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ERA Forecast Verification
Anomaly Correlation of 500 hPa GPH, 20-90N
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Selected Dynamical Models, 5-month lead
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Climate Model Fidelity and Projections of Climate Change

J. Shukla, T. DelSole, M. Fennessy, J. Kinter and D. Paolino
Geophys. Research Letters, 33, doi10.1029/2005GL025579, 2006
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Model sensitivity versus model relative entropy for 13 IPCC AR4 models. Sensitivity is defined as the surface air temperature
change over land at the time of doubling of CO,. Relative entropy is proportional to the model error in simulating current climate.
Estimates of the uncertainty in the sensitivity (based on the average standard deviation among ensemble members for those
models for which multiple realizations are available) are shown as vertical error bars. The line is a least-squares fit to the values.
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Global average temperature 1850-2009
Based on Brohan et al. 2006
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Reconstruction of the raw GST time series using
ST only (Red lines) and ST+MDV (Green lines)
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Outline

1. Overview: Predictability
 Weather, Seasons, decade, climate change

2. Factors Limiting Climate Predictability
« Understanding: Processes & Mechanisms
« Observations; Assimilation; IC
 Model Fidelity & Predictability
« Institutional

3. What About a Climate CERN?

« Justification and challenges
 Requirements

4. Summary
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1. Overview: Predictability
 Weather, Seasons, decade, climate change

“Atmospheric Modeling, Data Assimilation and
Predictability” by Eugenia Kalnay

1. Factors Limiting Climate Predictability
 Understanding: Processes & Mechanisms
 Observations; Assimilation; IC
 Model Fidelity & Predictability
* Institutional

2. What About a Climate CERN?

« Justification and challenges
 Requirements
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ERA Forecast Verification
Anomaly Correlation of 500 hPa GPH, 20-90N

—e—SCORE REACHES 60.00
e SCORE REACHES 80.00 MA

Forecast Day MA =12 Month Moving Average
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Lorenz Model

Lorenz model is a low-order convection model described
by just three ordinary differential equations. It is one of
the simplest forced dissipative nonlinear systems.

/ di:—O'X+0'Y \
dt
Y o xzirx-—vy
dt
Y _ xy—bz

N /
X, Y, Z: Dynamical variables
r: Forcing
o, b: Dissipation
Parameter values: =10, b=28/3, r=28
Initial condition: X=0.0, Y=1.0,Z2=0.0
Time increment for integration: Ar=0.01
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Predictability Experiment 1 in Lorenz Model

The Lorenz model is first integrated up to the time step n =10000.

At n =10001, this unpertubed integration is continued, and a new

integration is carried out with a small perturbation added to the state from
the unpertubed integration.

The same projections of unperturbed and perturbed trajectories are shown
in different colors for different segments of time, the divergence of
trajectories become clear.

Lorenz Model {3-Vorioble Convection}: r=28
n=13001-13CC0 n=13001-16000 n=18001-1300C0

Unperiurbed " Perturbed ot n=5000C
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Predictability Experiment 2 in Lorenz Model

From Strogatz, S. H., 1994: Nonlinear
dynamics and chaos, Westview Press

An ensemble of 10000 nearby points
at an initial 7 = 0 around a basic state
is allowed to evolve in Lorenz model.

Blue points are from unperturbed
integration.

Red points show the evolution of the
perturbed initial states.

“As each point moves according to
Lorenz equations, the blob is
stretched into a thin filament...
Ultimately, the points spread over ...
showing that the final state could be
almost anywhere, even though the
initial conditions were almost
identical.”
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The Growth of Very Small Errors

Lorenz, E. N., 1969: The Predictability of a Flow Which
Contains Many Scales of Motion. Tellus, 21, 289-307

» Basic Idea — Reduce the Size of the Initial Error by putting it on
smaller and smaller scales

 Ultimate Predictability controlled by the predictability time T = time
necessary for the error to propagate “upscale” from very, very small
initial scale to a finite, pre-chosen scale

* How does T behave as the initial error gets infinitely small? 0 <This
tells us if we have TYPE 2 or TYPE 3 behavior!

- For a Spectrum E(k) ~ k -3 or steeper :
T becomes infinite (thus TYPE 2)

* For a Spectrum E(k) /ess steep than k -3:
T is finite (thus TYPE 3)
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The Knife’ s Edge

“...if the energy per unit wave number obeys a minus-
three or higher negative power law, ... the series for [the
range of predictability] would fail to converge.”

Translation: Range of Predictability can be increased
indefinitely by reducing initial observation error.

-Lorenz, 1969: The predictability of a flow which
possesses many scales of motion. Tellus, pg. 304.
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The “Knife’ s Edge” — The Observed Spectrum
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RMS Error and Differences between Successive Forecasts
Northern Hemisphere 500 hPa Height in Winter

RMSIOITONS: | i L et e st e R.m.s. differences

1981

days
Current Limits of Predictability, A. Hollingsworth, Savannah, Feb 2003
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Evolution of 1-Day Forecast Error,
Lorenz Error Growth, and Forecast

Skill for ECMWF Model

(500 hPa NH Winter)

1982 1987 1992 1997 2002
“Initial error”
20 15 14 14 8
(1-day forecast error) [m]
Doubling time [days] 1.9 1.6 1.5 1.5 1.2
Forecast skill [day 5 ACC ] 0.65 0.72 0.75 0.78 0.84
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ERA Forecast Verification
Anomaly Correlation of 500 hPa GPH, 20-90N

—e—SCORE REACHES 60.00
e SCORE REACHES 80.00 MA

Forecast Day MA =12 Month Moving Average
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ERA Forecast Verification
Anomaly Correlation of 500 hPa GPH, 20-90N
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Interim Summary (NWP)

* In spite of the k -°3 spectrum,

 NWP history (~40 years) suggests: Higher resolution
models, improved physical parameterizations, and
data assimilation techniques reduced initial errors;
Increased the range of predictability (even though
initial error growth increased).

* Despite 40 years of research, we still cannot
definitively state whether the range of predictability
cannot be increased indefinitely

tmosphare shuiics — B[/GEORGE
ICéE S Atmosph eeeeee dies CﬁA " CR W

IIIIIIIIII




From Numerical Weather Prediction (NWP)
To Dynamical Seasonal Prediction (DSP) (1975-2004)

*Operational Short-Range NWP: was already in place
*Predictability and Prediction of Monthly Means: DERF: Shukla; Miyakoda
Boundary Forcing: predictability of monthly & seasonal means (Charney & Shukla)

*AGCM Experiments: prescribed SST, soil wethess, & snow to explain observed
atmospheric circulation anomalies (COLA)

*OGCM Experiments: prescribed observed surface wind to simulate tropical Pacific
sea level & SST (Busalacchi & O’ Brien; Philander & Seigel)

*Prediction of ENSO: simple coupled ocean-atmosphere model (Cane, Zebiak)

*Coupled Ocean-Land-Atmosphere Models: predict short-term climate fluctuations
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The atmosphere is so strongly
forced by the underlying ocean
that integrations with fairly
large differences in the
atmospheric initial conditions
converge, when forced by the
same SST (Shukla, 1982).
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\ ‘ Observed 5-month running mean SOI

- p—— \v’

3

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

I@ES S 2= (&5 CREW M
G@L A cccccccccccccccc

nnnnnnnnnnnnnnnnn
UNIVERSIT

<



Initial conditions
December 1988
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When tropical forcing is very strong, it can enhance even the
predictability of extratropical seasonal mean circulation, which,

in the absence of anomalous SST, has no predictability beyond
weather. Observed SST JFM83

Observed SST JFM89
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An evaluation of the skill of ENSO forecasts

NINO3.4 SST Anomaly(°C)

during 2002-2009

Tony Barnston and Mike Tippett
IRI

Model Forecasts of ENSO from Sep 2009
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MME Mean by Model Type, 5-month lead
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Selected Dynamical Models, 5-month lead

2002

2004

2005

2006

2008

2009

Tony Barnston and Mike Tippett

“enter for Research on
sironment and Water



Conclusions

Tony Barnston and Mike Tippett

Our ENSO prediction skill is not much different this
decade from how it was in the previous two decades.

Decadal variations in ENSO prediction skill appears to
be a stronger function of decadal variability of ENSO

amplitude than of improvements in our models and/or
prediction methodologies.
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Hypothesis

Models that simulate climatology “better”
make better predictions.

Definition: Fidelity refers to the degree to which
the climatology of the forecasts (including the
mean and variance) matches the observed

climatology
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Testing the Hypothesis: Data

DEMETER Data

« 7 global coupled atmosphere-ocean
models

9 ensemble members

* 1980-2001 (22 years)

 Initial conditions: 1 February, 1 May, 1
August, 1 November

* Integration length: 6 months
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Fidelity vs. Skill

NAM (CC=-0.52)
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Fidelity vs. Skill
DEMETER 1980-2001
Seasonal Forecasts

7 models, 4 initial conditions
Lead Time = 0 months

Fidelity and Skill are
related.

Models with poor
climatology tend to have
poor skill.

Models with better

climatology tend to have
better skill.

Courtesy of Tim DelSole



Current Limit of Predictability of ENSO (Nino3.4)
Potential Limit of Predictability of ENSO
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Inferim Summary (Seasonal Prediction)

« 35 years ago, dynamical seasonal climate prediction was
not conceivable.

 Dynamical seasonal climate prediction has achieved a
level of skill that is considered useful for some societal
applications. However, such successes are limited to
periods of large, persistent SST anomalies.

 The most dominant obstacle in realizing the potential
predictability of intraseasonal and seasonal variations is
inaccurate models, and unbalanced initial conditions
rather than an intrinsic limit of predictability.
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WCC3 White Paper on Seasonal
to Inferannual Prediction

* Forecast systems are still a long way
from reaching their potential,;

 Model error is still a critical problem...
A key lesson from seasonal prediction
is that model error is a big contributor
to forecast error;

* Regional models ...are not a solution to
the problem of errors in global models
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Recent Papers (Decadal Variability)

“A significant Component of Unforced Multidecadal

Variability in Twentieth Century Global Warming”
Timothy DelSole, Michael K. Tippett, Jagadish Shukla
(To Appear: Journal of Climate)

“The Impact of North Atlantic-Arctic Multidecadal Variability

on Northern Hemisphere Surface Air Temperature”

Vladimir A. Semenov, Mojib Latif, Dietmar Dommenget, Noel S. Keenlyside,
Alexander Strehz, Thomas Martin, Wonsun Park
(To Appear: Journal of Climate)

“On the Trend of the Global Mean Surface Temperature”
Norden E. Huang, Zhaohua Wu, John M. Wallace, Xianyao Chen, Brian Smoliak,
Compton J. Tucker
(Under Review)
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How to Define Patterns of Multidecadal variability/predictabi

EOF? Optimizes variance, not time scale.
EMD? lgnores spatial correlations, hence is suboptimal.
SSA? lIgnores spatial correlations, hence is suboptimal.

EEOF? Not specifically optimized for multidecadal
predictability.

New approach: Average Predictability Time (APT)
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Predictability
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Identifying Internal Multidecadal Patterns (IMP)

Find a pattern that maximizes “persistence” (unlike EOF
which maximizes variance).

Average Predictability Time (APT)

Average predictability can be characterized in a way that
is independent of lead time by integrating the
predictability metric, which always decreases with time.
For example, the rate of decay is much slower and
enhance the integral is much higher for decadal
variation than seasonal variation.
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Average Predictability Time (APT)

1
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APT = integral of 2P over all lead times
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Decomposing Predictability

Characterize predictability independent of lead time by integrating
over lead time:

o' 2 el
APT = 2/ (Uclim Uforecast(T)> dr
0

2
Uclim

Find component that maximizes APT (DelSole and Tippett 2009).
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Optimize APT in Control Runs

Use IPCC AR4 data set (also called CMIP3).

Last 300 years of PICNTRL are used.

Model grids interpolated onto HadSST2 grid.

Only “well-observed” grid points in the model are analyzed.
Annual averaged sea surface temperature.

Each model’s climatology subtracted out.

All runs pooled to compute “total EOF" and “total APT."
The “outliers” IAP, GISS-EH, GISS-ER were omitted.

14 models, effective time series length = 4200 years.

40 EOF truncation, 20-year maximum lag for APT.

No Detrending

Null hypothesis: white noise when sampled every 2 years.
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Challenges in Separating Forced and Un-Forced Patterns

* Forcing may project strongly on un-forced patterns.
e Time series of IMP in different ensemble members
are uncorrelated in most (but not all) models.

* Model estimates of forced pattern may be wrong.
* Results are the same if observed trend pattern is
used for the “forced pattern” (no model is used to
estimate forced pattern).

* Forced response may not be captured by one pattern.
* Including second SN-EOF does not change the
results.
» Second signal-to-noise EOF is statistically
insignificant.
I@ES tmospherestudies é/ﬁ“A I‘b CR W Mﬁgom
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Signal-to-Noise EOFs: Response Paitern to Forcings
(Anthropogenic and Natural (Solar, Volcanic)

Find components that maximize the ratio of variances:

* Discriminant analysis (Fisher 1938)

» Seasonal Predictability (Straus et al. 2003)

» Decadal Predictability (Venzke et al. 1999)

 Climate Change (Ting et al. 2009) (No IPCC Control Runs)

Response pattern to climate forcing estimated by finding the pattern that

maximizes the ratio

variance in twentieth century runs 03,5,
. - . . — 2
variance in pre-industrial control runs O Sicntr
2 2 2

If forced response is additive, 055,43, = O picntrl + Tforced response

f
Center of Ocean-Land- % I/‘ | R y
Atmosphere studies e C 1 V\/ GEORGE
C O I A b Center for Research on
Environment and Water U




Trend Patterns:

To be interpreted as Response Pattern to Forcings

Fit linear trend between 1850-2005, plot the slope
expressed as degrees per decade.
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Fingerprinting Method

Fit observed annual average SST to

TObS(Xa Y, t) — afor(t) TfOf (X? y) T aimp(t) Timp(X, y) T W(Xa Y, t)
Observed Forced Internal Random
Response Pattern Noise

Define spatial response to external forcing Ty, (X, y).
Define spatial structure of IMP Tjnp(X,y).

Define statistics of internal variability (from 'control runs’).

v v v V¥

Fit equation using generalized least squares:

Detection: Test hypothesis af,(t) = 0.
Attribution: Test hypothesis af,(t) = predicted amplitude.
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How to Define the Response to Climate Forcing?

Pattern should characterize response to natural and anthropogenic
forcing, but also filter out as much internal variability as possible.

Hypothesis:

Total = Forced Response + Internal Variability
Signal Noise

Find projection vector that maximizes the ratio of the variance in
the forced run to variance in the control run:

> > > >
Oforced . 95 T0N O3 11

0'2 o 0'2 - 0'2
control N N
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Leading Predictable Component (APT)
Internal Multi-decadal Pattern (IMP)

tos.ann.terp.glo apt(5.92yr) Mode-1 (40EOFs; 300yrs; 20yr Lag)
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ﬁeadlng Predictable Component (APT):

" Internal Mulh decadal Paitern (IMP)
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Forced Patitern

Amplitude

-8

|
|
|
|
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i | +20
1860 1880 1900 1920 1940 1960 1980 2000

Year

shaded area: 95% confidence interval of forced pattern in observations.

blue line: Ensemble mean amplitude of forced pattern in models

Center of Ocean-Land- ./_‘ z
I@ES et 2= @8 CREW Mz
C @LA gn\'ltrontmcnll{t and Watcr

UNIVERSITY



-

’

\ 2 Internal Multi-decadal Pattern (IMP)
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Amplitude

+0
1860 1880 1900 1920 1940 1960 1980 2000

Year

shaded area: 66% confidence interval of IMP in observations.

red line: Observed Atlantic Multidecadal Oscillation (AMO) index.
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ﬂe bf Forced Patterns and Unforced Patterns
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Signal—to—Noise—EOF of IPCC Models
Twentieth Century Forced Runs

Shading: 4o Fingerprint Amplitude

Blue Solid Line: Signal-to-noise PC

Amplitude

Blue Dashed Line: Major Volcanic
eruptions
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Internal Multidecadal Pattern (IMP)
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Blue Solid Line: AMO Index
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Low-Pass Spatially Averaged Observed SST
on 'Well-Observed’ Grid
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Temperature Difference (K) from 1901-1950
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Global Mean SST

Spatially Averaged SST on 'Well-Observed’ Grid
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rho-squared
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_Scientific Basis for Decadal Predictability

Squared Autocorrelation of Predictable Component -1
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Dynamical Prediction Experience
(~30 years)

« Weather [¥] 500,000 (30 years X 365 days X 50

centers)

« Seasonal 5,000 (30 years X 12 months X 15 centers)

* Decadal [¥] 5
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Dynamical Prediction Experience

Model predictability depends on
model fidelity
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Fidelity vs. Skill

NAM (CC=-0.52)
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Fidelity vs. Skill
DEMETER 1980-2001
Seasonal Forecasts

7 models, 4 initial conditions
Lead Time = 0 months

Fidelity and Skill are
related.

Models with poor
climatology tend to have
poor skill.

Models with better

climatology tend to have
better skill.

Courtesy of Tim DelSole



Climate Model Fidelity and Projections of Climate Change

J. Shukla, T. DelSole, M. Fennessy, J. Kinter and D. Paolino
Geophys. Research Letters, 33, doi10.1029/2005GL025579, 2006

5.0

4.0

3.0

Surface Temperature Change (C)

2.0
0.0 5.0 10.0 15.0 20.0
Relative Entropy (Model Error in Simulating Current Climate)

Model sensitivity versus model relative entropy for 13 IPCC AR4 models. Sensitivity is defined as the surface air temperature
change over land at the time of doubling of CO,. Relative entropy is proportional to the model error in simulating current climate.
Estimates of the uncertainty in the sensitivity (based on the average standard deviation among ensemble members for those
models for which multiple realizations are available) are shown as vertical error bars. The line is a least-squares fit to the values.



Uncertainty in Global Warming Projected
by IPCC Models (Fixed Forcing)

“...models still show significant errors. Although these are
generally greater at smaller scales, important large-scale
problems also remain. ...... The ultimate source of most such
errors is that many important small-scale processes cannot
be represented explicitly in models, and so must be included
in approximate form as they interact with larger-scale
features...... consequently models continue to display a
substantial range of global temperature change in response to
specified greenhouse gas forcing.”

Chapter 8; IPCC (2007)
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WCRP Modeling Panel (WMP) Report

Meeting: Oct 23-24 2006, NCAR, Boulder, CO; Approved by JSC 3 July 2007

1. Insufficient comprehensive model development globally.

2. Low resolution climate models have serious limitations in
simulating the current climate.

3. Use of regional models to downscale regional climate change is
questionable.

4. Modeling community does not have sufficient computing power.

5. It is difficult to realize the maximum possible value from space
measurements.

6. WCRP/IGBP/WMO establish appropriate computing and data
facilities.
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Dynamical Prediction Experience

Examples of global climate
model deficiencies

(Regional downscaling is not the answer)
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JJAS Precipitation

Observed TRMM IPCC Model: 20C3M
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CMORPH OBS Precip Climo JJAS (2003-2006)
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IPCC Models are unable to simulate mean monsoon rainfall.
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Changes in (A2 minus Reference) in precipitation (mm/day)
due to global warming as simulated by regional models
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HadCM3/NASA FVGCM/RegCM3 HadCM3/PRECIS
(Ashfaq et al., 2009, GRL) (Rupa Kumar et al., 2006, Current Science)

(RegCM3 produces weaker monsoon; PRECIS
produces stronger monsoon due to global warming)
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Boreal Winter (DJF) Rainfall Variance in AGCMs

Observed CMAP
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Fundamental barriers to advancing weather and
climate diagnosis and prediction on timescales from
days to years are (partly) (almost entirely?)
attributable to gaps in knowledge and the limited
capability of contemporary operational and research
numerical prediction systems to represent
precipitating convection and its multi-scale
organization, particularly in the tropics.

(Moncrieff, Shapiro, Slingo, Molteni, 2007)
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Annually & Zonally Averaged SW Radiation (AR4)

123.1 —
o |
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-1 -0.5 0 0.5 1

sin(lat)

» 101-106 W/m2 (Wild et al., survey)
» 107 W/m2 (Trenberth and Kiehl (ERBE)
» 101 W/m2 (CERES)
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Bjorn Stevens, UCLA
World Modelling Summit, ECMWF, May 2008




WMS takes place at ECMWF (6-9 May 2008). Nearly 150
participants from all modelling centers of the world.

They say they
want arevolution

Climate scientists call for major new modelling facility.

Oimatologasts have called for massive invest-  — to speeds in the hundreds of petatlops —
ment in computer and research resources to would allow modellers to study simulations at . .
1,;[[1 revolutionize modelline canahilstine The the bilomet s eeale snshline hetter neadictinne ArtICIe n Nature, May 2008
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Seamless Prediction of Weather and Climate

From Cyclone Resolving Global Models
to
Cloud System Resolving Global Models

1. Planetary Scale Resolving Models (1970~): Ax~500Km
2. Cyclone Resolving Models (1980~): Ax~100-300Km
3. Mesoscale Resolving Models (1990~): Ax~10-30Km
4. Cloud System Resolving Models (2000 ~): Ax~3-5Km)

Organized Cloud Mesoscale Synoptic Planetary
Convection I System ' System I Scale ' Scale
Convective MJO ENSO Climate
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Examples of improved climate
simulation by global climate models
with higher numerical accuracy (high
resolution) and improved physics
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ERA Forecast Verification
Anomaly Correlation of 500 hPa GPH, 20-90N
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Black: Reanalysis (ERA);

Blocking Frequency

: Blue: T 1279 (ECMWF)

(Higher Resolution Model Improves Simulation of Blocking Frequency)
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NICAM (7-km) Obs. (Tcukayabu et al. 1999)
| prec:|p|tot|on rate (OS 1N)

1 R s - —
N Ang ‘ @ T'( gt {7&*
\ | S //{/‘A «I ! QQ

LAY ‘ b"'f\ /-V 0‘,««-\/' s
+¢,f ‘ Vo laat, OB B y ‘\,.5_4// ! I
R e *y l 1‘ <« /ﬂ i T
65 ¥ 6 n#red e e %Q ,u~4//" 5 .
}MM T B AMN‘" )‘" \E\
| Ay i’:‘.‘_‘ '\‘, " ¢ 4&_\,‘ /yuk \
X gt )".‘{ o & — RRT N Q.,,‘B\\i\}
w»b’ i Js. Z\ *-L%— SR '\“\\
s ol NN
71 4 ‘:' I*;&I‘i B W\ PR \
70 f:: "N»‘Q"’T "“ P . N AR '\ X M\
11 At / 5L ¥ - . ,ﬁ' e 2
“14—517‘ %_“ i

1
P "5 Jll S
16 —\ a:ﬁ? ’4_‘1”:

/‘hl("rdf/ n’;:

4»’(7\/’ <X /-‘w }
b ’*?ﬁh<rv ‘ S
r.,n.,f s L

21 JAnn, ;'@
= 11‘1»*’ ]“\ z

May 171998

2

[\
N
1

!\\ ') "l'.
‘\1‘*)',, ﬁ M 74 SR
"N‘MH j ,5‘(\, &N 2 U’" SSIN \

nn‘“T //f/ .1.‘ =x, !\‘“ \'\'\
i&\rﬁ ¥ ‘5{5;» '\%
'\\fm/‘,&, ,55;
ST W 4 X
lll ) L

0 60E  120E 180  120W  60W 0
10(m/S)

Matsuno (AMS, 2007)
N
I@ S © atmosphere studies %: — \" QRFW CoEora
GCOCA MAS

Environment and Water
UNIVERSITY

VAt T B
I%MTM/ ,‘J‘,Li".’

31 { Ak fr/

x

i

o R .,'
Mu._ A3
180

m




?’y—

M?ﬁsbdn Rainfall in Low Resolution Model

(a) precipitation rate (b) Coupled model (2 degree)

- JJA 2004 - TRMM3B42 - Cli -
i [ e ] Climatology
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L MORESon Rainfall in High Resolution Model

d precipitation rate b precipitation rate
( )— JUA 2004 - [TRMM3B42] (b) —JJA 2004— [ 7-km]
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Oouchi et al. 2009: (a) Observed and (b) simulated precipitation rate over the Indo-China
monsoon region as June-July-August average (in units of mm day -1). The observed
precipitation is from TRMM_3B42, and the simulation is for 7km-mesh run.
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NICAM 7km Run
Model (Initial:00Z 21May)

CMORPH NICAM
182 22 MAY 2009 182 22 MAY 2009

COLA, JAMSTEC/Univ. of Tokyo, NICS
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NICAM 7km Run
Model (Initial:00Z 21May)

CMORPH NICAM
182 24 MAY 2009 182 24 MAY 2009

COLA, JAMSTEC/Univ. of Tokyo, NICS
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NICAM 7iarn Run
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00Z 21 MAY 2009
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A Proposal to Revolutionize
Climate Prediction

Shukla, J., T.N. Palmer, R. Hagedorn, B. Hoskins, J.
Kinter, J. Marotzke, M. Miller, and J. Slingo, 2010:
Towards a New Generation of World Climate Research

and Computing Facilities. BAMS, Vol.91, 1407-1412

World Modelling Summit for Climate Prediction,
Reading, UK, 6-9 May 2008, Workshop Report (January
2009). WMO/TD-No. 1468.
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Seamless Prediction of Weather and Climate

From Cyclone Resolving Global Models
to
Cloud System Resolving Global Models

1. Planetary Scale Resolving Models (1970~): Ax~500Km
2. Cyclone Resolving Models (1980~): Ax~100-300Km
3. Mesoscale Resolving Models (1990~): Ax~10-30Km
4. Cloud System Resolving Models (2000 ~): Ax~3-5Km)

Organized Cloud Mesoscale Synoptic Planetary
Convection I System ' System I Scale ' Scale
Convective MJO ENSO Climate
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- Revolution in Climate Prediction

is Possible and Necessary

Coupled Ocean-Land-Atmosphere Model ~2015

Assumption:
Computing power
enhancement by a
factor of 106

~10 km x ~10 km (eddy-resolving)
100 levels

(Unstructured, adaptive grids)

* Improved understanding of the coupled O-A-B-C-S interactions

- Data assimilation & initialization of coupled O-A-B-C-S system

Center of Ocean-Land- % /
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Resolution
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- Instrumental data (AD 1902 to 1999)
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Petaflop with ~1M Cores by 2008

1Eflopls < 1 EFlop system in 2019?/I
100 Pflop/s 1 :
1 PFlop system in 2008 /
10 Pflop/s © A

1 Pflopls 19 //
100 Tflop/s 18 /
10 Tflops/s '
/ / =
1 Tflop/s
100 Gflop/s » =
10 Gflop/s ©

1 Gflop/
opls o~

100MFIopls)[\I\I\I\IIIIII\I\I\I\\l\l\l\lill\l\l\l\I\illl\l\l(lll
1993 1996 1999 2002 2005 2008 2011 2014 2017

Data from top500.org

’\\. A Slide source Horst Simon. LBNL

I @S Yelick, U.C. Berkeley fe EORGE
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Computing Capability & Model Grid Size (~km)

Peak Rate: | 10 TFLOPS | 100 TFLOPS | 1 PFLOPS 10 PFLOPS | 100 PFLOPS
C 1,400 12,000 80-100,000 300-800,000 6,000,0007?
ores (2006) (2008) (2009) (2011) (20xx?)

Global NWP?©:

18 - 29 9-14 4-6 2-3 1-2
5-10 days/hr
Seasonal’:

17 - 28 8-13 4-6 2-3 1-2
50-100 days/day
Decadal’:

57 - 91 27 -42 12 - 20 6-9 3-4
5-10 yrs/day
Climate Change?:

120 - 200 57 - 91 27 - 42 12 - 20 6-9

20-50 yrs/day

Range: Assumed efficiency of 10-40%
0 - Atmospheric General Circulation Model (AGCM; 100

levels)

1 - Coupled Ocean-Atmosphere-Land Model (CGCM; ~ 2X

AGCM computation with 100-level OGCM)

2 - Earth System Model (with biogeochemical cycles) (ESM;

~ 2X CGCM computation)

* Core counts above O(10%) are unprecedented for
weather or climate codes, so the last 3 columns
require getting 3 orders of magnitude in scalable
parallelization (scalar processors assumed; vector
processors would have lower processor counts) g1

Thanks to Jim Abeles (IBM)




How to Implement a Seamless Prediction
System in the midst of Several Pre-existing
Separate, Independent National Centers
for Weather, Climate, and Earth System

Science?
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Impediments to Progress in
Earth System Prediction

1. The science community uses low-resolution inadequate climate
models for prediction, not only because of a lack of knowledge

of science, but also because of the lack of appropriate Earth
System Modeling infrastructure with sufficient computational
capacity and critical mass of qualified scientists.

2. Major national modeling centers (NCAR, GFDL) use one set of
models, and national prediction centers (NCEP, FNMOC) use
another set of models (insufficient or no interaction).

3. Operational centers have been less successful than research
centers in attracting young talented scientists.

CenterofO n-La d f
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Examples of Internationally Funded
Infrastructures for Advancement of Science

e CERN: European Organization for Nuclear Research
(Geneva, Switzerland)

 ITER: International Thermonuclear Experimental Reactor
(Gadarache, France)

o ISS: International Space Station
(somewhere in sky..)

WHAT ABOUT CLIMATE PREDICTION?
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The Hubble Space Telescope was built by the United States space agency NASA,
with contributions from the European Space Agency and is operated by the Space
Telescope Science Institute.




International Thermonuclear Experimental Reactor
(Gadarache, France)

ITER, currently under constructnon

in the South of France, aims to
demonstrate that fusion is an energy
source of the future




Particle Accelerators for High Energy Physics Research

1939: Ernest Lawrence (Radiation lab at Berkeley) received the Nobel
Prize in Physics for building Cyclotron.

1940s — 1950s: (Competitive) construction of high energy particle
accelerators in USA and Europe.

It was recognized that no single institution could
afford to construct or staff the new machines,
consortiums were formed to build them.

A group of universities in the eastern US joined forces in 1947 to
construct an accelerator on Long Island — Brookhaven National
Laboratory’ s Cosmotron.

Europe’ s major nations banded together in 1954 to found CERN, the

European Organization for Nuclear Research (in French: Conseil
Européenne pour la Recherche Nucléaire).
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Particle Accelerators for High Energy Physics Research

FermilLab
Batavia, IL, USA

Tevatron 980
GeV

SLAC

DESY

Menlo Park, CA, Hamburg,
USA Germany
50 GeV HERA, 920 GeV

Brookhaven
Upton, NY USA
RHIC, 100-250
GeV
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Particle Accelerators for High Energy Physics Research

FermilLab
Batavia, IL, USA
Tevatron 980
GeV

CERN

DESY

SLAC
Menlo Park, CA, G_eneva’ Hamburg,
USA Switzerland Germany
50 GeV HERA, 920 GeV
© LHC, 7 TeV °

Brookhaven
Upton, NY USA
RHIC, 100-250
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srcomputers for Weather, Climate
and Earth-System Research

Hadley Center and
Met Office
United Kingdom

IBM 104 TFlops

Max Planck
German
IBM 15
TFlops

GFDL/NOAA

KMA A
Korea Cray 260
TFlops

Cray 632 TFlops

NCAR
USA
IBM 77 TFlops

MRI
Japan
Hitachi 51 TFlops

TFlops




Supercomputers for Weather, Climate
and Earth-System Research

Hadley Center and
Met Office
United Kingdom
IBM 104 TFlops

Max Planck
Germany
IBM 152
TFlops

Weather, Climate and

KMA Earth-system GFDlIJ-IS'\,lAOAA
Korea CERN ?? Cray 260
Cray 632 TFlops 100 PetaFlops TFlops

(within five years)

NCAR

MRI

Japan NCEP USA
Hitachi 51 TFlops USA IBM 77 TFlops
IBM 146

TFlops




International Research and Computational
Facility to Revolutionize Climate Prediction

1. Computational Requirement:
- Sustained Capability of 2 Petaflops by 2011
- Sustained Capability of 10 Petaflops by 2015

Earth Simulator (sustained 7.5 Teraflops) takes 6 hours for 1 day forecast
using 3.5 km global atmosphere model; ECMWF (sustained 2 Teraflops)
takes 20 minutes for 10 day forecast using 24 km global model

2. Scientific Staff Requirement:
- Team of 200 scientists to develop next generation climate model

- Distributed team of 500 scientists (diagnostics, experiments)

A computing capability of sustained 2 Petaflops will enable 100 years of
integration of coupled ocean-atmosphere model of 5 km resolution in 1
month of real time
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Summary

 The most dominant obstacle in realizing the
potential predictability of intraseasonal and
seasonal variations is inaccurate models, rather
than an intrinsic limit of predictability.

* Our inability to improve climate simulations
using ultra-high resolution models is not
primarily limited by lack of knowledge of science,
but lack of powerful computers and a critical
mass of scientific staff.
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THANK YOU!

ANY QUESTIONS?
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Particle Accelerators for High Energy Physics Research

Hadley Center
United Kingdom
IBM 100 TFlops

Max Planck
Germany
IBM 152 TFlops

GFDL/NOAA
USA
Cray 260 TFlops

KMA
Korea
Cray 319 TFlops

NCAR
USA
IBM 77 TFlops

MRI
Japan
IBM 152 TFlops
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Particle Accelerators for High Energy Physics Research

Hadley Center
United Kingdom
IBM 100 TFlops

Max Planck
Germany
IBM 152 TFlops

Climate
CERN ??
100 PetaFlops

GFDL/NOAA
USA
Cray 260 TFlops

KMA
Korea
Cray 319 TFlops

MRI NCAR
Japan USA
IBM 152 TFlops IBM 77 TFlops
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_Great Natural Disasters
1950 — 2005

Number of events

16
HFlood

14 OStorm I
B Earthquake/tsunami, volcanic eruption

- O Others (Heat wave, cold wave, forest fire)
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fUSD per decade  ®Geological -  Kconomic
.. wHyaometecoroiosical I ]osses related
e ——————m™ —to disasters are
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gl -

56-65 66-75 76-85 86-95 96-05 dacade
Mil’lions of casualties per decade ® Geological
3 2.66
Whil e casu alti es . m Hydrometeorological
related to hydro-
meteorological
disasters are

decreasing

Source: EM-DAT: The OFDA/CRED
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Threat Score

Annual HPC Threat Scores: 1.00 Inch
Day1/Day 2/ Day 3
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" Combined Land-surface, Air and
=  Sea Surface Temperature anomaly

Global average temperature 1850-2009
Based on Brohan et al. 2006

Met Office

06— — Annual average and 95% confidence range : —

- — Smoothed annual average and 95% confidence range
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Examples of Weather and Climate Variability

* Annual Cycle

* Daily Weather

» Seasonal Climate

* Interannual (ENSO)
» Decadal

» Centennial (Climate Change)

Accurate and reliable prediction of
regional climate change requires realistic
simulation of daily-seasonal-decadal
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CMORPH OBS Precip Climo JJAS (2003—2006)
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Anomalous atmospheric structure of 500 hPa at time of
heavy rains in Pakistan on 28 July 2010.
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Fingerprinting Method

Fit observed annual average SST to

TObS(Xa Y, t) — afOf(t) TfOf(Xay) + afmp(t) Timp(X,)/) + W(Xa Y, t)
Observed Forced Internal Random
Response Pattern Noise

» Define spatial response to external forcing T4, (x,y).
» Define spatial structure of IMP Tin,,(x,y).
» Define statistics of internal variability (from 'control runs’).

» Fit equation using generalized least squares:

Detection: Test hypothesis af,(t) = 0.
Attribution: Test hypothesis af,(t) = predicted amplitude.
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How to Define the Response to
Climate Forcing?

Pattern should characterize response to natural and anthropogenic
forcing, but also filter out as much internal variability as possible.

Hypothesis:

Total = Forced Response + Internal Variability
Signal Noise

Find projection vector that maximizes the ratio of the variance in
the forced run to variance in the control run:

2 2 2 2
Oforced . 05 + UN . 05 + 1
0'2 - 0'2 - 0'2

control N N
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Trend Pattern from Observed SST
HadSST2 1850—-2005

Amplitude

Amplitude

[
|
|
|
| .
1980 2000

1920 1940 1980

Year

1900

1860 1880

Internal Multidecadal Pattern (IMP)

h'

Amplitude

|

1860
Year

1'€2ED

Amplitude

ﬂe bf Forced Patterns and Unforced Patterns

Signal-to-Noise

Signal—to—Noise—EOF of IPCC Models
Twentieth Century Forced Runs

1880 1900 1920 1940 1960
Year

Internal Multidecadal Pattern (IMP)

| "

YIASON

UNIVERSITY



Signal—to—Noise—EOF of IPCC Models
Twentieth Century Forced Runs

Shading: 4o Fingerprint Amplitude

Blue Solid Line: Signal-to-noise PC

Amplitude

Blue Dashed Line: Major Volcanic
eruptions
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Global Mean Sea Surface Temperature

Spatially Averaged SST on 'Well-Observed’ Grid
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Scientific Basis for Decadal Predictability
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Summary (1)

1. An unforced, multidecadal SST pattern is identified in
simulations using IPCC pre-industrial control runs and
observations by a new statistical method.

2. Maximizing the ratio of forced to internal variability indicates
only one forced pattern in SST. Pattern has cooling in N.
Atlantic.

3. Both the forced and unforced patterns are estimated by
optimal spatial filtering techniques.

4. Forced component contributes uniform 0.1K/decade of
warming.
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Summary (2)

5. An Internal Multi-decadal Pattern (IMP) is identified that explains
about 0.1C fluctuations in low-pass, global average SST.

6. Amplitude of this pattern helps explain major multi-decadal
fluctuations in global mean temperature in the 20t century.

7. Amplitude of IMP matches AMO and is sufficient amplitude to
explain acceleration in warming between 1946-1977 and
1977-2008.

8. Forced response projects only weakly on IMP, if at all.

9. Cooling trend over 10-year periods not statistically significant.
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Summary of Summit Declaration

1.Most important requirement: Prediction of changes in the
statistics of regional weather variations.

2. Models have serious problems and cannot provide information
with accuracy required by society

3. “A revolution in climate prediction is necessary and
possible.” (one of the most important declarations of the
summit)

4. Proposal to establish a Climate Prediction Project

5. Enhance national centers

6. Establish a small number of climate research facilities for
decadal prediction.
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Summary of Summit Declaration

7. Dedicated high-end computing facilities are required (at least
a thousand times more powerful than the currently available
computers)

8. More computing power will help to enhance resolution and
include complexity (e.g. biogeochemical cycles).

9. Global observations and assimilations are needed for
prediction project.

10. Better estimates of uncertainties in climate prediction.

11. Collaboration between weather and climate prediction
research communities (Seamless prediction).

12. Encourage the participation of young generation of climate
modelers
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