Estimation of Surface Carbon Fluxes with Data Assimilation

*Ji-Sun Kang, *Eugenia Kalnay, *Takemasa Miyoshi, *Kayo Ide, +Junjie Liu, and #Inez Fung *University of Maryland, College Park, +NASA, JPL, #UC Berkeley

Thanks to: Members of Weather-Chaos Group @ UMD, and Dr. Ning Zeng @ AOSC, UMD

Outline

- Introduction
- Objectives of our study
- Carbon Cycle Data Assimilation System
 - Localization of variables (1)
 - Advanced variance inflation methods (2)
 - Vertical localization of column mixed observations (3)
 - Observation impacts (4)
- Summary of Carbon Cycle Data Assimilation Experiments
- Application to moisture/heat flux estimations
- Future Plans

Introduction

- Substantial increase of atmospheric CO₂ caused by human activities
- About half of anthropogenic CO₂ emission has sunk into land and ocean
 - The capacity of the land and ocean CO₂ uptake varies substantially with time and space, and is strongly dependent on climate anomalies (e.g. El Nino-drought and fire, changes in balance between plant growth and death, etc)

Introduction

In order to understand the carbon cycle and its impact on climate change, we need to quantify the temporal and spatial CO₂ sources and sinks at the Earth's surface

Difficulties:

- Lack of the spatial coverage of direct carbon flux measurements
- Lack of the sophistication of numerical models of the carbon cycle
- → Atmospheric CO₂ mixing ratio measurements are used for estimating surface CO₂ fluxes: "top-down approach"

Inversion Problem: top-down approach

- Inversion modeling (e.g. Gurney et al., 2004; Rodenbeck et al., 2003)
 - in-situ & flask atmospheric CO₂ observations
 - Sub-continental and sub-seasonal scales
 - Inverse of transport model: difficult and ill-posed
 - Computationally impractical for high-density data
- Data Assimilation (DA) (e.g. Peters et al., 2007; Baker et al., 2010; Feng et al., 2009)
 Satellite CO₂ observations in addition to in-situ & flask data
 Model-grid scale and weekly estimates (e.g. Carbon Tracker)

Inversion Problem: Issues

Atmospheric CO₂ observation, O

➔ Require a prior estimate of surface CO₂ flux fields

A-priori fields of surface CO_2 fluxes, S_0

A prior estimate of surface CO₂ fluxes

- It should be pre-calculated by independent observations or another model simulation
- Transport errors (for several weeks window)
 - It is one of critical factors to degrade the flux estimation (e.g. Stephens et al.; 2007; Miyazaki, 2009; Liu et al., 2011)

Inversion Problem: Issues

➔ Require a prior estimate of surface CO₂ flux fields

 $-phon here of surface <math>co_2$ haves, o_0

- A prior estimate of surface CO₂ fluxes
 - It should be pre-calculated by independent observations or another model simulation
- Transport errors (for several weeks window)
 - It is one of critical factors to degrade the flux estimation (e.g. Stephens et al.; 2007; Miyazaki, 2009; Liu et al., 2011)

Inversion Problem: Issues

 $J = \frac{1}{2} \left[\frac{\{\mathbf{M}(S) - O\}^2}{\sigma_o^2} + \frac{(S - S_0)^2}{\sigma_{S_0}^2} \right]$ Minimizing the difference between the simulated CO₂ concentration and the observed CO₂, prior errors of CO₂ variables

 → Require a prior estimate of surface CO₂ flux fields
 → Don't account for the transport errors explicitly

- A prior estimate of surface CO₂ fluxes
 - It should be pre-calculated by independent observations or another model simulation
- Transport errors (for several weeks window)
 - It is one of critical factors to degrade the flux estimation (e.g. Stephens et al.; 2007; Miyazaki, 2009; Liu et al., 2011)

Objectives of our study

- Explore the feasibility of estimating surface CO₂ fluxes at the model-grid scale by assimilating atmospheric variables (U, V, T, q, Ps) and atmospheric CO₂ simultaneously
 - Consider transport errors in analyzing CO₂ variables

No *a-priori* information for CO₂

Local Ensemble Transform Kalman Filter (Hunt et al., 2007)

Analysis=(1-K)*background + K*obs

- K (Kalman gain) is determined by the error statistics of ensemble forecast (background) and observations
- EnKF provides background and analysis uncertainty estimation in every analysis step (P^b, P^a)
- LETKF assimilates the observations locally

UMD-Berkeley LETKF-C System

- Parameter estimation: state vector augmentation
 - Append CF (surface CO₂ fluxes)
 - Update CF as part of the data assimilation process
- Simultaneous analysis of carbon and meteorological variables
 - Multivariate analysis with a localization of the variables (Kang et al., 2011)
 - Update all variables at every six hours

(1) Localization of Variables

without variable localization Background error covariance matrix with variable localization

- If variables in the state vector are not physically correlated each other, error covariance between those variables can introduce a sampling error into the analysis system
- Zeroing out the background error covariance between those variables improves the result of the analysis

(Kang et al., 2011, JGR)

Observing System Simulation Experiments (OSSEs)

- We assume that we know the true state!
 - True state (nature run) is generated by a simulation of the model
 - Observations are simulated from the true state
 - Forecast starts from perturbed/random initial guess
 - See if our new data assimilation techniques or new datasets improve the analysis compared with the truth
- Test of three data assimilation techniques
 - Localization of variables (1)
 - Advanced inflation methods (2)
 - Vertical localization of column mixed CO₂ data (3)
- Test of impact of CO₂ observations on surface CO₂ flux estimation
 - in-situ & flasks, GOSAT (OCO-2) and AIRS (4)

OSSEs – (1)

Nature run: assumed true state in the experiments

- SPEEDY-C: the modified version of SPEEDY (Molteni, 2003)
 - AGCM with a tracer gas of atmospheric CO_2 (C)
 - Spectral model with T30L7
 - Prognostic variables: U, V, T, q, Ps, C
 - No diurnal cycle
- True CO₂ fluxes (true CF)
 - A constant fossil fuel emission (Andres et al., 1996)
- Forecast model
 - SPEEDY-C with persistence forecast of surface CO₂ fluxes (CF)
 - CF is updated only by the data assimilation
 - Initial condition: random (no a-priori information)
 - Ensemble mean of initial CF is close to zero

Simulated Observations – (1)

- Meteorological variables (U, V, T, q, Ps)
 - Rawinsonde
 - Every six hours
- Atmospheric CO₂ concentrations
 - in-situ & flask observations
 - Weekly records: black dots (107)
 - Hourly records: gray dots (18)
 - Satellite data from GOSAT
 - GOSAT provides column mixed CO₂ information which has a sensitivity near the surface: gray squares
- No direct measurement of surface CO₂ fluxes

Results: Impact of variable localization

The experiments only with a fossil fuel... emission True CO₂ fluxes → Variable localization significantly reduce sampling errors 40-30-90-1010 20 30 40 50 60 CF C q Ps CF no yes C U Analysis of CO₂ fluxes with variable localization no ves 1206 CFCUVT Ps α **Analysis** of CO₂ fluxes without variable localization ves AOSC department seminar, Oct. 20, 2011 Pe

Nature with "evolving" CF

In order to estimate surface CO₂ fluxes evolving in time, we need more advanced data assimilation techniques.
 ✓ Advanced inflation methods
 ✓ Vertical localization of column mixing CO₂ data

(2) Inflation Methods

- Background uncertainty tends to be underestimated with a limited ensemble size due to the imperfection of the model and nonlinearity of the system.
 - Underestimation of background uncertainty is more serious over the observation-rich area.
 - EnKF needs "inflation"

Multiplicative inflation	Additive inflation
Multiply $(1.0+\alpha)$ to the background variance	Add perturbations to the background/analysis state

- The choice of inflation parameter
 - α for the multiplicative inflation
 - Scaling factor for the additive perturbation in additive inflation
 - → Manual tuning: very expensive or often infeasible!

Experiments for inflation methods

- Fixed multiplicative inflation (FixedM)
 - Standard method
 - Fixed multiplicative inflation parameter (α) in time and space
- FixedM + Additive inflation (FixedM + Addi)
 Add perturbations to analysis of CO₂ variables
- Adaptive multiplicative inflation + Additive inflation (AdaptM + Addi)
 - Estimates multiplicative inflation parameter at each grid point at every analysis step adaptively (Miyoshi, 2011)

OSSEs – (2) & (3)

Nature run: assumed true state in the experiments

- SPEEDY-C: the modified version of SPEEDY (Molteni, 2003)
 - AGCM with a tracer gas of atmospheric CO_2 (C)
 - Spectral model with T30L7
 - Prognostic variables: U, V, T, q, Ps, C
 - No diurnal cycle
- "True" CO₂ fluxes (true CF)
 - A constant fossil fuel emission (Andres et al., 1996)
 - CASA terrestrial CO₂ fluxes (Gurney et al., 2004)
 - Oceanic CO₂ fluxes (Takahashi et al., 2002)

Forecast model

- SPEEDY-C with persistence forecast of surface CO₂ fluxes (CF)
 - CF is updated only by the data assimilation

Simulated Observations – (2) & (3)

- Meteorological variables (U, V, T, q, Ps)
 - Conventional data
 - U, V, T, q: black dots (every 12 hours)
 - Ps: gray boxes (every 6 hours)
- Atmospheric CO₂ concentrations
 - in-situ & flask observations
 - Weekly records: black dots (107)
 - Hourly records: gray dots (18)
 - Satellite data from GOSAT
 - GOSAT provides column mixed CO₂ information which has a sensitivity near the surface: gray boxes
- No direct measurement of surface CO₂ fluxes

Initial Conditions for Carbon Variables

1000 department seminar, 000 20, 2011

 Fixed multiplicative inflation fails to estimate seasonal changes of CO₂ fluxes due to a serious underestimation of background uncertainty.

Fixed multiplicative inflation fails to estimate seasonal changes of CO₂ fluxes due to a serious underestimation of background uncertainty.

- Fixed multiplicative inflation fails to estimate seasonal changes of CO₂ fluxes due to a serious underestimation of background uncertainty.
- Additive inflation and adaptive inflation improve the representation of background uncertainty significantly so that the analysis maintains the quality till the end of one-year data assimilation

Global maps of surface CO₂ fluxes in different seasons

A: True fluxes

D: FixedM

Global maps of surface CO₂ fluxes in different seasons

A: True fluxes

C: FixedM+Addi

D: FixedM

Global maps of surface CO₂ fluxes in different seasons

A: True fluxes

B: AdaptM+Addi

C: FixedM+Addi

D: FixedM

Impact of the inflation methods on errors

- Analysis errors of atmospheric CO₂ near the surface at the end of one-year DA
 - Adaptive and additive inflations
 reduce the atmospheric CO₂ errors
 caused by the imperfection of CF
 forecast
 RMSE=2.97

(3) Vertical Localization

- Vertical localization of column mixing CO₂ observation from remote sensing (e.g. GOSAT, OCO-2)
 - Averaging kernel is nearly uniform in the vertical, although the forcing term (our ultimate estimate) is at the surface
 - We have localized the column CO₂ data, updating only lower atmospheric CO_2 rather than a full column of CO_2

$$\mathbf{y}_i^b = h(\mathbf{x}_{i,k}^b) = \sum_{k=1}^{nlev} a_k S(\mathbf{x}_{i,k}^b)$$

- Calculating innovation based on the averaging kernel

(Kang et al., in prep.)

Results: Impact of vertical localization

- This method improves analysis of CF mainly over where there are few observations and where there is strong variability of CF
 - We need a careful localization on column mixing CO₂ observations

(4) Observation Impact on errors

- Impact of CO₂ observations on surface CO₂ flux estimation
 - SFC: in-situ & flask data
 - SFC + AIRS
 - SFC + GOSAT
 - SFC + GOSAT + AIRS

(4) Observation Impact on errors

Results: Observation Impacts

Global maps of surface CO₂ fluxes in different seasons

A: True fluxes

D: SFC

Results: Observation Impacts

Global maps of surface CO₂ fluxes in different seasons

A: True fluxes

C: SFC+GOSAT

D: SFC

Results: Observation Impacts

Global maps of surface CO₂ fluxes in different seasons

A: True fluxes

B: SFC+GOSAT+AIRS

C: SFC+GOSAT

D: SFC

Summary of Carbon Cycle DA

- We succeed in estimating surface CO₂ fluxes with the advanced LETKF-C system, even without *a-priori* information (OSSEs)
 - Localization of variables
 - reduces sampling errors from the correlation between the variables which are not physically correlated
 - Advanced inflation methods
 - represents background uncertainty well
 - Vertical localization of column mixing CO₂ data
 - better estimate surface CO_2 flux changes rather than updating full column of CO_2
- Dedicated CO₂ monitoring satellite (GOSAT) contributes to the surface CO₂ flux estimation significantly
- AIRS CO₂ retrievals help CO₂ flux estimation due to better analysis of atmospheric CO₂ circulation

How about heat/moisture fluxes?

- Can we estimate surface moisture/heat fluxes by assimilating atmospheric moisture/temperature observations? We can use the same methodology!
- OSSEs
 - Nature: SPEEDY
 - Forecast model: SPEEDY with persistence forecast of Sensible/Latent heat fluxes (SHF/LHF)
 - Observations: conventional observations of (U, V, T, q, Ps) and AIRS retrievals of (T, q)
 - Analysis: U, V, T, q, Ps + SHF & LHF
- Fully multivariate data assimilation
- Adaptive multiplicative inflation + additive inflation
- Initial conditions: random (*no a-priori information*)

Result: Analysis of SHF

Analysis of SHF in FEB

Result: Analysis of SHF

-240-200-160-120-80 -40 40 80 120 160 200 240 W/m²

Analysis of SHF in FEB

Analysis of SHF in JUL

Result: Analysis of SHF

Analysis of SHF in FEB

Analysis of SHF in JUL

Analysis of SHF in DEC

Result: Analysis of LHF

Analysis of LHF in FEB

Result: Analysis of LHF

Analysis of LHF in FEB

Analysis of LHF in JUL

Result: Analysis of LHF

Analysis of LHF in FEB

Analysis of LHF in JUL

Analysis of LHF in DEC

1yr mean of dLHF(6hr)

Time series of LHF/SHF

Black: nature

Color: analysis of LHF (blug)/SHF(red)

Recall that LHF & SHF are updated only by the data assimilation here!

Promising results from the estimation of "evolving parameters" with data assimilation

Future Plans

- More CO₂ datasets
 - HIAPER Pole to Pole Observations (HIPPO) data (Wofsy, 2011)
 - Orbiting Carbon Observatory (OCO-2) data
- The advanced LETKF + CAM3.5 or CAM5 model with real observations
 - On-going project
- Imperfect model experiments for both CO₂ fluxes and SHF/LHF
 - Impact of model error on flux estimation
 - Bias estimation and correction

Future Plans

- More CO₂ datasets
 - HIAPER Pole to Pole Observations (HIPPO) data (Wofsy, 2011)
 - Orbiting Carbon Observatory (OCO-2) data
- The advanced LETKF + CAM3.5 or CAM5 model with real observations
 - On-going project
- Imperfect model experiments for both CO₂ fluxes and SHF/LHF
 - Impact of model error on flux estimation
 - Bias estimation and correction

The End Thank you for your attention!

LETKF with SHF/LHF

$$\mathbf{X}^b = \begin{bmatrix} \mathbf{X} \\ \mathbf{F} \end{bmatrix}$$

- : model state vector (U, V, T, q, Ps)
- : sensible & latent heat fluxes (SHF, LHF)

 No *a-priori* information→

Initial LHF

30 80 120 160 200 240 280 320 360 400