. Simultaneous forecast of $x^b(t_k)$ and $P^b(t_k)$ along $x^b(t)$-evolution
 - Step 2. Analysis of $x^a(t_k)$ and $P^a(t_k)$
 - Validation
 - Step 1
 - TLM (e.g., Exercise 4)
 - $P^b(t_k)$: check positive definiteness & symmetry
 - Step 2
 - Diagnostics in observation space (e.g., Exercise 5)
 - $P^a(t_k)$: check positive definiteness & symmetry
 - Application & enhancement of “D. Diagnostic Component”
 - Comparing Forecast(background) & analysis with respect to truth:
 - $|x_i^{NoDA}(t_k)-x_i^t(t_k)|$, $|x_i^b(t_k)-x_i^t(t_k)|$, $|x_i^a(t_k)-x_i^t(t_k)|$, $\sqrt{P_{ii}^b(t_k)}$, and $\sqrt{trP^b(t_k)}$ (for specific i’s) vs t_k
 - $|x^{NoDA}(t_k)-x^t(t_k)|$, $|x^b(t_k)-x^t(t_k)|$, $|x^a(t_k)-x^t(t_k)|$, $\sqrt{trP^b(t_k)}$, $\sqrt{trP^a(t_k)}$ vs t_k
 - Comparing the results: EKF vs 3DVar/OI
 - Examination of the effect of dynamically estimated $P^b(t_k)$, including inflation
 - Start from no inflation, gradually increase & vary for an ‘optimal’ value
 - Examination of the effect of the observing system (but $H=\text{const.}$ for each experiment)