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During the Arctic summer melt season, the sea ice transitions from a 

consolidated ice pack with a highly reflective snow-covered surface to a 

disintegrating unconsolidated pack with melt ponds spotting the ice surface. The 

albedo of the Arctic decreases by up to 50%, resulting in increased absorption of solar 

radiation, triggering the positive sea ice albedo feedback that further enhances 

melting. Summer melt processes occur at a small scale and are required for melt pond 

parameterization in models and quantifying albedo change. Arctic-wide observations 

of melt features were however not available until recently.  

In this work we develop original techniques for the analysis of high-resolution 

remote sensing observations of summer sea ice. By applying novel algorithms to data 

acquired from airborne and satellite sensors onboard IceBridge, Sentinel-2, 



 

  

WorldView and ICESat-2, we derive a set of parameters that describe melt conditions 

on Arctic sea ice in summer.  

  We present a new, pixel-based classification scheme to identify melt features 

in high-resolution summer imagery. We apply the classification algorithm to 

IceBridge Digital Mapping System data and find a greater melt pond fraction (25%) 

on sea ice in the Beaufort and Chukchi Seas, a region consisting of predominantly 

first year ice, compared to the Central Arctic, where the melt pond fraction is 14% on 

predominantly multiyear ice. Expanding the study to observations acquired by the 

Sentinel-2 Multispectral Instrument, we track the variability in melt pond fraction and 

sea ice concentration with time, focusing on the anomalously warm summer of 2020.  

So as to obtain a three-dimensional view of the evolution of summer melt we 

also exploit ICESat-2 surface elevation measurements. We develop and apply the 

Melt Pond Algorithm to track ponds in ICESat-2 photon cloud data and derive their 

depth. Pond depth measurements in conjunction with melt pond fraction and sea ice 

concentration provide insights into the regional patterns and temporal evolution of 

melt on summer sea ice. We found mean melt pond fraction increased rapidly in the 

beginning of the melt season, peaking at 16% on 24 June 2020, while median pond 

depths increased steadily from 0.4 m at the beginning of the melt season, to peaking 

at 0.97 m on 16 July, even as melt pond fraction had begun to decrease. Our findings 

may be used to improve parameterization of melt processes in models, quantify 

freshwater storage, and study the partitioning of under ice light. 
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Chapter 1: Introduction 

This chapter gives a background on sea ice, why it is important, the observed trends, 

and the state of knowledge of summer Arctic sea ice. The motivation for our work 

and an outline for the thesis is provided at the end of the chapter. 

1.1 Geographic Location of Sea Ice 

Sea ice is the frozen ocean found in the polar regions. Globally, the average 

annual cycle of sea ice extent ranges from a minimum of 18.2 million km2 to 26.6 

million km2 based on average monthly sea ice extents (Parkinson, 2014). Figure 1.1 

shows the average month extent over the period 1979-2013 for Arctic, Antarctic and 

global sea ice. The amplitude of the Antarctic sea ice extent is greater than that of the 

Arctic sea ice, with a greater maximum extent and a smaller minimum extent. A map 

of sea ice concentration (SIC), defined as the percentage of the ocean covered in sea 

ice (see section 3.8.1), for the month of the Arctic maximum and minimum extent is 

shown in Figure 1.2. At its annual maximum extent, Arctic sea ice is ~ 15 million 

km2 in area, an extent approximately 1.5 times the size of the entire United States. At 

its minimum, sea ice extent drops to ~ 3 - 5 million km2, closer to the size of India. 
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Figure 1.1. Average monthly extent for Arctic, Antarctic, and global sea ice over the 
period 1979–2013. Bars are plotted for one-standard-deviation of each data point. 
Figure from Parkinson, 2014. 
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Figure 1.2. Sea ice concentration at annual minimum and maximum showing the 
geographic location of the ice. Top row shows Arctic SIC in the month with the 
maximum extent (March) and the month with the minimum extent (September). 
Bottom row shows Antarctic SIC in the month with the minimum extent (February) 
and the month with the maximum extent (September). The median ice edge from the 
time period 1981-2010 is shown in magenta. Figures are from NSIDC. 

Figure 1.2 shows the asymmetries of the ice cover in the two polar regions, 

primarily related to the geography of the polar regions (Simmonds, 2015). In the 

Arctic, the polar region is ocean surrounded by land. The opposite is true for the 

South Pole; the Antarctic continent is surrounded by expansive ocean. Ice motion in 

the Arctic is confined by the land masses and ice often collides, deforms and thickens 
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(Haas, 2017). In Antarctic, the ice drift around Antarctic is divergent, resulting in 

opening of leads and polynyas allowing young new ice to form. Ice drifts in the 

Arctic for a few years on average before exist the Arctic Basin (Rampal et al., 2009). 

Thus, it is confined in high latitudes, mostly greater than 70° N. In contrast, with the 

divergence drift in the Antarctic the ice drifts towards lower latitudes and melts, 

resulting in minimal summer ice coverage (Figure 1.2). In the austral winter, ice in 

the Antarctic region extends as far north as 55° S. The land masses surrounding the 

Arctic Ocean contribute freshwater inflow, warm air masses, and pollution that effect 

the sea ice formation and melt. There is a fresh mixed layer in the Arctic that prevents 

mixing from warmer water beneath (Aagard et al., 1981). In the Southern Ocean such 

a freshwater layer does not exist and the ocean heat is transported much more 

efficiently. The ocean surrounding the Antarctic sea ice provides moisture for 

extensive snowfall and accumulation (Haas, 2017). Snow atop the sea ice insulates 

the sea ice and ocean below from the freezing air temperatures and slow 

thermodynamic ice growth. Typical snow accumulation on Antarctic sea ice can 

reach up to 1 m, whereas typical snow depths for Arctic sea ice is 30 cm (Blanchard-

Wrigglesworth et al., 2018). Because of the lower latitudes of Antarctic sea ice and 

less solar radiation in the summer combined with the dry winds coming off the 

Antarctic shelf, the iconic melt ponds that spot the Arctic sea ice in the summer, are 

rarely seen on Antarctic sea ice (Andreas and Ackley, 1982). From here on, we will 

focus on the Arctic sea ice.  
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1.2 Arctic Sea Ice Processes and Properties 

1.2.1 Characteristics of the Sea Ice Cover  

As sea ice forms and grows, brine is retained in pockets between the ice 

crystals. These brine inclusions scatter light due to the contrast in refractive index 

(Petrich & Eicken, 2017). As the ice ages, brine drains through the ice into the ocean 

below, and thus older ice has lower salinity than new ice (Comiso, 2009). Sea ice is 

not uniform; it is subject to the forces of the ocean and experiences divergence and 

convergence. Figure 1.3 illustrates the convergence and divergence of sea ice. 

Diverging ice creates cracks that grow into leads where new ice can form and thicken. 

Convergence causes ice floes to collide resulting in ice fragmentation and pressure 

ridge formation. Heavily deformed ice floes can reach thicknesses greater than 6 

meters at the location of the pressure ridges (von Albedyll et al., 2021). In the Arctic, 

the thickest sea ice is located along the coast of Greenland and the Canadian 

Archipelago. Drift patterns near the Canadian Archipelago and Greenland push ice 

against the coast, causing convergence and dynamic thickening (Haas, 2017). 
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Figure 1.3. Illustration of dynamics of sea ice (convergence and divergence) that 
dynamically affect the distribution of sea ice thickness. Figure from Haas, 2009. 

 Sea ice can be divided into two age categories: first year ice and multiyear ice. 

First year ice (FYI) is ice of not more than a winters growth and has not yet survived 

a summer melt season, typically 0.30 m – 2 m thick (WMO). First year ice is mostly 

found at the edges of the ice pack. Multiyear ice (MYI) is defined here as ice that has 

survived a melt season and includes second year ice (WMO). It is typically at least 3 

m thick (WMO) and tends to be less saline than first year ice. With the extra 

thickness it is more resilient to dynamic and thermodynamic forcings and thus is a 

measure of the health of the Arctic (Perovich and Richter-Menge, 2015). More 

examples of the differences between FYI and MYI are discussed in the next section, 

section 1.2.2. 

Arctic sea ice reaches a maximum extent in March, then melts throughout the 

summer months, reaching an annual minimum extent in September (Figure 1.2). 

During the summer, Arctic temperatures increase to above the freezing temperature, 

and the snow and sea ice begin to melt. Snow meltwater drains vertically through the 
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ice, horizontally off the ice, or stays on the ice, pooling into low-lying areas, forming 

melt ponds. 

1.2.2 Melt Ponds on First Year Ice and Multiyear Ice 

Melt ponds manifest differently depending on the ice type on which they 

form. Their albedo and color depend on pond depth, ice thickness, and sub‐ice algal 

growth (e.g., Light et al., 2015; Lu et al., 2018; Perovich et al., 1998). Pond albedo 

evolves throughout the melt season as ponds deepen and drain, ice porosity increases, 

and ponds link to the ocean and eventually refreeze (Perovich & Polashenski, 2012).  

First year ice having only experienced one growth season (WMO, 1970), has 

low topographic relief (Petrich et al., 2012; Webster et al., 2015) and thus snow 

settles in a relatively homogenous layer. Melt pond area increases throughout the 

season because the flat topography allows for the melt ponds to expand horizontally 

(Grenfell and Perovich, 2004). The ability to expand on first year ice can lead to the 

melt out of thin ice by the end of the melt season (Fetterer and Untersteiner, 1998). 

The albedo of dark melt ponds typically found on first year ice (Figure 1.4a) is less 

than 0.2 (Figure 1.7).  

The topography of multiyear ice is undulating due to a long deformation 

history and thus, lateral spread of melt ponds across the surface is limited (Eicken et 

al., 2004; Petrich et al., 2012). Instead, drainage channels form, connecting the ponds, 

allowing melt water to travel across the ice and pool in the lowest-lying topographic 

features (Figure 1.4b). Later in the summer, the melt water drains through pores that 

develop in the ice, resulting in a decreasing pond area (Fetterer and Untersteiner, 
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1998). Ponds on multiyear ice have higher albedo than ponds on first year ice due to 

the thickness of the underlying ice (Grenfell and Perovich, 2004). Pond albedo has 

been found to be ~ 0.35 on multiyear ice (Figure 1.7; Perovich, 2017). 

 

Figure 1.4. High resolution imagery of melt ponds on different ice types (a) first year 
ice in the Beaufort Sea on 14 July 2016, and (b) multiyear ice north of Ellesmere 
Island on 24 July 2017. Figure from Buckley et al., 2020a. 

Webster et al. (2015) conducted a study of sea ice in the Beaufort and 

Chukchi seas and found maximum ponds fractions on of 53% and 38% on first year 

and multiyear ice, respectively. Based on the evidence of the observed strongly 

negative trends of multiyear ice area and extent in favor of predominantly seasonal 

ice (Maslanik et al., 2007; Comiso, 2012), we would expect changes in melt pond 

coverage and resulting ice albedo. The disparity between melt pond formation on first 

year and multiyear ice has implications for a changing Arctic and indicate that 

understanding pond formation, evolution, and impact on the climate system is not a 

simple task. As the ice transitions to a younger and thinner ice cover, we expect to see 

changes in melt pond areal fraction, albedo, depth, and volume. 
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1.2.3 Melt Pond Formation and Evolution 

We use this section to discuss the evolution of ponds throughout the summer 

melt season. Figure 1.5 from Perovich and Polashenski (2012) shows the stages of 

ponds on first year ice (left column) and multiyear ice (second column). The 

photographs of multiyear ice are from the Surface Heat Budget of the Arctic 

(SHEBA) campaign discussed in more depth in section 1.5.1. Figure 1.6 from 

Webster et al., 2015 shows the observed MPF (light blue) in a study of predominantly 

multiyear ice (1.6a) and predominantly first year ice over the Applied Physics 

Laboratory Ice Station (APLIS) (1.6b). At the onset of pond formation, there is a 

rapid rise in pond coverage (Figure 1.6), as the snow melts and accumulates on the 

sea ice surface (Figure 1.5c). The spring sea ice topography prior to melt, determined 

by deformation, snow drifting and other mechanisms, guides the meltwater 

distribution on the ice surface (Fetterer & Untersteiner, 1998; Polashenski et al., 

2012). Webster et al. (2022a) found that the largest and deepest ponds formed near 

pressure ridges at the lowest elevations measured in the April prior to melt observed 

during the Multidisciplinary drifting Observatory for the Study of Arctic Climate 

(MOSAiC), a field campaign occurring from September 2019 to October 2020 

(discussed in more depth in section 1.5.1). Melt ponds are on the order of 10 m2 in 

area (Perovich et al., 2002b) but can grow much larger if the conditions allow. In the 

next stage of pond evolution, melt water percolates through the ice (Eicken et al., 

2002), and drains through horizontal channels (Figure 1.5d). The pond surface 

elevation reaches that of the local sea level. In this stage, the areal pond coverage 

decreases as ponds deepen and drain (Figure 1.6). As the summer progresses, ponds 
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continue to melt the underlying ice, and can completely melt through the ice exposing 

the open ocean (Polashenski et al., 2012; Webster et al., 2022a). At the end of the 

season, the ponds begin to freeze, starting with the formation of an ice lid on the 

surface (Figure 1.5e). Note that ponds do not go through the stages at one time; i.e., 

on one sea ice floe, one pond may be draining through to the ocean, while another is 

still accumulating volume from meltwater inflow.  
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Figure 1.5. Photographs showing evolution of ponds for seasonal ice (left column) 
and multiyear ice (right column). Seasonal ice photographs are from Barrow, Alaska 
and multiyear ice are from SHEBA. The sequence is: (a) cold snow, (b) melting 
snow, (c) initial melt pond formation, (d) melt pond evolution, and (e) fall freezeup. 
Figure from Perovich and Polashenski (2012). 
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Figure 1.6. Sea ice, open water, and thin ice as a percentage of total image area from 
(a) the SHEBA campaign over predominantly multiyear ice (Perovich et al., 2002), 
and (b) over the APLIS site, predominantly first year ice. The ponded ice fraction is 
shown as the percentage of sea ice covered by ponds. (c) shows the locations of these 
studies. Figures from Webster et al., 2015. 

The summer snow melt introduces a flux of freshwater to the sea ice- ocean 

system, whether the freshwater is stored in the ponds or drains laterally or vertically 

into the upper ocean. The fate of meltwater on Arctic sea ice is has not been widely 

studied (Perovich et al., 2021), though has a significant influence on the evolution of 

sea ice in the summer. Perovich et al. (2021) found that of the meltwater produced 

from rain, snow melt and ice bottom and lateral melt, approximately 15% was stored 

in ponds, equivalent to a 12 cm thick layer of meltwater below the ice. As meltwater 

percolates through the ice, it reduces the salinity of the ice and affects the thermal and 

optical properties of the ice (Perovich et al., 1998). Melt pond drainage also 

contributes to the surface freshwater flux, enhancing the stratification of the ocean 
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water column (Perovich and Maykut, 1990), and can limit under-ice algal growth, as 

meltwater is low in nutrients (Eicken et al., 2002). Melt pond volume increases with 

snow and ice melt and therefore is representative of a specific change in energy 

balance (Zhang et al., 2018). 

1.3 Sea Ice in the Earth System 

It is essential we study sea ice as it plays an important role in the Earth’s system and 

changes in the state of the sea ice are both a cause and effect of climate change.  

1.3.1 Albedo 

The ice reflects sunlight and thus prevents a large portion of the incoming 

solar radiation from being absorbed by the Earth. Albedo, the reflectance of a surface, 

is an important factor in the heat budget of the earth. Figure 1.7 shows the spectral 

albedo of summer sea ice surfaces. The thin lines show the albedo at each wavelength 

and the large dot shows the spectral albedo. Surfaces with high reflectance values 

such as snow and ice, reflect a majority of the incoming solar radiation and reduce 

surface heat flux (Figure 1.7, gray, red, green, and purple thin lines). In contrast, the 

open ocean has one of the lowest values of albedo on Earth and absorbs a significant 

amount of incoming radiation (Figure 1.7 black line, Perovich, 2017). With and 

albedo of up to ten times greater than the surrounding open ocean, the snow-covered 

ice reduces the amount of solar absorption by the Earth (Curry et al. 1995).   
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Figure 1.7. Spectral albedos for ice and water surfaces present during the summer 
melt season. The dots show the wavelength-integrated albedo for that surface. 
Vertical lines show the location of the spectral bands: blue, green, red and near 
infrared (Sentinel-2 A central bandwidths given for example). Figure from Perovich, 
2017, annotations added. 

While sea ice has an albedo of 0.8 to 0.9, melt ponds have a much lower 

albedo around 0.3-0.6 (Figure 1.7, Rösel et al, 2012; Perovich, 2017). Formation of 

melt ponds and areas of lower albedo results in more surface absorption and heat 

uptake, and thus more localized melting (Perovich, 2002; Perovich and Polashenski, 

2012). Melt pond formation and increased absorption of heat reinforce one another 

and creates a positive feedback (Perovich et al, 2002). Figure 1.8 from Perovich and 

Polashenski (2012) shows the albedo evolution over the summer and the relationship 

between albedo and the timing of melt pond processes for seasonal (first year ice) and 

multiyear ice. 
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Figure 1.8. Time series of the evolution of albedo corresponding to melt phases for 

first year (red) and multiyear (blue) ice. Figure from Perovich and Polashenski, 2012. 

 Prior to melt, the snow-covered sea ice has a high albedo (>0.8). Figure 1.8 

shows a sharp drop in the albedo with the onset of melt as snow melt water spread 

across the surface.  The decrease in albedo in the first-year ice is more significant 

than multiyear ice as the deformations on multiyear ice limit the spread of meltwater 

(Perovich and Polashenski, 2012) (Figure 1.8). A drainage event reduces the MPF 

and the albedo increases. Then the albedo decreases as ponds continue to melt. In the 

case of the first year ice in Figure 1.8, ponds melt through the ice and the open ocean 

is exposed, reducing the albedo to those of open water. When freeze-up commences, 

the albedo slowly increases as the new ice thickens and fresh snow falls on the ice 

(Perovich and Polashenski, 2012).  
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1.3.2 Heat and Moisture Flux 

The frozen ocean acts as a barrier between the ocean and the atmosphere by 

limiting and controlling interactions between the ocean and the atmosphere. When sea 

ice is not present, the ocean is a source of moisture for the lower atmosphere. 

Evaporation over open water can be tens of times greater than that over sea ice 

(Launiainen and Vihma, 1994). The formation of clouds causes a release of heat, 

warming the air. Low-level clouds can trap outgoing radiation resulting in a higher 

net radiance compared to a cloudless scenario (Boisvert et al, 2013). Melt ponds alter 

ocean-atmosphere heat fluxes in summer, providing an additional source of moisture 

to the atmosphere (Boisvert et al., 2013).  

The sea ice cover also controls heat flux. Not only does the presence of ice 

reduce the absorption of incoming solar radiation (section 1.3.1), it reduces the 

turbulent heat fluxes. The heat flux over the open ocean is two orders of magnitude 

greater than that over the sea ice (Smith et al., 1990). It has been shown that sea ice 

extent is negatively correlated with heat flux in autumn and early winter (Vihma, 

2014). With more heat and moisture available to the atmosphere, a continuous cloud 

cover is present over much of the Arctic during the summer months (Eastman and 

Warren, 2010). 

1.3.3 Thermohaline Circulation 

The presence of sea ice in the Arctic is also an important factor in the 

thermohaline circulation. When the ocean freezes, salt is rejected from the ice crystals 

and brine pockets form in the structure (Aagaard and Carmack, 1989). As the brine is 
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expelled, the salty dense water sinks (Cottier et al., 2017). This creates a large 

stratification between fresh melted sea ice at the surface and the salty dense water at 

lower depths, known as North Atlantic Deep Water. This downwelling initiates the 

thermohaline circulation- the conveyor belt circulation that transports heat in the 

warm surface waters near the equator poleward (Clark et al., 2002). The strong 

density gradient limits mixing, preventing ocean heat flux, and ultimately protecting 

the sea ice cover from the warmer waters below (Cottier et al., 2017). 

1.3.4 Ecosystem 

The sea ice is a unique ecosystem providing habitat for marine animal and 

biological activity. Algal communities utilize sea ice to remain and grow in the upper 

ocean where sunlight and nutrients are plentiful (Arrigo, 2017). Algae is the base of 

the food web for Arctic marine life, sustaining life through the winter months when 

other food sources are lacking (Arrigo, 2017). Melt ponds that form on the ice 

regulate this light available under the ice for photosynthesis. Light et al. (2015) found 

that ponded first year ice transmits or absorbs more than three-quarters of incoming 

solar radiation, whereas, unponded, bare ice reflects more than three-quarters of solar 

radiation. The light transmitted through heavily ponded sea ice is enough to support 

the growth of under-ice phytoplankton blooms (Arrigo et al., 2012). Sea ice also 

provides a hunting ground for Arctic mammals such as seals, whales, walruses and 

polar bears (Laidre and Regehr, 2017). These marine mammals are particularly 

vulnerable to changes in the climate because of their reliance on the state of the sea 

ice (Laidre et al., 2015) (see trends in Arctic sea ice in section 1.5). 



 

 18 
 

1.3.5 Socioeconomics 

Sea ice also has a socio-economic impact. The extent of the ice determines the 

ability for naval operations and navigation. The presence of sea ice impedes 

navigation of commercial shipping vessels, and routes across the Arctic are usually 

limited to summer months when the sea ice is thinner and less extensive (Zhang et al., 

2019).  Arctic communities rely on the ice for everyday activities. Sea ice that is 

fastened to the land (shorefast or landfast ice) is a platform for transportation for 

travel to and from hunting sites (Dammann et al., 2018). The ice may also be used for 

the construction of ice roads for transportation to and from resource extraction 

industries (Dammann et al., 2018). Coastal sea ice protects the shores from erosion 

and in its absence, coastal communities may be affected by enhanced erosion (Eicken 

et al., 2009). Monitoring sea ice conditions and understanding sea ice trends is 

essential for the native Arctic communities (Huntington et al., 2017). 

1.4 Arctic Sea Ice Trends 

1.4.1 Sea Ice Essential Climate Variables 

Climate research relies on long term monitoring of the Earth’s systems. The 

Global Observing Climate System, set up under the United Nations developed the 

concept of Essential Climate Variables (ECV) (Bojinski et al., 2014). An ECV is 

defined as ‘a physical, chemical or biological variable or group of linked variables 

that critically contributes to the characterization of Earth’s climate.’ Each ECV is able 

to be observed or derived with established methods. These variables fall into one of 

the following categories: land, ocean, atmosphere. Falling within the ocean sphere, 
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the sea ice related variables are concentration, extent/edge, thickness and drift. 

Monitoring ECVs is required to understand the evolution of Earth’s climate, and 

predict future conditions to assess risk and guide mitigation (Bojinski et al., 2014).  

Throughout the rest of this section, we discuss trends in Arctic sea ice change that are 

pertinent to the work presented in this thesis.   

1.4.2 Extent and Area 

Satellite passive microwave observations of Arctic sea ice extent reveal a 

negative trend in every month for the time period 1979-2012 (Stroeve et al., 2012). 

Summer sea ice extent has been decreasing at a rate of 12.7% per decade relative to 

the 1981-2010 average (Meier et al., 2021). In March, at the sea ice maximum, the 

trend in the annual maximum is -2.7% per decade, a smaller rate of decline than in 

summer (Meier et al., 2021).  There is evidence that the rate of September sea ice loss 

is accelerating and Comiso et al. (2008) has split the trend line into two periods: prior 

to 2007 and from 2007 onward, as we have done in Figure 1.9. The first period 

(1978-1996) has a trend of -4.8% per decade, the second period (1997-2021) shows a 

trend of -14.9% per decade. 
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Figure 1.9. Monthly September sea ice extent anomalies from 1979 to 2021. 
Anomalies are relative to the 1981 to 2010 average. Data from Fetterer et al., 2017. 

Models can be used to predict the future of sea ice given different climate change 

scenarios. Figure 1.10 shows the predictions of September sea ice area with three 

different emission scenarios for all available Coupled Model Intercomparison Project 

(CMIP6) models. Although the multimodel ensemble mean captures the trend in 

observations, there is a large spread in predictions of when the Arctic will see an ice-

free summer (Notz and Community, 2020). These discrepancies suggest that some 

summer sea ice processes are not well understood or represented in models (Flocco et 

al. 2012). Sea ice models continue to evolve as higher order processes are 

incorporated (Hunke et al., 2010).  
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Figure 1.10. Evolution of September sea ice area from three emission scenarios. 
Thick lines show the multimodel ensemble mean, shading indicates one standard 
deviation, and the dots correspond to the first ensemble member of each model. From 
Notz and Community, 2020. 

 Although this thesis is focused on Arctic sea ice, it is important to note the 

trends of Antarctic sea ice here. Over the same 43-year record, Antarctic sea ice has 

seen a positive trend in average annual sea ice extent, however since the record high 

ice extent in 2014 in the Antarctic, there has been a steep decline in sea ice extent. 

(Parkinson et al., 2019). 

1.4.3 Age, Thickness, and Volume 

The negative trends in Arctic sea ice extent are accompanied by a transition to 

a predominantly younger (Comiso, 2012), and thinner (Kwok and Rothrock, 2009; 

Laxon et al., 2013) ice cover. The sea ice cover of the Arctic Ocean comprised ~55% 

first year ice in 1985, which has increased to ~77% in 2018 (Perovich et al., 2018). 

This extreme trend suggests an overall decline in mean thickness and volume of the 
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Arctic sea ice and a more vulnerable ice pack (Comiso, 2012). Figure 1.11 shows the 

interannual variability in the mean winter and fall ice thickness. Kwok and Rothrock 

(2009), found a decrease in mean winter sea ice thickness of 1.75 m from 3.64 m in 

1980 to 1.89 m in 2008. The mean winter thickness from the CryoSat record was 2.22 

m in 2018.  Other studies confirm this, and show that the total sea ice volume is also 

trending downward. Laxon et al. (2013) shows a decrease in both winter and autumn 

ice volume from the 2003-2012 satellite record. ICESat-2 extends these records and 

Kacimi and Kwok (2022) report an Arctic sea ice volume loss of 251 (414) km3 per 

year in winter (fall). 
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Figure 1.11. Mean fall and winter ice thickness from a regression analysis of 
submarine records, ICESat, and CryoSat-2. Maps at the top show the thickness 
distribution from the five years of ICESat measurements. Figures from Kwok (2018) 
and Kwok and Sulsky (2010). 

1.4.4 Melt Season Length 

Markus et al. (2009) shows an earlier melt onset and a later freeze up of the 

Arctic sea ice. In the Arctic as a whole, the melt season increased by 20 days over the 

period 1979 - 2009. In some areas of the Arctic, the melt season is increasing by as 

much a 10 days per decade. Stroeve et al. (2014) extends this study and confirms the 

increase in the length of the melt season, showing an increase in the Arctic wide melt 

season length at a rate of 5 days per decade. The earlier dates of melt onset results in 

an increase of solar input to the Arctic ice-ocean system (Perovich et al., 2007). 

Further, Laxon et al. (2003) shows that the average winter thickness is correlated to 

the length of the summer melt season. 

1.5 Knowledge of Melt Ponds on Sea Ice 

In this section we discuss our current state of knowledge of the melt ponds that form 

on summer Arctic sea ice. In situ, aircraft and satellite measurements of the ice are 

necessary to gain a full understanding of the melting surface. All have benefits and 

drawbacks, but are necessary to piece together the processes and mechanisms that 

contribute to the sea ice melt. 

1.5.1 In Situ Observations 

The majority of our understanding of melt ponds is derived from in situ field 

studies, particularly the Surface Heat Budget of the Arctic Ocean (SHEBA) program, 
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a drifting ice camp in the Beaufort Sea from October 1997 to October 1998 (Uttal et 

al., 2002). SHEBA measurements of both first year and multiyear ice, advanced the 

understanding of melt pond albedo, fraction, size distribution (Perovich et al., 2002) 

and meltwater transport (Eicken et al., 2002), and provided input for MPF and melt 

pond depth parameterization in modeling efforts (e.g., Curry et al., 2001).  

The Multidisciplinary drifting Observatory for the Study of Arctic Climate 

(MOSAiC) was a yearlong ship-based expedition from September 2019 to October 

2020 to measure sea ice, ocean, and atmosphere conditions as the ship drifted with the 

sea ice through the Central Arctic and out the Fram Strait. The goal of MOSAiC was 

to develop a better understanding of the processes that have contributed to the 

observed changes of sea ice extent and type. MOSAiC observations included a central 

observatory on the ship, a regional network around the ship, and coordinated 

observational activities with other remote sensing studies. Webster et al. (2022a), 

synthesizes MOSAiC melt pond observations with sea ice modeling results, setting 

the groundwork for improving representation of summer sea ice processes and 

interactions in climate models. 

1.5.2 Airborne Observations 

Aircraft based studies provide observations over a larger region than in situ 

studies can be used to scale up field campaigns and tie together observations from in 

situ data and satellite data. A benefit of airborne campaigns is that aircrafts have the 

ability to selectively maneuver around or below clouds to collect unobscured data. 

Similar instruments can be found on aircraft studies and satellite studies so the 
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aircraft instrument can be used to validate its’ satellite counterpart. For example, the 

Operation IceBridge (OIB) Campaign was used to tie together observations from 

satellites the Ice, Cloud, and land Elevation Satellite (ICESat) and the Ice, Cloud, and 

land Elevation Satellite 2 (ICESat-2). A brief summary of the OIB campaign and 

description of the OIB data used in this work is provided in Chapter 2.2.  

Previous studies have demonstrated the ability to extract sea ice melt pond 

parameters from airborne studies but most are limited in spatial extent and temporal 

evolution (Buckley et al., 2020a). For example, Miao et al. (2015) classified images 

collected in the Arctic Pacific sector in one summer (2010) only, while Perovich et al. 

(2002) and Tschudi et al. (2001) analyzed aerial imagery collected during the 1998 

SHEBA campaign. Wright and Polashenski (2018) demonstrated a classification 

algorithm using 66 images collected in the Beaufort and Chukchi Seas region in 2009, 

2014, and 2016. This work was further expanded to imagery collected from 87 OIB 

flights from 2010 to 2018 (Wright et al., 2020).  

Airborne imagery has also been used to validate studies of melt pond fraction 

from the lower resolution satellite observations discussed in Section 1.5.3. Tschudi et 

al. (2008) used an unmanned aerial vehicle to capture high resolution imagery. They 

then classified this imagery and compared the melt pond fraction derived from the 

aerial imagery to that from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite imagery. Airborne imagery can also be used to understand the 

evolution surface conditions at a wider scale over fields sites as in Polashenski et al., 

2012. 



 

 26 
 

1.5.3 Satellite Observations 

Satellite observations provide surface measurements over a larger area and 

time period as compared to airborne and field campaigns. Polar orbiting satellites 

collect data in the visible, infrared and microwave ranges of the electromagnetic 

spectrum. Active and passive sensors emitting and receiving at these wavelengths 

measure different aspects of sea ice (See Chapter 2 for more details on techniques of 

remote sensing). A benefit of satellite measurements, is the ability to provide a long-

term record. For example, the NASA melt onset product derived from passive 

microwave data, has allowed for the quantification of the positive trend of melt 

season over the satellite record from 1979 to present (Markus et al., 2009). 

Altimeters measure the height of the Earth’s surface and since the launch of 

the European Remote Sensing satellite (ERS) in 1991, we have been able to measure 

sea ice height over large regions (e.g., Laxon et al., 2003). However, until recently, 

satellite altimetry measurements were not suitable for providing information on 

individual ponds as footprints were too large, or the along track repetition was not 

suitable (Farrell et al., 2011, 2020). The high resolution of ICESat-2, described in 

more detail in Chapter 2, section 2.6.3, allows us to examine the small-scale melt 

features on the summer sea ice. 

Similarly, satellite imagery provides greater coverage than airborne studies, 

but often sacrifices resolution. Since melt ponds are less than 1 meter at melt onset 

(Perovich et al., 2002) and expand in area with melt, high‐resolution imagery is 

required to resolve their geophysical features and evolution. Fetterer and Untersteiner 
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(1998) classified high resolution National Technical Means (NTM) satellite imagery 

and airborne Arctic Ice Dynamics Joint Experiment (AIDJEX) photographs to 

understand evolution of areal melt pond coverage throughout the summers of 

1993,1994, and 1995. They combined these observations with surface air temperature 

from drifting buoy data and passive microwave data to understand the timing of pond 

formation relative to the air temperatures and the emissivity measured by passive 

microwave radiometers. This study emphasizes the need for continued studies of melt 

ponds on Arctic sea ice in order to model albedo as an internal variable in sea ice 

models. High resolution (<5 m) commercial imagery such as the NTM can resolve 

melt features, but is not easily accessible, and not available on a large scale. The 

Copernicus Sentinel-2 imagery (described in Chapter 2.4.2) provides 10-meter 

resolution imagery, which can resolve melt features on the sea ice. 

Although lower resolution satellite imagery does not resolve individual melt 

ponds, they can provide information about the MPF, and overall changes in surface 

albedo during the summer melt period. The Moderate Resolution Imaging 

Spectrometer (Rösel et al., 2012; Rösel & Kaleschke 2011; Tschudi et al., 2008), 

Medium Resolution Imaging Spectrometer (Istomina et al., 2015; Zege et al., 2015), 

Landsat 7 Enhanced Thematic Mapper (Markus et al., 2002, 2003), and 

Environmental Satellite synthetic aperture radar imagery (Mäkynen et al., 2014), have 

all proven useful for studying melt ponds. There are additional errors associated with 

lower resolution, and products derived from satellite imagery may not provide the 

detail necessary for model parameterization or albedo calculation.  
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1.5.4 Obstacles to Observing Summer Sea Ice 

Although measurements of summer sea ice have provided us with a wealth of 

knowledge, there are significant limitations to the observational methods. Due to the 

expanse of the Arctic and the difficulty of working in the extreme environment, field 

studies are spatially and temporally limited (Cohen et al., 2018). In situ observations 

on ice can be dangerous with unknown ice thicknesses and melt locations. Studies are 

limited to small areas over relatively short time frames.  

Remote sensing from satellites or aircraft sensors can measure large-scale 

aspects of the Arctic without the danger of field surveys. However, remote sensing 

observations also have their drawbacks. Cloud cover is higher than average in the 

summer in the Arctic (Curry et al., 1996), and can obstruct satellite and airborne 

campaigns.  

Clouds and bad weather often postpone planned survey flights and even on 

clear days, low lying clouds can contaminate the data retrieved from an airborne 

platform. Satellites do not have the ability to maneuver around weather systems and 

avoid cloudy regions. Therefore, satellite sensors that are not able to penetrate the 

cloud cover are extremely limited in summer. It is a challenge to create an accurate 

cloud mask in polar regions because both clouds and snow/ice have a strong 

reflectance and sometimes are nearly indistinguishable (Rösel et al, 2012). Another 

inherent difficulty is varying light conditions. Reflectance of the surface is highly 

dependent on solar zenith angle, cloud cover, season, and sensor angle and height 

(Miao et al, 2015). A melt pond may look very different depending on these factors 
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and therefore it is difficult to create a classification algorithm that takes all these 

factors into account.  

Further, melt ponds are difficult to resolve from satellite data. With lower 

resolution and larger pixels, a single pixel may contain multiple surfaces such as ice 

and pond, which when classifying imagery, may easily be misclassified as an ice 

pixel. In other summer sea ice imagery such as radar and laser altimetry, passive and 

active microwave measurements, melt ponds are difficult to distinguish from open 

water, as they have similar radiometric properties  

Aircraft-based studies may be used to validate the satellite observations. 

Validation flights are aligned in time and space in order to minimize the lag between 

aircraft observations and satellite observations. This is challenging to plan and 

observed data must be drift corrected to align properly. In the summer unconsolidated 

sea ice is common, and freely drifts with the wind and ocean currents. Errors are 

introduced during the drift correction due to uncertainties in drift magnitude, direction 

and variance.    

Satellite observations cover large areas but have low spatial and temporal 

resolution. For example, a satellite with a 90-day orbit repeat period would not be 

able to capture the evolution of a single melt pond. In contrast, images from aircrafts 

have much higher resolution but cannot cover the extent that satellites do. Both 

methods of retrieving aerial imaging require a tremendous amount of data processing 

to correct for cloud cover, receiver saturation, timing, pitch and roll, and more.  



 

 30 
 

1.5.5 Melt Ponds in Sea Ice Models 

Melt ponds are typically represented in global climate models through 

adjustment of the overall sea ice albedo in the summer months (Hunke et al., 2010). 

However, this does not account for variability in melt ponds with respect to regional 

ice type and sea ice topography, nor the observed range in melt pond albedo (Flocco 

et al., 2012), and an improved treatment of summer melt processes is required (Lüthje 

et al., 2006; Skyllingstad et al., 2009). Ebert and Curry (1993) introduced melt pond 

parameterization into sea ice models, incorporating the energy balance of ponds at 

variable depths and surface fractions. Recent advances in parametrizing melt ponds 

have improved their representation in sea ice models (e.g., Flocco et al., 2010, 2012; 

Schröder et al., 2014) and in coupled ice‐ocean models (e.g., Zhang et al., 2018). It 

has been shown that sea ice model predictions are sensitive to melt ponds inclusion 

(Flocco et al., 2010; Flocco et al., 2012; Tsamados et al., 2015), and inclusion of 

ponds in models reduces the surface albedo and enhances the ice-albedo feedback 

(Holland et al., 2012). Figure 1.12 shows the findings from Holland et al. (2012) 

where they found simulations with aerosol deposition and melt ponds reduce ice area 

and thickness compared to simulations those with just aerosol deposition. Flocco et 

al. found 13% lower minimum ice extent and 40% lower ice volume in simulations 

with melt ponds compared to those without ponds (Flocco et al., 2012). Schröder et 

al. (2014) also showed that MPF can be used to predict summer minimum extent. 

Rösel et al. (2012) found that early melt pond formation may contribute to the decline 

of September sea ice minimum extent. Incorporating melt pond formation and 

evolution processes in numerical models has a significant effect on the predicted sea 
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ice thickness and extent (Flocco et al., 2010). Sea ice modeling is essential to help us 

understand interactions between processes contributing to the rapid sea ice loss. 

 

Figure 1.12. Annual cycle of Arctic sea ice area (a) and ice thickness (b) for the 
control simulation, the simulation that excludes aerosols, and the simulation that 
excludes ponds and aerosols. Figure from Holland et al., 2012, annotations added. 

1.6 Dissertation Motivation and Goals 

Previous work has demonstrated the potential to extract sea ice melt pond 

parameters from airborne and satellite imagery (Fetterer and Untersteiner, 1998; 

Markus et al., 2003; Tschudi et al., 2008; Rösel et al., 2012; Webster et al., 2015). 

However, this work was limited by both the resolution and aerial coverage of the 

observations. Some studies were limited to small regions of the Arctic (Miao et al., 

2015), while others are limited by low pixel resolution (30m-250m) of the imagery 

(Markus et al., 2003; Tschudi et al., 2008). There are many studies estimating melt 

pond area or areal fraction, but information of melt pond depth and volume is lacking. 

Because of these limitations, gaps remain in our knowledge of melt pond 

characteristics at an Arctic-wide level.  
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Given the importance of Arctic sea ice in the climate system, paired with the 

downward trends in sea ice extent and thickness, we are motivated to better 

understand the summer sea ice evolution and fill in the knowledge gap of melt pond 

properties and processes. The observations from the OIB summer campaigns allow us 

to derive melt parameters and compare regional patterns. New satellite remote 

sensing observations from Sentinel-2 and ICESat-2 allow us to scale up the 

observations of melt features and monitor the evolution throughout the melt season. 

The work presented in this dissertation thesis will aim to: 

• Develop techniques for deriving melt parameters from new high resolution 

remote sensing imagery and altimetry 

• Understand MPF on multiyear and first year ice types 

• Consider the evolution of melt through the summer season, and asses the 

timing and relationships between these parameters 

• Produce novel data products describing the summer sea ice to help inform 

new scientific studies of melt season processes.  

This thesis is organized as follows: 

• Chapter 2 describes the remote sensing techniques and datasets used in this 

work: high resolution imagery, passive microwave radiometry, and laser 

altimetry. 

• Chapter 3 describes the methods used for classification of sea ice imagery 

during summer melt. We describe the algorithm used for the classification of 
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IceBridge Digital Mapping System imagery and the modifications required to 

apply this algorithm to Sentinel-2 and WorldView imagery. 

• Chapter 4 provides results from the classification of high resolution IceBridge 

summer imagery. This section includes comparisons with lower resolution 

existing datasets. 

• Chapter 5 describes the altimetric observations of sea ice and methods for sea 

ice surface retracking and retrieving melt pond depth. 

• Chapter 6 provides results of pond depth and pond fraction derived throughout 

the 2020 summer melt season in the multiyear ice region. We discuss 

temporal evolution of melt pond characteristics.  

• Chapter 7 offers conclusions of the dissertation work and describes the impact 

of the work, as well as proposed future work. 
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Chapter 2: Techniques for Remote Sensing of Sea Ice 

2.1 Motivation and Goals 

In Chapter 1, we presented an overview of sea ice, describing the importance 

of sea ice in the climate system, the properties and processes of Arctic sea ice, and an 

overview of the observations of summer sea ice. We described the knowledge gap of 

large-scale observations of summer Arctic sea ice. In Chapter 2, we present the 

remote sensing techniques and newly available airborne and satellite datasets, that we 

use to fill this critical knowledge gap in our understanding of summer sea ice. This 

chapter is not an attempt to describe all available methods of remote sensing of sea 

ice. Instead, we summarize the pertinent techniques and describe the datasets used in 

the work presented in this thesis. The novelty of our study is its use of high-resolution 

remote sensing observations to improve understanding of small-scale processes 

driving sea ice melt and to better characterize sea ice conditions during the summer.  

We do however also employ lower-resolution datasets for the purposes of comparison 

and for setting the scene across a regional scale. 

The goals of this chapter are as follows: 

• summarize the techniques used to acquire the remote sensing observations 

utilized in the work presented in this thesis. 

• Detail the specifications of the datasets used in our work. 

The chapter begins by describing the methods for remote sensing of sea ice and the 

differences between passive and active sensing (section 2.2). Section 2.3 details the 
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Operation IceBridge campaign and describes the campaign’s spatial and temporal 

span, major accomplishments, and contribution to our knowledge of sea ice. The 

following sections focus on the techniques used to produce the datasets used in this 

study, and the description of those datasets: high resolution imagery (section 2.4), 

passive microwave radiation (section 2.5), and laser altimetry (section 2.6). Chapter 

conclusions are offered in Section 2.7. 

2.2 Passive and Active Remote Sensing 

Passive and active remote sensors operate in the visible, infrared and 

microwave channels of the electromagnetic spectrum, giving us multiple looks of the 

ice surface. Figure 2.1 shows the electromagnetic spectrum indicating the 

wavelengths that these sensors observe. Passive remote sensing relies on energy that 

is either emitted from Earth or energy that originates in space and reflects off Earth’s 

surface (i.e., solar illumination) (Shuchman and Onstott, 1990). Observations 

obtained from passive remote sensing that are used for the work described in this 

thesis include visual and infrared imagery and passive microwave radiometry. Active 

remote sensing instruments provide their own illumination of the Earth’s surface and 

include altimeters, scatterometers, and synthetic aperture radars (SARs) (Shuchman 

and Onstott, 1990). The primary active remote sensing instruments used for the 

studies described in this thesis are laser altimeters. In this section we describe the 

fundamentals of the acquisition of these datasets. 
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Figure 2.1. The electromagnetic spectrum. Location of the visible, infrared, and 
microwave ranges are noted. Figure from Shuchman and Onstott, 1990. 

Combining altimetry, passive microwave radiometry, and imagery datasets 

allows for a deeper, three-dimensional understanding of the summer Arctic sea ice. 

Figure 2.2 illustrates the primary satellite and airborne sensors that collected the data 

used in this work. 
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Figure 2.2. Multiple looks of the melting sea ice surface. We use high resolution 
imagery from OIB DMS, Sentinel-2 and WorldView, sea ice concentration products 
derived from passive microwave radiometry from AMSR2 and SSMI/S, and laser 
altimetry measurements from OIB ATM and ICESat-2 to obtain a three dimensional 
view of the sea ice. 

2.3 Operation IceBridge 

NASA’s Operation IceBridge (OIB) airborne campaign was designed to fill 

the gap between the ICESat satellite (decommissioned in 2009) and the ICESat-2 

satellite (launched in 2018) (Koenig et al., 2010). The goal of OIB was to continue 

measurements of glaciers, sea ice and ice sheets, in fast-changing areas of both the 

Arctic and Antarctic as they respond to climate change (Koenig et al., 2010). Regular 

surveys were designed to under-fly and thereby link the satellite altimeters CryoSat-2, 

ICESat and ICESat-2 to support both the continuation and intercomparison of laser 

and radar altimeter observations (MacGregor et al., 2021). From 2009 to 2019, a suite 

of instruments mounted on an aircraft captured high detail measurements over the 

polar regions, including Antarctica, Greenland, Alaska, and sea ice in the Arctic and 
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Antarctic. The instruments included: radar sounders, gravimeters, magnetometers, 

altimeters, and cameras (MacGregor et al., 2021). There were over 968 flights, 124 of 

which were focused on Arctic sea ice (MacGregor et al., 2021). Overall, Operation 

IceBridge was highly successful in advancing the state of knowledge of Arctic sea 

ice, providing information on snow depth distribution on sea ice, estimates of ice 

topography and roughness including new knowledge on pressure ridges, validating 

satellite estimates of thickness, and providing estimates of spring sea ice thickness for 

summer ice forecasting (MacGregor et al., 2021). The work presented in this thesis 

focuses on two sea ice campaigns, one in the Beaufort and Chukchi Seas and one in 

the Central Arctic. Figure 2.3 shows the OIB flight paths in black, and Table 2.1 

provides technical specifications of the OIB data. 

During the two OIB summer sea ice campaigns, the NASA 524 HU-25C 

Guardian aircraft operated at a nominal flight altitude of ~460 m and was equipped 

with a snow radar (Yan et al., 2017), laser altimeter (Krabill et al., 2002), and a digital 

camera (Dominguez, 2010) with positioning capabilities. The campaigns were 

conducted in different regions of the Arctic, exploring distinct ice regimes. The July 

2017 campaign was flown over the thickest and oldest multiyear ice in the Arctic, to 

the north of Canada and Greenland (Sallila et al., 2019), in the Central Arctic (CA), 

where the regional convergence towards the coast causes dynamic thickening (Haas, 

2017) and a consolidated ice cover. The July 2016 campaign targeted mixed ice types 

in the Beaufort and Chukchi Seas (B/C Seas), where ice drift is influenced by the 

Beaufort Gyre, and much of the ice does not survive the summer melt season, 

resulting in a thinner and younger ice cover (Richter-Menge and Farrell, 2013). 
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Table 2.1 Data Specifications 

Mission / Company Instrument Measurement Product Data Source Temporal 
coverage 

Spatial coverage Footprint / 
Resolution 

NASA Operation 

IceBridge (OIB) 

Airborne 

Topographic 

Mapper (ATM) 

Surface 

elevation and 

topography 

IceBridge ATM L1B 

Elevation and Return 

Strength (with 

Waveforms) 

https://nsidc.org/data/ILA

TM1B/versions/2 

https://nsidc.org/data/ILA

TMW1B/versions/1 

July 2016 

July 2017 

Beaufort and Chukchi Seas 

(2016) 

Central Arctic Ocean - north of 

Greenland (2017) 

1 m footprint 

NASA Operation 

IceBridge (OIB) 

Digital Mapping  

System (DMS) 

Red, Green and 

Blue (RGB) 

Imagery 

IceBridge DMS L1B 

Geolocated and 

Orthorectified Images 

https://nsidc.org/data/IOD

MS1B/versions/1 

July 2016 

July 2017 

Beaufort and Chukchi Seas 

(2016) 

Central Arctic Ocean - north of 

Greenland (2017) 

0.1 m 

NASA Ice Cloud and 

Land Elevation Satellite -

2 (ICESat-2)  

Advanced 

Topographic Laser 

Altimeter System 

(ATLAS) 

Surface 

elevation and 

topography 

ATL03 L2A Global 

Geolocated Photon Data 

ATL07 L3A Sea Ice 

Height 

https://nsidc.org/data/atl03 

 

https://nsidc.org/data/atl07 

Launched 

2018-09-15 

North to 88° N 11 m 

footprint 

ESA Sentinel-2 Multispectral 

Instrument (MSI) 

Top of 

Atmosphere 

Reflectance 

L1C Top of Atmosphere 

Reflectance 100x100 

km2 tiles  

https://apps.sentinel-

hub.com/eo-browser/ 

Sentinel-2A 

since 2015-

06-23 

Sentinel-2B 

since 2017-

07-03 

up to 20 km from the coast, and 

north to 84° N 

10 m 

resolution 

Maxar (Commercial)* WorldView-2 

(WV2) and 

WorldView-3 

(WV3) 

Top of 

Atmosphere 

Reflectance 

WorldView-2 and 

WorldView-3 

Multispectral Imagery 

https://www.pgc.umn.edu/

data/commercial-imagery/ 

WV2 Since 

2009-08-10 

WV3 since 

2014-08-13 

Up to 85° N  WV-2: 1.85 

m resolution 

WV-3: 1.65 

m resolution 

Japan Aerospace 

Exploratory Agency 

(JAXA) Global Change 

Observation Mission - 

Water (GCOM-W) 

Advanced 

Microwave 

Scanning 

Radiometer 2 

(AMSR2) 

Brightness 

Temperature 

AMSR-E/AMSR2 

Unified L3 Daily 12.5 

km Brightness 

Temperatures, Sea Ice 

Concentration 

https://nsidc.org/data/AU_

SI12/versions/1 

Since 2-7-

2012 

Up to 89.24° N 12.5 km 

resolution 

Defense Meteorological 

Satellite Program 

Special Sensor 

Microwave 

Imager/Sounder 

(SSMI/S) 

Brightness 

Temperature 

NOAA/NSIDC Climate 

Data Record of SIC 

(CDR SIC) 

https://nsidc.org/data/g022

02 

Since  

25-10-1978 

Up to 89.8° N 25 km 

resolution 

* Commercial satellite imagery provided through the Polar Geospatial Center for projects funded by the NASA Cryosphere Program. Geospatial support for this work was provided by 

the Polar Geospatial Center under NSF-OPP awards 1043681 and 1559691. 
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Figure 2.3. Map of the Arctic showing the location of remote sensing observations 
used in this work. Pink boxes are the outline of each 100 x 100 km2 Sentinel-2 tile, 
clipped to the May 2020 multiyear ice region (shown in gray). Blue squares are the 
location of Worldview imagery scenes. Operation IceBridge campaign flight paths 
are shown in black and represent the locations where coincident Digital Mapping 
System imagery and Airborne Topographic Mapper measurements are available. 
These flights are based out of Utqiaġvik, Alaska and Thule, Greenland, noted by the 
orange stars. Green lines show ICESat-2 tracks for one week from 1 June 2020 
through 7 June 2020 (~1/13 of the total tracks in a 91-day ICESat-2 repeat cycle). 
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2.4 High Resolution Imagery Observations 

2.4.1 Fundamentals of High Resolution Imagery 

Visible and infrared sensors detect the radiation at wavelengths from 0.5 μm 

to 1 μm and 3 μm to 15 μm, respectively (Figure 2.1) (Comiso, 2009). These are 

passive sensors and are sensitive to clouds as they emit and reflect radiation at these 

wavelengths. Visible imagery is dependent on the reflection of the incoming solar 

radiation and thus provides useful information during the day time only, while 

infrared sensors can provide useful information during the night (Comiso, 2009). 

Infrared imaging is useful for detecting sea ice, because the temperature of sea ice is 

generally much colder than the surrounding ocean. However, as snow melts on the ice 

surface during the summer, the surface temperature of the sea ice approaches the 

freezing point and becomes more difficult to distinguish from the open ocean. Clouds 

limit these observations, but in cloud free conditions, these sensors may provide 

useful information at high spatial resolution (Comiso, 2009).  

2.4.2 Digital Mapping System Imagery 

In this work we use the OIB Digital Mapping System (DMS) L1B Geolocated 

and Orthorectified Images (Dominguez, 2010) collected during the OIB Arctic 

summer campaigns. The DMS captured images every 5 seconds. At the nominal 

flight altitude of ~460 m, each image covers a surface area of ~ 575 m by ~ 400 m. 

DMS data consists of a compressed jpeg file suitable for quick-look viewing and 

quality control, and a Georeferenced Tagged Image File Format (GeoTIFF) array 

with a black border surrounding surface pixels. Each pixel within the image has a red, 
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green, and blue channel value (RGB data), with a resolution of 0.1 m at nominal 

altitude (Dominguez, 2010) (Table 2.1). The corrected position and attitude data 

collected by the Applanix 510 POS AV system flown with the DMS provide aircraft 

parameters that were used to apply orthorectification and geolocation to all of the 

images (Dominguez, 2010). 

 Previously, DMS data were used for lead detection (Farrell et al., 2011; 

Onana et al., 2013), pressure ridge sail height measurements (Duncan et al., 2019), 

characterization of sea ice surface morphology (Newman et al., 2014), and roughness 

(Webster et al., 2015). We take advantage of the high resolution of the DMS data to 

classify sea ice surface types during melt, including small-scale features such as melt 

ponds and deformed ice. Continuous sampling throughout the flights allows for 

calculation of along-track parameters, including sea ice concentration and melt pond 

fraction. These data have been obtained from the National Snow and Ice Data Center 

(NSIDC). 

2.4.3 Sentinel-2 Multispectral Instrument Imagery 

The ESA Copernicus Sentinel-2 mission consists of two satellites carrying the 

MultiSpectral Instrument (MSI) (Drusch et al., 2012). Sentinel-2A was launched 23 

June 2015, and Sentinel-2B followed on 7 March, 2017. The satellites have a 98° 

inclination and coverage of all coastal waters up to 20 km from the shore, up to 84° 

N. The Sentinel-2 tiles are 110 km x 110 km. The Level 1C Top of Atmosphere 

Reflectances are provided in 13 spectral bands ranging from visible (490 – 665 nm) to 

short wave infrared (2190 nm). We utilize the 10 m resolution visible and near 
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infrared bands B02, B03, B04, and B08 in this work (Table 2.1). Table 2.2 provides 

the central wavelength and bandwidth for each of the bands we use in this work. 

Figure 2.3 shows the locations of the Sentinel-2 tiles in the multiyear ice region, the 

area of interest for the 2020 summer melt study (Chapter 6). Figure 2.4 shows a 

section of a Sentinel-2 tile that is 3.5 km by 2.5 km, where (a) shows the true color 

composite (RGB), and (b) shows the near infrared band. These data are available 

online at the Copernicus Open Access Hub, with a 24-hour latency.  

Figure 2.4. A 3.5 km x 2.5 km section of coincident Sentinel-2 (a-b), and WorldView 
(c-d) imagery. (a) Sentinel-2 red, green and blue band composite (B04, B03, B02). (b) 
Sentinel-2 near-infrared band (B08). (c) WorldView true color composite of red, 
green, and blue bands (B05, B03, B02) coincident with (a). (d) WorldView near 
infrared band (B07) coincident with (b). Both the Sentinel-2 and WorldView imagery 
was captured on 16 June, 2020 and are located west of Prince Patrick Island along the 
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Canadian Archipelago (-125.3 °W, 77 °N) (WorldView imagery copyright 2020 
Maxar). 

2.4.4 WorldView Imagery 

The Maxar (formerly DigitalGlobe) WorldView commercial satellite 

constellation provides high-resolution panchromatic and multispectral imagery. The 

WorldView-2 satellite was launched 8 October 2009, and provides 8 multispectral 

bands at 1.85 m resolution (Maxar, 2020a). WorldView-3, launched on 13 August 

2014, also has 8 multispectral bands at 1.24 m resolution (Maxar, 2020b). For 

research investigations funded through the NASA Cryosphere Program, access to the 

Maxar Worldview imagery archive is available via the Polar Geospatial Center. In 

this work, we utilize the high-resolution WorldView imagery to validate the lower 

resolution Sentinel-2 imagery. We use four spectral bands from this dataset: blue 

(B02), green (B03), red (B05), and near infrared (B07). Table 2.2 summarizes the 

sensor bands of the two WorldView satellites. Figures 2.4 c-d show an example of the 

high-resolution WorldView imagery as a RGB composite (c) and the near infrared 

channel (d). Comparing the top row and bottom rows of Figure 2.4, the small melt 

ponds and edges of the sea ice are better resolved in the higher resolution WorldView 

images (1.24 – 1.85 m resolution) than the Sentinel-2 images (10 m resolution).  
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Table 2.2. WorldView and Sentinel-2 spectral band specifications. 

` WorldView-2 WorldView-3 Sentinel-2 A Sentinel-2 B 
Blue  B02: 450-510 

nm 
B02: 445–517 
nm 

B02: 459-525 
nm 

B02: 459-525 
nm 

Green B03: 510-580 
nm 

B03: 507–586 
nm 

B03: 542-578 
nm 

B03: 541-577 
nm 

Red  B05: 630-690 
nm 

B05: 626–696 
nm 

B04: 649-680 
nm 

B04: 649-680 
nm 

Near IR B07: 770-895 
nm 

B07: 765–899 
nm 

B08: 780-886 
nm 

B08: 780-886 
nm 

 

2.5 Passive Microwave Observations 

2.5.1 Fundamentals of Passive Microwave Remote Sensing of Sea Ice 

Both active and passive microwave remote sensing of sea ice may be used for 

estimating sea ice concentration (SIC) and ice types (Shuchman and Onstott, 1990). 

Here we focus on the techniques of passive microwave remote sensing. Radiometers 

are passive sensors that measure the intensity of the radiation emitted from Earth. The 

structural properties of the sea ice and ocean create unique microwave signatures. 

Microwave emission from open water is very low and highly polarized, whereas 

emission from sea ice is greater and has weaker polarization (Markus and Cavalieri, 

2009).  Specific emissivity values are dependent on the microwave wavelength 

observed as well as the ice properties, such as crystalline structure and salinity, and 

thus provide information about the age and history of the sea ice (Shuchman and 

Onstott, 1990). Microwave signatures respond quickly to the melt and freeze cycles 

of the upper surface of sea ice (Shuchman and Onstott, 1990), and thus can be used to 

determine melt and freeze onset (Markus et al., 2009). Passive microwave sensors are 

able to operate at night because they are not reliant on reflection of solar radiation, 
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and are not affected by cloud coverage as clouds do not emit much radiation at low to 

mid-range microwave frequencies (Meier et al., 2017). However, due to the low 

energy level of passive microwave radiation, the radiation values must be collected 

over a large region, resulting in coarse spatial resolution (typically ~25 km x 25 km) 

(Comiso, 2009).  

SIC can be derived from passive microwave radiometer data utilizing the 

ratios of brightness temperatures (typically 37 GHz v 19 GHz), taking advantage of 

the contrast in emissivity of ice and open water (Markus and Cavalieri, 2009). 

However, the melting sea ice surface complicates the retrieval of SIC values in the 

summer, and results in an underestimation of the SIC (Comiso and Kwok, 1996).  

There is a long history of passive microwave sea ice data; there is a nearly 43-

year continuous record of sea ice area and extent extending back to 1978 (Parkinson 

et al, 1999). These measurements of Arctic sea ice are one of the longest-running 

remotely sensed climate indicators (Meier et al., 2017), allowing scientists to 

understand long term trends and variability of the sea ice. 

2.5.2 Sea Ice Concentration Climate Data Record 

The NASA Scanning Multichannel Microwave Radiometer (SSMR) onboard 

Nimbus-7 was the first passive microwave sensor to provide measurements of sea ice, 

operating from 1978 to 1987 (Meier et al., 2022). The record continued with a series 

of satellites from the U.S. Defense Meteorological Satellite Program (DMSP) 

satellites carrying the Special Sensor Microwave Imager (SSMI) and the Special 

Sensor Microwave Imager and Sounder (SSMI/S) (Meier et al., 2022). These 

operations began in 1987 and continue through present (2022). 
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The NOAA/NSIDC Climate Data Record of SIC (CDR SIC), is a 25 km 

product derived using the Special Sensor Microwave Imager/Sounder (SSMI/S) 

brightness temperature measurements, and which, for each grid cell, selects the higher 

concentration value derived from the NASA Team and NASA Bootstrap algorithms 

(Meier et. al., 2017) (Table 2.1).  

2.5.3 JAXA Advanced Microwave Scanning Radiometer 2 

The NASA/ Japan Aerospace Exploration Agency (JAXA) Advanced 

Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) (2002-

2011) and the JAXA Advanced Microwave Scanning Radiometer 2 (AMSR2) (2012-

present) employ larger antennas than previous microwave radiometers and are able to 

provide higher resolution data (12.5 km x 12.5 km) (Meier et al., 2022). AMSR2 is 

the sole instrument onboard the Global Change Observation Missions – Water 

(GCOM-W) satellite operated by JAXA (Imaoka et al., 2012). We use the AMSR2 

Daily 12.5 km SIC (AMSR2 SIC) product, created using AMSR-2 brightness 

temperatures processed with the NASA Team 2 algorithm (Meier et. al., 2017) (Table 

2.1).   

2.6 Laser Altimetry Observations 

2.6.1 Fundamentals of Laser Altimetry of Sea Ice 

The main objective of altimetry is to measure the range (distance) from the 

satellite or aircraft to the surface (Chelton et al., 2001). The technique involves 

measuring the timing of short pulses for two-way travel at the speed of light between 
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the spacecraft or aircraft and the target surface (Bufton et al., 1989). Laser and radar 

altimeters provide their own source of electromagnetic illumination and thus are 

considered active remote sensors (Shuchman and Onstott, 1990). Radar altimeters 

require pulse averaging, whereas with the high energy laser pulses, no pulse 

averaging is required, and each individual pulse is meaningful (Bufton et al., 1989). 

Laser altimeters are able to provide higher resolution measurements of the sea ice 

surface compared to radar altimeters (Bufton et al., 1989). Laser altimeters have 

footprints on the order of tens of meters in diameter, where a radar footprint is at least 

an order of magnitude greater (Bufton et al., 1989). Figure 2.5 shows a schematic of 

the laser waveform transmitted and received pulse.  

 

Figure 2.5. Schematic showing transmitted and received pulses. From Bufton et al., 
1989. 

The range to the surface, Z can be calculated: 

! = 	
$	∆&
2

 (2.1) 

 

Where Z, the slant range to the surface (in kilometers), is the product of the speed of 

light (c, in kilometers per second) and the time between pulses (∆T, in seconds), 

divided by two to account for the round-trip travel. The range must be corrected for 
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instrument, atmospheric, and geophysical impacts. Once the corrected range is 

determined, the location of the reflecting surface is determined with knowledge of the 

instrument position vector (altitude and pointing of the satellite relative to the Earth) 

and the laser pointing vector (range and direction from the satellite to the reflecting 

surface).  

 Laser altimeters operate at different wavelengths. ICESat had an infrared laser 

operating at 1064 nm for surface altimetry. It is understood that laser altimeters 

reflect at the air-snow interface on snow covered sea ice (Kwok et al., 2004, Giles et 

al., 2007), off the water surface, and in the case of a green laser, such as ICESat-2, are 

able to penetrate the water and reflect off the ice on the bottom of the pond (Farrell et 

al., 2020). The ICESat 1064 nm infrared laser was not able to penetrate the water 

column. Figure 2.6 shows a schematic the ICESat-2 laser returns from these surfaces. 
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Figure 2.6. Schematic showing the summer sea ice diagram. An example sea ice floe 
is shown in white, with the surface scattering layer show in a textured blue, and snow 
in a light gray. A melt pond is shown in light blue, and the ocean is in dark blue. The 
parameters shown are the densities (() and thicknesses (h) of each layer. 

Sea ice thickness is an essential climate variable and is linked to the integrity 

of the ice pack. Ice thickness measurements are essential for understanding mass 

balance, validating models, and monitoring trends in Arctic sea ice (see Chapter 1, 

section 1.4). Typically, laser-derived sea ice thickness is given by: 

ℎ! = ℎ"# *
($

($ − (!
, +	ℎ" *

(" − ($
($ − (!

, (2.2) 

Where hi is the thickness of the ice, hsf is the snow freeboard, hs is the snow depth,  

($ is the density of ocean water, (! is the density of sea ice, and (" is the density of 

snow (Giles et al., 2006). This equation is derived from the assumption of hydrostatic 

equilibrium and is valid for a simplified one-dimensional thickness approximation at 

location A in Figure 2.6.  
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On summer sea ice, when the snow cover has melted, the topmost layer of the 

ice is a surface scattering layer (SSL), a bright white layer with a crumbly texture 

(Light et al., 2008). This is an important aspect of summer sea ice as it has been 

estimated that the scattering coefficient of this layer is approximately twice that of the 

interior ice (Light et al., 2008). This layer is on the order of a few centimeters thick 

(Light et al., 2022) and has a lower density than the interior ice. Light et al. (2008) 

found the density to be 420 kg m-3, a density closer to that of snow (Warren, 1999). In 

order to calculate the sea ice thickness for the vertical profile at B in Figure 2.6, we 

replace the snow density ((") and depth (hs) with the SSL density ((""%) and depth 

(hssl), and the freeboard (hsf) is the ice and SSL freeboard (hssl + hf ), as the SSL is 

now the reflective surface measured by the laser.  

The final summer thickness profile scenario is in the case of a melt pond 

(Figure 2.6, location C). To derive this equation, we start with first principles: the 

weight of the ocean water displaced is equal to the weight of the object: 

($.ℎ! − ℎ#/ = 	(&.ℎ&/ + (!(ℎ!) (2.3) 

 

Where the variables are the same as above, (& is the density of the pond 

water, and ℎ& is the depth of the pond. The total freeboard, hpf , is the height of the 

pond surface above the local sea surface and can be related to the pond depth and the 

ice freeboard: 

ℎ&# = ℎ# + ℎ& (2.4) 
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Where the variables are the same as above, and ℎ# is the ice freeboard, which 

may be negative if the pond bottom is below the sea surface. Combining equations 

(2.3) and (2.4), we get: 

($ℎ! − ($.ℎ&# − ℎ&/ = (&ℎ& + (!ℎ! 	 (2.5) 

Dividing and rearranging equation, we get: 

 

ℎ! = ℎ&# *
($

($ − (!
, +	ℎ& *

(& − ($
($ − (!

, (2.6) 

Where hi is the thickness of the ice, hpf is the total freeboard in the presence of a pond, 

that is, the height of the pond surface above the local sea surface, hp is the pond depth,  

($ is the density of ocean water, (! is the density of sea ice, and (& is the density of 

the freshwater in the melt pond (Figure 2.6). The derivation of pond depth from laser 

altimetry measurements is described in Chapter 5, sections 5.2 and 5.3. The average 

thickness of a sea ice floe can be estimated by integrating these equations across the 

length of the floe, using the appropriate equation and values when necessary. 

We described the derivation of sea ice thickness and discuss the impact of 

melt ponds on this calculation, as it has motivated our work to derive melt pond 

parameters such as melt pond depth, width and fraction.  

2.6.2 Airborne Topographic Mapper 

The Airborne Topographic Mapper (ATM) is a conically scanning laser 

altimeter (Krabill et al. 2002), that measures surface height. The ATM operates at 532 

nm, a green laser, at the same wavelength as ICESat-2 (Table 2.1). The ATM has 

been essential in studies of sea ice thickness (e.g., Farrell et al., 2015; Kurtz et al., 
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2013), and for validating thickness estimates from satellite altimeters: ICESat 

(Connor et al., 2012), CryoSat-2 (Laxon et al., 2013), and ICESat-2 (Kwok et al., 

2019). The high-resolution elevation measurements can provide additional details of 

the sea ice surface such as roughness (Farrell et al., 2012; Kwok, 2015). In the work 

presented in this thesis, we use ATM observations over melt ponds to demonstrate the 

feasibility of extracting melt pond depth from the data. 

For the summer 2016 and 2017 data, the ATM uses a narrow angle scan (5-

degree full scan angle), corresponding to a swath width of ~ 30 m on the sea ice 

surface. Figure 2.7 shows an example of a DMS image with the ATM lidar elevations 

overlain. The data are provided in the form of surface height elevation and return 

strength. For the summer 2017 campaign, the waveform data are available (Studinger, 

2018). In the work presented in this thesis, we use the ATM Return Strength and 

Elevation with Waveforms product from the 2017 campaign to detect pulses returned 

from the surface and bottom of melt ponds. For each measurement, the transmitted 

laser pulse and the received backscatter pulse are detected by the waveform digitizer 

(Studinger, 2018). The uncalibrated range is calculated using Equation 2.1 described 

in section 2.6.1, and further processing is required to derive the surface height above 

the ellipsoid (Studinger, 2018). Figure 2.8 shows an example of the ATM return 

waveform in the case of a single mode (a) and two modes (b). Modes are counted 

when they exceed the threshold defined as 35% of the maximum amplitude. The 

bimodal waveform indicates a complex surface such as a pressure ridge or a melt 

pond. We specifically look at the data over melt ponds to detect the modes 
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corresponding to the surface of the pond and the bathymetry of the pond (Chapter 5, 

section 5.2).  

 

Figure 2.7. DMS imagery (background) and the conically scanning ATM track 
colored by the elevation above the ellipsoid. The DMS images are approximately 400 
x 575 m. The ATM narrow scan swath width is approximately 30 m. The map inset 
shows the location of these data. 
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Figure 2.8. Example of ATM return waveforms over sea ice. a) shows a single mode 
where b) shows a bimodal return. The blue horizontal line corresponds to 35% of the 
maximum amplitude which is the threshold for defining a mode. The map inset shows 
the approximate location in the Lincoln Sea of both of these waveforms. These 
waveforms were observed on 24 July 2017. 

2.6.3 ICESat-2  

On 15 September 2018, NASA’s Ice Cloud and land Elevation Satellite 2 

(ICESat-2) was launched, carrying the Advanced Topographic Laser Altimeter 

System (ATLAS), a photon counting altimeter (Neumann et al., 2019). ICESat-2 is 

the follow-on mission to ICESat, in operation from 2003-2009, which was the first 

laser altimeter in polar orbit (Schutz et al., 2005). With a polar inclination of 92 o and 

a 91-day repeat track orbit, ATLAS on ICESat-2 obtains surface height measurements 

across the Arctic up to 88 oN (Table 2.1). Figure 2.9 shows the ATLAS beam 

configuration. Each orbital track has a reference ground track (RGT) at the nadir of 

the predicted orbit and is numbered from 1 to 1387 (Smith et al., 2019). ATLAS has 3 

beam pairs with 90 m spacing within the pairs, and 3.3 km pair separation (Figure 

2.9). The RGT falls between the central beam pair (Figure 2.9). Each beam pair 

consists of a strong spot and a weak spot with an energy ratio of 4:1 (Neumann et al., 

2019). In this work we refer to the track and beam as RGT #### GTNX, Where #### 
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is the track number, N is the beam pair number and X is L (left) or R (right) are the 

ground tracks. In this work we exclusively use the strong beams, as the weak beams 

do not provide enough energy for our studies. ATLAS operates at 10 kHz, resulting in 

measurements every 0.7 m along track (Markus et al., 2017). With a footprint of ~11 

m (Magruder et al., 2020), the instrument over-samples the surface providing high 

fidelity surface measurements. ICESat-2 delivers improved spatial coverage and 

resolution when compared to ICESat which had a latitudinal limit of 86 oN, and a 

footprint diameter of 50-70 m and 172 m along-track sampling (Markus et al., 2017). 

The altimeter has the ability to measure time of flight for individual photons 

(Neumann et al., 2019). For the strong beam, the expected photon return per shot is 

2.8 - 8.5 photons over sea ice, and 0.2 to 1 photon over leads (Kwok et al., 2019). 

 

Figure 2.9. Schematic showing the ATLAS pattern. Figure modified from Smith et 
al., 2019. The distance between beam pairs is 3.3 km and the distance within pairs is 
90 m.  

Studies with ICESat-2 data have already demonstrated the instrument’s ability to 

measure the Earth’s surface in high resolution. Brunt et al. (2019) demonstrate that 
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the ICESat-2 data products map Antarctica’s ice sheets with high precision (<9 cm). 

Fricker et al. (2021) derive the depth of melt lakes on the Amery ice shelf using 

ICESat-2’s measurements. The dense sampling frequency and precise measurements 

have provided us new information about the complex sea ice surface, and has 

changed the way we observed small features on sea ice. Farrell et al. (2020) describe 

the measurements of complex sea ice surface features such as melt ponds, pressure 

ridges and leads. Tilling et al., 2020 examined ICESat-2’s response to the melting sea 

ice surface and the effect of melt ponds on the summer sea ice height and freeboard 

retrievals. Although ICESat-2 was designed for the measurement of elevation in 

Earth’s polar regions, it has been useful for other Earth science studies. Parrish et al. 

(2019) revealed ICESat-2’s ability to map nearshore bathymetry and 

Neuenschwander et al. (2020) demonstrated the ability to map boreal forests.  

The ICESat-2 Level 2 Geolocated Photon Data (ATL03) product includes time, 

latitude, longitude, and height relative to the ellipsoid, for each photon downlinked 

from ATLAS and is available at the National Snow and Ice Data Center (NSIDC) 

(Neumann et al., 2021). Figure 2.10 shows the elevation relative to local level sea ice 

surface of each geolocated photon. The high-resolution data is able to resolve small 

features such as pressure ridges and melt ponds (annotated in Figure 2.10). 

The Level 3A Sea Ice Height Product (ATL07) provides along-track surface 

height and surface type. The segment lengths vary as they are determined based on a 

150-photon aggregate. Segment lengths for the strong beams are on average ~15 m 

(Kwok et al., 2019). The ATL07 segment sea ice heights are shown in Figure 2.10b 
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and 2.10d. As the ATL07 product only tracks one surface, it either tracks the 

bathymetry of the pond, as in Figure 2.10b, or the surface of the ponds, as in Figure 

2.10d (Farrell et al., 2020). The ATL07 product includes cloud statistics that are 

inputs from ATL09, the Level 3A Atmospheric Layer Characteristics Product 

(ATL09). We used these statistics to understand how clouds effect the photon returns 

and use them to limit the use of ATL03 surface measurements to cloud-free regions 

(data quality control is described in Chapter 5, section 5.3). 

 

Figure 2.10. ICESat-2 data. (a) and (c) show ATL03 geolocated photon data (gray 
dots). (b) and (d) show the same ATL03 data as a) and c) in addition to the ATL07 
sea ice height (cyan dots). Both 1 km segments are observed in the Lincoln Sea, (a)-
(b) on 17 June 2019 at (-60.3 °W, 82.5 °N), and (c)-(d) on 18 June 2019 at (-55.5 °W, 
82.9 °N).  
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2.7 Chapter Summary 

In this chapter we described the main differences between passive and active 

remote sensing of sea ice (Section 2.2). A summary of Operation IceBridge focusing 

on the summer sea ice flights was provided in section 2.3. We discussed basic 

techniques for obtaining high resolution imagery, and described the DMS, 

WorldView and Sentinel-2 data products used in this work in section 2.4. Section 2.5 

described the fundamentals of passive microwave radiometry and determining sea ice 

concentration, and we described the SIC data we use. Section 2.6 detailed the 

fundamentals of laser altimetry, the derivation of sea ice thickness, and the 

complications that the summer melt brings to that calculation. We described the ATM 

waveform data and the ICESat-2 laser altimetry data. The following chapters focus on 

the methodology and results of our work using the data and techniques described 

here.  
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Chapter 3: Image Classification Methodology 

3.1 Motivation and Goals 

The goal of this work is to understand the state of sea ice, asses regional and 

temporal variability of derived parameters, and compare findings with existing sea ice 

products to understand shortcomings of lower resolution datasets.  

This chapter focuses on methodologies to derive sea ice concentration (SIC), 

melt pond fraction (MPF), and pond color fraction (PCF) from high resolution 

imagery. Previous studies have demonstrated the ability to extract sea ice melt pond 

parameters from airborne studies but most are limited in spatial extent and temporal 

evolution. See Chapter 1, sections 1.5.2 and 1.5.3 for a summary of the previous 

studies. The current deficiencies in observing melt pond characteristics at high 

resolution motivate our work to investigate the extraction of summer melt signatures 

from newly available airborne remote sensing data. The NASA Operation IceBridge 

(OIB) airborne mission obtained high‐resolution measurements of the melt season in 

different regions of the Arctic in July 2016 and 2017. 

In this chapter our goals are to: 

• Describe the classification algorithm used to derive features from OIB 

imagery (as in Buckley et al., 2020a) 

• Detail the algorithm modifications required for application to Sentinel-2 

and WorldView imagery. 

• Discuss the potential pixel misclassifications and impact. 
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• Describe the derivation of parameters: SIC, MPF, PCF. 

First we provide background information on image classification methodology 

both broadly and related specifically to sea ice classification in Section 3.2. In this 

chapter we describe the methodology used in Buckley et al. (2020a) to classify OIB 

DMS imagery (sections 3.3 - 3.6). This methodology is adaptive to other high 

resolution RGB imagery and we apply this classification algorithm to Sentinel-2 and 

WorldView images. Sentinel-2 image acquisition and preprocessing is described in 

subsection 3.6.1. Then we describe the minor modifications made to the DMS 

classification algorithm to take advantage of the near-infrared channel in Sentinel-2 

(subsection 3.6.2) and account for the lower resolution of the Sentinel-2 dataset 

(subsection 3.6.3). We also discuss the decision to not classify melt pond color in the 

Sentinel-2 imagery in subsection 3.6.4. We apply this modified classification 

algorithm to Sentintel-2. The application of the algorithm to WorldView imagery 

classification is described in section3.7. And finally, from the pixel classification we 

may derive SIC, MPF, PCF (section 3.8). 

3.2 Fundamentals of Image Classification 

Remotely sensed imagery provides important geographic information to 

scientific communities and beyond. Image classification is useful for many 

environmental and socioeconomic practices (Lu and Weng, 2007, and references 

therein). Classification methodology has evolved as scientists develop algorithms and 

new higher resolution imagery becomes available.  
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Satellite sensors, specifically designed to monitor the Earth’s surface include 

panchromatic, multispectral, and hyperspectral imagery (DeFries, 2008). 

Panchromatic imagery, combines information from the visible red, green, and blue 

bands to form one channel, and thus is higher resolution than the counterpart 

multispectral imagery from the same sensor. Multispectral imagery, such as 

Advanced Very High Resolution Radiometer (AVHRR), MODIS, Landsat and 

Sentinel-2 imagery, provides brightness values at multiple spectral bands. 

Hyperspectral sensors such as the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) samples over 200 spectral bands in the visible and near infrared (DeFries, 

2008).  

Combinations of spectral bands are commonly used for land cover 

classification and observations of different surface types. For example, vegetation 

indices are used to understand biophysical and structural properties of vegetation and 

the global distribution of these attributes (Huete et al., 2002). The normalized 

difference vegetation index (NDVI) and the enhanced vegetation index (EVI) are 

simple transformations of spectral bands. The NDVI utilizes the red and near infrared 

bands and is sensitive to chlorophyll and related to photosynthetic capacity (Tucker, 

1979; Myneni et al., 1995), whereas the EVI is more sensitive to canopy structure 

(Huete et al., 2002). Both can be calculated from standard MODIS bands, and 

therefore we have an extended record of 1km and 500 m vegetation index values 

throughout the seasons (Huete et al., 2002). Prior to the MODIS dataset, NDVI was 

calculated from NOAA Advanced Very High Resolution Radiometer (AVHRR). 

Both Landsat and NOAA-AVHRR sensors provide vegetation index time series back 
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to the 1970s (Huete et al., 2002). These vegetation indices are useful for drought 

detection, monitoring deforestation, and land cover classification. NDVI is also an 

important input for global climate models and biological models (Huete et al., 2002). 

The normalized difference water index (NDWI) utilizes the near infrared and visible 

green channels to delineate water bodies in multispectral imagery (McFeeters, 1996).  

3.2.1 Classification Methodology 

Classification algorithms can be per-pixel, subpixel, or per-field (Lu and 

Weng, 2007). Per pixel algorithms involve classification of individual pixels based on 

spectral values and classifications are mutually exclusive. In subpixel algorithms, 

individual pixels are made up of multiple classification categories and are best suited 

for coarse resolution imagery. Per-field classifications involve grouping neighboring 

pixels with similar spectral features and classifying the object.  

3.2.2 Classification of Sea Ice Imagery 

Classification of sea ice imagery presents unique challenges because it is 

difficult to differentiate features on a surface that is all white with blue tones. Open 

water and sea ice are easy to differentiate but features such as melt ponds, drained 

melt ponds, and generally submerged ice are hard to distinguish from one another. A 

review of the studies involving sea ice image classification is given in Sections 1.5.2 

(airborne) and 1.5.3 (satellite). A discussion of the obstacles of classification of sea 

ice imagery is briefly discussed in Section 1.5.4, and obstacles include the presence of 

clouds, the sub-pixel size melt features, and the limited data coverage in the Arctic.  
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In this work, we made the decision to develop a classification algorithm based 

on empirical examination of the spectral make up of sea ice features. We opted for a 

supervised classification methodology, with a set of training data (Buckley et al., 

2020 Supplementary Information) used to fine tune the algorithm. Because of the 

novelty of the dataset, we chose to empirically develop a classification methodology 

to minimize error and ensure reproducibility. Our classified imagery may be used to 

advance machine learning methods in the field. 

We build on previous knowledge of spectral attributes of the melting sea ice 

surfaces (Perovich et al., 1998; Miao et al., 2015; Rosel et al., 2012, see Section 

1.5.4). When possible, we make use of the NDWI to distinguish between water (open 

water or melt pond) and sea ice. The classification algorithm developed in this work 

involves manual discarding of cloud contaminated images. The surface classification 

is based on our knowledge of the reflectance of surfaces at different wavelengths (see 

Figure 1.7). We do not account for the effects of bidirectional reflectance distribution 

function (BRDF) such as shadows and sun glint. Topographic shadowing is minimal 

as ridge features are small (a few meters compared to the large terrain on land that 

casts shadows). Webster et al., 2015 found shadowing to make up < 0.5% of the ice 

surface area in summer sea ice imagery used in their study. Further, sun angles are 

high in the summer, minimizing the effects of BRDF. The thresholding locations in 

the mentioned figures are relative to other surfaces classified in the image so that they 

are adaptive to the changing light conditions. Pond color is related to the average ice 

and open water reflectance that have been classified. The deformed sea ice is related 
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to the brightness of the undeformed sea ice in the image. We intentionally do not set 

hard thresholds of reflectivity, so that the algorithm may be adapted to other datasets. 

 

3.3 Digital Mapping System Imagery Classification 

We classified DMS surface pixels into four ice-type categories: undeformed 

ice, deformed ice, open water and melt pond (Figure 3.1, Buckley et al., 2020a). The 

DMS images are not routinely adjusted for scene brightness due to varying overhead 

cloud conditions and sun angle during flight, and are thus not uniformly lit. 

Therefore, it is essential that surface type classification criteria are not based on fixed 

thresholds.  Rather, criteria are applied on a per-image basis, and automatically adjust 

to suit the specific brightness levels of each image. We utilize the RGB channel data 

provided in each DMS image (Cr, Cg, Cb), and the normalized pixel value, Cn, 

defined as: 

23 = (24 − 25)/(24 + 25) (3.1) 

We analyze distributions (histograms) of pixel values in these channels using 

a bin width of 2-pixel values for the Cr, Cg, and Cb, and 0.02 for Cn, to ensure high 

resolution such that the frequency distribution can be determined. Modes are defined 

as a collection of bins bounded by pixel count minima on either side. The modal 

value is defined as a bin with lower pixel counts on either side. The difference 

between pixel count on either side of a modal value must be greater than 0.05% of the 

total number of pixels counted in the histogram. This is to eliminate the detection of 

erroneous modes. The maxima (ma) are annotated as follows: Cx_ma_y where x is r 
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(red), g (green), b (blue), or n (normalized) and y is the mode number, counting from 

1, the modal value with the lowest pixel values, to m, the modal value with the 

highest pixel values. For example, the second mode in Cr is labeled Cr_ma_2. 

Similarly, the minima (mi) are defined as a bin with higher pixel counts on either side 

and are labeled Cx_mi_y.  We also calculate the half maximum (hm) and quarter 

maximum (qm) of the mode on the left (L) or right (R) side of the mode. The half 

(quarter) maximum is the bin at which the pixel count is equal to 0.5 (0.25) of the 

pixel count in the associated mode. For example, to denote the half maximum bin 

value on the left side of the second mode in the blue channel, we write 

Cb_ma_2_hmL.   
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Figure 3.1. A schematic detailing the surface classification algorithm including steps 
to identify deformed ice, undeformed ice, open water, and melt pond pixels. 
Corresponding figures in Buckley et al., 2020a are noted, where applicable. The 
notation “|” is used to mean “such that.” Colored boxes indicate the classification 
steps, with equations describing specific conditions and thresholds, including data 
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quality control (green, see text section 3.4), image preprocessing (purple, section 3.4), 
sea ice classification (red, subsection 3.5.1), open water classification (blue, 
subsection 3.5.2), and the melt pond classification algorithm (gold, subsection 3.5.3). 
Final outputs are indicated by white boxes with thick black outline. Figure from 
Buckley et al., 2020a. 

3.4 Quality Control and Image Preprocessing  

We retain only images acquired under normal flight conditions (nominal 

pitch, roll, and pixel size) by selecting data with the following attributes: pixel size < 

0.25m, and  roll and pitch < ±5°. These filtering steps ensure that each pixel 

represents a consistent surface area, simplifying calculations of the area of each sea 

ice parameter derived from the classified pixels. Images containing cloud and land are 

discarded. Of the total 46,162 DMS images collected during 11 flight surveys, 8.9% 

were eliminated due to roll, 6.6% due to pitch (including those eliminated in the 24 

July 2017 flight segment), and 9.2% due to altitude outside of nominal conditions. 

Upon manual inspection, 37.5% were discarded due to the presence of clouds 

obscuring surface features, and less than 1% of images were eliminated due to 

contamination by land. In total, 17,217 images (37.3% of total data collected) 

remained for analysis.  

The data quality control may introduce some statistical biases to the processed 

dataset. Clouds and sea smoke may preferentially form over areas of open water with 

a lower ice concentration, due to abundance of available moisture. Therefore, 

discarding data in cloudy regions may not fully capture the amount of open water on 

the survey line, biasing the dataset towards a conclusion of higher SIC. 
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In Figure 3.2 we demonstrated the methodology used to identify pixels 

associated with the black border before classifying surface pixels. We cannot simply 

remove border pixels using a set color threshold of zero (black), however, because 

border pixels near the edge of the surface pixels have brightness values greater than 

zero as a result of image compression. In Buckley et al., 2020a, we describe the 

methodology to identify border pixels by first finding the image corners (Figure 3.2a), 

and eliminating the pixels outside of the lines connecting the corners (Figure 3.2b), 

then we refine the border mask by removing the remaining low value brightness 

pixels (Figure 5.2c-d).  

 

Figure 3.2. Methodology to identify DMS border pixels. (a) Original GeoTIFF image 
of sea ice in the Lincoln Sea at −51.6°W, 83.2°N on 24 July 2017, with the corner 
points of the surface pixel array connected (thin red lines). (b) Residual border pixels 
remain unclassified after the first identification step. (c) Distribution of Cb pixels. 
Residual border pixels are identified where Cb < Cbmi1 (red). (d) Same as in a but 
with all border pixels identified (gray), revealing the remaining surface pixels (natural 
color). 
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3.5 Classification of Melt Features on Sea Ice 

After the quality control filtering and preprocessing steps, surface pixels 

within the remaining DMS images are classified (Figure 3.3a). Each of the four sea 

ice classes has a unique signature in the three color channels and it is therefore 

feasible to classify individual pixels based on the values of the RGB channel data 

relative to other pixels in the image.  

3.5.1 Sea Ice 

The first step is to identify sea ice. In the Cr histogram, ice pixels occupy the 

highest bins and form a distinct mode, Cr_ma_m. In images with significant amounts 

of deformed sea ice, there are two high-value modes in the red channel histogram 

(Cr_ma_m and Cr_ma_m-1) (Figure 3.3b). If deformed ice is present, the highest 

value modes in the red channel are within 10 bins of each other, i.e., (Cr_ma_m – 

Cr_ma_m-1) ≤ 10, and both modes are associated with ice pixels (Figure 3.3b). In 

this case, threshold B is defined as the first bin to the right of Cr_ma_m that is less 

than half of the pixel count in the modal value bin (Cr_ma_m_hmR, Figure 3.3b).  

7 = 24_9:_9_ℎ9; (3.2) 

Threshold C is set as the minimum to the left of the second highest mode (Figure 

3.3b): 

2 = 24_9<_9 − 1 (3.3) 
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In the case where no deformed ice is present, i.e., where (Cr_ma_m – Cr_ma_m-1) > 

10, threshold B is set as the maximum pixel value in the red channel:  

7 = 9:>	(24) (3.4) 

and threshold C is defined as: 

2 = 24_9<_9 (3.5) 

After setting thresholds B and C depending on the presence of deformed ice, we 

classify all snow-covered ice pixels with Cr ≥ C, and further classify undeformed ice 

pixels as ice pixels with Cr < B, and deformed pixels as Cr ≥ B (Figure 3.3c). The 

transition of melting snow to ponded meltwater is not discrete transition but rather a 

continuous process, and it is challenging to specifically identify the point at which the 

meltwater forms a melt pond. The pixels with Cr values at or near Threshold C 

(Figure 3.3b) demonstrates the challenge of distinguishing between melting snow, 

melting ice, and newly formed ponds which are optically similar. 

In these steps, lighter pond pixels may be misclassified as ice (Figures 3.3d). 

We introduce another requirement to refine the ice mask (second iteration) to separate 

these light pond pixels from ice. Ponds have high green and blue channel values 

compared to their red channel values and thus have lower normalized pixel values 

(Cn) than ice pixels. In the second iteration, we analyze the Cn histogram of all 

surface pixels, and if there is only one mode, threshold D is set: 

?	 = 	23_9:_1 − (2 ×	(23_9:_1 − 23_9:_1_ℎ9A)) (3.6) 
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If there is more than one mode (Figure 3.3e), we identify the mode that has 

the highest pixel count (i.e., the location of the maximum Cn bin) as Cn_ma_y, where 

y = 1, 2, 3…, m-1, m, in the Cn histogram.  Threshold D is set as the minimum to the 

left of Cn_ma_y (Figure 3.3e): 

? = 23_9<_B − 1  (3.7) 

All pixels with Cn ≤ D are removed from the ice mask (Figure 3.3f). A total of 

286,305 pixels (1.2% of surface pixels) were removed in the second iteration (Figure 

3.3g).  The ice classification is complete and the remaining pixels move on to the next 

classification step. 

Figure 3.3. Demonstration of the methodology to identify ice (both undeformed and 
deformed) pixels. Same image as in 3.2. The map inset shows the location of this 
image (star). (a) Surface pixels (after preprocessing). (b) Distribution of surface 
pixels Cr, where thresholds B and C (section 3.4.1) are identified to separate ice 
pixels from other surface pixels (threshold C) and deformed (pink) from undeformed 
ice (red) (threshold B). (c) Classification of undeformed ice pixels (red), deformed ice 
pixels (pink), and remaining surface pixels (open water and ponded ice, natural color) 
after the first iteration. (d) Image distinguishing between pixels classified as ice 
(undeformed and deformed, natural color) and surface pixels remaining (orange), 
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demonstrating the need for a second iteration to remove misclassified pixels from the 
ice mask, refining the results of the first iteration. (e) Distribution of normalized pixel 
value (Cn) of all surface pixels. Pixels where Cn < D are shown in magenta and are 
not ice pixels. (f) Image distinguishing pixels classified as ice (natural color), pixels 
not classified as ice after the first iteration (orange), and pixels misclassified as ice in 
the first iteration and removed from ice mask in second iteration (magenta). (g) 
Classified image after second iteration, showing undeformed ice (red), deformed ice 
(pink), and unclassified pixels (natural color). Figure modified from Buckley et al., 
2020a. 

3.5.2 Open Water 

There are two water classes, melt pond (MP) and open water (OW), which are 

often difficult to distinguish and define. Here, we define MPs as ponded freshwater 

on the sea ice surface. As soon as the ponded water melts through the ice and exposes 

the open ocean, it is considered open water. Light may be scattered off the melt pond 

edges and lighten the open water patch within a melt pond, but large melted-through 

ponds have similar pixel values to open water in all channels. Open water has the 

lowest value in all channels. Open water is found beyond the ice edge, in leads 

between ice floes, and in ponds that have completely melted through the ice. 

 To detect open water, we use the blue channel, Cb (Figure 3.4a). If present, 

open water pixels occupy the lowest value pixels in the blue channel (Cb_ma_1) and 

form a distinct narrow mode. If the quarter maximum to the left of the lowest value 

mode (Cb_ma_1_qmL) is fewer than 6 bins from the lowest value mode, there is open 

water in the image. In some cases, the open water pixels can occupy two closely-

spaced, low-value pixel modes. For all the modes within 8 bins of Cb_ma_1, we 

define threshold E as the first minimum with a higher bin value than the highest pixel 

value mode of these modes (Figure 3.4a), i.e., 
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2C_9:_D = 9:>	(2C_9:_>			|	(	2C_9:_>	 < (2C_9:_1	 − 8))) (3.8) 

H = 2C_9<_D (3.9) 

 Where x, z are 1, 2, 3, …, m-1, m, in the Cb histogram. A threshold width of 8 

bins was determined empirically and ensures that the mode selected is a low Cb 

value. If there is no open water present in the surface pixels, threshold E = 0. If there 

are no minima, E is defined relative to the mode: 

H = 2C_9:_> + 3(2C_9:_>_JKℎ9; − 2C_9:_>) (3.10) 

 Open water is classified as all the unclassified pixels with Cb < E (Figure 3.4b). 

Pixels with Cb ≥ E are classified as MP pixels and are further classified in the next 

step

 

Figure 3.4. Methodology to identify open water pixels. Same DMS image as in Figure 
3.2. (a) Distribution of Cb pixels remaining after ice pixels have been classified. 
Threshold E separates open water pixels (blue) from MP pixels (yellow). (b) 
Classified image showing open water pixels (blue), MP pixels (yellow), and ice pixels 
(natural color). Figure modified from Buckley et al., 2020a. 
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3.5.3 Melt Ponds 

After identification of deformed ice, undeformed ice and open water pixels, 

all remaining pixels are classified as melt ponds (Figure 3.4b). Melt ponds range in 

color from light to dark blue, depending on the depth of the pond and the properties 

of the underlying ice (Eicken et al., 2004). Lighter ponds tend to have thick ice below 

and, as their depth increases, their color darkens. Due to the requirement of thick ice 

below, the lightest MPs are more common on thick, multiyear ice than on thinner, 

first-year ice.  

Here, MP pixels are further distinguished as light, medium and dark ponds. 

For the classification of MP type, we utilize the blue channel (Cb) histogram (Figure 

3.5a). Because MPs are blue in color, this channel has the widest spread of pixel 

values for MPs. Low Cb values indicate dark MPs, and high Cb values indicate light 

blue MPs. The MP color classification is based on the Cb values of the unclassified 

pixels relative to the values of ice and open water in the image. We calculate the 

average value of the ice (L$MNNNN) and open water (OKNNNN) pixels in the image that were 

identified in the steps described in subsections 3.3.1 and 3.3.2. We establish the 

baseline thresholds for dark, F, and light, G, MP pixels as 40% and 60%, respectively, 

of the difference between ow_avg and ice_avg added to ow_avg (Figure 3.5a).   

P = 	OKNNNN + 	0.4 ∗ (L$MNNNN	–	OKNNNN) (3.11) 

V = 	OKNNNN + 	0.6 ∗ (L$MNNNN	–	OKNNNN) (3.12) 
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Next, we refine these thresholds based on the location of the modes in the Cb 

histogram (Figure 3.5a). We classify modes based on their location relative to these 

two values. Modes are classified as dark MP modes where Cb_ma_x < F, medium 

MP modes where F ≤ Cb_ma_x < G, and light MP modes where Cb_ma_x ≥ G. 

If any dark MP modes exist, a new threshold for dark MP pixels, F, is set as 

the minimum to the right of the highest pixel value dark MP mode. Likewise, the 

threshold for light MP pixels, G, is set as the minimum to the left of the lowest pixel 

value light MP mode:  

2C_9:_X = 	9:>(2C_9:_>	|	2C_9:_> < P)	 (3.13) 

2C_9:_Y = 	9<3(2C_9:_>	|	2C_9:_> ≥ V) (3.14) 

P = 	2C_9<_X (3.15) 

V = 	2C_9<_Y − 1 (3.16) 

After determining these thresholds, we classify dark MPs as Cb < F, medium MPs as 

F ≤ Cb < G, and light MPs as Cb ≥ G (Figure 3.5b). This step concludes the 

classification algorithm process; all surface pixels have now been classified. 
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Figure 3.5. Methodology to classify MPs. Same DMS image as in Figure 3.2. (a) 
Distribution of Cb pixels showing thresholds for cutoff between dark (green)/medium 
(yellow) MPs and between medium/light (cyan) MPs, F and G, respectively. (b) 
Classified image showing open water (blue), dark (green), medium (yellow), and light 
(cyan) MPs and previously classified ice pixels (natural color). Figure from Buckley 
et al., 2020a. 

3.5.4 Classified DMS Images 

Classified images are stored as binary masks with the dimensions of the 

GeoTIFF and seven layers, one layer for each ice-type classification category: border 

(layer 0), undeformed ice (1), deformed ice (2), open water (3), dark MP (4), medium 

MP (5), and light MP (6). There are no unclassified pixels. Figure 3.6 shows an 

example of the raw DMS data (Figure 3.6a) and the classified image (Figure 3.6b). 
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Figure 3.6. Final result of image classification algorithm. Same DMS image as in 
Figure 3.2. (a) Original DMS GeoTIFF (same as in Figure 5a). (b) DMS image after 
classification showing pixels identified as border (gray), undeformed ice (red, 64%), 
deformed ice (pink, 13%), open water (blue, 8%), dark MPs (green, 2%), medium 
MPs (yellow, 5%), and light MPs (cyan, 8%). Figure modified from Buckley et al., 
2020a. 

3.5.5 Classification Errors 

Although the classification algorithm includes steps to differentiate hard‐to‐

distinguish features, instances of pixel misclassification persist (Figure 3.7). 

Geophysical features occurring during the melt season that are not classified by the 

algorithm include ridge shadows, sun glint, and ice draft. The algorithm is designed to 

minimize errors based on its performance on a test image set (Buckley et al., 2020, 

Supplementary Information 1). Here, we briefly consider each of the common 

potential pixel misclassifications and discuss their impact (Buckley et al., 2020a). 

 

1. Ridge shadows: The RGB values of ridge shadows fall in the middle of the 

spectrum, between the low values of open water and the high values of ice, and are 

similar to MP RGB values. Ridge shadows exhibit a higher, but overlapping, Cn 
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value compared to MPs, and thus, most are separated from pond pixels in the 

algorithm (Figure 3.3e), but some misclassifications persist (Figures 3.7a, Buckley 

et al., 2020a: S17, S22, S27). The results (Table 4.1) show that deformed ice 

comprises on average 0.5% of surface pixels, whereas MP pixels comprise 15.4% 

on average. Assuming the number of misclassified ridge shadow pixels are less 

than or equal to the number of deformed ice pixels, ridge shadows can contribute a 

maximum MP pixel error of 0.5%. 

 

2. Sun glint: At the high end of the intensity spectrum, sun glint pixels in water are 

classified as ice or melt pond. When sunlight reflects off an open water 

disturbance, it can result in a specular reflection into the camera lens, which 

saturates the RGB values of those pixels. In our current algorithm, white pixels 

resulting from sun glint are misclassified as ice or dark melt ponds (Figures 3.7b, 

Buckley et al., 2020a: S3). However, sun glint appears only in large areas of open 

water, which are uncommon in our study region. We determined that sun glint is 

present in less than 5% of all images analyzed. We looked at three images where 

sun glint in open water occurred and found 2% of open water pixels were 

misclassified as ice or MPs. Therefore, we conclude that sun glint is a minor issue 

and can contribute a maximum MP pixel error of <<1%. 

 

3. Ice draft: It is difficult to distinguish ice draft from MPs in the pixel‐based, RGB‐

sensitive, algorithm (Figure 3.7c, Buckley et al., 2020a: S11, S12, S18, S31). The 

algorithm does not attempt to remove ice draft pixels from the MP pixels. Ice draft 
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is visible along ice edge floes, which are prevalent in images of unconsolidated ice 

due to a higher percentage of individual ice floes (resulting in a longer, aggregated 

floe perimeter), but can occur in any image. To quantify this error, we look at 

images with SIC < 80% (33% of all processed images). On average, 10% of pixels 

within these images are classified as melt pond pixels. Therefore, we can conclude 

that this misclassification has a moderate impact on images with SIC < 80% and 

has a minor impact on images with SIC ≥ 80%. 

 

4. Open water in close proximity to dark melt ponds: Open water and dark melt ponds 

have similar RGB values, and in images with both, there may be a natural break 

(minimum) in the Cb histogram between the features (e.g., Figure 3.4, Threshold 

E, Equation 3.9). For 1,858 images (11% of processed image), no minima in the 

Cb histogram are found, and Threshold E is determined relative to the mode 

(Equation 3.10, Figure S41). Misclassification of open water pixels as dark melt 

pond may occur during this step (Figures 3.7d, Buckley et al., 2020a: S16, S20, 

S28, S41). To quantify the potential impact of this misclassification, we consider 

the statistics associated with DMP pixels in these images. We find the percentage 

of DMP pixels per image ranges from 0% to 24% and is on average 4% with a 

standard deviation of 5%. These results suggest that potential misclassification of 

OW pixels as DMP pixels would only occur infrequently. Since this potential 

misclassification can impact a maximum of 11% of the data and is expected to 

occur infrequently, we conclude that it has minimal impact on the derived 

products.  
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5. Very light melt ponds: In the early stages of melt pond formation, as the snow 

melts and meltwater collects into pools, the ponds are very light in color and may 

be misclassified as ice (Figures 3.7e, Buckley et al., 2020a: S30, S38). The second 

iteration of the ice classification step (Equations 3.6 and 3.7) was introduced to 

rectify this misclassification by removing light melt pond pixels from the ice mask 

(Figure 3.3d). In the second iteration, on average, 3% of ice pixels were removed 

from the ice mask and classified as melt pond pixels. With this additional iteration 

to refine the ice step, we expect this misclassification is infrequent and has 

minimal impact on the results.  

Grouping pixels into object sets and considering geometric thresholding may 

improve the accuracy of classification and resolve some of the aforementioned 

misclassification errors. However, introducing these approaches in the current 

algorithm would increase computational processing time and may result in additional, 

unforeseen pixel misclassification errors. Because we did not consider any of these 

issues to impact the majority of the data (Buckley et al., 2020a), we did not 

implement any further steps to mitigate potential pixel misclassification. Where the 

near-infrared band is available (in Sentinel-2 and WorldView imagery), we use this 

band to enhance the classification pixels and introduce an ‘other’ category, 

encompassing some of these unusual circumstances where pixel reflectances don’t 

fall squarely into a surface type classification. Section 3.6.3 and Section 4.6 discuss 

these steps in further detail. 
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In summary, we conclude that pixel misclassifications due to cases 1, 2, 4, and 5 

are minor and do not significantly impact the results. Case 3 could potentially have a 

larger impact on the derived parameters (SIC and MPF), and this is further discussed 

in section 4.6. 
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Figure 3.7. Examples of pixel misclassification. Areas with misclassified pixels are in 
white boxes in the zoom of original DMS GeoTIFF on the left and classified image 
on the right to exemplify pixel misclassifications of: (a) Ridge shadows, (b) sun glint, 
(c) ice draft, (d) open water, and (e) light melt ponds. Figure modified from Buckley 
et al., 2020a. 
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3.6 Sentinel-2 Imagery Classification 

The algorithm developed for classification of the DMS imagery, can easily be 

applied to other RGB imagery, as all thresholds are adaptive to ranges of pixel values. 

However, a few modifications are made to the algorithm to improve the classification 

and account for the differences in the datasets. Figure 3.8 shows the modified 

algorithm flow diagram. 

Figure 3.8. A schematic detailing the modified surface classification algorithm 
including steps to identify ice, open water, melt pond, and other pixels. Final outputs 
are indicated by white boxes with thick black outline. Figure modified from Buckley 
et al., 2020a. 

3.6.1 Sentinel-2 Imagery Acquisition and Preprocessing 

Sentinel-2 imagery is available for browsing and download via the Sentinel Hub 

(Copernicus Sentinel-2 Data). We requested Sentinel-2 imagery from the multiyear 

ice region (tile locations shown in Figure 2.3), we set the maximum cloud coverage as 

10%, and downloaded all data matching these parameters from 1 June through 31 

August, 2020. As in the DMS imagery preprocessing, we manually inspect Sentinel-2 

images to discard images with pervasive cloud cover. In this case, we examine the 

near-infrared channel images, as it is easiest to differentiate clouds and ice with these 
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images. In the DMS preprocessing, we discarded images containing land. Here the 

Sentinel-2 tiles are much larger in size (100 x 100 km2), so discarded images 

containing land would mean discarding large areas of useful information. Figure 3.9 

shows the application of a land mask to a Sentinel-2 tile containing land. We used a 

GIS shapefile of the maximum sea ice extent from the National Ice Center, and 

modified it so that it did not include the landfast ice within the Canadian Archipelago. 

The inverse of this shapefile is the land and landfast ice mask; that is, everything 

outside of the modified shapefile is not included in the image analysis. In this 

example land is occupying both of the bottom corners of the tile (Figure 3.9a). When 

we apply the land mask, we omit the land pixels within the Sentinel-2 tiles (Figure 

3.9b).  

Figure 3.9. Example showing land mask application to Sentinel-2 imagery. (a) RGB 
composite of a Sentinel-2 tile containing land. (b) Application of Sentinel-2 land 
mask to remove the land pixels within the image. This image was captured on 25 June 
2020 and is located in the Lincoln Sea. 
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3.6.2 Utilization of NIR band 

The Sentinel-2 MSI measures reflected radiance in 13 spectral bands. In addition 

to the RGB bands, the Senteinl-2 near-infrared band is also 10 m resolution (whereas 

all other bands have a lower resolution). Water is very absorptive in the near infrared 

wavelengths (Curcio and Petty, 1951), and thus this channel can be used to discern 

between land and water (e.g., McFeeters 1996, 2013) (See Chapter 1, Figure 1.7). We 

add another step in the classification algorithm to enhance the discrimination between 

ponds and open water from sea ice. 

Prior to the sea ice classification described in subsection 3.5.1, we introduce a 

step to distinguish water pixels from ice pixels. We calculate the Normalized 

Difference Water Index (NDWI) from McFeeters (1996): 

Where Cg is the green band (Band 3), and CNIR is the near-infrared band 

(Band 8). NDWI is greater for water than for ice surfaces due to the low reflectance 

of water at IR wavelengths (McFeeters, 1996).  In the NDWI histogram, water pixels 

occupy the higher value bins. If the histogram has one mode, threshold H is set as the 

half max on the left of the mode: 

[	 = 	\?]^_9:_1_ℎ9A (3.18) 

If the NDWI histogram has more than one mode, we identify the highest pixel 

value mode as NDWI_ma_m.  Threshold H is set as the minimum to the left of 

NDWI_ma_m: 

\?]^ = 	
25 − 2'()
25 + 2'()

 (3.17) 
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[ = \?]^_9<_9 (3.19) 

All pixels with NDWI ≤ H are designated as non-water and move on to the sea ice 

classification step. All pixels with NDWI > H are designated as water pixels, then 

skip the sea ice classification step and move on to the open water classification step 

described in subsection 3.5.1. In this step, water pixels are classified as either melt 

ponds or open water. 

3.6.3 Accounting for Other Pixels 

Sentinel-2 has a lower resolution than the DMS imagery and with a 10 m 

resolution each pixel may include multiple types of surfaces. For example, a pixel 

that straddles the edge of a pond would contain melt pond and sea ice. We call these 

pixels “mixed pixels.” This issue was negligible in the DMS classification due to the 

0.1 m pixel size, but with the 10 m Sentinel-2 imagery, it becomes more significant. 

For that reason, we introduce a category of ‘other’ pixels, capturing both mixed pixels 

and pixels that do not fall into a particular category. For example, late in the summer 

as the ocean begins to refreeze, thin layers of ice form in the leads between sea ice 

floes, and this thin ice has a different spectral reflectance than thicker snow covered 

ice.  In this section, we describe the steps added to the algorithm to take advantage of 

the near-infrared band and to account for the ‘other’ pixels. 

With a larger pixel size in Sentinel-2 (10 m) than in DMS imagery (0.1 m), mixed 

pixels are common (Figure 3.10d) and thus must be distinguished from other 

classification categories. Mixed pixels are identified in the sea ice classification step. 

All non-water pixels enter the sea ice classification step where they are classified as 
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sea ice or mixed pixels. This step follows the methodology described in subsection 

3.5.1. Pixels greater than the threshold in the Cr are identified as ice. Pixels less than 

the threshold, are identified as mixed pixels (Cr < C, see subsection 3.5.1 and Figure 

3.8). Thus, mixed pixels are identified as those that are not as bright in Cr as ice, and 

not as high in NDWI as water pixels are. These pixels typically cover multiple 

surfaces, for example: sea ice edges and melt pond edges. Figure 3.10 shows an 

example of a full Sentinel-2 tile (a), zoom in of a 10 km section (b) and the 

classification of a 1 km section (c-d), and the coincident higher resolution (1.3m) 

WorldView imagery and classification (e-f). In the Sentinel-2 image, the larger pixel 

size does not resolve the small melt pond features (Figure 3.10c), as seen in the 

WorldView imagery (Figure 3.10e). Pixel misclassification may occur in this 

situation where the ponded sea ice is instead classified as sea ice (Figure 3.10d). Also, 

along the sea ice edge, where mixed pixels occur, the pixels are classified as ‘other’ 

(Figure 3.10d, green). 
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Figure 3.10. Example classification of Sentinel-2 imagery at (-110° W, 80° N) 
observed on 27 July 2020. (a) Sentinel-2 tile shown in true color. The white box in (a) 
shows the location of (b). (b) A zoom in of the Sentinel-2 image, shown in the white 
box in Figure a. The 1 km by 0.8 km white box in (b) shows the location of (c-f). (c) 
is the zoom in of (a) and (e) shows spatially and temporally coincident WorldView 
imagery (WorldView imagery copyright 2020 Maxar). Classification of these images 
are shown in (d) and (f), respectively with sea ice (red), melt ponds (yellow), open 
water (blue), and other (green). Figure from Buckley et al., 2022. 

3.6.4 Melt Pond Color Classification 

In the Sentinel-2 and WorldView imagery classification, we do not separate the 

melt ponds into dark, medium, and light-colored melt ponds, as we do in the DMS 
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imagery. That step in the DMS imagery classification is used for a comparison of 

melt pond colors on different ice types, but for the study presented in Chapter 6, we 

only work with the multiyear ice region when classifying Sentinel-2 and WorldView. 

3.7 WorldView Imagery Classification 

We only utilize about 20 WorldView scenes in this work, and so 

preprocessing and quality control is done manually. We visually inspect for lands and 

clouds in the imagery and use images containing only sea ice and water. The 

WorldView classification follows the same classification routine as the Sentinel-2 

imagery. We utilize WorldView bands 5 (red), 3 (green), 2 (blue), and 7 (near-

infrared). The classified WorldView images are used for comparison with coincident 

Sentinel-2 imagery to assess the errors and limitations that occur with the lower 

resolution Sentinel-2 dataset (Chapter 6, section 6.4.1). 

3.8 Derived Summer Melt Parameters 

After the classification of each surface pixel, we derive summer melt features 

on sea ice by taking ratios of ice-type pixels. SIC, MPF and PCF (for DMS imagery) 

are derived on a per-image basis, thus taking advantage of the highest resolution 

available.  

3.8.1 Sea Ice Concentration 

WMO (1970) defines SIC as “the amount of the sea surface covered by ice as 

a fraction of the whole area being considered.” Here, we calculate the percentage and 

define SIC as:  
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_^2 =
`a + ^2H

`a + ^2H + b]
		× 	100 (3.20) 

3.8.2 Melt Pond Fraction 

MPF is the ponded area relative to the sea ice area (Webster et al., 2015). We 

define MPF as the ponded percentage of the sea ice area: 

`aP =
`a

`a + ^2H
		× 	100 (3.21) 

Here we calculate MPF for all data collected within the ice pack, defined as areas 

where SIC > 15%. This minimizes the effects of submerged ice draft or brash ice 

contributing to the MPF parameter close to the ice edge. 

3.8.3 Pond Color Fraction  

For the DMS imagery where the melt pond classification is separated into 

light, medium and light-colored ponds, we calculate PCF as an additional statistic to 

normalize the pond color pixels by the total melt pond pixels per image. The number 

of surface pixels in each pond color classification type (light, medium, dark) is 

divided by the total number of MP pixels in the image to determine the make-up of 

pond color within the image: 

a2P*+), =
?`a

?`a +``a	 + A`a
		× 	100 (3.22) 

a2P-.* =
``a

?`a +``a	 + A`a
		× 	100 (3.23) 
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a2P/(012 =
A`a

?`a +``a	 + A`a
		× 	100 (3.24) 

3.9 Chapter Summary 

In this chapter we described the classification algorithm developed to identify 

high resolution sea ice image pixels as sea ice, open water, and melt pond. In the 

DMS imagery, we further classified melt ponds into light, medium and dark-colored 

ponds. Sections 3.2-3.4 described the DMS imagery classification from Buckley et 

al., 2020a. Section 3.6 detailed the modifications made to the algorithm for 

application to Sentinel-2 imagery. These modifications include: a land mask (3.6.1), 

the incorporation of the NIR band to improve the disambiguation of water and ice 

pixels (3.6.2), and the introduction of the ‘other’ category to account for larger pixel 

size in the Sentinel-2 imagery, where pixels may contain multiple surface types 

(3.6.3). In the WorldView and Sentinel-2 imagery classification, we introduced a 

classification category: ‘mixed pixels’, to account for the larger pixels. We discussed 

the calculation of geophysical parameters: SIC, MPF, and pond color fraction 

(Section 3.8). DMS classification results are shown and discussed in Chapter 4. The 

classification of Snetinel-2 and WorldView images for understanding melt evolution 

in 2020 is presented in Chapter 6. Conclusions and suggestion of future work with the 

classification algorithm is offered in Chapter 7. 
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Chapter 4: Classification of Sea Ice Summer Melt Features in High‐

Resolution IceBridge Imagery 

4.1 Motivation and Goals 

This chapter presents the results from the classification of the Operation IceBridge 

Digital Mapping System (OIB DMS) imagery from the 2016 and 2017 Arctic summer 

campaigns (Buckley et al., 2020a). The goals of this chapter are: 

• Present the results of the DMS image classification using the methodology 

described in Chapter 3. 

• Describe patterns of melt features (open water, sea ice, melt ponds) and 

derived parameters: sea ice concentration (SIC), melt pond fraction (MPF), 

and pond color fraction (PCF). 

• Put results into context of existing datasets and literature 

In section 4.2, we describe the application of the algorithm to the DMS imagery 

and discuss the along-track patterns of the classified melt features and parameters. In 

section 4.3 we focus on the derived SIC and compare with existing SIC datasets. In 

section 4.4, we look at the MPF and compare to findings from previous studies. 

Section 4.5 describes the regional differences in pond characteristics, and Section 4.6 

presents the impact of misclassified pixels. The chapter is summarized in section 4.7. 
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4.2 Feature Classification 

We applied the classification algorithm to 17,033 DMS images, covering an 

area ~4,000 km2 in size (Buckley et al., 2020a). The percentages of surface pixels 

classified in each ice‐type category were automatically calculated on a per‐image 

basis. Table 4.1 summarizes the classification statistics averaged per flight, both in 

terms of the percentage of ice type categories and the derived data products (SIC and 

MPF). Open water percentages in the B/C Seas surveys over the marginal ice zone 

(MIZ) (19– 38%, Table 4.1) are much greater than those in the CA region in the 

consolidated ice pack (4–16%, Table 4.1). MP color classification percentages are 

also related to the regional ice types; dark MPs are more prevalent in the B/C Seas 

region on first year ice; light MPs are more prevalent in CA region of multiyear ice 

(Table 4.1). The melt pond fraction and color are also related to the timing of surveys 

related to the regional melt onset date. The time elapsed between melt onset and the 

survey flights was greater in 2016 than in 2017, allowing ponds more time to evolve. 

The highest percentage of dark MPs (17%, Table 4.1) was found on 15 July 2016, a 

flight conducted entirely south of 75°N, in an area well into the melt season 

(Anderson et al., 2019). MPF results are further discussed in section 4.3.  
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Table 4.1. Results of automatic surface classification, averaged per flight.  

 
 Classification Category (%) Sea Ice Concentration (%) Melt Pond Fraction (%) 

Flight Date N UI DI OW DMP MMP LMP N mean 5% 95% stdev N mean 5% 95% stdev 
13 July 2016 1759 42.9 0.2 38.4 5.1 2.5 10.9 1759 61.6 0.0 100.0 43.4 1222 31.2 12.4 67.6 16.5 
14 July 2016 1523 61.2 0.5 18.9 10.3 2.6 6.5 1523 81.1 26.9 100.0 22.3 1475 23.2 10.6 40.8 11.5 
15 July 2016 2540 45.6 0.6 32.2 17.2 0.8 3.6 2540 67.8 11.6 100.0 26.8 2351 31.9 17.4 61.7 14.8 
19 July 2016 2774 54.1 0.4 31.5 9.2 1.1 3.7 2774 68.5 0.0 100.0 29.4 2469 20.0 8.9 33.8 8.0 
20 July 2016 225 55.8 1.2 29.7 9.7 1.3 2.3 225 70.3 0.0 100.0 34.6 193 18.7 1.5 92.0 25.2 
21 July 2016 654 60.5 1.3 26.6 7.0 1.1 3.5 654 73.4 0.0 100.0 32.9 577 16.3 1.4 55.0 17.8 
17 July 2017 985 83.0 0.5 7.6 1.6 0.5 6.8 985 92.4 71.4 100.0 11.5 980 9.6 3.1 19.7 7.6 
18 July 2017 158 84.6 1.0 4.2 1.1 1.1 8.0 158 95.8 86.7 100.0 4.6 158 10.6 4.7 23.5 5.9 
24 July 2017 2268 69.8 1.0 15.9 2.2 2.8 8.3 2268 84.1 14.4 100.0 22.2 2153 15.7 9.5 22.0 5.0 

25 July 2017 (a) 2120 79.3 0.3 6.7 3.0 2.5 8.2 2120 93.3 79.6 100.0 7.5 2119 14.6 6.5 23.4 6.0 
25 July 2017 (b) 2027 78.5 0.0 8.9 1.2 1.4 10.0 2027 91.1 75.1 100.0 9.7 2027 13.8 7.8 19.8 4.5 

 
Note. Percentage of surface pixels in classification categories: undeformed ice (UI), deformed ice (DI), open water (OW), 
dark melt pond (DMP), medium melt pond (MMP) and light melt pond (LMP). N is the total number of classified images 
per flight. Table from Buckley et al., 2020a. 
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We examine the along‐track variability in the percentage of sea ice (deformed 

and undeformed), open water, and MPs (light, medium, dark), per image in the flight 

profiles. The along‐track classification is more variable in the B/C Seas than in the 

CA (Figures 4.1a and 4.1b). Large deviations in the percentage of open water in the 

B/C Seas are observed (blue line, Figure 4.1) and increase to 100% for a stretch of 

images during the 19 July 2016 flight. More along‐track consistency in the surface 

classification percentages is observed in the CA. There, ice cover characteristics are 

less variable, with consistently low percentages of OW pixels (between 0% and 20%) 

and high percentages of ice pixels throughout the flights (between 60% and 100%). 

The exception is the 24 July 2017 flight, which sampled the Lincoln Sea polynya at 

the northern limit of the Nares Strait, where a large area of open water contributed to 

a high flight‐averaged open water percentage of 16% (Table 4.1). The percentage of 

melt pond pixels per image is dependent on the amount of ice in the image. The MP 

pixel percentage in the B/C Seas ranges from 0–50%, exhibiting high variability in 

MP pixels per image, because of the high variability in SIC in this region. The flight 

averaged MPFs in this region range from 16% to 32% (Table 4.1). The highest MP 

percentages and highest MPF (32%, Table 4.1) were observed during the 15 July 

2016 survey (Figure 4.1a). MP areal percentages are lower and less variable in the 

CA at ~20%, resulting in flight‐averaged MPFs that range from 10% to 16% (Table 

4.1). 

Next, we consider the MP color classification, which reveals regional 

differences in pond type. The along‐track profiles allow us to examine the variability 

as the flight traverses the ice cover (Figures 4.1c and 4.1d), while the histograms 
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provide a summary of the PCF for the entire season (Figures 4.1e and 4.1f). Dark 

MPs are the predominant MP type in the 2016 surveys over the B/C Seas (Figure 

4.1e), with the exception of the flight on 13 July 2016 (Figure 4.1c). The two flights 

that exhibit the highest fraction of dark MPs (PCFD = 79% and 65%) (Figure 4.1c), 

are located in the Chukchi Sea. In contrast, light MPs prevail in the CA region 

(Figure 4.1f). Only a small segment of the 25 July 2017 (a) flight had more dark MPs 

than light MPs (Figure 4.1d). On average in the B/C region, PCFD was 60%, PCFM 

was 9%, and PCFL was 31% (Table 4.1, Figure 4.1e). In the CA region PCFD was 

16% on average, PCFM was 16%, and PCFL was 68% (Table 4.1, Figure 4.1d). 

These results confirm that MP color is closely related to the ice type on which the MP 

forms. 
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Figure 4.1.  Results of DMS image classification. (Top row) Percentage of surface 
pixels classified as ice (red dots), MP (black dots), and open water (blue dots) in 2016 
(a) and 2017 (b), with running means calculated over 100 images (solid lines). 
Results are presented in chronological order, with vertical dashed lines (black) 
separating flights. (Middle row) PCF showing percentage dark (red), medium (black), 
and light (blue) MPs per image in 2016 (c) and 2017 (d). Solid and dashed lines same 
as in top row. (Bottom row) Frequency distributions of PCF for 2016 (e) and 2017 (f). 
Figure from Buckley et al., 2020a. 
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4.3 Sea Ice Concentration 

Following pixel classification, and applying Equation 3.20 (Chapter 3, 

subsection 3.8.1), we determine the SIC per image (Table 4.1, Figure 4.2). The high 

resolution of the parameters results in a wide range of values, because some images 

contain no open water, while others are 100% open water. We examine the fifth and 

95th percentile of the SIC and MPF parameters rather than the minimum and 

maximum values, as they provide a more robust indication of the range, and do not 

rely on a single point that may be an outlier. It is interesting to note that the 95th 

percentile SIC of all flights was 100% (Table 4.1), as expected since these flight 

surveys were designed to find and measure sea ice. However, the fifth percentile 

provides more detail about the regional setting, with low values in 2016 in the B/C 

Seas, which sampled the MIZ (Figure 4.2a), an area of the ice cover affected by 

waves between the ice edge and the consolidated ice pack (WMO, 1970) and higher 

values for 2017 in the CA region, which sampled the consolidated ice pack (Figure 

4.2b).  

The average SIC of all the images during the summer surveys was 79%, with 

a standard deviation of 28% (Table 4.1). Average SIC was 69% in the B/C Seas and 

90% in the CA, with standard deviations of 32% and 15%, respectively (Table 4.1). 

The B/C Seas flight‐averaged SIC ranged from 62% to 81%, and the lowest flight‐

averaged SIC was observed during the 13 July 2016 survey. Mapping the SIC for that 

flight line, which occurred along longitude −150°W, shows that the survey crossed 

large areas of open water at the ice edge (Figures 2.3 and 4.1a), which reduced the 
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flight‐averaged SIC. The fifth and 95th percentiles of SIC for this flight are 0% and 

100%, respectively, confirming that this flight sampled both open water areas and the 

consolidated ice cover. Conversely, the 2017 campaign was conducted almost entirely 

within the consolidated ice pack, and flight‐averaged SIC ranged from 84% to 96%, 

with the highest concentrations observed during the survey on 18 July 2017 (Table 

4.1). However, we note that many of the images from this flight were eliminated due 

to clouds (46.8%) or aircraft roll (25.8%), leaving only 158 images for analysis. The 

lowest flight‐averaged SIC of 2017 occurred on 24 July, a flight sampling the Lincoln 

Sea and northern Nares Strait, between Greenland and Ellesmere Island. The flight 

samples a long stretch of open water (the Lincoln Sea polynya) at the northern limit 

of the strait, reducing the average SIC observed during this flight survey (Figure 

4.2b). The variability of SIC in this flight is demonstrated in Figure 4.2c, where an 

image at 83.4°N, −59.9°W with 65% SIC, is compared with an image at 83.9°N, 

−59.6°W, with 100% SIC (Figure 4.2d).  

We examine the SIC distributions for the B/C Seas and CA regions in the 

context of satellite‐derived measurements. A wide range of DMS SIC is evident when 

compared to coincident AMSR2 SIC (Figures 4.2a and 4.2b) and this is demonstrated 

in Figures 4.2c and 4.2d. We extracted the daily AMSR2 SIC and CDR SIC values, 

(see Chapter 2, section 2.5 for details on these data), on the same date and at the same 

location as each DMS image acquired along the OIB flight lines (Figure 4.2e and 

4.2f), demonstrating that all data products exhibit the same regional characteristics. 

Our results show consistency between the DMS‐derived SIC and the satellite data sets 

in terms of mean and modal SIC and overlapping distributions of SIC (Figures 4.2e 
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and 4.2f) for both regions surveyed. In both regions, the modal SIC was 95–100% for 

all three products. In the B/C Seas region a secondary mode exists with similar modal 

values for all three products (DMS SIC 75–85%, AMSR2 SIC 70–75%, CDR SIC 

75–80%, Figure 4.2e). The average AMSR2 and CDR SIC in the B/C Seas are 

consistent at 82% and 81%, respectively, and on average, 12% greater than DMS 

SIC, which is 69% (Figure 4.2e). AMSR2 SIC and CDR SIC in the B/C Seas have 

wider distributions (Figure 4.2e) than in the CA region (Figure 4.2f), where more than 

90% of the satellite‐derived data have a SIC of 95% or more. 

The AMSR2 SIC in the CA region shows almost entirely 100% ice 

concentration with the exception of the site of the Lincoln Sea polynya at the north of 

the Nares Strait, whereas the higher‐resolution DMS SIC shows there are other areas 

of low ice concentration (Figure 4.2b and 4.2f). In the CA region, the mean value of 

SIC recorded by the DMS was 9% less than the average satellite-derived product. 

Due to their lower resolution compared to the airborne data, the satellite‐derived 

products (AMSR2 SIC at 12.5 km and CDR SIC at 25 km) cannot resolve the 

smallest areas of open water and thus do not capture the variability of the area that is 

evident in the DMS SIC results (Figures 4.2a, 4.2b, 4.2e, and 4.2f). The lowest-

resolution product is the CDR SIC at 25 km and this shows no ice free grid cells in 

the campaign region, and a SIC of 35–40% is the lowest SIC observation. In the CA, 

all three products agree in terms of a modal value of 100% SIC, however, the DMS 

SIC suggested there is a continuous distribution of SIC ranging from 60% to 100%. 

Previous validation of the AMSR2 SIC has shown a positive bias of 3.9% (Meier et 

al., 2017), which is consistent with the results shown here for the CA region. 
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Figure 4.2. SIC results calculated per image. (a) DMS SIC overlaid on the AMSR2 
SIC on 17 July 2016 and (b) 21 July 2017. (c) Sample DMS images of sea ice in the 
Lincoln Sea on 24 July 2017 at −59.3°W, 83.9°N with relatively low SIC (65%) and 
(b) −59.6°W, 83.4°N with high SIC (100%). (e) frequency distributions of DMS SIC, 
AMSR2 SIC and CDR SIC, extracted at the same time and location of each DMS 
image acquisition in 2016 and (f) 2017. Figure modified from Buckley et al., 2020a. 



 

 

103 
 

4.4  Melt Pond Fraction 

Implementing Equation 3.18 (Chapter 3), we calculate MPF per image. On 

average, the MPF was 25% in the B/C Seas, and 14% in the CA region, with standard 

deviations of 15% and 6%, respectively (Table 4.1). The highest flight‐averaged MPF 

was 32%, occurring on 15 July 2016. This flight surveyed sea ice in the Chukchi Sea, 

at the western limit of the aircraft range from Utqiaġvik, Alaska (Figure 4.3a). The 

entire flight line was south of 75° N and surveyed areas of ice where the melt season 

was well underway. Here ponds have fully developed and have laterally spread across 

ice floes. Conversely, the lowest flight‐averaged MPF is 10%, which occurred during 

the flight on 17 July 2017, over the area north of Greenland and the Canadian 

Archipelago, an area of known ice convergence (Kwok, 2015), due to coastal 

boundaries that restrict ice motion (Figure 4.3b). Here, pressure ridges on deformed 

ice restrict the lateral spread of MPs (Figure 4.3c and 4.3d) and contribute to lower 

MPF. The 17 July 2017 flight was repeated one week later on 25 July, where the 

flight‐averaged MPF was 14%, an increase of 4% over the survey of the same region 

one week earlier, demonstrating the temporal evolution of MPF in the CA region. 

In our study MPF ranges from 16–32%, with an average of 25% (Table 4.1). 

This is consistent with the magnitude and variability of MPF found in previous 

studies. For example, Perovich et al. (2002) found a mean MPF of 18.8% in the 

northern Chukchi Sea in July 1998, with variability between 5% and 50% (Perovich, 

et al., 2002). Rösel and Kaleschke (2012) found MPFs of 40–50% in the B/C Seas in 

mid‐July 2011. Webster et al. (2015) found MPFs ranging from 30% to 50% in a 
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study area on first year ice in the southern B/C Seas, overlapping with the region 

surveyed by OIB in 2016. 

We found an average MPF of 14% in the CA region in mid‐July 2017 (Table 

4.1, Figure 4.3b), slightly lower than previous studies have reported. For example, 

Rösel and Kaleschke (2012) reported MPFs ranging from 25– 35% in mid‐July 2011 

in the CA region, north of Greenland and Ellesmere Island, Mäkynen et al. (2014) 

found MPFs ranging from 22% to 43%, averaging 34% in July 2009 in the Greenland 

Sea to the northeast of Station Nord, and Istomina et al. (2015) found MPFs ranging 

from 10% to 30% north of Greenland in mid‐July 2009.  

We also demonstrate the reliability of our DMS results by evaluating DMS‐

derived MPF using MPF derived from a Sentinel‐2 image that is coincident with a 

section of a flight line in the Lincoln Sea over mixed sea ice conditions. On 24 July 

2017, Sentinel‐2 captured imagery of the Lincoln Sea and northern Nares Strait, near 

coincident in time to a 57 km segment of the DMS survey that occurred the same day 

(delta time = 4.5 hours). To assess algorithm performance, we apply our classification 

algorithm to a 5 km wide strip of Sentinel‐2 True Color Imagery (TCI) centered on 

the 57 km‐long section of the DMS survey. We split the Sentinel‐2 TCI into 57 

sections (1 km long by ~ 5 km wide) and a comparison to classification results with 

398 spatially coincident DMS images in this region is shown in Figure 4.3f. The 

results show strong agreement in the MPF distribution derived from both DMS and 

Sentinel‐2 imagery, which is asymmetric in both cases with a modal MPF value of 

10–15% (Figure 4.3f). Mean MPF was 15% for DMS images and 13% for Sentinel‐2. 
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We find 90% and 100% of the DMS-derived and Sentinel-2-derived MPF fall within 

0–25%, respectively.  Ten percent of DMS images had a derived MPF in the range 

25– 60%, demonstrating the ability of high‐resolution imagery to capture more 

variability in the ice cover at a smaller scale that is not fully captured in the lower‐

resolution (10 m) Sentinel‐2 images. In section 6.4.3 we further discuss the impact of 

lower resolution data on the derived MPF and SIC is provided in section 6.4.3 where 

we compare the Sentinel-2 and WorldView derived parameters. 

A final step is to consider images with very high MPF, inspecting those with a 

derived MPF greater than the 95th percentile (40% MPF) (821 images, 5% of the 

processed images). An example is shown of sea ice in the Lincoln Sea (Figure 4.3d), 

where a large pond in the upper left of the image had not yet drained through the 

thick, multiyear ice and had spread laterally across the relatively undeformed sea ice 

surface until a ridge was encountered. Previous studies have found MPFs of up to 

75% on first year ice (Scharien and Yackel, 2005). In our study, less than 1% of 

images have MPFs of 75% or greater. Images with many small areas of submerged 

ice (ice draft) misclassified as MPs could also result in MPFs that are biased high (see 

Chapter 3, section 3.5.5). 
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Figure 4.3. MPF results calculated per image. (a) MPF mapped for 2016, where * 
marks area with anomalous MPF > 40% and (b) 2017, with the black box indicating 
the region compared with coincident Sentinel‐2 imagery. (c) Sample DMS images of 
sea ice in the Lincoln Sea acquired on 24 July 2017 at −59.6° W, 83.3°N with low 
MPF (17%) and (d) −59.9°W, 82.6°N with high MPF (50%). (e) Frequency 
distributions of MPF for 2016 (blue) and 2017 (pink). Inset is cumulative distribution 
of MPF for 2016 (blue curve) and 2017 (pink curve). (f) MPF distribution for 
coincident Sentinel‐2 segments (light blue), DMS images (pink). The average MPF 
derived from Sentinel‐2 strips and coincident DMS images is indicated by dark blue 
and red vertical lines, respectively. Figure modified from Buckley et al., 2020a. 
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4.5 Regional Pond Characteristics 

The divergence in the 2016 and 2017 DMS classification results is not a 

function of time but rather related to the latitudinal location and ice types in the two 

areas. Compared to previous years, 2016 exhibited a lower sea ice extent the B/C 

Seas (Fetterer et al., 2017). On July 13, just prior to the commencement of the 

campaign, the Deadhorse meteorological station in Prudhoe Bay, Alaska experienced 

a record‐setting high temperature of 29 °C (Menne et al., 2012). The melt onset in the 

southern Beaufort Sea occurred in late April and early May, 6 weeks prior to the 

average melt onset date (Anderson et al., 2019). In contrast, the 2017 surveys were 

conducted north of Greenland and Ellesmere Island in the CA region, an area that 

experiences regional ice convergence and is pushed against the continent (Haas, 

2017). Here, thick, deformed ice is trapped and more likely to survive the summer 

melt season and continue to grow in the following winter. Thus, the CA region is 

composed of predominantly multiyear ice. These conditions result in a consolidated 

ice cover, with minimal open water for new ice to form. Melt onset in this region 

occurred in early to mid- June (Anderson et al., 2019). The regional differences in ice 

type and the timing of melt onset explain the distributions of 2016 and 2017 MPF and 

SIC (Figures 4.2 and 4.3). 

SIC in the B/C Seas region was significantly lower than in the CA (Figures 

4.2e and 4.2f), because the ice edge retreats off the north coast of Alaska early in the 

melt season. The 2016 flights sampled a mix of ice types primarily in the MIZ, and a 

mean SIC of 69% was recorded in the B/C Seas, compared to an average SIC of 90% 
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in the CA. The SIC distribution in the B/C Seas is bimodal due to one flight occurring 

in the consolidated ice pack and the others occurring in the MIZ. The sea ice in the 

B/C Seas region is more mobile because it is influenced by the Beaufort Gyre, 

creating divergence in some areas and convergence in others (Haas, 2017). For these 

reasons, the standard deviation of SIC in B/C Seas region was 32%, 17% greater than 

that in the CA (at 15%). The results validate the expectation that MPs present 

differently on the first year ice than on multiyear ice (Figure 4.3e). The 

predominantly first year ice area surveyed in 2016 exhibits a higher MPF, with more 

variability than the predominantly multiyear ice area surveyed in 2017. The average 

MPF calculated per image in the B/C Seas is 25% with a standard deviation of 15% 

(Table 4.1). This compares with an average MPF of 14% with a standard deviation of 

6% in the CA. The B/C Seas region, although predominantly first year ice, does 

include multiyear floes imported into the region via the Beaufort Gyre, which may 

explain the wider distribution of MPF in this region. 

Our results also demonstrate that the MP color distribution is closely linked 

with ice type, as expected. Overall dark MPs dominated in the B/C Seas regions (with 

an average PCFD of 60%) while light ponds dominated the CA region (with an 

average PCFL of 68%). Because the color of the MP is related to the albedo of the 

pond, which controls the amount of sunlight absorbed and transmitted by the sea ice 

cover, our derived MPF and PCF suggest that sunlight absorption in the Arctic is 

regionally variable, with lower transmission rates in the Central Arctic. We can 

expect an increase in light transmission as the sea ice continues to transition to a 

higher fractional first year ice cover (Perovich et al., 2018), although the precise 
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nature of future changes will also be influenced by the latitudinal location of the 

remaining summer sea ice and its cumulative exposure to incoming solar radiation 

throughout the melt season. This would have important consequences for the marine 

ecology of the region, where large phytoplankton blooms are expected to become 

more common with increasing light transmission through the sea ice (Arrigo et al., 

2012; Horvat et al., 2017). 

4.6 Pixel Misclassifications 

In this section we discuss the impact of potential misclassification of pixels 

(described in section 3.5.5) on the derived SIC and MPF products. First, we consider 

SIC. Pixels misclassified as melt ponds due to sun glint and open water (section 

3.5.5) could potentially increase SIC anomalously, while misclassification of melt 

pond as sea ice and vice versa do not impact the estimate of SIC since both are 

considered “ice: in the calculation of SIC. However, the overall consistency between 

the DMS SIC results and the independent and coincident AMSR2 and CDR SIC 

products (section 4.3, Figures 4.2a and 4.2b) demonstrates the robustness of the pixel 

classification technique and the reliability of the DMS SIC. In both regions, the 

distributions of SIC derived from the DMS, AMSR2, and CDR data have a modal 

value of 95–100% SIC. Moreover, the DMS SIC product shows consistent spatial 

gradients in SIC with the AMSR2 SIC at a regional level as well (Figures 4.2a and 

4.2b). Taken together, these results suggest that the pixel misclassifications 

contributing to a positive SIC bias are minor, and we can discount the impact of any 

potential misclassification on the derived SIC results. 
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Next we consider the impact of pixel misclassification on MPF. The 

misclassification of ice and open water pixels as melt pond pixels (section 3.5.5) 

could increase MPF anomalously, while misclassifications of light melt ponds as ice 

could decrease MPF. Particular misclassifications (such as sun glint classified as ice, 

ice draft classified as melt pond) occur most frequently in images with low SIC. To 

mitigate the impact of these misclassifications, we limit the MPF calculation to 

images with SIC ≥15%. However, care must be taken when interpreting results with 

anomalously high MPF (MPF > 40%, see section 4.4), which although feasible 

(Figure 4.3d), may be indicative of a positive bias due to pixel misclassification. MPF 

> 40% is found in 821 images, (5% of processed images), 585 of which occur in the 

surveys on 13 July 2016 and 15 July 2016 (see survey regions marked by the symbol: 

* in Figure 4.3a). 

4.7 Chapter Summary 

In this chapter we described the results of applying the classification 

algorithm developed in Buckley et al., (2020a) to over 17,000 DMS images collected 

over sea ice undergoing melt in the summers of 2016 and 2017. We discussed the 

along-track variability in the percentage of sea ice, open water and melt ponds 

(Section 4.2). The results showed steady along-track values of classification 

percentages in the Central Arctic region, with more variable results in the Beaufort 

and Chukchi Seas. SIC averaged 69% in the Beaufort and Chukchi (B/C) Seas and 

90% in the Central Arctic (CA). We found that both MPF and PCF are dependent on 

the ice type on which ponds form. MPF averaged 25% in the B/C Seas, where dark 

ponds dominated and had a PCF of 60%, compared to a PCF of 9% and 31%, for 
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medium and light ponds, respectively. MPF averaged 14% in the CA, where the PCF 

of light ponds was 68%, compared with 16% for both medium and dark ponds. 

Section 4.3 detailed our findings of the derived SIC and compared the results derived 

using DMS data with those derived from the AMSR2 and CDR datasets. We found 

the DMS- derived SIC had more variability than the satellite datasets, and the lower 

resolution AMSR2 and CDR datasets were biased high, which was consistent with 

previous studies. In section 4.4 we presented the MPF results and discussed them in 

the context of previous findings of MPF on first year ice and multiyear ice. In this 

section we also demonstrated the ability to apply the classification algorithm to 

Sentinel-2 data. We showed that although the Sentinel-2 and DMS-derived MPF 

values are largely consistent, the DMS-derived MPF showed more variability than 

that derived from coincident Sentinel-2 data. This is a key result as we consider the 

findings described in Chapter 5, where we apply the classification algorithm to 

thousands of Sentinel-2 images. The regional characteristics of the derived 

parameters were discussed in Section 4.5, and we found that these parameters are 

closely linked with ice type. We also discussed the impact of potential pixel 

misclassification and concluded that care must be taken when interpreting results with 

MPF > 40%, but the overall effects of pixel misclassification on the derived MPF and 

SIC were minimal. The impact of the findings presented and discussed in this Chapter 

are discussed in Chapter 7, Conclusions.  
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Chapter 5: Melt Pond Depth Retrieval from Laser Altimetry 

5.1 Motivation and Goals 

Measurements of the sea ice and local sea surface height allow for the 

calculation of sea ice freeboard, and when combined with snow depth estimates, can 

provide sea ice thickness estimates (e.g., Laxon et al., 2013) (see Chapter 2, section 

2.6.1). Measurements of sea ice thickness from submarines combined with those from 

altimeters reveal that the average thickness at the end of the melt season has 

decreased by 53% (1.6 m) over 40 years (from 1958-2008) (Kwok and Rothrock, 

2009). Despite this knowledge, we still lack the ability to derive Arctic wide summer 

sea ice thickness estimates. In the summer, altimetry is impacted by the melting sea 

ice surface (Sallila et al., 2019; Kwok et al., 2021). Because the melt ponds that form 

on the sea ice in the summer appear radiometrically similar to open water, algorithms 

to derive the sea ice freeboard and thickness break down. Furthermore, the presence 

of melt ponds and weight of meltwater within the ponds effect the traditional sea ice 

thickness calculations based on hydrostatic equilibrium (See Chapter 2, section 2.6.1). 

A crucial step towards adjusting algorithms to derive sea ice freeboard and thickness 

is understanding the altimeter response to the melting sea ice surface. The goals of 

this chapter are to: 

• Develop a technique for deriving melt pond depth from Operation IceBridge 

Airborne Topographic Mapper (ATM) waveform data by utilizing the 

classified DMS imagery (Chapters 3 and 4). 
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• Develop the melt pond algorithm (MPA) to identify and track melt ponds in 

the ICESat-2 photon cloud. 

• Describe the Density Dimension Algorithm – bifurcate – sea ice that we use to 

augment and compare with the MPA tracking.  

We utilize altimetry to measure melt ponds that form on Arctic sea ice in the 

summer. Because of their small size (less than 1 meter to 100s of meters in width) 

(Perovich et al., 2002b), high resolution measurements of the sea ice surface are 

necessary. Both ATM and ATLAS have a sufficiently small footprint and high 

sampling frequency that the measurement of melt ponds requires. The green light 

(532 nm) of the both the ATM and ATLAS lasers is able to penetrate the surface of a 

melt pond, travel through the water column and reach the bathymetry of the pond (see 

Chapter 2, Figure 2.6), and thus laser energy is returned from both the pond surface 

and the bathymetry (Buckley et al., 2019). The chapter is organized as follows: 

section 5.2 describes the derivation of melt pond depth from the ATM. We describe 

the algorithms developed to track melt ponds in ICESat-2 section 5.3. 

5.2 Analysis of Airborne Topographic Mapper Altimetry 

The ATM Return Strength and Elevation with Waveforms product is available 

from the seven sea ice flights conducted as part of the 2017 OIB summer sea ice 

campaign (see Chapter 2.6.2 for more details about the dataset). In this section, we 

demonstrate the ability to derive melt parameters from the waveform data (Buckley et 

al., 2019). The section is a feasibility study, and provides a path forward for future 

work.  
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To determine the ATM returns that are associated with melt ponds, we use the 

classified OIB Digital Mapping System (DMS) imagery (Chapter 3). The DMS and 

ATM data were collected simultaneously from the OIB aircraft (Figure 5.1a). With 

the classified DMS imagery (Figure 5.1b) we are able to determine which coincident 

ATM returns are melt ponds (Figure 5.1c). 

Figure 5.1. Classification of ATM measurements. a) ATM swath over coincident 
DMS imagery. b) DMS imagery classified following Buckley et al. (2020a), and 
described in Chapter 3. c) resulting ATM classification. Data were collected north of 
Ellesmere Island on 25 July 2017. 

The ATM retrievals over a ponded surface show elevations from the bottom 

of a pond and the top of the pond (Figure 5.2a). These elevations are determined from 

the time of flight between the transmitted pulse and the centroid of the highest 
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amplitude mode in the returned waveform (Studinger, 2018). However, there is more 

information contained within the waveform product. There are several parameters 

that describe the return waveforms, one of which is the count parameter. This 

indicates the number of pulses with an amplitude greater than the threshold of 35% of 

the maximum amplitude (Studinger, 2018). The ATM response over melt ponds can 

be bimodal, where the first mode (Rxm1) corresponds to the response from the melt 

pond surface, and because the green laser is able to penetrate water, the second mode 

(Rxm2) corresponds to the pond bathymetry (Figure 5.2b-c).  

Figure 5.2. ATM laser response over melt ponds. (a) A three- dimensional view of 
melt pond demonstrating returns from bottom of pond and prevalence of bimodal 
ATM waveform returns (black dot) in the pond. (b) waveform return from deep melt 
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pond corresponding to a depth of 1.5 m. (c) waveform return from shallower part of 
melt pond indicated pond depth of 0.6 m. Same pond as in Figure 5.1. 

Bimodal returns can occur over surfaces that are not melt ponds, such as 

pressure ridges, where the ATM footprint includes a ridge and the level sea ice 

surface. In this case, the first returned pulse is from the higher elevation ridge, and the 

second pulse, from the level ice surface. To ensure we are only looking at the bimodal 

returns over melt ponds, we only look at ATM returns that have been classified as 

melt ponds. We are able to approximate pond depth by differencing the time between 

the two modes and applying a correction for the refractive index of water: 

!! = ($"%# − $"%#) 	×	
*$	
*%

× 	+	 ÷ 2	 (5.1) 

where PD is pond depth in meters, Rx is the return pulse with modes m1 and m2 at 

time since the transmit pulse, c is the speed of light, ηa is the index of refraction of 

light in air (~1.00) and ηw is the index of refraction of light in water (~1.33). The 

range is divided by two to account for two-way travel time. 

This calculation is demonstrated in Figure 5.2b-c, where the pond depth was 

determined to be 1.5 and 0.59 m for b) and c) respectively. We establish the 

feasibility of deriving melt pond depth from ATM data, and create a path forward for 

applying this methodology to all flights in the 2017 OIB campaign. 

5.3 Analysis of ICESat-2 Altimetry 

In the ICESat-2 ATL03 photon cloud, we see photons outlining the two-

dimensional shape of the melt ponds (see Chapter 2, Figure 2.10 and Chapter 5, 
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Figure 5.3a), with photons returned from both the surface of the pond and the bottom 

of the pond. There is currently no ICESat-2 product that is able to track both surfaces, 

and no automatically generated depth estimates of these ponds. However, there are 

currently two available methods to estimate the depth of melt ponds using ICESat-2 

altimetry: the University of Maryland Melt Pond Algorithm (MPA) (Farrell et al., 

2020) and the Density Dimension Algorithm (DDA) (Herzfeld et al., 2017, 2021). 

Both algorithms track the surface and the bathymetry of individual ponds. For each 

pond, we subtract the height of the pond bathymetry from the height of the pond 

surface at 5 m increments and apply a refraction correction to account for the change 

in speed of light in water as in Farrell et al. 2020. In this way, we are able to estimate 

melt pond depth, an important characteristic of the signature melt ponds, relating to 

meltwater volume and affecting the hydrostatic balance of the sea ice. 

5.3.1 The University of Maryland Melt Pond Algorithm 

The University of Maryland Melt Pond Algorithm (MPA) is developed to 

identify pond surfaces and their bathymetry in the ICESat-2 ATL03 photon cloud. 

Figure 5.3 demonstrates the methodology to determine the surface and bathymetry of 

a pond using the UMD MPA. First, we use a cloud indicator based on the apparent 

surface reflectance parameter (Palm et al. 2021) provided as a flag in ATL07 (Kwok 

et al., 2021) to identify cloud-free sections of along-track surface height data, with 

low, medium, and high confidence. If at least 20% of the track within the study region 

was cloud free, we manually examine the ATL03 photon height data for evidence of 

melt ponds. In the photon cloud, melt ponds have returns from the pond surface and 
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pond bottom (Figure 3a). We note the start and end of a pond as the point at which 

the two surfaces diverge and the distance from the start to the end of the pond defines 

the pond width. Across the width of the pond, we binned all photons into 0.1 m 

vertical bins (Figure 5.3b). The mode of the distribution defines hs, the pond surface 

height: is (Figure 5.3b, black, Equation 2)  

ℎ! =	$"_&'        (5.2) 

where Pn_ma is the bin containing the maximum count in the vertically binned 

histogram for all photons across the width of the pond. hs is reset to an elevation of 0 

m and the photon heights are recalculated relative to hs (Figure 5.3c). A 2-

dimensional histogram of photon height data with  0.1 m vertical elevation bins and 

10 m horizontal along-track bins. For each vertical bin, we add the photon count from 

the bins on either side to increase the photon count for each bin. In this way, the 

vertical bins are overlapping with an effective bin width of 0.3 m at 0.1 m intervals.  

For each 10 m horizontal along-track segment (as shown in Figure 5.3c), we examine 

this vertical elevation histogram (Figure 5.3d). We assumed photons within the two 

bins on either side of the identified surface bin could be associated with the surface 

and discarded all photons in those bins (Figure 5.3d hatched bins). We located modes 

in the histogram below the surface that had at least 5% of the number of surface 

photons (Figure 5.3d, blue bin). If there were no modes that met this threshold, we 

moved on to the next horizontal segment. If there were multiple modes, we 

determined the one closest to the surface is associated with the bathymetry of the 

pond, as it is unlikely there are modes within a pond because the green laser is able to 
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penetrate through the water column. The elevation of the subsurface mode is the 

bathymetric depth of the pond (Figure 5.3c, blue, Equation 3).   

ℎ&	 =	!()_%0*      (5.3) 

Bathymetric elevation is determined for each 10 m horizontal section, where Pni_ma1 

is the vertical bin elevation of subsurface mode. The mode must contain at least half 

of the number of photons as the maximum photon bin in the vertically binned 

histogram for the section. Pond depth is estimated by differencing the pond surface 

and bathymetry. We then multiply this depth by the ratio of the refractive index of air 

to water following Parish et al., (2019) and Farrell et al., (2020).: 

ℎ#$ = (ℎ! − ℎ%	) 	× 	 '!'"    (5.4) 

Where hmp is the depth of the melt pond, hs is the elevation of the pond surface, hb is 

the elevation of the bathymetry, ha is the refractive index of air (1.00029), and hw is 

the refractive index of water (1.33567) (Mobley, 1995). Pond depth (hmp) is 

determined for each 10 m along-track segment. To increase along-track resolution a 

linear interpolator with 5 m length is applied to obtain pond depth at 5 m intervals 

across the pond. The true surface height within each bin can be +/- 0.15 m from the 

estimated value (half bin width). When the melt pond surface and bathymetry are 

differenced to determine the depth, height uncertainty doubles, resulting in a total 

depth uncertainty of +/- 0.23 m after correction for refraction. 
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Figure 5.3. MPA methodology. a) melt pond located in the ATL03 photon cloud. The 
purple box shows the zoom for c). b) shows histogram of the 1 km photon cloud 
binned at 0.1 m vertically. The mode is identified as the surface and shown in black. 
c) shows the zoom in over the pond in a) and the horizontal binning at 10 m intervals. 
The yellow box marks the horizontal section analyzed in the vertical histogram shown 
in d). In d) the surface bin and two bins on either side are marked with a hatch andthe 
subsurface mode in blue. e) shows the tracked surface (black), bathymetry (magenta), 
and corrected pond depth (gray). 

5.3.2 The Density Dimension Algorithm – bifurcate – sea ice 

The Density Dimension Algorithm (DDA) is a family of algorithms designed to 

track complex surfaces in micro-pulse photon-counting lidar altimeter data, such as 

ICESat-2 (Herzfeld et al., 2017, 2021). The DDA- bifurcate-sea ice has the ability to 

track two surfaces. The algorithm is briefly described here. The DDA-bif-sea ice 

utilizes the full geolocated photon point cloud as provided in the ATL03 data product. 

The algorithm employs the calculation of a density field for data aggregation and 

principles of auto adaptive signal-noise thresholding and roughness determination (as 
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described for the DDA-ice in Herzfeld et al., 2017). Similar to the MPA, the DDA-

bif-sea ice is the ability to detect bifurcating reflectors, in situations where the 

stronger reflector can be the lower or the higher reflector and the two reflectors may 

have different spatial distributions and material/reflection properties (Figure 5.4). The 

DDA-bifurcate-sea ice is auto-adaptive and includes a layer follower with automated 

adaptation to layer roughness. On rough surfaces, the DDA tracks at 2.5 m intervals, 

and on smooth surfaces, 5 m intervals. At least 3 depth measurements are required for 

a pond, so the minimum retrievable pond width is 7.5 m on a rough surface, and 15 m 

on a smooth surface. For comparison and consistency with the MPA, we resample the 

DDA tracked surfaces at 5 m intervals. The minimum elevation difference between 

the two tracked surfaces is adjustable within the DDA, and for the purposes of this 

work it is set at 0.2 m within the photon cloud, allowing for a minimum retrievable 

depth of 0.15 m. We use this algorithm for comparison and validation of the MPA, 

and to fill gaps in the melt pond database.  

Upon examination of the tracked DDA surface, we notice two scenarios that 

frequently cause false positive melt pond detection. In the first case the DDA tracks 

two surfaces in between sea ice ridges (Figure 5.4a-b). As in Figure 5.4a-b, the 

surface tracking is not across a level pond surface, but instead, the algorithm 

bifurcates and the first pass connects the ridges and the second pass tracks in between 

the ridges. In this case, the first surface typically associated with a melt pond has an 

uneven, unrealistic “surface.”  We filter out these false positives by discarding ponds 

that have surfaces with a standard deviation greater than 0.05 m. The second case 

occurs due to the “dead time” of the ATLAS photon detectors (Smith et al., 2019, 



 

 

122 
 

Figure 5.4c-d). Where there is a strong surface return, the photon detectors may be 

saturated, resulting in a period of 3.2 ns where no photons are detected. Following the 

deadtime, photons are detected and there is a secondary flat return approximately 0.5 

m below the surface. In this scenario, the DDA tracks the secondary return as the 

bathymetry of a pond as seen in Figure 5.4c-d. To account for this false positive, we 

look at the mean density of the surface return. The distribution of the mean density of 

the surface returns reveals a bimodal histogram. We have determined that the higher 

mode corresponds to the scenario where the surface is saturated and a secondary 

surface return results in false positives in the DDA tracking algorithm. We discard 

false positive measurements by identifying depth measurements corresponding to the 

deadtime effect (0.5-0.6 m) where the surface mean density is greater than the 

minimum between the two modes in the mean density distribution. This process 

discards 9,117 of 94,543 individual ponds measurements, corresponding to 10% of 

the measurements, and resulting in a total of 85,426 measurements remaining for 

analysis. 

 



 

 

123 
 

 

Figure 5.4. Examples of false positive melt ponds detected with the DDA tracking 
algorithm. a) and b) show DDA bifurcation between ridges with the primary surface 
connecting the ridges, and the secondary surface tracking the surface between the 
ridges. c) and d) show the secondary surface tracking the subsurface deadtime effect. 
The DDA primary surface is shown in red and the secondary surface in green.  
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Figure 5.5. Surface tracking algorithms over a ponded surface observed on 28 June 
2020, west of the Canadian Archipelago. a-c) three algorithms track the sea ice: the 
top panel shows the ATL07 (blue), the MPA (surface in black, bathymetry in 
magenta), and the DDA- bifurcate (surface in red, bathymetry in green).  Figure from 
Buckley et al., 2022. 

The top panel of Figures 5.5a-d show the ICESat-2 ATL07 surface tracking 

algorithm. This algorithm is not able to track two surfaces, and is not able to track 

pond surface and bathymetry. The ATL07 product tracks the pond surface in Figure 

5.5b, the pond bathymetry in 5.5c and alternates between the bathymetry and the 

surface of the pond in 5.5a, and the two ponds in 5.5d. This motivates our work to 
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track the melt ponds on the sea ice surface, and to understand how melt ponds affect 

the ICESat-2 products. Examples of the MPA and DDA tracking algorithms are show 

in the middle and bottom panels (respectively) of Figures 5.5a-d.  

5.3.3 Comparison of Pond Tracking Algorithms 

The MPA is not an automated algorithm and requires manual inputs on pond 

locations, and thus cannot be employed for operational processing of ICESat-2 

products. On the other hand, the DDA-bif-sea ice has the ability to automatically 

track multiple surfaces in situations of complex spatial data distributions and 

mathematically challenging signal-to-noise ratios. The “DDA-atmos”, another 

algorithm in the DDA family, has been applied for identification of atmospheric 

layers and surface in the ICESat-2 atmospheric data product, ATL09 (Palm et al., 

2021), demonstrating the ability to apply this algorithm at a large scale.  

To compare the results of the two pond-depth algorithms, we have located 113 

ponds that are common to both data, locations are shown in the next Chapter (Figure 

6.7). Figure 5.6 shows the median depths of each pond as measured by the DDA and 

the MPA. We choose the median statistics to prevent anomalous depth measurements 

from influencing this statistic. There is good correlation between the depths derived 

by the two algorithms (r = 0.78) (Figure 5.6a), with the MPA median depths 0.05 m 

(sdev. 0.24 m) greater on average than those tracked by the MPA (Figure 5.6b). 

Although there is a small median difference between the two algorithms, the standard 

deviation demonstrates that there is some variability signifying uncertainty in the 

location of the true melt pond bottom. Because of the good agreement between the 
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two tracking algorithms, we combine the pond depths retrieved from both algorithms 

to analyze melt pond evolution throughout the summer. 

 

 

Figure 5.6. (a) scatter plot of median pond depth measurements from 113 ponds 
tracked by both the MPA and the DDA. (b) histogram showing the distribution of 
DDA – MPA residuals associated with the points in the scatter plot. 

 

5.4 Summary 

In this chapter we described the methodology used to derive melt pond depth 

from laser altimetry. Section 5.2 focused on the derivation of pond depth from the 

ATM onboard OIB flights in the 2017 Arctic sea ice summer campaign and provided 

a starting point for further analysis of this dataset. The methodology described is a 

proof of concept and can be adapted for other waveform altimetric measurements 

over melt ponds. Chapter 5.3 focused on the algorithms (MPA and DDA) used to 
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track melt ponds in the ICESat-2 photon cloud. To our knowledge, these are the first 

measurements of melt pond depth from a spaceborne platform. We plan to continue 

using these methods to retrieve melt pond depth data from airborne and spaceborne 

platforms. 
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Chapter 6: Observing the Evolution of Summer Melt on Multiyear Sea 

Ice with ICESat-2 and Sentinel-2 

6.1 Motivation and Goals 

In this chapter we examine the evolution of summer melt through 

observations from Sentinel-2 and ICESat-2 (Buckley et al., 2022). We are motivated 

by the gap in our understanding of melt evolution at a basin-wide scale. Our goals for 

this chapter are to: 

• Describe the results of applying the classification algorithm to Sentinel-2 

imagery across the multiyear ice region in the 2020 melt season. 

• Discuss the results of the melt pond tracking algorithms applied to the ICESat-

2 tracks across the study region and time period. 

• Examine the evolution of the derived parameters throughout the summer melt 

season. 

• Discuss our findings in context of previous studies. 

Section 6.2 describes the study region and period, and section 6.3 sets the 

scene for our study. Section 6.4 describes the application of our classification 

algorithm (see Chapter 3 and Buckley et al., 2020a) to Sentinel-2 imagery within the 

study region. Section 6.5 discusses the application of a novel melt pond tracking 

algorithms (described in Chapter 5) to ICESat-2 data obtained in the study region. In 

section 6.6 we discuss the evolution of sea ice conditions during summer, and in 
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section 6.7 we discuss the relationship between MPF and melt pond depth. We 

summarize our findings in section 6.8. 

6.2 Study Region and Period 

The study region, shown in purple in the top panel in Figure 6.1, was 

delineated from the location of multiyear ice on 15 May 2020, prior to melt onset as 

defined in the EUMETSAT Ocean and Sea Ice Satellite Application Facility sea ice 

type product. This product is a blended passive microwave and scatterometer dataset 

(Breivik et al., 2012). The product is not available through the summer months due to 

the presence of surface melt conditions that confound the algorithm (Aaboe et al., 

2021). The study region extends from just west of Banks Island in the Beaufort Sea to 

north of the easternmost part of Greenland, spanning the oldest and thickest ice in the 

Arctic. We focus on this region for two reasons. Previous studies have demonstrated 

the feasibility to measure melt pond depth on multiyear ice with ICESat-2 altimetry 

(Farrell et al., 2020). Second, Sentinel-2 imagery is more widely available throughout 

the multiyear ice region due to the proximity of this sea ice type to land, where 

Sentinel-2 acquisitions are routinely collected. The study region is consistent with the 

perennial ice area that persists at the end of the 2020 melt season (September 2020) 

and also overlaps with the “Last Ice Area” (Figure 6.1 top panel, gray), an area 

expected to retain multiyear ice longer than any other area in the Arctic under 

projected warming scenarios (Wang and Overland, 2009).  

The summer melt season of 2020 is an example of a high melt year and thus 

provides a good time period over which to conduct our analysis of the remote sensing 
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data. The September average monthly sea ice extent (3.92 million km2) was the 

second-lowest average monthly sea ice extent on record (Fetterer et al., 2017). The 

10-year CryoSat-2/SMOS data record reveals an ice volume loss from April to 

October 2020 of 15,215 km3 resulting in an October ice volume of 4,627 km3, the 

lowest ice volume in the 10-year record (Perovich et al., 2020). The summer months 

of 2020 also represent the first summer period with the availability of continuous 

ICESat-2 records, since no data were collected between 26 June 2019 and 9 July 2019 

when the satellite was in a temporary safe-hold configuration and the laser was turned 

off due to an onboard anomaly that occurred during the reorientation of the solar 

arrays. For these reasons, we focus on the 2020 melt season. Early melt onset, the 

date of the earliest observed melt conditions, occurs at different times in the region 

ranging from 23 May to 10 June. Melt onset, when melt was observed from this point 

onward, occurred in the study region on 8 to 18 June.  Freeze onset, the date of the 

earliest observed freeze conditions, ranged from 9 to 27 August and freeze conditions, 

when freeze was observed from this point onward occurs 22 to 31 August (Markus et 

al., 2009). To ensure we capture the full melt season, we monitor melt parameters 

from 1 June through 30 September 2020. 
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Figure 6.1. Study region north of Greenland and the Canadian Arctic Archipelago. 
The study region (purple) is based on the last observed multi-year ice extent in May 
2020 and the overlapping last ice area (gray). Sentinel-2  tile centroids (pink circles) 
indicate availability of image acquisitions. WorldView imagery centroids (dark blue 
circles) are shown and numbered. Inset shows the location of the study region. 

6.3 Setting the Scene 

The 2020 melt season in the study region progressed as follows. May 2020 

temperatures in the multiyear ice region were about 1 to 5 ° C greater than average 

(Kalnay et al., 1996). In the Central Arctic, early melt onset occurred on 3 June 2020, 

and melt onset occurred on 16 June 2020, both dates six days earlier than the average 

early melt and melt onset for the time period 1979- 2020 (Markus et al., 2009). Using 

WorldView imagery, we classify the stages of melt pond evolution from formation 

through freeze up. In Figure 6.2 we demonstrate the stages of melt pond evolution 

with a series of classified WorldView imagery. The WorldView shown in Figure 6.2 

are from two different locations within the study region, the corresponding image 

numbers (Table 6.1) mark their location in the top panel of Figure 6.1. The derived 

parameters melt pond fraction (MPF) and sea ice concentration (SIC) from these 
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images are shown in Table 6.1.  Figure 6.2a, on 9 June 2020, no ponds are detected in 

surface imagery (MPF = 0%, Table 6.1). At this point, the surface may be undergoing 

melt and snow metamorphism is taking place. On 17 June 2020 (Figure 6.2b), ponds 

have formed and the meltwater has pooled into the lowest topographic areas (MPF = 

3 %, Table 6.1). By 30 June 2020 (Figure 6.2c), melt has advanced with a higher 

fraction of the ice covered in ponds (MPF = 23%, Table 6.1). Drainage channels that 

have formed between ponds by 22 July 2020 (Fig 6.2d) as ponds drain into other 

ponds and into the open ocean, either laterally of vertically. By 7 August 2020 

(Figure 6.2e), regions of the ice have melted through, exposing the ocean, and 

pockets of open water have formed within the floe. In some areas, the surface of the 

pond has refrozen to form an ice lid. These lids increase the albedo of the pond 

(Flocco et al., 2015), and restrict laser penetration into the pond. Still, a large fraction 

of the ice is covered in ponds. On 3 September (Figure 6.2f), the majority of ponds 

have frozen ice lids that appear grayer in color, and are classified as ice, at this point 

MPF has deceased (MPF = 6%, Table 6.1). The refrozen leads are classified as other 

(green) in Figure 6.2f. 
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Figure 6.2. Melt evolution in 2020, based on a selection of Worldview imagery (~ 
900 m x 900 m in area). Each figure shows the true color composite (RGB) of the 
WorldView imagery (left) and the classified image on the right. The derived MPF and 
SIC for each image is given in Table 6.1. (WorldView imagery copyright 2020 
Maxar). 

Table 6.1 Derived SIC and MPF for images shown in Figure 6.2* 
Image # MPF SIC 

a) 9- Jun 1 0% 99% 

b) 17-Jun 7 3% 97% 

c) 30- Jun 8 23% 96% 

d) 22-Jul 10 25% 98% 

e) 7- Aug 17 32% 86% 

f) 3- Sept 19 6% 95% 
*# refers to corresponding image in Appendix 1. 
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6.4 Summer Melt Parameters Derived from Satellite Imagery 

6.4.1 Feature Classification 

The classification algorithm (Chapter 3) was applied to 1,775 Sentinel-2 images in 

the study region from 1 June 2020 to 15 September 2020. Figure 6.3 shows the 

evolution of surface melt conditions throughout the melt season. Vertical gray bars 

indicate that there are fewer than ten images in the 5-day period, due to the 

requirement of 90% cloud-free images (Chapter 3, section 3.6). At the beginning of 

the melt season a high percentage of pixels (> 90%) are classified as ice, and this is 

followed by a sharp drop to <80% in mid-June. The ice pixel percentage decreases 

through mid-August and then becomes more variable. Melt pond pixels increase from 

3.0% on 13 June to 10.0% on 15 June and the max coverage is 15.3% on 24 June. The 

percentage of pixels classified as melt ponds remain greater than 10% until July 2, 

and makes up less than 5% of each image from July 23 through the end of the study 

period (30 September). Open water percentage is low (<5%) at the beginning of the 

season and then increases and becomes more variable later in the season, with the 

highest open water percentage from mid-July through mid-August. This indicates, 

increase lateral melting of floes and a more dynamic, divergent ice pack. On average, 

open water makes up 14% of the surface pixels in July and 17% in August. Open 

water percentage decreases in late August and September as leads begin to refreeze. 

Throughout the season the pixels classified as ‘other’ remain below 10%. Towards 

the end of the season, refrozen leads appear in the Sentinel-2 scenes and the algorithm 



 

 

135 
 

classifies these areas as ‘other’, explaining the increase in ‘other’ pixel percentages in 

September. 

 

Figure 6.3 The five-day mean aerial fraction of surface types from classification of 
Sentinel-2 imagery throughout the melt season. Surface pixels are classified as ice 
(red), melt pond (yellow), open water (blue), or other (green). The gray bars indicate 
that there are fewer than ten images in the five-day period.   

6.4.2 Melt Pond Area Distribution 

 We calculate melt pond size distribution for coincident Sentinel-2 and 

WorldView imagery to understand the limitations of the lower resolution Sentinel-2 

imagery. We use the MATLAB function regionprops which evaluates a binary image 

(melt pond =1 , else =0), and provides the number of pixels associated with each 

individual object. With knowledge of the WorldView pixel size, we can determine the 
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area of each object in the binary image. For each WorldView image, we calculate the 

number of ponds, total pond area, pond perimeter, mean and median pond size, 5th 

and 95th percentile pond size, and circularity (Table 6.2). Figure 6.4 shows the melt 

pond area distribution from the 18 WorldView images. We limit our analysis to melt 

ponds with the area of at least 9 pixels (3 x 3 pixels), or 24.5 m2 (30.8 m2) for 

WorldView 3 (WorldView 2), as smaller scales of melt ponds are indistinguishable 

from noise. Circularity is measured as in Perovich et al., 2002b: 

, = $(
-  

(6.1) 

Where C is the circularity, P is the pond perimeter, and A is the pond area. 

Table 6.2. Melt Pond Area Distribution of WorldView Imagery 

Date 
number of 
ponds 

total melt 
pond area 
(m2) 

mean melt 
pond 
perimeter 
(m2) 

mean 
melt 
pond 
area 
(m2) 

5th 
percentile 
melt pond 
area (m2) 

median 
melt 
pond 
area (m2) 

95th 
percentile  
melt 
pond area 
(m2) 

mean 
circularity 

9-Jun-20 972 58110.6 37.4 59.8 34.2 47.9 124.8 24.7 
11-Jun-20 13644 1318542.1 55.1 96.6 34.2 58.2 277.2 33.8 
12-Jun-20 877 66143.2 34.2 75.4 34.2 51.3 172.5 16.9 
14-Jun-20 6249 423921.1 36.3 67.8 34.2 51.3 160.9 20.9 
15-Jun-20 10130 816281.7 43.0 80.6 27.2 49.0 231.4 26.3 
17-Jun-20 34839 3451221.6 43.8 99.1 34.2 61.6 284.1 21.0 
30-Jun-20 168405 47213983.0 81.5 280.4 34.2 71.9 633.2 32.1 

2-Jul-20 177058 34206970.3 62.3 193.2 34.2 68.5 441.5 26.4 
22-Jul-20 36733 3594007.6 49.3 97.8 27.2 54.4 304.9 28.1 
24-Jul-19 119124 16611644.5 56.5 139.4 34.2 75.3 438.1 25.5 
24-Jul-19 95524 12228537.7 50.9 128.0 34.2 71.9 362.8 23.6 
26-Jul-19 155825 39487319.6 81.2 253.4 34.2 75.3 742.7 30.4 
27-Jul-20 304298 38099628.8 61.3 125.2 27.2 57.2 397.5 34.8 
31-Jul-19 236057 39536174.9 67.6 167.5 27.2 79.0 536.3 32.2 
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4-Aug-19 164640 29114310.8 73.3 176.8 34.2 75.3 585.2 34.1 
7-Aug-20 232460 29996627.5 67.4 129.0 27.2 57.2 400.2 40.7 
9-Aug-20 122476 22072722.4 56.5 180.2 34.2 65.0 400.4 25.4 
3-Sep-20 785 42863.4 38.0 54.6 34.2 44.5 112.9 27.5 

 

Although these WorldView images are not all from the same melt season or 

same location, we see patterns related to the stage of melt evolution. As the mean 

melt pond area increases throughout the summer, the perimeter does as well. Towards 

the end of the melt season, as ponds drain, the area and perimeter decrease. As 

expected the number of individual ponds per image starts off low, increases mid 

summer, but then decreases again when freeze up occurs, as seen in the WorldView 

image on 3 September, 2020. 

Mean pond circularity in the WorldView images ranges from 16.9 on 12 June 

to 40.7 on 9 August. The high end of the range is similar to the value of 41.2 found on 

7 August on multiyear ice in Perovich et al., 2002. However, they found a mean pond 

circularity of 38.5 on 10 June. This could be due to our pixel based algorithm 

detecting small melt ponds which tend to have a lower circularity. Our findings also 

agree well with the Perovich et al., 2002b finding that the circularity increases with 

mean pond size. As ponds grow and become more interconnected and complex, the 

circularity increases. 
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Figure 6.4. Melt pond area distributions. a) melt pond area distribution colored by 
month: June (green), July (blue) and August (black).Area bins of size 10 m2 were 
used. b) cumulative individual melt pond area distribution. The Sentinel-2 individual 
melt pond area resolution (100 m2) is shown as a solid black line. The melt pond area 
corresponding the minimum resolvable MPA and DDA widths (20 m, 7.5 m, 
respectively) and assuming circular melt ponds are shown in magenta and green, 
respectively. 

Figure 6.4a demonstrates the prevalence of small ponds in the WorldView 

imagery. There is a slightly higher probability of larger ponds in Junly and August as 

compared to June, but the distributions from the three months show similar pond size 

distributions. Figure 6.4b indicates that 73% of individual ponds are not captured by 

the Sentinel-2 imagery. However, since these are small ponds, this accounts for 38% 

of the total pond area. The Sentinel-2 imagery is able to capture approximately 62% 

of the total pond area. In Section 6.4.3, we discuss how we can adjust the Sentinel-2 

derived melt pond fraction to account for the subpixel size melt ponds.  
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6.4.3 Validation of Summer Melt Parameters 

To validate the summer melt parameters derived from the Sentinel-2 classification, 

we compare with the MPF and SIC derived from the higher-resolution WorldView 

imagery (parameters defined in Section 3.8). To understand the impact of these biases 

on our data, we analyze 18 WorldView images that are coincident spatially and 

temporally with Sentinel-2 imagery in the 2019 and 2020 melt season (Appendix 1, 

Table 6.3). Although the imagery spans two years (2019-2020) we organize the 

findings by the day of year. We identify Sentinel-2 imagery captured within 24 hours 

of the WorldView imagery and we subsample the Sentinel-2 tiles to the extent of the 

WorldView image by matching ice features in the imagery. We demonstrate this in 

Chapter 3, where we show an example of an area examined in coincident WorldView 

and Sentinel-2 image (Figure 3.10) and found a MPF of 7.6 % and 25.5% from the 

Sentinel-2 image (Figure 3.10d) and WV image (Figure 3.10f), respectively. For the 

same image (Figure 3.10) we estimate SIC as 93.5% and 87.3% from Sentinel-2 and 

WorldView imagery, respectively. In this section, we discuss the results from 

classification of the coincident WorldView and Sentinel-2 imagery. 

On average Sentinel-2 SIC is 4.2% (3.9%) higher than WorldView, and 

ranges from 0.5% to 15.5% ∆SIC (Sentinel-2 SIC - WorldView SIC, Table 6.3). In 

early June, both Sentinel-2 and WorldView SIC reveal a consolidated ice pack, with 

high SIC in all the images (>94%) and the Sentinel-2 imagery agrees to within 3% to 

the coincident WorldView imagery. As the melt season progresses, sea ice floes are 

more susceptible to break up due to the structural weakening induced by melt pond 
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formation (Arnsten et al., 2015), and the enhanced dynamics as the sea ice is able to 

drift more freely. For this reason, there are smaller features that appear in the imagery 

scenes: smaller floes, chunks of ice. Small features are not as well resolved by the 

lower resolution Sentinel-2 imagery and thus misclassification of pixels as well as 

classification of mixed pixels is more common. As the SIC decreases throughout the 

melt season, the Sentinel-2 bias as compared to WorldView-derived SIC increases 

(Figure 6.5b, Table 6.3).  

On average, the MPF derived from Sentinel-2 imagery is biased low overall 

compared with the MPF derived from WorldView, with an average bias of -7.2% 

(8.6%) and ranges from -20% to +6% ∆MPF (Sentinel-2 MPF - WorldView MPF) 

(Table 6.3). This is likely due to small ponds going undetected or are mixed pixels in 

the ‘other’ category. We find that the magnitude of the Sentinel-2 MPF bias is 

greatest when small ponds are widespread across the surface. Figure 6.5 shows the 

Sentinel-2 bias compared to the value of the WorldView parameters. In Figure 6.5a, 

as MPF increases, the Sentinel-2 bias becomes more negative. For this reason, there is 

a seasonal trend in the Sentinel-2 MPF bias (Figure 6.5a). In early June, imagery in 

both data sets show little or no signs of melt (Table 6.3), and the WorldView and 

Sentinel-2 derived MPF show good agreement. In the five scenes in the first half of 

June, MPF is less than 1% in all Sentinel-2 and WorldView images. As melt 

progresses over the sea ice surface, melt ponds dot the surface and these new small 

features lead to weaker agreement in the WorldView MPF and Sentinel-2 MPF, 

because the lower resolution Sentinel-2 may not be able to resolve these features.  
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There are two cases where the MPF derived from the Sentinel-2 image is 

greater than that derived from the WorldView image. In the imagery collected on 17 

June, 2020, the calculated MPF is 8.4 % and 2.4 % for the Sentinel-2 and WorldView 

images, respectively. In this scene (subset shown in Figure 6.2b), there is level bare 

ice that appears blue in color. In the Sentinel-2 image this area is classified as a melt 

pond, but in the WorldView imagery this is classified as sea ice. In the imagery 

captured on 3 September, 2020, there are many ice fragments smaller than the 

Sentinel-2 pixel size of 10 m. These pixels may be correctly classified as ‘other’ or 

can also be classified as melt ponds, falsely increasing the MPF. The WorldView 

images better resolve these areas and properly classify pixels as ice or open water. 
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Figure 6.5. Difference between the Sentinel-2 and WorldView derived MPF (a) and 
SIC (b) is shown as a function of the WorldView value. Linear lines of best fits are 
shown as the dashed line. 

The biases described in this section are consistent with previous studies 

(Buckley et al., 2020a and references therein) and in the findings presented in Chapter 

4, sections 4.3 and 4.4, where we compare derived MPF from DMS (10 cm 

resolution) and Sentinel-2 imagery and SIC derived from DMS and lower resolution 

satellite data (AMSR2 and CDR). In section 4.3 we showed average DMS MPF was 

15% and Sentinel-2 derived MPF was 13% over a 57 km stretch of the survey 

conducted on 24 July 2017 in the Lincoln Sea. Again, demonstrating the ability of the 

higher resolution data (DMS) to capture the true expanse of the small melt ponds. In 

section 4.4 we found that DMS derived SIC is better able to capture the SIC 

variability in the studied region as compared to the CDR SIC and AMSR2 SIC with 

pixel resolution of 25 km and 12.5km, respectively. 

 In order to understand the impact of pixel size on derived melt pond fraction, 

we look at the melt pond size distribution for each WorldView image with a 

coincident Sentinel-2 image, as in Section 6.4.2. We determine the total area of ponds 

with a size smaller than the Sentinel-2 pixel size (100 m2). The Sentinel-2 

classification cannot resolve these small features as they are smaller than the pixel 

size. We calculate an adjusted Sentinel-2 MPF (Equation 6.2) that adds in the 

unresolved melt ponds to the MPF calculation for each pair of Sentinel-2 and 

WorldView images where the Sentinel-2 MPF is less than the WorldView MPF: 
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/21$2)*+ =
/21$- +45,--1$-
/26789-	:	/2/;,  (6.2) 

Where S2MPFadj is the adjusted Sentinel-2 MPF, S2MPA is the Sentinel-2 

melt pond area, WV100MPA is the area of ponds less than 100 m2 in size in the 

coincident WorldView image, S2surfA is the surface area in the Sentinel-2 image, and 

S2SIC is the Sentinel-2 sea ice concentration. The denominator on the right hand side 

of Equation 6.2 is a calculation of the total area of sea ice and melt ponds in the 

Sentinel-2 scene. In the case where the Sentinel-2 MPF is biased low as compared to 

the WorldView MPF, we make the assumption that melt ponds smaller than the 

Sentinel-2 pixel size are classified as ice, so when making this adjustment, we hold 

the sea ice concentration constant and the area of WorldView melt ponds less than 

100 m2 replaces sea ice in the original Sentinel-2 classification. Table 6.3 provides 

the adjusted melt pond fraction results for each pair of WorldView and coincident 

Sentinel-2 images. Note that this adjustment is only applied where in the original 

classification, the Sentinel-2 MPF is less than the WorldView MPF. Appendix 1 

shows the true color imagery and classified Sentinel-2 and WorldView images used 

in this analysis. 

Although the addition of ponds smaller than the Sentinel-2 pixel size increases 

the S2 MPF, making it more comparable to the WorldView-derived MPF, it does not 

account for the entire discrepancy between the Sentinel-2 and WorldView derived 

MPF. Sentinel-2 MPF, originally biased 7.2% low, is only biased 3.6% low when the 

sub-pixel size WorldView ponds were accounted for. Although this methodology 

accounts for individual small ponds identified in WorldView imagery, we have not 
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accounted for subpixel-size areas that are connected to larger ponds. Where the 

Sentinel-2 pixels may be classified as ice along the edges of ponds, the pixel could 

include some area that is a melt pond which is properly classified as such in the 

higher resolution WorldView classification. This scenario was not accounted for in 

the adjusted Sentinel-2 MPF, and may account for some of the remaining bias 

between Sentinel-2 and WorldView imagery. We also note that the Sentinel-2 derived 

SIC is biased high (4.3% greater than WorldView on average), and with a higher SIC 

and sea ice area per scene, this contributes to a lower melt pond fraction in Sentinel-2. 

This section describes an analysis to understand the potential error in the Sentinel-2 

classification. We have not applied this adjustment to the entire dataset of classified 

Sentinel-2 images, as we do not have coincident WorldView imagery. 
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Table 6.3 Derived MPF and SIC from coincident WorldView and Sentinel-2 images. 

Image 
Number Date 

S2 
Central 
Latitude 

S2 Central 
Longitude 

S2 SIC 
(%)  

WV SIC 
(%) 

D SIC 
(S2-WV) 
(%) 

S2 MPF 
(%) 

WV 
MPF (%) 

D  MPF (S2-
WV) (%) 

S2 MPF 
adj (%)  

D  MPF 
adj (S2-
WV) (%) 

1 9-Jun-20 78.0 -125.0 94.7 92.6 2.2 0.1 0.1 0 0.5 0.3 
2 11-Jun-20 80.0 -110.0 99.2 98.2 1.1 0.0 1.1  -1.1 0.6 -0.5 
3 12-Jun-20 75.0 -138.0 98.2 96.6 1.6 0.0 0.1 -0.1 0.1 0.0 
4 14-Jun-20 78.0 -125.0 96.4 95.3 1.2 0.0 0.5 -0.5 0.3 -0.2 
5 15-Jun-20 80.0 -110.0 99.0 98.0 0.9 0.0 0.5 -0.5 0.5 0.0 
6 17-Jun-20 78.0 -125.0 96.0 95.5 0.5 8.4 2.4 6.0 - 7.0 
7 30-Jun-20 80.0 -110.0 98.5 96.6 1.9 17.0 28.5 -11.5  21.1 -7.4 
8 2-Jul-20 78.0 -125.0 90.7 85.7 5.0 3.6 21.9 -18.3 9.4 -12.6 
9 22-Jul-20 80.0 -110.0 94.6 88.2 6.4 5.3 10.9 -5.6 11.9 1.0 

10 24-Jul-19 80.0 -119.8 91.6 88.3 3.3 0.9 8.8 -7.9 3.7 -5.1 
11 24-Jul-19 80.0 -119.8 93.9 93.0 0.9 0.5 9.7 -9.1 3.8  -5.9 
12 26-Jul-19 80.0 -110.0 93.0 91.1 1.8 1.1 21.8 -20.7 4.5 -17.4 
13 27-Jul-20 80.0 -110.0 95.4 85.8 9.6 5.2 19.4 -14.3 14.5 -5.0 
14 31-Jul-19 82.0 -139.7 94.7 88.4 6.3 0.0 19.1 -19.1 7.6 -11.5 
15 4-Aug-19 80.0 -110.0 93.2 89.8 3.5 1.4 17.1 -15.7 5.2 -11.9 
16 7-Aug-20 80.0 -110.0 94.5 79.0 15.6 9.3 19.1 -9.8 20.5 1.5 
17 9-Aug-20 80.0 -135.0 96.7 90.4 6.3 4.3 7.1 -2.8 7.5 0.4 
18 3-Sep-20 78.0 -125.0 95.5 86.9 8.6 1.9 0.2 1.6 - 1.8 
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Despite the discrepancies discussed in this section, we are confident the 

Sentinel-2 derived MPF and SIC parameters are reliable. We do however, warn that 

during the peak of the melt season, the Sentinel-2 derived MPF is likely 

underestimating the true MPF, and as SIC decreases throughout the melt season, the 

Sentinel-2 derived SIC is likely overestimating the true SIC. 

6.4.4 Sea Ice Concentration 

We examine the Sentinel-2 derived SIC in the study region from 1 June 2020 

to 15 September 2020. We found the mean SIC for this region in Summer 2020 was 

91.6% with a standard deviation of 15% and the median was 97.2%. The difference 

between the median and mean indicate that there are some Sentinel-2 tiles with very 

low SIC, or no sea ice as all. The SIC values ranged from 0-100%, with 75% of the 

SIC values greater than 92.8% and 25% greater than 99.0%. As the melt season 

progresses, individual images show more variable SIC and the median SIC value 

decreases. Figure 6.6 shows the seasonal evolution of the melt parameters with the 

SIC shown in Figure 6.6a.  

SIC is consistently greater than 90% through mid-June. On 27-28 June, sea ice 

drift data show westward ice drift (Lavergne et al., 2010), and imagery show the ice 

pack separating from the landfast ice on the western coast of Greenland in the Lincoln 

Sea and the western coasts of the Canadian Archipelago (Vermote and Wolfe, 2021), 

opening leads and reducing local ice concentration. Throughout July, the sea ice 

continues to separate from the coast leaving large areas of open water. As the ice pack 

recedes, Sentinel-2 images along the edge of the pack ice capture lower SIC (<80%) 
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and in the lowest latitudes of the study region, SIC values drop below 20% (Figure 

6.6a). The consolidated icepack evolves into a mosaic of smaller floes with leads that 

grow in size as the floes melt laterally. Median SIC drops below 80% in late July 

consistent with Perovich et al. (2002) which observed a sharp decrease from 95% to 

80% SIC in early August in aerial observations over the SHEBA campaign. 

 
Figure 6.6. Evolution of melt features from 1 June, 2020 to 15 September, 2020 in the 
study region. a) box plot showing the median sea ice concentration for a 5 day 
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window centered on the plotted date. The box shows the interquartile range. The gray 
bar plot in background shows the total area of Sentinel-2 imagery analyzed per five 
day window. b) same as in a) but for melt pond fraction. c) box and whiskers plot 
with statistics from the merged DDA and MPA tracked ponds for a 5 day window 
centered on the plotted date. The median is shown as a horizontal red line and the 
interquartile range is denoted by a box. The whiskers extend from the 5th to 95th 
percentile. The five-day running median pond depth from just the MPA (blue line) 
and DDA (black line) are shown. d) 5 day running mean (solid green line) with the 
standard deviation (green bar). The five-day running mean pond depth from just the 
MPA (blue line) and DDA (black line) are shown. In c) and d) the number of ponds 
included in the 5 day running statistics are shown in light gray. 
 

6.4.5 Melt Pond Fraction 

We calculated MPF for the Sentinel-2 images in the study region with SIC >15% 

from 1 June to 15 September (Figure 6.6b). The average MPF in the region in 

summer 2020 was 6.5% with a standard deviation of 6.5%. The highest MPF for an 

individual Sentinel-2 scene was 31.6%. This image is located just outside of the 

mouth of Nansen Sound at (-95.3° W, 82.3° N), but far enough from that coastline 

that it does not contain landfast ice. Median MPF remains low, <5%, through 17 

June. We then see a sharp increase to 12.1% in MPF on 18 June. The imagery is 

scarce between 18 and 22 June due to widespread cloud coverage (Figure 6.6b). This 

weather system likely enhances the melt (Mortin et al., 2016), and when it passes 

MPF is high, averaging 15.2% between 24 and 29 June. The peak five day running 

mean MPF is 15.9% on 24 June. The MPF slowly decreases in July and by August, 

the MPF remains below 5% for the remainder of the season. This compares well with 

the DMS-derived MPF results presented in Chapter 4.4, where we found a MPF of 

14% (6%) on average in the Central Arctic in July 2017. 
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6.5 Melt Pond Depth 

For each individual pond tracked by the MPA and DDA, we find the median 

and mean pond depth (Figure 6.6 c-d). The mean pond depth is the average depth 

from the interpolated ponds depths within a pond. The median pond depth is the 50th 

percentile pond depth of the interpolated depths within a pond. We calculate statistics 

of a 5 day moving window for the entirety of the melt season (1 June – 30 August), as 

long as there are at least five melt ponds within the window. We calculate the median 

and interquartile range (25th-75th percentile) (IQR) of the median melt pond depths 

within the five day window (Figure 6.6c) and the mean and standard deviation of the 

mean melt pond depths for the five day windows (Figure 6.6d). We choose these 

statistics as they not affected by a single erroneous measurement that may skew other 

statistics such as the min and max of individual ponds to ensure a robust 

representation of the data. We demonstrate that the same depth evolution patterns are 

seen independent of the statistic chosen (mean or median) (Figure 6.6c, 6.6d). 

Individual ponds have complex meltwater accumulation and vertical and lateral 

drainage processes (Eicken et al., 2002). These processes for individual ponds are not 

captured in this evolution. The melt pond depth evolution is therefore not 

representative of a single pond, rather it is the change in pond depth statistics in the 

study region throughout summer 2020.  

 In Section 5.3.3, we show the good agreement between the melt pond tracking 

algorithms on the ponds that both algorithms have tracked. Therefore, in Figure 6.6, 

we combined the statistics for the ponds tracked by both algorithms, but we also show 
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the statistics for the MPA and DDA separately, the blue line and black line, 

respectively. The divergence of these results is due to the melt pond detection unique 

to the two algorithms, and the limitations of minimum pond size, as discussed in 

Section 6.5.3. 

6.5.1 Melt Pond Algorithm 

Of the 1107 tracks through the study region in from 1 June 2020 through 15 

September 2020, only 850 tracks met the cloud cover requirements described in 

Section 2.3.1. Upon examination of these ATL03 photon cloud of these tracks, we 

identified 477 individual melt ponds (Figure 6.7). The MPA was applied to these 

ponds resulting in 11,000 individual pond depth measurements. The first pond 

identified was observed on 21 June, and the last pond on 8 August 2020, a shorter 

time period than that of the ponds tracked by the DDA due to the limitations of the 

manual identification process of the MPA (Figure 6.6c-d).  
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Figure 6.7. Locations of the ponds measured with the DDA (green circles), MPA 
(black circles), and both algorithms (orange diamonds) in the study region (black 
outline). 

Although ponds were observed in Sentinel-2 imagery in early June, the first 

melt pond depth measurements from the MPA are on 21 June 2020. This indicates 

that the ponds present early in the season were shallow and any individual pond did 

not exceed both the MPA minimum retrievable pond depth of 0.23 m and minimum 

retrievable width of 20 m (as described in Section 5.3.1.). For ponds tracked with the 

MPA, we find the first observed depths on 21 June (0.79 m) increasing to a 1.94 m  

median depth on 30 July. There was a widening of the IQR from 0.27 m on 21 June to 

0.93 m on 30 July, suggesting ponds across the area were in different stages of melt. 

Freeze onset in August causes the ponds to form ice lids resulting in the pond 

appearing radiometrically similar to ice, although there may be liquid water beneath 

the ice lid. We do not expect returns from the bathymetry of the ponds in these 

conditions, as the laser cannot penetrate the ice lid. Freeze conditions occur at 

different points in this region at the end of summer (Markus et al., 2009), and there 

are fewer pond depth measurements throughout the month of August. 

The mean, mode and median pond depth derived from the MPA are all greater 

than reported for the 15 ponds from the 2019 melt season tracked in the Lincoln Sea 

in Farrell et al. (2020). This can be explained by the temporal range of melt ponds in 

this study extending through July and into August, whereas the Farrell et al. (2020) 

study only includes ponds from mid to late June.  
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6.5.2 Density Dimension Algorithm 

The DDA was applied to 87 tracks representative in time and space of the 

study region and period (10% of the 850 tracks that met the cloud cover requirements 

described in Section 5.3.1). A total of 7,329 ponds were identified (Figure 6.7), with 

over 85,000 individual depth measurements. The change in melt pond depth derived 

from the ponds measured by the DDA is shown in Figure 6.6d. The median pond 

depth remains around 0.5 m through 25 June. Melt pond depths begin to increase 

towards the end of June, consistent with the ponds tracked by the MPA. The median 

depths of ponds tracked by the DDA increases to 0.78 m by 16 July. On 20 July, the 

pond depths decrease to a median pond depth < 0.5 m. From the end of July through 

early August, median pond depths are more variable ranging 0.21 to 0.49 m. 

Overall, the depths derived from the 7,329 ponds found by the DDA are 

smaller than those from the 477 ponds found by the MPA, suggesting that the DDA 

was able to detect and track shallower ponds that were not manually identified as part 

of the MPA methodology.  The MPA is limited by the manual detection of ponds, and 

the inability to track ponds less that 20 m in width, whereas the automated DDA finds 

ponds based on the photon distribution, and can track ponds as small as 7.5 m in 

width. The DDA can detect and track ponds where the MPA pond tracking may be 

limited, such as, at the beginning of the melt season.  
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6.5.3 Limitations of Melt Pond Depth Measurements 

 Similar to the analysis decribed in section 6.4.2, we use the WorldView melt 

pond distribution to understand the effects of tracking algorithm minimum melt pond 

width limitation. The minimum pond width for MPA tracking is 20 m (Section 5.3.1). 

Assuming a circular melt pond, the minimum detectable melt pond area is 314 m2. 

Figure 6.4b shows the cumulative distribution of individual melt pond area, with the 

minimum retrievable pond area (assuming a circular pond) marked in magenta for the 

MPA and green for the DDA. Note that the cumulative distribution is shown for 

individual ponds, not of total ponded area. According to the WorldView imagery, 

approximately 83% of the total ponded area is made up of ponds with an area smaller 

than that, suggesting the MPA is missing a large majority of ponds. However, the 

DDA is able to track ponds as small as 7.5 m in width (Section 5.3.2), and the 

WorldView imagery melt pond distribution suggests that only 14% of the total 

ponded area is made up of ponds smaller than 44 m2, the circular pond area 

corresponding to that width. The divergence in the MPA and DDA results are due to 

the inability of the MPA to track ponds smaller than 20 m in width, which makes up 

96% of the melt ponds. For a systematic approach for detecting pond depth, we need 

an algorithm with a high resolution like the DDA that is able to detect small ponds. 

 

6.6 Evolution of Sea Ice Melt Conditions 

It is challenging to compare our findings with other studies as melt pond 

evolution vary based on surface conditions and regional atmospheric events that 
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occur throughout the melt season. Factors controlling melt progression include end of 

winter snow depth, ice topography, solar radiation, and weather events. In this section 

we put our results into context of existing literature, understanding that we cannot 

expect the same results as every season and region is different.   

We note that the spatial domains of the Sentinel-2 imagery (Figure 6.1) and 

the tracked ICESat-2 melt ponds (Figure 6.7) are not exactly the same. Sentinel-2 has 

coverage up to 84 °N, while ICESat-2 has spatial resolution increasing with latitude 

up to 88 °N. Of the DDA and MPA tracked ponds, 40% and 27% (respectively) are 

located between 84 °N and 88 °N, out of the Sentinel-2 coverage area. No single pond 

or scene can be representative of the entire study area, so when considering melt 

feature evolution, we look at mean and median statistics for the region (Figure 6.6). 

Previous studies have looked at contemporaneous pond depths and pond fraction 

(e.g., Perovich et al., 2003; Webster et al., 2022a) to understand the physical melt 

processes occurring at a local level. In this work, we look more broadly at a region 

experiencing weather events and melt stages at different points throughout the 

summer. High resolution pan-Arctic observations are crucial for understanding model 

output (Webster et al., 2022b). In this section, we monitor the evolution of MPF 

alongside the evolution of the combined MPA and DDA tracked melt pond depths. 

6.6.1 Early Melt  

From 1 June through 17 June, MPF is less than 5% and SIC greater than 99% 

(Figure 6.6a-b). Figure 6.2 shows an example of an unponded ice surface on 9 June 

(Figure 6.2a) and early melt occurring in the image observed on 17 June (Figure 
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2.6b). During this time the median DDA-derived depth remains below 0.5 m and 

there are no ponds tracked by the MPA (Figure 6.6c-d). At the MOSAiC site, in the 

Fram Strait east of our study region, continuous melt started in mid-June expanding 

existing ponds and increasing the pond areal coverage (Webster et al., 2022a). 

6.6.2 Maximum Melt 

Our results show a sharp increase in MPF in mid-June (Figure 6.6a), 

consistent with Perovich et al. (2002) where aerial observations over the field site 

show a rapid increase in pond fraction over the study area from ~5% to 20% in just a 

few days. Scott and Feltham (2010) also find a sharp increase in the modeled MPF 

early in the melt season in the standard multiyear case. We find MPF greater than 

10% from June 23, through July 2, with a maximum MPF of 16% on 24 June. At the 

MOSAiC site on primarily second year ice, ponds greater than 100 m in diameter 

were observed on 1 July, 2020 (Webster et al., 2022a). Maximum pond coverage 

occurred later in the season at SHEBA (24% on 7 August ) (Perovich et al., 2002), 

and at MOSAiC (21% on 26 July) (Webster et al., 2022a). 

In the second half of June the first ponds are tracked by the MPA (21 June), 

and both MPA and DDA median pond depths increase through the end of June. 

Similarly, at MOSAiC, melt pond depths increase through early July. Scott and 

Feltham (2010) found gradually increasing pond depth in their model. Morassutti and 

LeDrew (1996) analyze 220 pond depth measurements on multiyear ice within the 

Canadian Archipelago from 27 May to 26 June 1994. These ponds have a mean depth 

of 0.27 m with a standard deviation of 0.13 m. The MPA measurements reveal a 
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higher mean melt pond depth for this time period, (0.75 m +/- 0.66 m), but the is 

likely due to the measurement limitations and the minimum observable depth of 0.23 

m from MPA, and the bias introduced in the manual identification of melt ponds in 

the photon cloud. The DDA measurements are more similar to the findings of 

Morassutti and LeDrew (1996). From 4 June through 26 June 2020, the DDA tracked 

ponds have a mean pond depth of 0.54 m with a standard deviation of 0.4 m.  

6.6.3 Late Season Evolution  

Following the maximum MPF on 24 June, we see a decrease in MPF, 

consistent with Eicken et al. (2002) and Polashenski et al. (2012) which describe a 

decrease in pond coverage as meltwater is efficiently routed through drainage 

channels, ice permeability increases, and meltwater percolates through the sea ice. At 

MOSAiC, a drainage event occurring in mid-July, reduced the pond area ~5% 

(Webster et al., 2022a). Eicken et al. (2002) and Perovich et al. (2002) suggest a 

second mode of MPF as melt ponds spread laterally and connect through drainage 

channels, but we did not see this in our results. This could be a result of the low 

resolution of the Sentinel-2 imagery where the smaller drainage channels that occur 

later in the melt season are not resolved well in the imagery (Chapter 3, Figure 3.10c-

d) and melt pond pixels are classified as ice pixels instead. 

The MPA tracked median pond depth increases throughout July, from 0.9 m 

on 1 July to 1.94 on 30 July, whereas the DDA depth increases through 16 July, 

reaching a median depth of 0.78, then is less than 0.5 m from 19 July through 14 

August. These contrasting results demonstrate the bias of the MPA toward 
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identification of larger melt ponds, and inability to track smaller ponds. However, 

evolution is highly dependent on local weather (Webster et al., 2022a), and it is likely 

that the MPA and DDA are tracking ponds under different atmospheric conditions. 

The simulated pond depth in Scott and Feltham (2010) surpasses 1 m in early July, 

and remains above 1 m for the remainder of the melt season, agreeing well with the 

MPA observations. The gradual increase in melt pond depth throughout the season 

was also observed at SHEBA (Perovich et al., 2003). Observations at MOSAiC show 

that pond depth increased over time and melted through the first year ice by late July 

(Webster et al., 2022a). 

6.6.4 Refreeze 

The formation of lids on pond is a sudden process, as below freezing 

temperatures will quickly freeze the top layer of the pond, drastically reducing pond 

fraction (Webster et al., 2022a). Small, shallow ponds form lids before larger, deeper 

ponds (Webster et al., 2022a). At MOSAiC, MPF is greater than 30% on September 

4, and all ponds had refrozen by September 6, 2020, effectively reducing MPF to 0%.  

The number of melt ponds tracked by the MPA and DDA (gray histogram in 

6.5c-d), significantly decreases toward the end of August indicating ponds have either 

drained or a lid has formed, preventing the laser penetration into the pond. This is 

consistent with our findings of low MPF during this period. The WorldView image 

observed on September 3 (Figure 6.2e), shows light gray ponds, indicative that a pond 

lid that has formed. 
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6.6.5 Regional Results in a Pan-Arctic Context 

The results presented in this chapter are specific to the multiyear ice region in 

the 2020 melt season. Although this can provide us with information regarding the 

melt process, it is not representative of all ice conditions and melt seasons. Melt pond 

formation and evolution progresses differently on first year ice (Section 1.2.2), and 

regional synoptic events affect the timing of melt formation and drainage. 

Nonetheless, these spaceborne measurements of sea ice melt across a large region, 

can help us understand how spatially smaller studies (such as in situ studies) may or 

may not be representative of a larger area. This study only captures the 2020 melt 

season. The summer of 2020 was a unique melt season, where the Arctic experienced 

above average surface air temperatures (Section 6.3). We recoginize that this study is 

not representative of all melt seasons, however it does provide insight on the stages of 

melt progression. Satellite measurements are limited by lower sampling frequency as 

compared to in situ studies, limiting the ability to capture short lived events (Webster 

et al., 2022b). Also, unlike in situ measurements, satellite measurements are impacted 

by cloud cover, skewing our results towards clear-sky melt conditions which may be 

different than cloud-covered melt conditions. We emphasize the importance of the 

network of summer sea ice measurements to understand local melt processes, the 

spatial and temporal scalability, and long term trends of summer sea ice melt. 

In Section 7.3.4, we suggest expanding this work to study larger regions over 

longer time periods. The image classification methodology has proven successful at 

classifying first year ice imagery (Buckley et al., 2020a), but further melt pond 

tracking algorithm testing and validation of pond depth retrieval is required to 
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determine if tracking shallow ponds from spaceborne altimetry is feasible (Section 

7.3.4). 

6.7  Relationship Between Melt Pond Fraction and Depth 

We consider our MPF and depth evolution results in context of previous 

studies of the melt pond depth-area relationship. Perovich et al. (2003) presents a time 

series of depth and fraction observations obtained from a 200-m albedo line at 

SHEBA in 1998 (Figure 6.8a, circles). The SHEBA observations reveal a constant 

linear relationship between pond fraction and pond depth (Perovich et al., 2003).  

 

Figure 6.8. Figures showing evolution of pond depth and fraction. a) Observations 
from MOSAiC in 2020 (squares) showing evolution of pond fraction and depth 
colored by time, with the same results from SHEBA in 1998 (circles) from Perovich 
et al. (2003), figure from Webster et al., 2022a. b) relationship of pond area fraction 
to pond depth from Polashenski et al. (2012). c) relationship of pond fraction to pond 
depth from this study. 
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The ratio between pond area and pond depth from Perovich et al. (2003) is used to 

parameterize ponds in the CESM and level-ice formulation available in CICE 

(Holland et al., 2012, Hunke et al., 2013).  As defined in Holland et al. (2012): 

ℎ! = 0.8	 × 	()* (6.1) 

Where MPF is melt pond fraction as a percent (%) and hp is pond depth in 

centimeters. However, Webster et al. (2022a) do not show a clear relationship 

between pond depth and area (Figure 6.8a, squares), as pond fraction increases depth 

increases until early July when MPF increases but mean pond depth remains fairly 

consistent. Polashenski et al. (2012) show that in their study over landfast ice off of 

northern Alaska in 2009, the relationship between pond fraction and depth cannot be 

described by any function (Figure 6.8b). In this study, we also do not see a clear 

linear relationship between mean pond fraction and depth (Figure 6.8c), instead we 

see an increase in both pond fraction and pond depth early in the melt season, and 

then a decrease in pond fraction as the depth continues to increase. In August, pond 

depth decreases, while pond fraction remains consistently low. 

More work is needed to understand the evolution of these parameters at small 

local scales and Arctic-wide. We have only applied the DDA to a small subset of 

available ICESat-2 tracks, and further analysis may provide additional information to 

better characterize this relationship. The study presented here shows the feasibility of 

conducting such analysis over large regions of the ice cover. 
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6.8 Chapter Summary 

In this chapter we presented our findings on the evolution of summer melt on 

multiyear ice in 2020 using Sentinel-2 and ICESat-2 data (Buckley et al., 2022). The 

study region includes the area of the thickest ice in the Arctic that has experienced 

deformation as it is push along the Canadian and Greenland coasts. 

We applied the classification algorithm to Sentinel-2 imagery and derive MPF 

and SIC from the classified images. We validated the MPF and SIC derived from 

Sentinel-2  (10 m resolution) with those derived from coincident higher resolution 

WorldView images (~1.5 m resolution). We found on average the Sentinel MPF and 

SIC is -7.2% lower and 4.2% higher, respectively, than that of WorldView imagery. 

These biases have a seasonal trend, as melt pond fraction increases, the MPF bias 

increased in magnitude, and as sea ice concentration decreases, the SIC bias decreases 

in magnitude. After validating our derived parameters and acknowledging potential 

biases, we then looked at the trends of SIC and MPF. SIC was high in the beginning 

of the season and became more variable and decreased throughout the melt season. 

MPF began low, increased sharply on 17-24 June, peaks at 16.0% on 24 June, and 

then slowly decreased throughout the remainder of the season.  

We conducted an analysis of melt pond size distribution in WorldView 

imagery (Section 6.4.2) and quantified the impact of sub-pixel melt ponds on 

Sentinel-2 MPF. We found that although accounting for the area of the sub pixel melt 

ponds found in WorldView imagery in the calculation of the Sentinel-2 MPF 

improved the estimates of the Sentinel-2 MPF, it did not make up the entire 



 

 

162 
 

discrepancy, suggesting other sources of error contribute to the Sentinel-2 low MPF 

bias. 

We then derived melt pond depth from ICESat-2 photon data. We applied the 

MPA to 477 ponds distributed in space and time. The DDA is fully automated and 

when applied to 87 ICESat-2 tracks, we found over 7,000 melt ponds. In both the 

MPA and DDA- tracked ponds, the melt pond depth increased through mid-June 

when it decreased in the DDA ponds and continued to increase in the MPA ponds. 

We found good agreement in the ponds that both algorithms tracked, but the DDA 

demonstrated the ability to automatically detect ponds that we may have missed in the 

manual MPA pond identification. We conclude that although the MPA may under-

sample shallow ponds, it is able to effectively track the evolution of the largest ponds. 

Using the melt pond size distribution analysis described in Section 6.4.2, we 

quantified the percentage of melt pond area that may not be captured by the two 

algorithms. Given the minimum trackable ponds width of 20 m and 7.5 m for the 

MPA and DDA, respectively, we found that the MPA may miss as much as 70% of 

melt ponds, by pond area, and DDA 20%. 

We discussed the evolution of MPF, SIC and melt pond depth in context of 

previous in situ, airborne, and modeling studies of melt evolution. Conclusions and a 

discussion of the impact of this work are offered in Chapter 7.  
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Chapter 7: Summary and Conclusions  

The goal of the work presented in this thesis was to utilize new, high-

resolution remote sensing observations of Arctic summer sea ice to enhance our 

understanding of summer melt processes and patterns. Considering the observed 

negative and accelerating trends in the end of summer sea ice extent, we are 

motivated to understand the evolution of summer sea ice throughout the melt season.  

This chapter provides a summary of the work conducted in reaching this goal, and the 

impact of our findings. First, we summarize the major algorithm development 

activities undertaken for the classification of melt features in airborne imagery 

collected during the NASA IceBridge mission (section 7.1) and we discuss the results 

of the classification process. Second, we discuss our approach to tracking the 

evolution of summer melt on multiyear sea ice in the Arctic (section 7.2) using a 

combination of active and passive remote sensing. We discuss the application of our 

ice type classification algorithm to widespread satellite imagery and the novel use of 

satellite laser altimeter observations of ice elevation and melt pond bathymetry to 

track melt pond depth development during summer.  We discuss avenues for potential 

future research in section 7.3, and final conclusions are offered in section 7.4. 

7.1 Classification of Melt Features in IceBridge Imagery  

7.1.1 Summary of Work 

In Chapters 3 and 4 we describe our work using high‐resolution (0.1 m) 

IceBridge imagery to conduct a detailed assessment of the summer sea ice cover of 
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the Arctic Ocean. Surveys of two distinct regions allowed for the comparison of melt 

pond conditions with respect to ice type. A 2016 survey focused on the marginal ice 

zone in the Beaufort and Chukchi Seas and comprised predominantly first year ice, 

while in 2017, data over the consolidated multiyear ice of the Central Arctic region 

were collected. MacGregor et al., (2021) describes the success of these summer 

campaigns despite the persistent cloud coverage in the Arctic summer, and highlights 

our ability to derive melt parameters from the DMS data (Buckley et al., 2020a).  

In Chapter 3, we describe the development of an automated, pixel‐based 

algorithm (Chapter 3) that effectively classifies summer sea ice features in DMS 

imagery, including undeformed sea ice, deformed sea ice, melt ponds, and open water 

(Buckley et al., 2020a). Our algorithm was a new approach in that it adapts to the 

variable overhead lighting conditions in DMS imagery. We created this algorithm so 

that it may be used for application to other high resolution imagery datasets. The 

scheme was applied to thousands of DMS images and the sea ice concentration (SIC), 

melt pond fraction (MPF), and pond color fraction (PCF) were derived on a per‐

image basis (Chapter 4). These parameters are important aspects of summer sea ice; 

SIC, MPF and PCF all provide information on the albedo of the Arctic sea ice and in 

turn, the absorption of incoming solar radiation. 

These regional differences in MPF are related to the distinct ice type at the 

survey site, and our results conclusively show that MPF is greater on first year ice 

than on multiyear ice (Buckley et al., 2020a). In the Beaufort and Chukchi Seas, SIC 

averaged 69%, MPF averaged 25% and dark ponds dominated and had a PCF of 60%, 
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compared to a PCF of 9% and 31%, for medium and light ponds, respectively. In the 

Central Arctic, SIC averaged 90%, MPF averaged 14% and the PCF of light ponds 

was 68%, compared with 16% for both medium and dark ponds. 

We examined our findings in context of previous studies of melt pond fraction 

on first year and multiyear ice and found good agreement. When compared with 

lower resolution datasets, we found our DMS-derived SIC is able to capture more 

variability in the sea ice cover, and the lower resolution passive microwave datasets 

may be biased high. 

7.1.2 Impact of Findings 

Our results have important implications for the study of Arctic‐wide albedo in 

summer. Since 1985 the summer ice cover has transitioned from a predominantly 

multiyear ice cover to a seasonal ice cover (Comiso, 2012, Tschudi et al., 2020). The 

first year ice comprised 55% of the ice cover in the mid‐1980s, compared to 77% in 

2018 (Perovich et al., 2018).  Thick multiyear ice is more resilient than the thinner 

younger ice, and is more likely to survive the summer melt season. First year ice is 

more likely to melt out during the Arctic summer, increasing the albedo of the Arctic. 

As the multiyear ice of the Arctic Ocean is replaced by a younger, more 

seasonal ice cover, our results suggest that MPF will increase, and melt pond color 

will darken. The higher overall MPF and prevalence of dark MPs on first year ice 

discovered in our analysis of the 2016 and 2017 IceBridge imagery (Buckley et al., 

2020a) demonstrate the critical control that melt ponds have on overall albedo of the 



 

 

166 
 

Arctic Ocean in summer. Lower albedo surfaces, including dark melt ponds, allow for 

more absorption of incoming solar radiation. Pond albedo typically ranges from 0.1 to 

0.3 for dark ponds, approximately 50% lower than the albedo of light ponds which 

ranges 0.35-0.55 (Perovich, et al. 2002). Our results show ponds are darker and more 

widespread in the Beaufort and Chukchi Seas consisting of predominantly first year 

ice. We therefore expect changes in pond fraction and color to accompany changes in 

ice type. This, in conjunction with a diminishing ice extent, would exacerbate the ice 

albedo feedback, increasing Arctic‐wide solar absorption. In addition, melt ponds 

create a weaker ice pack, making the ice more vulnerable to break up in Arctic 

storms, such as occurred in summer 2012 (Parkinson and Comiso, 2013). The precise 

nature of future changes in the Arctic sea ice cover will also be influenced by the 

latitudinal location of the remaining summer sea ice. 

The summer melt data products derived in this study are available as HDF5 

files (one per image) containing the classification dataset with the dimensions of the 

original DMS GeoTIFF where each value indicates the pixel classification (Buckley 

et al., 2020b). There are also ASCII text files (one per flight) with the SIC, MPF, and 

PCF derived from the classification masks.  These data are of keen interest to the 

community for a number of related studies. Our findings were incorporated in a 

review of IceBridge science results (MacGregor et al., 2021) to demonstrate the 

utility of airborne surveys of summer Arctic sea ice. Sea ice modelers may find these 

parameters useful for understanding melt pond shapes and fractions in initialization 

and validation of models. The melt pond shapes and areas (see Figure 3.6) can 

provide information on transmission of light through the ice pack (Light et al., 2015) 
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for those who study under ice ecology. The MPF product can be used to validate 

satellite MP products, for example, the MODIS MPF as described in Rösel and 

Kaleschke (2012). Similarly, the SIC product could be used for validation of the 

AMSR2 and CDR SIC (Meier et al., 2018, Meier et al., 2017). As we evaluate lower 

resolution data products with longer records and Arctic-wide observations, we can 

quantify summer-specific uncertainties, that may be considered to improve these 

datasets. 

The classification algorithm developed and described in Buckley et al., 2020a 

is design to adjust automatically to pixel size and light conditions, and therefore has 

application to other remote sensing datasets. In fact, this algorithm with minor 

modifications was applied to Sentinel-2 and WorldView imagery for the melt 

evolution study (Buckley et al., 2022), detailed in Chapter 6. The automated 

classification approach opens up the possibility of processing and analyzing imagery 

data sets that span multiple years and various regions. This provides potential to 

investigate the variability and trends in MPF with time as sea ice conditions in the 

Arctic change. We will discuss this further in section 7.3 below.  

7.2 Observations of Melt Evolution on Multiyear Sea Ice 

7.2.1 Summary of Work 

 We have synthesized passive and active remote sensing observations of the 

summer sea ice to monitor the summer sea ice evolution in a new way. By combining 

observations from different platforms, we are able to weave together independent 
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measurements to optimize our understanding of sea ice melt. The goal of this work 

was to glean information from high resolution summer sea ice observations 

throughout the 2020 melt season. In section 7.1 we summarized the development of 

the image classification algorithm for the initial analysis focused on airborne 

observations. Here, we have applied the image classification algorithm to a seasonal 

study, expanding beyond the airborne study, and covering a full melt season at a 

basin-scale. ICESat-2 measures the sea ice surface at higher resolution that any 

satellite altimeter, providing the most detailed and precise elevation measurements to 

date (Farrell et al., 2020). We take advantage of these capabilities to measure melt 

pond depth from space for the first time. We utilize Sentinel-2 imagery and ICESat-2 

altimetry to measure the melting sea ice in three dimensions from 1 June 2020 

through 30 September 2020. 

We have developed an algorithm to track the melt ponds observed in the 

ICESat-2 photon cloud for the first time (Chapter 5, Buckley et al., 2022). The UMD 

Melt Pond Algorithm (MPA), is able to track the surface and bathymetry of the pond 

enabling derivation of melt pond depth. The manual MPA was used to validate the 

results of a related automatic algorithm developed in collaboration with a team at UC 

Boulder. This algorithm, the DDA-bifurcate-sea ice (DDA), was developed as a 

member of a family of algorithms designed to track surfaces in a photon cloud at high 

resolution (Herzfeld et al., 2017, 2021). The DDA has the ability to track multiple 

reflectors (such as a pond surface and bathymetry) and is auto-adaptive, and different 

from the MPA in that it does not require manual input, thus, is much more efficient. 
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We applied the image classification algorithm (Chapter 3) to cloud-free 

Sentinel-2 imagery acquired 1 June 2020 through 30 September 2020. We derived 

MPF and SIC from over 1,000 images to understand the evolution of the sea ice 

throughout the summer. The MPA is used to track hundreds of ponds throughout our 

study region and period. The DDA is applied to 87 ICESat-2 tracks across our 

multiyear ice study region, tracking thousands of melt ponds. We follow the evolution 

of the sea ice parameters throughout the melt season. 

We find the melt pond fraction increasing until June 24, peaking at 16 % and 

then decreasing for the remainder of the summer due to melt pond drainage. Melt 

pond fraction results are consistent with other studies conducted on multiyear ice 

(e.g., Buckley et al., 2020a; Rösel and Kaleschke, 2012; Mäkynen et al., 2014). We 

find the median depths of individual ponds tracked by the algorithms as 0.81 m and 

0.54 m on average from the MPA and DDA, respectively. In both the MPA and DDA 

results, the median pond depth increases throughout July. The melt pond depth 

evolution follows a similar pattern to other studies of pond depth (Perovich et al., 

2003; Morassutti and LeDrew, 1996), but the depth values we find with the MPA are 

higher compared to other studies.  

7.2.2 Impact of Findings 

The approach taken in this work allows us to track melt evolution using 

multiple remote sensing datasets together, whereas previous work relied solely on one 

remote sensing technique. This new way of observing the Arctic will be critical for 

tracking pan-Arctic melt processes and assessing earth system model simulations. 
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The high-resolution summer sea ice properties derived in this work are of 

interest to the modeling community. We have demonstrated the novelty of ICESat-2 

bathymetric mapping of melt ponds at a basin-scale. The heterogenous properties of 

melting summer sea ice occur at spatial scales smaller than the size of a model grid 

cell (Perovich et al., 2002), and these unresolved properties are in need of 

parameterization. The melt pond depth and melt pond fraction derived in this work 

will allow us the opportunity to reevaluate the relationship between pond fraction and 

depth and reassess parameterization schemes used in models. Integrating models and 

observations is essential for improved predictions and understanding observation 

needs. 

These observations will point us towards a better understanding of summer 

surface melt, an important component of the thermodynamic mass balance of sea ice 

(Perovich and Richter-Menge, 2015). The pond depth and area measurements provide 

a three-dimensional view of the ponds and is valuable information for quantifying the 

volume of meltwater stored by the ice. Pond meltwater affects the freshwater budget 

of the upper ocean when it drains vertically through the ice and laterally off the ice. 

With simultaneous and continuous measurements of pond fraction and pond depth, 

we may estimate the evolution of meltwater storage, and thus meltwater flux to the 

ocean (as in Webster et al., 2022a). Further, the presence of ponds alters the 

hydrostatic balance assumed when deriving sea ice thickness from altimetry 

measurements of sea ice freeboard, and pond depth and fraction may be used to 

quantify how melt ponds affect this calculation (Chapter 2, Figure 2.6). 
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7.3 Suggested Future Work 

  Despite the advances in remote sensing techniques and studies like the work 

presented in this thesis, there remains a gap in our knowledge of summer sea ice. 

Remote sensing provides an opportunity for longer-term and larger-scale observations 

as compared to field studies. Here we suggest studies with the techniques and datasets 

developed in this thesis to expand our understanding of summer melt, and further 

validate the findings we have presented. 

7.3.1 Melt Pond Depth and Volume  

The DMS‐derived data products (Chapter 4, Buckley et al., 2020a, 2020b) 

may be used in conjunction with high‐resolution laser altimetry to understand the 

surface which the laser is measuring. We have demonstrated the feasibility of 

utilizing ATM waveform data to identify melt ponds and derive their depth in 

Chapter 5, section 5.2 (Buckley et al., 2019). While this technique was demonstrated 

in a small case study it may be applied more widely to ponds observed throughout the 

2017 OIB campaign. Using melt pond fraction derived from imagery, with coincident 

estimates of pond depth derived from laser altimetry we can estimate pond volume. 

Obtaining widespread estimates of pond volume across multiyear ice during summer 

would provide an important observation for constraining freshwater fluxes in summer 

(Zhang et al., 2018). The freshwater layer in the upper level of the Arctic Ocean is 

crucial for preventing mixing with the warmer but denser ocean water below. The 

timing and magnitude of the freshwater flux from the sea ice to the ocean is essential 

for understanding and predicting the formation of under-ice blooms. 
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7.3.2 Under Ice Light Environment 

The distribution of melt ponds on sea ice controls the partitioning of light and 

shortwave radiation through the ice pack (Light et al., 2008). Approximately four 

times more light is transmitted through ponds than bare ice (Arrigo et al., 2012). The 

availability of light is important when considering the ability for phytoplankton 

growth in the upper ocean (Arrigo et al., 2012). With the classified data arrays 

derived for each DMS image (Buckley et al., 2020), we have information on the 

spatial distribution of melt ponds across the sea ice surface, and can use this 

information to infer the light distribution beneath individual ice floes. Horvat et al. 

(2020) investigated the under-ice light field with synthetically generated melt ponds. 

They modeled the partitioning of light through a single number connected to the 

fractal dimension of the modeled (or observed) pond distribution. Estimating light 

penetration from our existing dataset can be used to validate the light field predicted 

by Horvat et al. (2020) and refine the understanding how melt pond distribution 

controls the under-ice light environment. The DMS dataset can be used to refine the 

model predictions of melt pond distribution and, in combination with measurements 

of under ice light, can quantify the differences between light penetration through 

ponded multiyear ice and first year ice. This is an important topic as ‘massive’ (>100 

km) phytoplankton blooms have been observed beneath ponded first year ice (Arrigo 

et al., 2012). We have shown the different melt pond coverage on first year ice and 

multiyear ice, and expect changes in the under-ice light field as first year replaces 

multiyear ice in the sea ice cover. 
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7.3.3 Validation of Satellite-Derived Pond Depth 

Remotely sensed data requires in situ validation (Buckley et al., 2022), and on 

summer sea ice, this is difficult to collect (see Chapter 1 section 1.5.4). In situ and 

airborne studies can help us understand the accuracy and limitations of satellite 

datasets (e.g., King et al., 2018, MacGregor et al., 2021). These airborne and in situ 

surveys provide the opportunity to obtain higher-resolution observations that may 

inform us of biases or errors associated with the lower resolution satellite products as 

in as in Cavalieri et al. (1991), Rösel et al., (2012), Connor et al. (2012), and Kwok et 

al. (2019). 

The ICESat-2 Summer Sea Ice Campaign (ISSIC) 2022 is planned for mid-

July 2022 with the explicit objectives to improve and assess the higher level ICESat-2 

data products (ATL07 and ATL10), and develop a melt pond retrieval algorithm that 

can be integrated to the systematic production of ICESat-2 data products. The 

campaign includes the collection of lidar measurements and high resolution imagery 

from the Land, Vegetation, and Ice Sensor (LVIS) a 1064 nm wavelength lidar with a 

high resolution camera, and Chiroptera, operating at both green (515 nm) and infrared 

(1064 nm).  

 The algorithms and methodology derived in this work can be applied to the 

airborne data that will be acquired during the ISSIC 2022 campaign. The image 

classification algorithm can be applied to ISSIC 2022 airborne imagery to derive 

MPF and SIC, and the pond depth algorithm can be applied to the Chiroptera green 

lidar to obtain pond depths. The LVIS infrared lidar will provide surface elevation, 
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from which lead locations and freeboard can be determined. These data may be 

combined for estimated of pond locations, fraction, depth and volume. In the case of a 

successful ICESat-2 underflight, these data will be invaluable, providing insight into 

the ICESat-2 response to different surfaces present in the summer melt season.  

Even more powerful will be the combination of ISSIC 2022 airborne 

observations with coincident or near coincident ICESat-2, Sentinel-2 and WV 

observations.  Since the specific objectives of the summer campaign are to assess the 

utility of existing ICESat-2 algorithms for describing summer sea ice conditions, 

flight survey lines will be designed to target specific ICESat-2 overpasses and obtain 

spatially and temporally coincident satellite and airborne acquisitions. This will also 

provide the opportunity to validate the derived ICESat-2 melt pond depth and width 

using the existing MPA and DDA algorithms. Measurements of pond depth from the 

airborne instruments will improve our understanding of the ICESat-2 measurements, 

and in turn can help to improve our algorithms. For example, there is uncertainty in 

the vertical location of the true melt pond bottom. The MPA and DDA track this 

location differently leading to a discrepancy in the pond depths measured with these 

two algorithms. This campaign has the potential to clarify where the pond bottom 

exists within the photon cloud, and we may be able to adjust the pond tracking 

algorithms accordingly. ISSIC has the potential to clarify a number of the remaining 

questions about the ICESat-2 laser response during the melt season and this 

information will certainly improve the accuracy of ICESat-2 products and allow for a 

better quantification of uncertainty. These studies will allow us to better understand 

the ICESat-2 laser response to different melt conditions and improve the algorithms 
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so that their pond discrimination and depth retrievals are robust and accurate. 

Moreover, characterizing the response of the ICESat-2 laser altimeter in the summer 

is an essential step towards extending sea ice products (such as thickness) into the 

melt season, a critical component for improving summer Arctic sea ice predictions 

(Bushuk et al., 2020).  

7.3.4 Basin-scale Studies  

In this work, we have demonstrated the ability to develop algorithms that can 

be applied to various datasets (Buckley et al., 2020, 2022; Farrell et al., 2020). Future 

work involves applying these algorithms over larger regions, longer time series and to 

additional remote sensing datasets. 

We have applied the UMD Melt Pond Algorithm and the Density Dimension 

Algorithm – bifurcate – sea ice to ICESat-2 tracks over the region of thick, rough and 

predominantly multiyear ice (Buckley et al., 2022). There is potential to extend 

investigations of summer melt by including ICESat-2 and Sentinel-2 observations 

over thinner, level ice. At this point we have applied to algorithm to primarily 

multiyear ice. Our ability to track shallow ponds is limited to some extent by the 

vertical resolution of the ICESat-2 photon cloud data, and the capabilities of the 

current tracking algorithms. We are also limited by Sentinel-2 data over first year ice, 

because during the summer, first year ice area retreats off the coast of western Canada 

and Alaska, to latitudes north of the data availability which is limited to within 20 km 

from the coast.  
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Despite these limitations, we are keen to apply the DDA algorithm to all 

summer sea ice tracks over multiyear ice, as we have only tracked about 10% of the 

summer 2020 tracks and no 2021 tracks thus far. We can also apply our classification 

algorithm (Buckley et al., 2020, Chapter 3) to all available high resolution summer 

imagery datasets. And finally, we look to improve our tracking algorithms so that it 

may resolve shallower ponds present on first year ice. With a higher density of pond 

observations spread through time and space, we will be able to analyze these 

observations at multiple scales and understand spatial patterns. The algorithms 

developed in this thesis are tools available for future projects. 

7.3.5 Integrating Sea Ice Models and Observations 

We have widely disseminated our work through presentations and attendances 

at workshops and conferences and through publications (Buckley et al. 2020, 2022; 

Farrell et al., 2020, MacGregor et al., 2021, Herzfeld et al. 2022). We will continue to 

circulate our work and engage with other researchers in the sea ice community to 

explore avenues for incorporating remote sensing observations in sea ice forecasting 

and prediction. As we work to expand our observational knowledge of summer sea 

ice, it is essential we collaborate and communicate with the sea ice modeling 

community, to understand required remote sensing observations. Long-term 

observations, over the large spatial extents of summer sea ice, will allow for an 

improvement in the characterization of sea ice properties for parameterization in 

climate models. The observed summer sea ice state acts as a basis for comparison 

with model output. With a better understanding of the summer sea ice processes, we 



 

 

177 
 

may be able to improve the model representation of the interconnected and complex 

processes that occur in the summer Arctic. Similarly, models provide an idea of the 

observations required to expand our understanding. Models may discover specific 

feedbacks or relationships that require further knowledge. Sensitivity studies can 

determine the relative importance of specific processes that the observational 

community may need to focus on. It has been shown that the reduction in 

uncertainties of satellite retrievals and potential to expand datasets throughout the 

melt season, will improve initial conditions in models and advance the summer ice 

forecasts (Bushuk et al., 2020). We continue to look to contribute to a strong 

connection between observation-focused scientists and modelers to efficiently move 

forward the field of Arctic sea ice science and in particular improve our 

understanding of the summer sea ice characteristics and processes.  

7.4 Conclusions 

This work contributes to the knowledge of summer sea ice and the evolution 

of melt pond properties such as melt pond depth and melt pond fraction. The 

techniques we have developed may be applied on a larger scale to extract more 

summer melt information from high resolution remote sensing datasets. Specifically, 

we have: 

• Developed techniques for deriving melt parameters from new high resolution 

remote sensing imagery and altimetry 

• Drawn conclusions about MPF on first year ice and multiyear ice 
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• Followed the evolution of melt through the 2020 summer season, and assessed 

the magnitude of MPF and melt pond depth in context of previous studies. 

• Produced data products describing the summer sea ice to help inform new 

scientific studies of melt season processes.  
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Appendix 1: Sentinel-2 and WorldView Classifications 

 
This appendix provides the Sentinel-2 and WorldView images used for the Sentinel-2 
classification validation. Figures A1-18 show a) the original Sentinel-2 tile clipped to 
the extent of the coincident WorldView image, b) shows the classified Sentinel-2 
image, where pixel classification is as follows: border (gray), sea ice (red), open 
water (blue), melt pond (yellow), other (green). c-d) are the same as in a) and b) but 
for the WorldView images. The figure number corresponds to the image number in 
Table 6.1 and Table 6.3. 
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a)

 

b)

 
c)
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Figure 1. Images captured on 9 June 2020. 
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Figure 2. Images captured on 11 June 2020. 
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Figure 3. Images captured on 12 June 2020. 
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Figure 4. Images captured on 14 June 2020. 
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Figure 5. Images captured on 12 June 2020. 
 
 



 

 

185 
 

a)

 

b) 

 
c) 

  

d) 

 
 
Figure 6. Images captured on 17 June 2020. 
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Figure 7. Images captured on 30 June 2020. 
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Figure 8. Images captured on 2 July 2020. 
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Figure 9. Images captured on 22 July 2020. 
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Figure 10. Images captured on 24 July 2019. 
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Figure 11. Images captured on 24 July 2019. 
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Figure 12. Images captured on 26 July 2019. 
 
 
 



 

 

192 
 

a)

 

b)

 
c)

 

d)

 
 
Figure 13. Images captured on 27 July 2020. 
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Figure 14. Images captured on 31 July 2020. 
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Figure 15. Images captured on 4 August 2019. 
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Figure 16. Images captured on 7 August 2020. 
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Figure 17. Images captured on 9 August 2020. 
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Figure 18. Images captured on 3 September 2020. 
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