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Abstract
Ensemble forecasting has become an integral tool for numerical weather prediction (NWP)
centers. Much emphasis is placed on the structure and behavior of the ensemble
covariance matrix through the forecast and assimilation cycle, as the ensemble estimate of
covariance is integral to the quality and effectiveness of a probabilistic forecast. This study
seeks to investigate the local dimensionality of the Global Forecast System (GFS) model
by performing principal component analysis on near-operational ensemble perturbation
matrices to identify the both the local dimensionality of the model and the structure of its
unstable manifolds by inspecting its E-Vectors. The unstable manifolds of the GFS
represent the dominant modes of error growth, and are critical to near-term forecasts. We
seek to expand on prior seminal works to adapt Local E-Dimension/E-Vector (LEDEV)
Analysis, placing particular emphasis on the structure and consistency of E-Vectors in four
dimensions, as well as through the data assimilation process, to identify spatiotemporal

properties inherent to GFS ensemble perturbations.
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1. Introduction

Central to NWP is the use of dynamical models of the nonlinear Earth systems to
diagnose, understand, and predict the state and evolution of atmospheric flow. Over the
last two decades, ensemble forecasting has been increasingly utilized in NWP centers
both as a tool to provide probabilistic forecasts of meteorological events, and as a method
to reduce computational cost of data assimilation relative to more expensive approaches
like 4DVar while retaining the information provided by so-called errors of the day.

The mathematical concept underlying ensemble forecasting is based in Monte Carlo
analysis: repetitive trials of non-deterministic forecasts to estimate the likelihood of given
forecast conditions occurring. Consider k slightly perturbed initial conditions x;for 1 <i < k.
Each ensemble member is initially a function of the true state x, and some error &, The true
state is intrinsically unknown, and so too is the error. As each member is integrated
forward in time, the initial error grows exponentially, and comes to represent both the
integrated initial representativeness error as well as introduced model error.

Assuming there is no introduced bias, the best estimate of the true state is the
ensemble mean x, and the error can be estimated by the ensemble perturbation vector x;
- X. Using each perturbation vector as the k-columns of a matrix leads to the ensemble
perturbation matrix, X. If the initial perturbations are structured in such a way that they
accurately represent the space spanned by the uncertainty intrinsic to the initial conditions,
this perturbation matrix X can be used to construct a covariance matrix that is intended to

span the uncertainty present from the model forecast, and can be used in a data



assimilation system to optimally update the background forecasts with observational data.
These methods will be covered briefly in a later chapter.

The methodology as described relies on several assumptions that are often not true
in a real-world system. Even ignoring those issues, there are still several meaningful
challenges to successfully implementing an ensemble forecasting system. Most pressingly,
modern NWP models running at operational deterministic resolutions have O(10°) degrees
of freedom. While ensemble forecasting is often performed at a lower resolution to control
the computational cost, this would seemingly pose an insurmountable difficulty in achieving
an ensemble space that accurately represents the uncertainty in initial conditions.

Thus it is necessary to estimate the inherent complexity of the system in the interest
of determining what constitutes an appropriate number of ensemble members for spanning
the space of uncertainty in an ensemble forecast. It is common practice with all nonlinear
dynamical systems to determine their complexity via an estimate of its dimensionality. A
traditional measure is the Lyapunov or Kaplan-Yourke (1979) dimension. Numerical
calculation of the Lyapunov dimension relies upon estimating the global exponential
divergence of chaotic trajectories over the entire model field. As a global measure it
represents the entire system rather than spatiotemporally localized regions, and it
becomes exponentially more difficult to calculate with additional model variables. It is thus
computationally prohibitive to compute and essentially meaningless for the purposes of
diagnosing a system with a high order of degrees of freedom and spatiotemporally

localized chaotic dynamics.

10



Thus there existed substantial motivation to define a measure of dimensionality
specific to the needs of a NWP model. Patil et al. (2001) defined the Bred Vector (BV)
Dimension for this purpose. It is a continuous statistical measure of the singular values
resulting from a principal component analysis of the ensemble perturbation matrix.
Critically, by localizing the region of analysis and timestep at which the perturbations are
defined, they succeeded in defining a truly spatiotemporally localized measure of
dimensionality.

This measure will be defined both generally -- in an intuitive manner -- and
rigorously -- in @ mathematical manner -- in Chapter 2. Additionally, the chapter will review
of several papers that have used this measure in application to NWP. Then, the direction
of research for this paper and the experimental design will be described in Chapter 3, and
the results will be presented in Chapter 4. Finally, a summary of the results in the context
of prior works and the intended direction of future research be in the concluding Chapter 5.
An Appendix is provided with additional information about the analysis package that was
developed for this research.

Here we follow and build upon the naming conventions of the Oczkowski et al.
(2005), referring to the singular value statistic as the ensemble dimension, or E-Dimension.

This naming convention is continued for the left singular vectors -- E-Vectors.
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2. Local E-Dimension and E-Vector Analysis
2.1. Principal Component Analysis

Principal component analysis (PCA) is commonly used in the Earth Science
community to determine empirical relationships between variables across space or time at
all different scales. Examples include the study of the El Nifio Southern Oscillation (Westra
et al. 2010), urban analyses of atmospheric chemistry (Costabile et al. 2009) and
climatological studies (Benzi et al. 1996). For the application presented here -- PCA of
ensemble perturbations -- similar concepts are being utilized, and we aim to draw a
parallel between these uses of PCA. First, we seek to understand the ensemble
perturbation matrix and its properties. Then, we will explore the matrices of the principal
component analysis and what they represent. Finally, we will use the definition of Patil et
al. (2001) as the basis for E-Dimension analysis.

The ensemble perturbation matrix X ¢ RN*¥ -- with N being the entire model variable
field and k ensemble members -- constructed as described Section |, has impractical
dimension and geographical footprint to extract relevant information about synoptic-scale
meteorological features. Instead, an appropriate subset of the perturbation matrix, B ¢ R-*
k is used -- with L being the number of chosen variables -- containing all of the chosen
variables local to and surrounding the analysis gridpoint; such a choice is arbitrary, but if
the general purpose of the analysis is to diagnose the dimensionality of local chaotic
dynamics in the system, it is suggested that the analysis grid size is appropriate to capture

relevant synoptic scale features. This will be discussed in more detail in Chapters 3 and 4.
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PCA is a decomposition procedure that transforms an arbitrarily sized set of
n-dimensional data into a set of at-most n linearly uncorrelated components, from which
each observation can be reconstructed as a linear combination of the orthogonal
components. By definition, the PCA decomposition is empirical in nature, with the leading
mode necessarily corresponding to the vector which represents the plurality of variance
present in the data set. This procedure is repeated recursively such that each additional
mode represents the largest remaining amount of variance in the transformed data set until
all of the variance is accounted for. A computationally-efficient method of obtaining the
principal components is by singular value decomposition.

Thus consider a factorization of the matrix B = UZVT where U and V™ are
orthonormal matrices, and X is a rectangular diagonal matrix whose entries are referred to
as the singular values of B. U is referred to as the left singular vectors of B, and V' the
right singular vectors of B. The covariance matrix C = BB"/(L-1) has non-negative values
on its diagonal representing each variable’s variance, and its off-diagonal values are
symmetric about the diagonal, containing the ensemble covariance values. As a symmetric
positive semi-definite matrix, its eigenvalues are non-negative. Inspecting a scaled
covariance matrix:

BBT = UZVT(UZV")", (Eqn 1)

BBT = UzV'VIU", (Eqn?2)

BB" = UZ2U". (Egn 3)

Similarly, BTB = VZ2VT. We find that U is a set of orthonormal eigenvectors for BBT which

spans the columns of B, and V' is a set of orthonormal eigenvectors for B'B which spans
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the rows of B. Additionally, the singular values of B correspond to the square root of the
eigenvalues of BBT, which have been established as non-negative; thus the singular
values of B are real.

If the structure of Z is such that £, >= Z, for i <, the left singular vectors which
orthonormally span the column space of B -- or, specifically, the physical space spanned
by the ensemble perturbations -- are ordered in decreasing representation in the ensemble
variance structure, in line with the definition of PCA given above. The left singular vectors
are weighted by the singular values, and together they represent the amount of variance
contained in each direction indicated by the columns of U. This variance structure can be
considered a representation of the physical uncertainty in a forecast: the left singular
vectors alone represent the major orthogonal modes of ensemble variance, and are thus
referred here to E-Vectors; additionally, the relative magnitude of the singular values is a
proxy for how important the individual E-Vectors are in describing the variance structure.
For example, a random variance structure in which each model variable is independently
and equally varying in the ensemble would have equal singular values; likewise, a variance
structure that has particularly dominant modes of growth would have very large singular
values corresponding to those modes, while

2.2. E-Dimension
This structure of the singular values is what lead Patil et al. (2001) to define their

ensemble dimension as follows:

P2
g
E(GI’GZ""’Gk)z_g? . (Eqn 4)

=1 !
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Note that the E-Dimension is a continuous function strictly of the singular values. In the
extreme case that all of the singular values only vary slightly, signifying small, random
error growth in the system, the E-Dimension will approach k, and for cases of dominant
error growth in the system along significant spatial vectors, the E-Dimension will be closer
to its minimal value of 1. Thus the E-Dimension is an intuitive estimate of the true local
dimensionality of chaotic dynamics in the system, and the E-Vectors represent the physical
manifestation of that uncertainty. Together, they represent an analysis technique under
one umbrella: Local E-Dimension and E-Vector (LEDEV) analysis, which empirically
investigates the structure of variance -- and thus uncertainty and error growth -- for an
ensemble of forecasts, and implicitly estimates the localized dimensionality of the
dynamical system. Much like statistical analyses of surface air temperatures during ENSO
cycles, the PCA is performed here with the intent of investigating how the model variables
covary, and the physical and numerical structure of the variance defines the LEDEV
analysis.

For example, we might consider performing LEDEV analysis for a NWP model in a
mid-latitudinal region ahead of trough axis as a frontal passage occurs. In near-term
forecasts, uncertainty grows in accordance with local instabilities in the atmospheric flows.
In this case, we intuitively expect that dominant modes of error growth will present along
the trough axis as it passes through, causing an increase in modally-focused uncertainty in
that region. This would lead to transient local low-dimensionality in that region, and
correspondingly the E-Dimension would drop. Visually inspecting a few of the leading

E-Vectors might provide physical intuition for the structure of error growth in the system,
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and explicitly identify the main orthogonal modes of growth in the system. Further causes
of local low-dimensionality and the properties of their persistence will be discussed in
subchapter 2.4.
2.3. Projection Matrix

Finally, for the sake of completeness, we consider a partial representation of B in
the matrix T = UZ. T represents the weighted E-Vectors of B, and it entirely spans the
ensemble space. The multiplication by VT to recover B can thus be considered a projection
of the weighted E-Vectors onto the individual ensemble members. We thus call VT the
projection matrix, although its relevance to LEDEV analysis is not explored in this study.

2.4. Extended Literature Review

It is important to understand the historical context of the study of E-Dimension, as it
has entirely shaped the goals of this study. The roots of E-Dimension are defined by the
works by Toth and Kalnay (1993, 1997) on ensemble forecasting, and -- quite specifically
-- bred vectors. Bred vectors are somewhat analogous to E-Vectors, as they are
constructed by running the model simultaneously with infinitesimal errors introduced. At
regular intervals, the error vectors are rescaled and allowed to continue to grow, with the
assumption that they are aligned with the fastest growing modes of error growth, thus
representing the largest modes of uncertainty in the model. Keller et al. (2010) noted
independently that “bred vectors ... mainly point in the phase space direction of the leading
Lyapunov vector and therefore favor one direction of growing errors,” and thus devised a
method that closely mirrors the one derived above, using orthogonalization to obtain

further vectors different from the leading one by applying a singular value decomposition.
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Beginning with Patil et al. (2001), the focus of E-Dimension studies has
appropriately been on data assimilation, as the E-Dimension analysis expresses such
useful information about the structure of a perturbation matrix and thus covariance matrix.
As a defining point, the authors cite Bishop and Toth (1999), who expressed that one
should seek to move the initial state “closer to the observations along the direction of the
unstable sub-space since that is where the true state most likely lies.” In a practical
application of E-Dimension, wherein one assumes that a low dimensionality implies a
highly unstable subspace of the model, adaptively increasing ensemble spread in these
regions as to better adhere to observational data, Corazza et al. (2002) found that in
simple model experiments, improvements of up to 40% could be registered with this
approach.

Patil et al. (2001) suffered primarily from a severely limited ensemble size due to
computational restraints, only working with five ensemble members initially. The authors
conjectured about the impact that increased ensemble size would have on the
E-Dimension analysis, suggesting that there might be a fairly low upper bound to the
E-Dimension of six. This was explored by Oczkowski et al. (2005), as they varied the
ensemble size in increments between five members and 150 members. Indeed, the
upper-bound expressed itself, as some 30 ensemble members proved sufficient to reach
the upper-bound of the E-Dimension field minimum, but only at around 130 ensemble
members did the maximum E-Dimension settle into the mid-30s. This suggests that the
current operational ensemble of 80 members should be sufficient to explore the highly

unstable space in the model if the ensemble members are ideally constructed, but the
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ensemble is insufficient to explore high-dimensionality regions. Indeed, this hints at a
reason for lagging verification scores in the tropics, where E-Dimension is typically higher
than mid-latitudinal and polar regions.

Oczkowski et al. (2005) also explored the significance of changes in domain size,
finding that increased domain size tended to increase E-Dimension, and reduced domain
size tended to decrease E-Dimension, but the structure of the E-Dimension field
remainged largely consistent. There is both a mathematical and physical explanation for
such a phenomenon. Mathematically, the introduction or removal of additional degrees of
freedom into the analysis will tend to increase or decrease its dimensionality respectively.
Physically, including variables on the fringe of a meteorological feature -- that may no
longer represent the dynamic instability of that feature -- will induce perceived randomness
in the analysis: the variables on the edge of the domain will appear uncorrelated, thus
increasing the apparent E-Dimension. In seeking to analyze transient local
low-dimensionality features, it is critical that one consider their footprint; thus, the authors
chose an analysis grid size corresponding to the synoptic scale -- roughly 1000km x
1000km in the mid-latitudes.

With a case study analysis, the authors identified several different atmospheric
processes that lead to transient low local dimensionality, including baroclinic instabilities,
interacting baroclinic and barotropic instabilities, ageostrophic geopotential flux
divergence, upper-tropospheric wave packet propagation, and multi-scale wave
interactions in the atmospheric flow. Ultimately, they concluded that a feature of eddy

diffusivity was responsible in many cases for the reduction in E-Dimension, implying that
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small-scale chaotic processes are responsible for changing local dimensionality at synoptic
scales. However, the relative persistence of low dimensionality on the order of 1-3 days
implied that in spite of highly non-linear dynamics, there is much to be gained by improving
the initial conditions in scenarios of low dimensionality.

Szunyogh et al. (2005) explores the relationship between explained variance and
E-Dimension as a basis to study the dynamical properties of an ensemble as they respond
to, among other experiments, the differing dynamics present in the tropics compared to
mid-latitudes. The authors suggest the overwhelming complexity of local sub-grid scale
dynamics causes the ensemble to insufficiently capture the relevant true ensemble spread,
weakening the estimate of the true state in those regions. However, they suggest this is an
inherent limitation of the Ensemble Kalman Filter, and that care should be used when
differentiating between model error and error introduced by the data assimilation process.

Other work has been done on ensemble sensitivity analysis using derivatives of the
principal component analysis process. For example, Enomoto et al. (2015) define an
ensemble singular vector (ESV) sensitivity metric, which is rooted in an eigenvector
calculation. With this, they are able to successfully identify regions of high sensitivity to
initial conditions, suggesting these might be regions of low dimensionality: high uncertainty
in divergent directions. The same lead author contributed to Yang et al. (2015), which
attempted to utilize these ESVs as additive noise in ensemble inflation, a topic which will
be discussed in a later chapter. The concept is that the leading ESVs represent the fastest
growing modes of error in the system, and thus provide useful information to the ensemble

in order to better align its members along the unstable manifolds of the model. The authors
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show that this can be used to substantially reduce the spin-up time of an ensemble
forecasting system, although it has other potential interesting applications. We suggest --
and will highlight during the results -- that a similar approach using the local E-Vectors

could be applied, although this is primarily a topic for future research.
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3. Experimentation Design
3.1 Goals

As has been shown, the basis of LEDEV analysis is concurrently a statistical and
physical interpretation of a k-member set of atmospheric ensembles, spatiotemporally
localized to a given timestep and the geographic region around the point of analysis. While
the E-Dimension and E-Vectors are mathematically linked by the orthogonal
decomposition process, they represent different styles of analysis. E-Dimension is a
statistic dependent on the physical structure of the ensemble perturbations which span the
ensemble space in the given region of analysis. The leading orthogonal E-Vectors
represent a largely physical manifestation of the ensemble perturbations. On the basis of
previous work which has primarily focused on E-Dimension analysis, this paper ultimately
seeks to utilize both methods of analysis to explore two independent ideas on an
operational reduced-resolution version of the National Centers for Environmental
Prediction’s (NCEP) Global Data Assimilation System (GDAS). Table 1 lists the
experiments which will be described below in detail.

3.1.1 Data Assimilation Comparison

We will apply the LEDEV analysis to two common flavors of the Ensemble Kalman
Filter (EnKF): the Ensemble Square Root Filter (EnSRF) and the Local Ensemble
Transform Kalman Filter (LETKF). While a theoretical comparison of the two might suggest
analytical equivalency (Anderson and Collins 2006), real-world systems often do not

behave in such an agreeable manner. We seek to investigate any notable difference
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between the two schemes by comparing their handling of the ensemble perturbation matrix
through the data assimilation process.
3.1.2 Data Assimilation Assessment

After identifying a data assimilation system of choice for these experiments, the
process will be broken into two components, reflecting the operational configuration of the
Gridpoint Statistical Interpolation (GSI) system. The first component is the ensemble
analysis update strictly a product of the Ensemble Kalman Filter algorithm, incorporating
the ensemble background forecasts with observational data. The second component is the
inflation process. While inflation is used to maintain sufficient spread to prevent filter
divergence and the collapse of the ensemble forecasting system (Anderson 2006), we
sought to separate its effects from the actual ensemble update step as to assess the
ensemble data assimilation algorithm independently. The specifics of these two
components will be discussed in greater detail in the following subchapter.

3.1.3 Consistency: Vertical, Horizontal, Temporal

As a second point of emphasis, we wish to study the behavior of E-Vectors in a
spatiotemporal manner. While one of the key features of LEDEV analysis is the spatially
localized and temporally static nature of the analysis, it is important that the results
presented be fairly robust; that is, in four dimensions, the E-Vectors should present the
level of persistence suggested by previous studies: vertically -- within the same column of
the model; laterally -- within the same model level; and temporally -- as the model fields

evolve from time step to time step.
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Vertical consistency is specifically a product of the single-level analysis that will be
universally applied in these experiments. While the Oczkowski paper included the entire
column of model variables in his gridpoint analysis, we note that the structure of
meteorological features is very commonly tilted with height, and the behavior of the model
necessarily changes from model level to model level. This issue has been exacerbated in
recent years as the top of the model has been pushed into the upper stratosphere. Thus
we do not seek uniform vertical consistency, but vertical consistency appropriate to
synoptic dynamics: for example, in the case of a passing front we would expect to see
broad consistency in the boundary layer, and vertically consistent regions above that
indicate a common tilt of the system with height.

In the same way that slight changes to the domain size should not substantially
affect the analysis, the overlapping segments of adjacent horizontal gridpoints that largely
share the same analysis domain should remain largely consistent in the overlapped
regions. Often in our results, the single level that is presented for non-vertical analysis will
be correlative to the 850mb level. This was chosen for dynamical reasons, largely seeking
a dynamically active, highly energetic region of the atmosphere that is commonly above
the boundary layer in the mid-latitudes. Notably, regions of strong thermal gradient at the
850mb level signify regions of convergence in the atmosphere. Other candidates, like the
level of non-divergence or the tropopause, will be shown, but not emphasized.

Finally, we hope that the meteorological features that define transient local low
dimensionality have temporally consistency within a reasonable level of tolerance: it should

not be the case that from one timestep to the next that the system has evolved so
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drastically that the current LEDEV analysis is entirely incoherent from the prior LEDEV
analysis. This follows specifically from the results of Oczkowski et al. (2005), which
identified persistence of local low dimensionality for 24-72 hours; we hope to identify
similar consistency in the E-Vectors themselves, suggesting the modes of growing error

have a physical basis and are not coincidental mathematical artifacts.

Table 1: Experiment List and Description

Experiment EnKF Algorithm Dates Analysis Tool
Data Assimilation LETKF&ENSRF 2013/12/09 18Z - E-Vector Correlation
Comparison 2013/12/10 00Z
Data Assimilation EnSRF 2013/12/09 18Z - E-Vector Correlation
Assessment 2013/12/10 00Z
Temporal EnSRF 2013/12/09 18Z - E-Vector Inspection
Consistency 2013/12/12 00Z
Vertical EnSRF 2013/12/11 06Z Vertical Cross-Section
Consistency Analysis
Horizontal EnSRF 2013/12/11 06Z Overlapping E-Vector
Consistency Comparison

3.2. Analysis Design
In contrast to the Oczkowski et al. (2005) use of an energy norm:

Il - ||,25 =+ 2 +%T2, here generalized to a single-level analysis, we opt to treat the model

variables individually. This is borne out of a desire to not introduce undue bias into the
LEDEV analysis system by transforming the variables. Additionally, in line with the

Oczkowski et al. (2005), which used a 5x5 grid at T62, we utilize an analogous 19x19 grid
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at T254, seeking to capture synoptic without introducing potentially spurious correlations at
the edge of the domain.

These experiments will largely be done with both qualitative and quantitative
approaches. Particularly in the study of temporal consistency, it is most useful to visually
inspect the E-Vectors as they evolve after the 6-hour analysis timestep. Largely, though,
an absolute correlation analysis will be applied to sets of E-Vectors:

Vv,

lcorr(vi,vp)| = [ (Eqn 5)

il vall

Such analysis allows us to quantitatively compare an entire set of E-Vectors with a
qualitative eye, and it will often form the crux of comparative LEDEV analysis with the aid
of the individually plotted E-Vectors to illustrate certain features.
3.3. System Configuration

Critical to any experiment is the choice of model and its configuration. All of the
experiments presented here were performed on a near-operational 80 member ensemble
of a hybrid 3D EnVar implementation of the Global Data Assimilation System (GDAS), a
coupled GFS/GSI system. Hybrid data assimilation is a now-common approach that
combines facets of variational, deterministic data assimilation with a supporting ensemble
(Wang et al. 2008). When this research was in its infancy, the operational GDAS utilized a
Eulerian grid at T574 for the deterministic run, and T254 for the ensemble, and we use the
same resolutions here. The GFS has 64 hybrid sigma levels stretching from the surface to
roughly 0.5mb.

The hybrid system operates as follows: the ensemble members and deterministic

forecasts are integrated from the time of analysis out to nine hours. The deterministic run

25



at T+6h is updated incrementally from the deterministic 3DVar solver with some of its
covariance matrix coming from the static 3DVar matrix, and some coming from the
ensemble covariance estimate with localization applied. The ensemble at T+6h is updated
according to the EnKF algorithm and then recentered around the deterministic analysis. In
these experiments we use equal weighting of the static and dynamic covariance matrices,
and make use of two different EnKF algorithms: the EnSRF and the LETKF.

The operational EnSRF was implemented using the algorithm defined in Hamill and
Whitaker (2002). By its nature, the EnSRF must serially assimilate observations instead of
ingesting them in en masse as traditional EnKF algorithms do. With little computational
cost, it is possible to estimate the impact that any given observation will have on the
resulting analysis covariance matrix: one operational solution to improve computational
cost of the EnSREF is to ignore all observations with a projected impact of less than 1% on
the analysis matrix. Generally speaking this winds up being 10% of all observations.
Critically, however, the LETKF does not have this feature, and therefore we have opted to
disable it for all EnSRF runs.

The non-operational LETKF algorithm was implemented according to Hunt et al.
(2007), and is configured identically to the EnSRF algorithm where appropriate.

Spread inflation is a necessary part of ensemble forecasting: without any treatment,
ensemble spread tends to collapse to values that all but reject observational data during
the EnKF update, and the ensemble forecast quickly diverges from the true nature state.
The inflation algorithm is chosen to be a traditional relaxation to prior spread (RTPS). This

is a form of multiplicative inflation in which -- on a variable-by-variable basis at each
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gridpoint -- the spread of the analysis ensemble is artificially inflated a certain percentage
to the background ensemble spread. No constraints were applied to this process, and the
multiplicative constant was chosen to be 0.8, consistent with the previously operational
configuration. Other choices for ensemble spread inflation include stochastic methods
such as additive inflation -- in which stochastic noise from the 3DVar static covariance is
added to the ensemble -- and stochastic physics parameterizations -- in which
sub-grid-scale processes are varied within their ranges of uncertainty to produce additional
artificial spread in ensemble forecasts. SPPT was included in its operational configuration,
but additive inflation was not explored in these experiments.
3.4. Initial Conditions

The initial conditions for December 1 2013 00Z were taken from an archive of
then-operational GDAS analyses, and integrated forward in time seven days in order to
alleviate any model shock introduced by differences between the 2013 GFS and the
version used in this study. Then, separate runs of the EnSRF and LETKF were done for an
additional seven days. The times of analysis chosen for each experiment correspond to
the beginning, middle, and end of the passage of a deep trough in its mature phase, in the

process of weakening due to inclusion.
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4. Results
4.1. Case introduction

We will first justify the choice of case study for this analysis and introduce the
standard set of figures that will be used for E-Vector inspection. Figure 1 shows a global
view of E-Dimension, as well as the ensemble mean and ensemble spread of one of the
three variables used in this analysis. As has been noted, there is a definite latitudinal
structure evident, with the tropics having substantially higher E-Dimension than
mid-latitudinal and polar regions. This follows from the discussion of highly chaotic sub-grid
scale processes present in the tropics that lead to increased dimensionality. We call
attention to the correlation between regions of high ensemble spread and regions of low
dimensionality: e.g. the region in the Central Indian Ocean, the area off the coast of New
Zealand, and much of the area around Japan. We note that there is a depression in the
E-Dimension field in the Gulf of Alaska despite a lack of increased ensemble spread. This
is a region of highly active cyclogenesis in the Northern Hemispheric winter.

Ultimately, though, we opted to investigate the region in the North Atlantic where a
pocket of high ensemble spread exists with a corresponding depression in E-Dimension.
Together with the structure of the mean field -- particularly looking at the trough evident in
the temperature field -- we identify an extratropical cyclone. Additional analysis of the
synoptic setup in this timeframe indicates that this is a mature system, having delivered a

mild snowstorm to the Northeast US before progressing into the North Atlantic.
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2013120918 EnSRF Fcst t-1 E-dimension

Mean/Spread T

Figure 1: Top: A global map of single-level (ML15) E-Dimension for a background forecast valid at 2013120918
utilizing the EnSRF dataset using shaded contours with 2.5 interval. Middle: A global map of the ensemble
spread in m?s2 (shaded contours) and ensemble mean zonal wind (colored contours, 5m s™intervals). Bottom:
Same as middle, for temperature (spread in shaded contours, mean in colored contours, 10K intervals).
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Performing LEDEV analysis in this region around 37.9N, 31.9W, we extract its
corresponding E-Vectors, shown in Figures 2-4. We note that the E-Vectors for
temperature and wind variables tend to be relatively independent; while there are notable
structural similarities -- particularly with the negative tilt in the E-Vector fields -- ultimately
there is no immediate striking correlation. The zonal and meridional E-Vector fields share
mild structural similarities, demonstrating some geographically-offset consistency in
regions with swirling wind fields. Ultimately, though, direct cross-variable correlation in the
ensemble perturbation matrix exists, but is not a dominant feature. We will choose to target
the temperature E-Vector field at this model level, as the temperature E-Vectors express
dominant representation, while the leading wind E-Vectors can be subdued or even flat,
but it should be emphasized that choice of variable does not substantially alter the analysis

presented here.
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Figure 2: Top-Left: A plot of the singular values of the localized ensemble perturbation matrix, with a vertical
line denoting the E-Dimension, at the defined region of interest in the North Atlantic, valid at 2013120918
utilizing the EnSRF dataset. Middle-Left: A plot of E-Dimension in the region immediately surrounding the
defined region of interest, zoomed out so that the analysis grid is represented by the boxed outline.
Bottom-Left: A local map of ensemble spread in K? (shaded contours) and ensemble mean temperature
(colored contours, 10K intervals). Others: First nine leading E-Vectors in temperature (shaded contours) with
ensemble mean temperature overlaid (colored contours).
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Figure 3: As the Figure 2 E-Vector plot, but for meridional  Figure 4: As Figure 3 but for zonal wind.
wind; ensemble mean meridional wind (colored contours,
5m s intervals).

4.2. EnKF comparison

In continuing the brief discussion presented in subchapters 3.1.1 and 3.3, we
wished to perform a brief comparison of the operational EnSRF and LETKF systems
available in the current version of the EnKF-enabled GSI. We compare here the
pre-inflation analyses as to isolate the EnKF algorithm against external effects. As they
are configured identically and assimilating the exact same set of observations, as well as
consistently applying RTPS, we expected to find near-identical results with the ensemble
mean, and indeed that is borne out in the bottom panel of Figure 5: the green and yellow
outlines are near-machine-precision differences in the model mean field. The spread
difference field is notably biased negative near-globally, showing how the LETKF

algorithm better maintains ensemble spread through the analysis step.

31
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Figure 5: In a similar style to Figure 1. Top: A difference map of E-Dimension valid for the analyses represented
by the EnSRF minus LETKF datasets at 2013120918. The white regions represent departures with absolute
value greater than 1. Bottom: A difference map of ensemble spread (shaded contours, irregular intervals) and
ensemble mean (colored contours). The ensemble mean difference between EnSRF and LETKF is zero to

machine precision.

This is an important distinction between the two algorithms that is actually largely

washed out by the choice of multiplicative inflation. One of the purported advantages of the

LETKF algorithm is how it better maintains ensemble spread through its analysis,

lessening the need for artificial inflation to prevent filter divergence and failure of the

ensemble system. In the operational setup with RTPS, however, this advantage is largely

diminished.
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Nevertheless, we inspect the E-Vectors of the LETKF dataset in Figure 6, valid at

the same time as Figure 2. We identify very similar structure all throughout the first nine

leading E-Vectors shown: not only is the same characteristic tilt seen in the E-Vector field,

but specific features appear identical. Looking at the second E-Vector for each data set,

we identify a fairly common issue: E-Vector flipping. Specifically, there is a large feature in

the north of the analysis field with a feature of the opposite sign in the southwest, but these

features are opposite between the EnSRF and LETKEF fields. We consider these features

to be largely consistent, and an artifact of the mathematical process rather than a

meaningful physical difference. Thus, when taking the correlation between the two vectors,

we do so with an absolute value.

0.10

2
o
@

2
=
=1

0.04

Fraction Explained Variance

10 20 30 40 50 60 70 &80

E-Dimension

38°W 34°W 30°W 26°W
LETKF Mean/Spread T

38°W 34°W 30°W 26°W

2013120918 (e-dim: ~39.4)

. LETKF T E-Vector 1

74

W 34°W 32°W 30°W 28

LETKF T E-Vector 4

W 34°W 32°W 30°W 28
LETKF T E-Vector 7

W 34°W 32°W 30°W 28

0.15
0.10
0.05
0.00 ~
-0.05
-0.10
=0.15

0.15
0.10
0.05
0.00 +~
—-0.05
-0.10
-0.15

0.15
0.10
0.05
0.00 ~
-0.05
-0.10
-0.15

42°N
41°N
40°N
39°N|
38°N
37N

LETKF T E-Vector 2

o
7

./

36°N|

35¢N

34°N|

36
42°N,

W 34°W 32°W 30°W 28°W
LETKF T E-Vector 5

41°Nj

40°N

39°N

38°N

37N

36°N|

35°N

34°Nf-

36
42N

W 34°W 32°W 30°W 28°W
LETKF T E-Vector 8

41°N

T

40°N

39°N|

38°N|

37°N|

36°N

35°N

34°N

W 34°W 32°W 30°W 28°W

Figure 6: As Figure 2, but for the LETKF dataset valid at the same time.
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While visual inspection allows for intuition toward the physical structure of the
E-Vectors, it is insufficient for a rigorous comparison of the two fields, especially when
trying to compare across all variables, and when comparing modes further from the
dominant ones which have increasingly complex, non-physical structures. Figure 7
introduces the correlation box plot, which compares each of the 80 E-Vectors between the
two datasets. We see a particularly strong diagonal structure, implying very strong
correlation between the two data sets. The off-diagonal elements are occasionally relevant
in the leading E-Vectors, such as the 7th and 8th E-Vectors which represent some
combined information between themselves, but largely the broad inconsistencies are
confined to E-Vectors with mode number higher than the local E-Dimension, and thus

contribute very little to the overall ensemble variance structure.

Correlation Between EnSRF and LETKF E-Vectors

LETKF Mode
o
&
correlation

0.4

30 40 50
EnSRF Mode

Figure 7: A correlation boxplot valid at 2013120918. With the axes increasing from the origin in the bottom-left,
the x-axis represents the EnSRF E-Vectors and the y-axis represents the LETKF E-Vectors, with the leading
modes beginning at the origin and going outward. Eqn. 5 has been applied to compute an absolute correlation
between each E-Vector for each LEDEV analysis.
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This is only one timestep, but these results are remarkably consistent across
multiple timesteps and in various regions, both geographically through polar and tropical
regions, and in various dynamical setups. Particularly under the constraints of RTPS in
which the ensemble mean and spread are essentially identical for each timestep, there is
little to differentiate the two. For the purposes of this study, we chose to continue with
strictly the EnSRF for minimizing computational costs and to conform to the current
operational system under the assumption that it has negligible effects on the analysis.

4.3. Data Assimilation Assessment

Having selected an EnKF algorithm to perform further analysis with, we wish to
inspect each part of the ensemble update process to identify its effects on the E-Vectors.
Continuing prior discussions, we reiterate that it is critical for the data assimilation process
to adhere closely to observations in regions of greatest uncertainty, improving the ability of
the ensemble to grow in the regions of greatest error growth to provide the most
meaningful information possible to the EnKF algorithm. Specifically, we hope to find that
the ensemble update process maintains the perturbation structure in the leading modes of
error growth: ideally, there would be strong correlation along the diagonals of the
correlation boxplot.

First looking at the EnKF step, Figure 8 shows the striking if unsurprising full-field
differences: a near-global increase in E-Dimension upon the ingestion of the observational
data. This follows from the reduction in ensemble spread inherent to the data assimilation
process. The pattern shows little bias in any given region, except for the polar regions --

where observational data is relatively sparse -- showing less impact.
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60
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Figure 8: Global difference in two E-Dimension fields: with the
background E-Dimension field subtracted from the pre-inflation Figure 9: As Figure 7, but comparing the
analysis field. EnSRF background forecast (x-axis) to
the pre-inflation analysis (y-axis) valid at
the same time.

Inspecting Figure 9, we find that with the decreased ensemble spread and
substantial impact to the E-Dimension field, we find that there is notably more spread
among the two sets of E-Vectors compared to the relatively tight diagonal structure of
Figure 7. Some of the leading modes are altered entirely, and contain information from
E-Vectors that were previously representing some half of the variance that they do in the
analysis ensemble. Still, there is a reasonably strong diagonal structure, with a grouping
along the off-diagonal limited to only five or six modes; this will not be the case in later
experiments, so it should be noted here that this structure is actually quite consistent, even
if it represents a loss of error-growth information from the background ensemble.

Revisiting Yang et al. (2015), whose results showed that using perturbation matrix
singular vectors as additive inflation noise -- that is, adding stochastic covariance using the

leading singular vectors as a basis -- could better align the ensemble members with the
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unstable manifold of the model. The same line of thinking applies to this analysis, where

the loss of information inherent to the spread reduction of the EnKF could be mitigated by

explicitly adding that information back into the ensemble perturbation matrix. This would

reduce, or perhaps eliminate, the need for the multiplicative inflation, which we explore

next.

Figures 10 and 11 are presented in an identical manner. The RTPS globally

increases the spread of the ensemble, although it actually has a fairly inconsistent effect

on the E-Dimension, substantially increasing the spread in some regions while

substantially decreasing it in others. There is no latitudinal structure evident, although the

regions in which E-Dimension is substantially altered by the ensemble spread are fairly

consistent when comparing several timesteps next to one another, most notably the large

region in the southeastern Pacific. It is tempting to ascribe this to its notorious marine
stratocumulus, as another marine stratoculumus region off the western coast of southern

Africa also exhibits this behavior, which indicates this may be a property of the model,

although it is not particularly evident in the Northern Hemisphere.

Correlation Between Analysis and Post-Infl E-Vectors
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Figure 10: As Figure 8, with the pre-inflation analysis field
subtracted from the post-inflation analysis field.
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Figure 11: As for Figure 9, but for comparing
e EnSRF pre-inflation analysis (x-axis) to the

post-inflation analysis (y-axis) valid at the same time.
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Inspecting the correlation boxplot, we find a diagonal structure tighter than that for
the EnKF but still expressing some off-diagonal elements at the leading modes. Thus, we
consider the RTPS inflation process to represent a minor loss of error-growth information,
but not nearly as much as the EnKF process itself. However, in the context of prior
literature suggesting that aligning the ensemble members with the unstable manifolds of
the background forecast offering a meaningful improvement to the ensemble forecast, in
conjunction with the relatively random alteration of the E-Dimension field, it would be ideal
if the inflation process could be minimized, either through an additive inflation process as
described above, another method like stochastic physics, or perhaps with a switch to the
LETKF which in general requires less inflation than the EnSRF analysis.

4.4 Temporal Consistency

Now that we have explored the impacts of the EnKF on the structure of the
ensemble perturbation matrix, we will exclusively look at 6-hour forecasts from this point
forward, as they most clearly represent error growth in the model itself: the forecasts are
bound to the model attractor, while mathematical increments to the ensemble perturbation
matrix -- even when applying dynamical constraints -- might represent artificial,
non-physical results. It is necessary to assess the temporal consistency of the E-Vectors to
ensure that the process of cycling the model between forecasts and a data assimilation
step does not successively destroy the E-Vectors, and that the evolution of the E-Vectors

occurs in a manner physically consistent with atmospheric flow.
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Figure 12: A multi-panel plot representing six-hour forecasts of the EnSRF dataset. Each row represents an
increment of six hours from the prior row. The first column is a plot of the singular values, with a vertical line
denoting the E-Dimension. The second column is a zoomed-out view of the local E-Dimension field. The third
column is a plot of the ensemble spread in temperature (shaded contours, units of K?) and ensemble mean
temperature (contours, 10K intervals). The fourth through sixth columns represent the first three leading
E-Vectors in temperature with a mean overlay.

Figure 12 presents ten successive six-hour forecasts, representing a total span of
36 hours, in our region of interest in the North Atlantic. Looking first at the evolution of the
mean field, we can identify a region of high ensemble spread moving in from west and
passing out to the east, eventually out of the analysis frame entirely. The shape of the

temperature field indicates the passage of a trough, which begins negatively tilted and
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evolves into a positive tilt before continuing east out of the analysis region. The
E-Dimension field itself evolves consistently, with a patch of low E-Dimension following the
passage of the trough. The minima passes slightly south of the center analysis gridpoint.
The E-Dimension at the gridpoint itself drops as the trough passes, and then increases as
it leaves the frame.

Inspecting the evolution of the leading E-Vector, the first four frames represent a
relatively uninteresting, fairly static setup. The leading E-Vector changes little in this time,
and is likely the product of the mathematical SVD process rather than a physical
phenomena. However, starting with the fifth frame, we see a marked change in the
E-Vector structure as a strong feature enters the southwest portion of the analysis region.
This feature appears to have a negative tilt, and the next frame affirms the assessment:
the leading E-Vector is aligned with the trough axis. Through the next three frames, the
feature progresses eastward, and maintains its alignment with the trough axis as it begins
its motion toward a positive tilt.

The leading temperature E-Vectors for this case study appear to be a product of
both the ensemble mean and the ensemble spread: they are often aligned with the mean
field, but are expressed most strongly in regions of strong ensemble spread. The model
coherently evolves the ensemble members -- and indirectly the mean field -- and the EnKF
is tuned with the purpose of maintaining a proper ensemble spread: it follows that the
evolution of the E-Vectors is consistent through time with the evolution of the atmospheric

flow. Despite a reduction in error-growth information introduced at each time step by the
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data assimilation process, the hybrid cycling system proves to be self-consistent with the
evolution of the ensemble perturbation matrix.
4.5. Vertical Consistency

With the result from the prior section that the structure of the E-Vectors combining
information from the mean field and the ensemble spread, it should be logically consistent
that the E-Vectors at different model levels express a coherence as well. We will
investigate the spatial consistency of the E-Vectors by visually inspecting the vertical
structure of the system, examining the structure of the E-Vectors at several model levels
throughout the troposphere, specifically looking at two adjacent model levels, and then
including two more that are substantially removed from 850mb level. Figures 13-16
represent model levels 15, 16, 25, and 33, corresponding to ~850mb, ~825mb, ~500mb,

and ~200mb respectively.
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Figure 13: As Figure 2, but valid at 2013121106.
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Figure 14: As Figure 13, but valid for model level 16.
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Figure 15: As Figure 13, but valid for model level 27 and for zonal wind U.
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Figure 16: As Figure 13, but valid for model level 33 and meridional wind V.

We have chosen 2013121106 so that the leading E-Vector at model level 15 would
be expressed as strongly as possible and in the center of the analysis field. Comparing
Figure 13 to Figure 14, we find that the feature is strikingly present in largely the same
quality but shifted slightly to the east, suggesting that there is a tilt toward the east with
height. This would indicate that the low is in the process of including and will soon weaken;
indeed, this is exactly the fate of the extratropical cyclone as it ceases to present at the
surface in just 36 hours from the time of this analysis. This apparent consistency between
E-Vectors continues for several modes, with a slight shift to the east, before starting to
diverge around the fifth E-Vector.

Looking further up into the mid-troposphere, we turn to Figure 15, located roughly
around the level of non-divergence (LND). We have switched to the zonal wind E-Vector

here, as the temperature E-Vector exhibits very little dynamic activity, thus very little
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ensemble spread; it is in fact nearly flat across its leading E-Vectors. The zonal wind,
however, has rather significant ensemble spread, and its E-Vectors are strongly
expressed. Given that this level is substantially removed our ~850mb LEDEV analyses, it
is not surprising that the level of consistency is substantially reduced; there is little
evidence apart from the first E-Vector that the two are strongly correlated. However, that
first E-Vector is again slightly shifted east, existing less sharply in the eastern half of the
analysis domain.

The LEDEYV analysis for Figure 16 is done roughly at the tropopause, some 5
kilometers in altitude above the LND. Again, the temperature E-Vectors have essentially
no expression at this level, but the wind E-Vectors present incredibly strongly. For the sake
of consistency we could have shown the zonal wind E-Vector, but the meridional wind
E-Vector better highlights continued eastward tilt of the system with height: the zonal
geostrophic wind in the mid-troposphere turns into meridional geostrophic wind on the
western edge of the upper-level cyclone, and the first four meridional wind E-Vectors at the
tropopause exhibit some correspondence to the zonal wind E-Vectors at the LND.

Straightforward boxplot correlations, as we have used previously, are entirely
insufficient for this type of analysis. Because the expression of the unstable manifold
differs so wildly with height, particularly with the added wrinkle of a substantial tilt
introduced by the aging extratropical cyclone, naive comparison of two model levels may
be entirely insufficient to assess the E-Vector consistency. We have identified a logical
consistency to the E-Vectors with altitude, bolstering the LEDEV analysis and suggesting

further physical consistency to the ensemble perturbation matrix.
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4.6. Spatial Consistency

Finally, with both the dynamical and informational consistency of the LEDEV
analysis having been explored, we seek to identify the robustness of our results.
Oczkowski et al. (2005) varied the size of their analysis domain and found that although
the E-Dimension changes substantially with the addition or removal of variables, the
structure of the E-Dimension field largely does not. We will briefly extend this analysis to
include the E-Vectors with two separate approaches, first involving a variation in domain
size, and then inspecting adjacent gridpoints.

Returning to the ~850mb level, Figure 17 shows the E-Vectors with the analysis grid
shrunk by 1, i.e. instead of being a 19x19 analysis grid, it is a 17x17 analysis grid, thus
losing some 20% of the variables present in the regular analysis. Comparing to Figure 13,
we find quite striking similarities throughout the entire first nine E-Vectors, a rather
remarkable result for losing so much of the analysis grid. The intuition is confirmed with
Figure 18, as a very strong diagonal structure is evident through the first fifteen E-Vectors
before any substantial off-diagonal expression is present.

It is notable that the box plot is largely upper-rectangular in nature. This implies that
the shrunken grid’s E-Vectors contain information from less-relevant E-Vectors, but the
opposite is not true: in other words, the smaller domain is incorporating some of the
randomness present in the larger domain into its analysis, but the larger domain sees no
such randomness from the smaller E-Vectors, instead spreading its variance downward.
This may suggest that the standard grid size selected for most of these LEDEV analyses

was inappropriately large, although such a conclusion is certainly not definitive.
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Figure 17: As Figure 13, for a reduced domain size.
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Finally, we inspect an adjacent gridpoint’s E-Vectors with the exact same analysis
conditions otherwise. Figure 19 shows the E-Vectors of the gridpoint immediately east of
our original gridpoint. Such an analysis loses the left edge of the analysis domain while
gaining a right edge not present in the original analysis, representing a ~10% change from
the original domain. Similar to the previous analysis, the E-Vectors look strikingly similar,
but visually shifted to the left, suggesting a nearly-exact representation of the E-Vectors.
Similar to the domain-change experiment, the box correlation plot in Figure 20 --
comparing only the portions of the domains that overlap -- shows an incredibly strong
diagonal structure over the first twenty E-Vectors with fairly tight off-diagonal grouping
beyond that, indicating very strong agreement, emphasizing the substantially robust nature

of these analyses.
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Figure 19: As Figure 13, but with the analysis gridpoint shifted zonally by one.
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Correlation Between grid and shift_grid E-Vectors
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Figure 20: As Figure 7, but corresponding to Figures 13 and 19, specifically applying Eqn 5 on the overlapping
components of the E-Vector domains.
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6. Conclusions
6.1 Summary of Research

It has been demonstrated by repeated analysis of a passing mature extratropical
cyclone in the Atlantic Ocean that LEDEV analysis can be used to identify a physical
interpretation of the unstable manifolds of the GFS, and such analyses are both
spatiotemporally robust and resistant to the inherent loss of error-growth information during
the data assimilation process.

Specifically, we sought to confirm that spatiotemporal consistency in the model
would lead to spatiotemporal consistency in LEDEV analysis. Indeed, we discover that the
features present in LEDEV analysis advect coherently with the prevailing atmospheric flow
and evolve in structure according to dynamical changes of the non-linear system.
Additionally, we find that the vertical structure of single-level LEDEV analysis is consistent
with dynamic expectations, as the mature cyclone was tilting eastward in height, and the
E-Vectors -- although changing in nature with height -- showed substantial logical
consistency. We also performed some basic horizontal consistency checks, determining
the robustness of the results; the results in the experiments would not substantially change
due to minor alterations to the experimental design.

Additionally, after a brief comparison of the LETKF and EnSRF, determining that
their treatment of E-Vectors is largely consistent in the context of a hybrid cycling system
with RTPS inflation, we found that the EnKF inherently causes a loss error-growth
information when compressing the ensemble spread. Additionally, the RTPS inflation

heterogeneously alters the E-Dimension field despite expanding the ensemble spread
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everywhere, and we suggest that any method of limiting the need for such an inflative
process -- whether with additive inflation, stochastic physics, or a different EnKF algorithm
-- can only improve the behavior of the EnKF overall.

5.2. Future Research Direction

While this research shows immediate robustness, it would substantially benefit from
additional case studies. Only looking at one Northern Hemisphere mid-latitude case in one
season is insufficient to draw any definitive conclusions, and as such we emphasize that
any speculative conclusions drawn here are perhaps more speculative than conclusive.

This work, in conjunction with Yang et al. (2015) suggests an excellent basis for
performing a local breeding method. Traditionally, Kalnay and Toth (1997) performed their
breeding experiments with near-hemispheric bred vectors, but with the at-times excellent
coherency of the E-Vectors and simple translation between the E-Vectors and the
ensemble perturbation matrix, a more localized approach now seems appropriate.

One potential application of this feature could be to apply an ensemble forecasting
technique to a whole-atmosphere model. The upper atmosphere is notoriously dissipative,
meaning that initial conditions are often largely irrelevant on the atmospheric timescales of
the lower atmosphere. In order to operate a successful ensemble in this region in a single
model system, it is likely that more advanced techniques will be required to generate
enough ensemble spread to successfully operate a hybrid data assimilation system.
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Appendix

The LEDEYV analysis tool was developed in the interest of streamlining the process
of analyzing large ensemble datasets using the LEDEV technique, attempting to automate
every step of the process while providing standard visualization tools for progressive
analysis and maintaining a broad flexibility in analysis options. It consists of two
components: a Fortran tool that performs a global E-Dimension calculation, and a Python
tool that is used for location-specific analysis and visualization. As demonstrated, there
exist a variety of options to cater to a specific analysis needs, but some have not been
presented in this study. The package has been designed to cater to GSI output, although
the code is easily adaptable to other models.

The Fortran tool is intended to be run in a highly parallel environment, as it utilizes
both MPI and OpenMP directives to vastly improve the computational efficiency of the
program. A straightforward serial processing of a T254 global perturbation field requires
O(10°) SVDs to be performed on matrices with O(10*) entries. Several rounds of
parallelization followed that improved its performance by roughly two orders of magnitude.

The Python tool performs the bulk of the E-Vector work, as storage of the E-Vectors
from the Fortran decompositions unnecessarily takes up several GB of disk space,
exacerbating IO issues when processing many files at once. It has been tested on both
NOAA and NASA machines, but should be easily portable to any machine provided
libraries are available for interfacing with the model hybrid spectral files.

Comprehensive LEDEV Analysis Package documentation is available, including a

tutorial. Further information regarding the tool is available upon request.
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