AOSC 615 Project: Exercise & Project Description

Class Organization
1. Introduction
 Project I
2. Background
 Exercise 1
 Exercise 2
3. 3D Methods
 Exercise 3
 Project II
4. Uncertainties
5. 4D Methods
 Exercise 4
 Exercise 5
 Project III
 Exercise 6
 Project IV
 Project V
6. Advanced Methods
7. Special Topics
Final Project VI

Project Summary
- Project I: Framework of Data Assimilation System
 Observing System Simulation Experiments (OSSEs)
- Nature run
- Assimilation Window
 - Timing: 3D with 3D FGAT & 4D in mind
 - Model forecast
 - Observations

AOSC 615 Project: Framework

- Building of a data assimilation system
- Flexible for implementing several data assimilation methods
- Validation & verification are crucial

Step 1. Model Forecast
Forecast (=background): x^b_k

$$x^b_k = m_{k,k-1}(x^b_{k-1}) : x \in \mathbb{R}^N$$

Step 2. Analysis
(Integration of x^b_k and y^o_k)

Analysis: $x^a_k = \text{func of } x^b_k$ and y^o_k

Observation
Measurement: y^o_k

$$y^o_k = h_{o}(x^o) : y^o \in \mathbb{R}^N$$

Nature
Truth: x^t_k

$$x^t_k = m_{k,k-1}(x^t_{k-1}) : x \in \mathbb{R}^N$$

Diagnostic Module:
Validation of codes
Analysis of the results
Project I. Framework of Data Assimilation

Part I. Choice of model & language
Due: 2016.02.04 5pm by email

• Choice of the model
 • Class recommendations: either one of
 – Lorenz 3 model
 – Lorenz 40 model
 – Lorenz 960 model
 – Point vortex model
 • Your choice
 – Requirements: reasoning & references
 – Subject to approval based on practicality for the projects

• Choice of language
 • Any scientific computing language – keep in mind that you will need to visualize your results

AOSC615: 16.02.02

Project I. Framework of Data Assimilation

Part II. Report & code
Due: 2016.02.11 5pm by email

A. Nature run:
Output X^t

$X^t = \{x^t_0, \ldots, x^t_K\}$ with $x^t_k = m_{k,k-1}(x^t_{k-1})$

» Spin-up may be needed
» Single X^t for all the projects, for comparison purposes

B. Observations (2 separate module) by reading X^t or X^o: Output X^o & Y^o
1. Complete set with uncorrelated obs error:
 $X^o = \{x^o_0, \ldots, x^o_K\}$ with $x^o_k = x^t_k + \epsilon^o_k, \epsilon^o_k \sim N(0, (\sigma^o)^2 I_{NxN})$
2. Partial observation using linear & time-independent $h(x) = Hx$:
 $Y^o = \{y^o_0, \ldots, y^o_K\}$ with $y^o_k = Hx^o_k$

» Allow flexibility for the choice of
 – σ^o: variance of real observation error
 – H: Observation operator
Project I. Framework of Data Assimilation

C. Basic data assimilation framework by reading R^{o} and y^{o}_k:

Output $X^b=\{x^b_1, ..., x^b_K\}$ & $X^a=\{x^a_1, ..., x^a_K\}$

Initialization: $x^a_0 = x^b_0 + e^a_0$

Step 1. Forecast given previous analysis

\[x^b_k = m_{k,k-1}(x^a_{k-1}) \]

Step 2. Analysis

1. Read in background/forecast x^b_k
2. Read in observation y^o_k
3. Make observation of the forecast $y^o_k = H x^b_k$
4. Compute the difference $d_{o}^o_k = y^o_k - y^b_k$
5. Reinitialize without assimilation $x^a_k = x^b_k$

R^{o} (obs error covariance for y^o_k) may be be different from R^{io} & does not play a role in this project

D. Diagnostics based on x^i, x^o, y^o, X^o, and X^a along with H, R^{io}, and R^{o}

1. Validation (overall)
2. Testing of instability growth
3. Visualization