Exercise 4. Tangent Linear Model

Expected for Upcoming Projects: No Due Date

- Build the Tangent Linear Model (TLM) of the nonlinear model
 \[\frac{d}{dt} x = f(x, t) \]
 along a reference trajectory \(x^{c}(t; x^{c}_{0}, t_{0}) \) where
 \[\frac{d}{dt} x^{c} = f(x^{c}, t) \]
 Tangent linear model is given by
 - Time continuous: \(F^{c}(t; x^{c}_{0}, t_{0}) \) for any \(t \)
 \[F^{c} = F^{c}(t; x^{c}_{0}, t_{0}) = \frac{d}{dx} f(x, t) \bigg|_{(x^{c}, t)} \in \mathbb{R}^{NW} \]
 - Time discrete: \(M^{c}_{k,k-1}(x^{c}_{0}, t_{0}) \) & \(M^{c}_{k,0}(x^{c}_{0}, t_{0}) \) for \(k = 1, \ldots, K \)
 \[\frac{d}{dt} M^{c}(t; t_{k-1}) = F^{c}(t; t_{k-1}) \Rightarrow M^{c}(t; t_{k-1}) = 1 + \int_{t_{k-1}}^{t} F^{c}(\tau; t_{k-1}) d\tau \]
 \[M^{c}_{k,k-1} = M^{c}(t_{k}; t_{k-1}) \]
 \[M^{c}_{k,0} = M^{c}(t_{1}; t_{0}) \]
 \[M^{c}_{k,0} = \prod_{i=1}^{K} M^{c}_{k,i} \]
 \[M^{c}_{k,0} = \prod_{i=1}^{K} M^{c}_{k,i} \]

- Validate TLM
 - Instantaneously at \(t_{0} \):
 Check properties of \(F^{c} \), based on the model & against analytical values
 - Lorenz systems: periodicity etc
 - PV system: action-interaction etc
 - For \(k = 0, \ldots, K \) (in time) with \(\Delta x_{k} = \delta x_{0} \)
 Compare \(\Delta x_{k} \) by TLM with nonlinear error growth with \(\delta x_{k} \)
 \[\delta x = m_{k} \left(x^{c} + \delta x^{c} \right) - m_{k} x^{c} \]
 - Error growth: Individual & difference: \(| \Delta x_{k} |, | \delta x_{k} |, | \Delta x_{k} - \delta x_{k} | \)
 - Growth rate: \(| \Delta x_{k} | / | \delta x_{k} | = 1 \) [or comparison for single variable]
 - Growth direction: \(| \Delta x_{k} | / | \delta x_{k} | = 1 \) [cos-angle]
 [Note]
 - Increase \(k \), and study how \(\Delta x_{k} \) and \(\delta x_{k} \) separate
 - Try different \(\Delta x_{0} \)
 - Try different \(x^{c} \)