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    This research aims to explore the observation impacts in coupled data assimilation (CDA) and 

improve the predictability of coupled systems by advanced DA approaches. Three topics are 

discussed in this dissertation:  

    (1) An enhanced application of the correlation cutoff method (Yoshida and Kalnay, 2018) as a 

spatial localization is introduced. We investigated the feasibility and characteristics of the 

traditional distance-dependent (Gaspari and Cohn, 1999) and the correlation-dependent 

localizations preliminary on the Lorenz (1996) model with the local ensemble transform Kalman 

filter (LETKF). We further discussed the potential of integrative localization strategies and the 

application of the correlation cutoff method on Mars DA.   

    (2) We found that the surface sea temperature (SST) relaxation operationally used in the 

Climate Forecast System version 2 (CFSv2) is not effective in reducing existing SST biases. To 



  

address this issue, we replaced the SST relaxation with the weakly coupled data assimilation 

(WCDA) of satellite-retrieved SST products. A series of experiments with real observations were 

conducted on the CFSv2-LETKF (Sluka et al., 2018) to investigate the impacts of SST WCDA 

on the CFSv2 analysis and the forecasts.   

    (3) The Ensemble Forecast Sensitivity to Observations (EFSO, Kalnay et al., 2012) is a 

powerful tool to identify the beneficial or detrimental impact of every observation and has been 

widely used in atmospheric ensemble-based DA. However, EFSO has not yet been applied to 

any ocean or coupled DA due to the lack of a proper error norm for oceanic variables. This study 

first introduces a novel density-based error norm that simultaneously includes sea temperature 

and salinity forecast errors, by which EFSO becomes available to ocean DA for the first time. 

We implemented the oceanic EFSO on the CFSv2-LETKF for quantifying the individual impact 

of ocean observations and explored the great potential of EFSO to be extended as a data selection 

criterion to improve the CFSv2 forecasts.  
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Chapter 1: Introduction 

 

1.1  Data assimilation (DA) on coupled model initialization 

    Coupled atmosphere-ocean models have become an important tool for predicting 

phenomena with a wide range of time scales, such as the El Niño Southern 

Oscillation (ENSO) and the Madden Julian Oscillation (Woolnough et al., 2007; 

Zhang, et al., 2020; Moore & Kleeman, 1996), monsoons (Wang, 2005), and tropical 

cyclones (Bender et al., 1993). Coupled models tend to integrate various Earth system 

components, including the atmosphere, ocean, land, and sea ice, and have 

demonstrated remarkable improvements in the synoptic weather, seasonal-to-sub-

seasonal (S2S), and interannual climate mesoscale forecasting (Penny & Hamill, 

2017). Nowadays, many countries have developed their own fully coupled models for 

operational numerical weather/climate predictions, such as the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) 

and the National Centers for Environmental Prediction (NCEP) Climate Forecast 

System (CFS).  

    Due to the imperfections in the model dynamics and the initial condition used for 

forecasting, data assimilation (DA) becomes essential for providing a more precise 

initial condition for model initialization and enhancing the state estimation (e.g., 

analysis) by optimally combining observations and model states. In general, there are 

two ways to initialize the coupled model: uncoupled DA and coupled DA (CDA). 

Traditionally, in a convenient way, uncoupled DA is designed to generate atmosphere 



 

 2 

 

and ocean state estimations separately for the coupled model, as shown in Figure 1.1 

(a). The updated atmosphere and ocean analyses would then be used to initialize the 

coupled model. In other words, the observation information from one domain (e.g., 

atmosphere) would not be included in either the forecast step or the analysis step of 

another domain (e.g., ocean). Although the uncoupled DA is low-cost and easy to 

implement, it may induce a strong imbalance in the coupled model states due to the 

mismatch between the separate analyses, causing “initial shocks” in the initial 

condition and consequently degrading the analysis and forecast skills (Rosati et 

al.,1997; Zhang, 2011; Mulholland et al., 2015).   

 

 

Figure 1.1 Schematic of (a) uncoupled DA and (b) coupled DA for coupled model 

initialization. (Zhang et al., 2020).  
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    The coupled DA (CDA), unlike the uncoupled DA, is directly conducted with the 

coupled model, as shown in Figure 1.1 (b). For CDA, the air-sea coupling dynamics 

and the observation information from another domain would be involved in both the 

forecast and analysis steps. Therefore, CDA is shown to be a better solution for 

coupled model initialization and could significantly improve climate predictions as 

well as benefit a wide range of numerical predictions (Penny and Hamill, 2017).   

    CDA can generally be divided into weakly coupled DA (WCDA) and strongly 

coupled DA (SCDA). The main difference between these two types is the 

involvement of cross-domain corrections during DA. For WCDA, the atmosphere and 

ocean states are updated by their respective observations. Namely, there’s no cross-

domain error correlation between the atmospheric and oceanic variables. However, 

the increments made in one domain (e.g., atmosphere) would influence another 

domain (e.g., ocean) through the flux exchanges during coupled forecasting. That 

said, the signals of the air-sea coupling dynamics could be delivered in the 

background error covariance of WCDA, which is the major difference between 

WCDA and uncoupled DA. Thus, in contrast to uncoupled DA, WCDA is shown to 

have a more balanced analysis and is effective in improving climate predictions 

(Zhang et al., 2011).  

    For SCDA, observations can be directly used to update both atmosphere and ocean 

domains (represented as the dashed arrows in Figure 1.1 (b)). Theoretically, SCDA is 

the optimal approach to the coupled model initialization because it considers the 

coupling dynamics in both the forecast and analysis steps. However, the 

implementation of SCDA is relatively challenging because its feasibility and 
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robustness depend on not only the design of the DA algorithm but also the 

understanding of the air-sea coupling dynamics (Zhang et al., 2020). Although several 

pioneering approaches to SCDA with simplified models have been proposed in recent 

years (Sluka et al., 2016; Sluka, 2018; Yoshida and Kalnay, 2018; Frolov et al., 

2016), showing the great potential of SCDA in improving the climate predictions, 

more efforts are still required for SCDA to be implemented in practice and 

operationally.   

     Currently, most operational centers use WCDA for their coupled model 

initialization, including the NCEP operational CFS. The atmosphere and the ocean 

domains of the CFS are independently initialized by the Gridpoint Statistical 

Interpolation system (GSI) (Kleist et al., 2009) and the Global Ocean Data 

Assimilation System (GODAS) (Behringer 2007), respectively. The GSI is a 

variational DA system (e.g., 3D-Var), while flow-dependent error statistics derived 

from ensemble forecasts within a 6-hr window are introduced to rescale the static 

variance used in cost function (Saha et al., 2010; Saha et al., 2014). The GODAS is 

originally evolved from Derber and Rosati (1989) and uses a 3D-Var scheme to 

assimilate ocean temperature and salinity. In the CFS, relaxation (nudging) of the 

surface sea temperature and salinity is taken place at the top level as a stronger 

constraint to prevent field drifting. A brief introduction to nudging is in Section 1.1.3.    

 

1.1.1 The ensemble-based coupled DA 

    The ensemble Kalman filter (EnKF, Evensen, 2003) is a widely used and 

convenient method for CDA applications. It has significant advantages, such as flow-
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dependent error statistics, and it doesn’t require the use of tangent linear and adjoint 

models, making it easy to implement on complicated, multi-component coupled 

models.  

    Many studies have successfully implemented EnKFs to initialize coupled models, 

from simple toy models to large operational models. Chen and Zhang (2019) 

developed a regional fully coupled EnKF system to improve tropical cyclone (TC) 

prediction. Their OSSE of Hurricane Florence (2018) results show that assimilating 

SST, sea-surface height anomaly, and sea surface current could provide better TC 

analysis and forecasts. Zhang et al. (2007) developed an ensemble-based CDA system 

for GFDL second-generation coupled model (CM2). Sluka et al. (2016) and (2018) 

implemented LETKF to the intermediate complexity coupled model, SPEEDY-

NEMO, and the operational CFSv2. Their study investigated the characteristics of 

SCDA and WCDA and found that the SCDA of ocean observations can significantly 

improve the atmosphere. The CFSv2-LETKF proposed by Sluka (2018) then be 

implemented to improve the seasonal prediction of Indian summer monsoon rainfall 

and shows impressive effectiveness in enhancing the S2S forecast skills (Gade et al., 

2022). 

    One of the biggest challenges for ensemble-based CDA is the sampling error due to 

limited ensemble size. When the ensemble size is insufficient, the spurious coupled 

cross-error correlations would significantly degrade the performance of CDA, 

especially for SCDA. Han et al. (2013) used a 5-variable simple coupled model and 

demonstrated that the improvement from SCDA would be more considerable than 

WCDA only when the ensemble size was increased to ~ 104. Therefore, special care, 
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such as the correlation cutoff method (Yoshida and Kalnay, 2018), would be needed 

for SCDA to deal with the rank deficiency of the ensemble.  

    The capability of a coupled model to simulate the coupled effects also substantially 

influences the precision of the estimated cross-domain error correlation. If the 

forecast model does not resolve the coupling dynamic correctly, it would be difficult 

for the background error covariance to reflect the realistic coupling features. 

Furthermore, the multi-timescale effect also raises the difficulty of CDA 

development. For example, it is found that the observations of slow-varying 

components (e.g., ocean) provide limited increments to fast-varying variables (e.g., 

atmosphere), while it is easier for the slow-varying states to be improved by 

observations from fast-varying components (Han et al., 2013; Sluka et al., 2016). 

Therefore, new strategies for optimizing the use of observation and advanced 

approaches for CDA to be better adapted to practical, operational Earth system 

models become important research topics for the development of CDA.   

 

1.1.2 The Local Ensemble Transform Kalman Filter (LETKF) 

         The LETKF (Hunt et al., 2007) is one of the most popular ensemble-based DA 

schemes. Its analysis is derived independently at each model grid by combining the 

local information from the ensemble backgrounds and the observations. At each 

analysis time, the analysis equations are expressed as:   

𝒙𝒂̅̅ ̅ = 𝒙𝑏̅̅ ̅ + 𝐗b 𝐏�̃� (𝐇𝐗b)T𝐑−1[𝒚𝑜 − 𝐇𝒙𝒃̅̅ ̅] ,                                                            (1.1) 

𝑿𝑎 =  𝑿𝑏 [(𝑘 − 1) 𝐏ã]
1

2 ,                                                                                         (1.2) 
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𝐏ã =  [(𝑘 − 1)𝐈𝑘×𝑘 + (𝐇𝑿𝑏)𝑇𝐑−1(𝐇𝑿𝑏)]−1 ,                                                        (1.3) 

where subscript letters a and b denote the analysis and background, respectively. The 

𝑿(.) represents the matrix of ensemble perturbations where each column is the vector 

of the deviations from the mean state 𝒙(.)̅̅ ̅̅ , namely 𝑿(.) = {(𝒙(.)
𝑖 − 𝒙(.)̅̅ ̅̅  ) |… | (𝒙(.)

𝑘 −

𝒙(.)̅̅ ̅̅  ) }  and 𝒙(.)
𝑖  is the state vector of the ith ensemble with an ensemble size 𝑘 . 𝐇 is 

the linear observation operator that converts information from model space to 

observation space. 𝒚𝑜  denotes the local observations, and 𝐑  is the corresponding 

observation error covariance. 𝐏ã is the analysis error covariance in a k-dimensional 

ensemble space spanned by the local ensembles. This attribute avoids the direct 

calculation of the error covariance in the M-dimensional model space (given that 

usually M >> k in NWP applications), and thus, the analysis can be obtained very 

efficiently.   

    Since the background error covariance 𝐏b  in LETKF is derived in spanned 

ensemble space, it is impossible to implement the localization function directly on the 

background error covariance through the Schur product in physical space like Hamill 

et al. (2001). Instead, Hunt et al. (2007) proposed another brilliant way to implement 

localization for LETKF by simply multiplying the elements of  𝐑  by an appropriate 

localization weight range from zero to one. This feature, where the localization 

function works at the R matrix, is also known as R localization. The characteristics of 

R localization and its differences from B localization were discussed by Greybush et 

al. (2011).    
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1.1.3 Nudging in the coupled model 

    The nudging scheme (Hoke and Anthes, 1976), also known as Newtonian 

relaxation, is a simple and widely used DA method for constraining the model state. 

The idea of nudging is adding small corrections to the state during the model 

integration, which would gradually push the model state toward the given field (e.g., 

observations or analysis). For example, the nudging process for the zonal wind 

velocity forecast equation can be written as 

𝜕𝑢

𝜕𝑡
=  −𝑣 ∙ ∇𝑢 + 𝑓𝑣 −

𝜕𝜙

𝜕𝑥
+

𝑢𝑜𝑏𝑠−𝑢

𝜏
 .                                                                         (1.4) 

The final term is the correction given by the nudging, where 𝜏  is the nudging 

timescale that determines the rate of state convergence. Traditionally, the timescale 𝜏 

is chosen based on empirical considerations and may vary with variables. 

    Nudging can be applied as a WCDA for coupled model initialization. Chen et al. 

(1995) used the nudging of wind stress observations for the coupled model 

initialization and showed significant improvements in El Niño forecasting. 

Keenlyside et al. (2008) implemented nudging to restore the SST field for the coupled 

model and successfully enhanced the forecast skill on North Atlantic and tropical 

Pacific oceans. For the operational CFSv2, the sea surface temperature and salinity at 

the top level of the ocean model are relaxed to the NOAA OISST and climatological 

data to avoid field drifting (Saha et al., 2010).   
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1.2 Localization  

1.2.1 Why do we need localization for ensemble-based DA? 

    One of the notable features of ensemble-based DA (e.g., EnKFs) is its flow-

dependent background error covariance derived from the background ensembles (e.g., 

forecasts initialized at the last analysis time), which involves the time-evolving error 

statistics for the model state. The implied background and observation error 

covariances determine how much observation information should be used to generate 

a new analysis. Therefore, the accuracy of the background error covariance estimates 

is one of the most critical keys toward an optimal analysis for EnKF.  

    Houtekamer and Mitchell (1998) noticed that the background error covariance 

estimated by too few ensembles would introduce spurious error correlations in the 

assimilation. Incorrect error correlations are harmful to the analysis and could lead to 

a filter divergence. Hamill et al. (2001) then performed conceptual experiments 

demonstrating how existing noises in the background error covariance influence the 

EnKF analysis. Their results showed that the relative error, also known as the noise-

to-signal ratio, significantly increases when the ensemble size is reduced, and a large 

relative error would consequently degrade the analysis accuracy. These early studies 

concluded that a sufficient ensemble size is essential for EnKF to obtain reliable 

background error estimates and generate accurate analysis.  

      Having large ensembles is computationally expensive, especially for high-

resolution models. Hence, finding a balance between accuracy and computational cost 

becomes an inevitable challenge for modern EnKF applications. Recent EnKF studies 

usually limit their ensemble size to about 100 members, and the ensemble size 
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employed in operational NWPs is even less due to the consideration of computational 

efficiency (Houtekamer and Zhang, 2016; Kondo and Miyoshi, 2016). Therefore, in 

order to reduce the sampling errors induced by limited ensembles, covariance 

localization becomes one of the essential techniques for EnKF applications.  

 

1.2.2 The distance-dependent localization  

    The most common and operationally used localization strategy is limiting the 

effects from distant observations (Houtekamer and Mitchell, 1998; Hamill et al., 

2001). A straightforward way to implement that is to apply a Schur product, where 

each element in the ensemble-based error covariance is multiplied by an element from 

a prescribed correlation function (Houtekamer and Mitchell, 2001). The most widely 

used prescribed correlation function is the Gaussian-like, distance-dependent function 

proposed by Gaspari and Cohn 1999 (hereafter GC99). For a B localization (e.g., the 

Schur product is applied on the background error covariance B), a compact support of 

the GC99 function can be represented as, 

 𝜌𝑖𝑗
= 𝑒𝑥 𝑝 [

−𝑑(𝑖,𝑗)2

2𝐿2 ],                                                                                                (1.5) 

where 𝜌𝑖𝑗
 is the localization weight, and d(i,j) is the distance between the ith analysis 

grid and the jth observation. L is the localization length which is usually manually 

defined. The GC99 function assumes that the observations farther from the analysis 

grid are less correlated (and even uncorrelated beyond a finite distance); as a result, 

the impact from distant observations would be suppressed on the analysis during 

assimilation.  
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1.2.3 The issues of distance-dependent localization 

 

    However, the employment of distance-dependent localization also brings issues 

and concerns, such as losing distant information and inducing unbalanced analysis 

(Miyoshi et al., 2014; Lorenc, 2003; Kepert, 2009). Miyoshi et al. (2014) utilized a 

10240-member EnKF to investigate the true error correlations of atmospheric 

variables, and they confirmed that continental-scale, even planetary-scale, error 

correlations certainly exist in atmospheric variables. That means the use of distance-

dependent localization could artificially remove the real long-range signals from the 

analysis increments. Another follow-up experiment with the 10240-member EnKF 

demonstrated that removing localization could significantly improve the analysis and 

its subsequent 7-day forecasts, and the key component for these improvements is the 

long-range correlations between distant locations (Kondo and Miyoshi, 2016).  

    The imbalance analysis is another noteworthy issue for localization (Cohn et al., 

1998; Lorenc, 2003; Kepert, 2009). An excellent paper from Greybush et al. (2011) 

summarized the unbalanced problem induced by localization. They argued that the 

imbalance analysis could happen for either B or R localizations, and the EnKF 

analysis accuracy could be consequently affected by the manually defined 

localization length in GC99. The B and R localizations indicate whether the 

localization function is applied on the background error covariance B or the 

observation error covariance R. They also found that the B localization has a longer 

optimal localization length with respect to the analysis accuracy. In contrast, the R 
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localization is more balanced than the B localization underlying the same localization 

length, and the balance of the analysis is enhanced when the localization length 

increases. A similar conclusion is mentioned in Lorenc (2003) that the unbalance 

induced by localization would relax with longer localization length and significantly 

minimized when the length is larger than 3000 km.   

     

1.2.4 Approaches of non-distance-dependent localizations 

     In addition to defining the localization by geographical distance, the empirical 

localization method (Anderson, 2007; Anderson and Lei, 2013; hereafter AL13) 

derives a static and flow-dependent localization from posterior ensembles. The core 

concept of AL13 is to find a localization weight that performs minimum analysis 

error, where a cost function is solved iteratively with subset ensembles and 

observations under a series of OSSEs. The AL13 method shows comparable analysis 

accuracy to the optimally tunned traditional localization (GC99) on the 40-variable 

Lorenz model.  

        Bishop and Hodyss (2009) proposed an adaptive localization strategy using 

ensemble correlations raised to a power (ECO-RAP). This method calculates the 

ensemble error correlation within each DA window and raises the collected 

correlation matrix to qth power (q=6 in their experiment) to eliminate small 

correlations and emphasize large ones. Then, a smooth operator is applied to the 

correlation matrix to ensure the consistency of the correlation length scale. In contrast 

to the correlation cutoff method (YK18, Yoshida and Kalnay, 2018) we used in this 

study, ECO-RAP estimates the localization function adaptively with simultaneous 
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ensemble correlations, while YK18 tends to estimate a non-adaptive localization 

function with climatological correlation. Both the methods need an additional 

function to filter out small correlations and emphasize larger ones, while ECO-RAP 

would require a more robust filter to identify and deal with small correlations (like 

noises) and sampling errors in the simultaneous background ensembles, which is the 

most critical part for the feasibility of ECO-RAP.        

     

1.3  Estimating the observation impacts in DA 

     As more observations become available for DA in the past decades, it greatly 

benefits the quality of analyses and forecasts with advanced model state estimations. 

However, the surge in observation amounts from various platforms also heightens the 

need for techniques capable of monitoring the impact of individual observation in 

DA. 

    The Forecast Sensitivity to Observation (FSO) proposed by Langland and Baker 

(2004, hereafter LB04) is one of the most advanced methods of estimating the 

observation impact without data-denial (with and without observations) experiments. 

The method attributes the differences between the forecasts initialized with and 

without DA to individual observations using the adjoint formulation and has been 

applied to variational DA systems in operational and research centers (Zhu & Gelaro, 

2008; Cardinali, 2009; Lorenc & Marriott, 2014; Zhang et al., 2015). 

    For the ensemble-based DA, Liu and Kalnay (2008) and Li et al. (2010) first 

introduced the Ensemble Forecast Sensitivity to Observation (EFSO) for the LETKF. 

EFSO tends to utilize ensemble information from the DA rather than the 
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adjoint/tangent linear models, allowing it to apply to models without a tangent-linear 

model. Kalnay et al. (2012, hereafter K12) further refined the EFSO formulation, 

making it simpler and applicable to all ensemble Kalman filters (EnKFs). A brief 

introduction to the EFSO proposed by K12 can be found in section 1.3.1. 

 

1.3.1 The Ensemble Forecast Sensitivity to observation (EFSO) 

    This section briefly introduces the EFSO formulation following K12. Here, 𝐱𝑡
𝑔̅̅̅̅  and 

𝐱𝑡
𝑓̅̅ ̅
 are the forecasts at time t initialized from the background and the analysis at t = 0, 

respectively. Their forecast errors verified against the truth 𝐱𝑡
𝑣  at time t can be 

represented as: 

𝒆𝑡
𝑓

=  𝐱𝑡
𝑓̅̅ ̅

− 𝐱𝑡
𝑣 , 𝒆𝑡

𝑔
= 𝐱𝑡

𝑔̅̅̅̅  − 𝐱𝑡
𝑣.                                                                              (1.6) 

The verifying truth 𝐱𝑡
𝑣 can be its own analyses or independent data. Following LB04, 

the forecast error reduction (or increase) ∆𝑒2 is defined as: 

∆𝑒2 = 𝒆𝑡
𝑓T

𝑪 𝒆𝑡
𝑓

− 𝒆𝑡
𝑔T

𝑪 𝒆𝑡
𝑔

= (𝒆𝑡
𝑓

− 𝒆𝑡
𝑔

)T𝑪 (𝒆𝑡
𝑓

+ 𝒆𝑡
𝑔

) 

≈ [𝐌(𝐱0
𝑎̅̅ ̅ − 𝐱0

𝑏̅̅ ̅)]
T

𝑪(𝒆𝑡
𝑓

+ 𝒆𝑡
𝑔

) = [𝐌𝐊𝛿𝒚𝑜]T𝑪(𝒆𝑡
𝑓

+ 𝒆𝑡
𝑔

).                                      (1.7)                    

The upper letters a and b represent the analysis and background, respectively.  𝐱(⋅)̅̅ ̅̅  is 

the mean state. 𝛿𝒚𝑜 = 𝒚0 − 𝐇(𝐱0
𝑏̅̅ ̅) , where 𝒚𝑜  denotes observations, and 𝐇  is the 

observation operator. M represents the tangent linear forecast model, and K is the 

Kalman gain. C is the forecast error norm. A schematic figure for the idea of EFSO is 

shown in Figure 1.2. 
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Figure 1.2  Schematic of the EFSO (∆𝑒2). The terms 𝑒𝑡
𝑔

 and 𝑒𝑡
𝑓
 represent the forecast 

errors (t = t) of the forecasts initialized from the background (t = 0) and analysis (t = 

0), respectively. 

 

    K12 extended the adjoint-based cost function (Eq (1.7)) to a simpler, tangent-

linear-model-free form for ensemble-based DA by generally assuming 𝐊 =

(
1

𝑘−1
) 𝐗0

𝑎𝐗0
𝑎T

𝐇T𝐑−1and 𝐗𝑡
𝑏 ≈ 𝐌𝐗0

𝑎, where 𝐗(⋅) represents the perturbation departure 

from the mean state, and k is the ensemble size. Thus, Eq (1.7) becomes (Eq (6) in 

K12): 

(∆𝑒2)𝐸𝐹𝑆𝑂 = (
1

𝑘−1
) 𝛿𝒚𝑜

𝑇 [𝜌 ∘  𝐑−1(𝐇𝐗0
𝑎)𝐗𝑡

𝑏𝑇
𝑪 (𝒆𝑡

𝑓
+ 𝒆𝑡

𝑔
)],                                   (1.8)           

where 𝜌 is the localization matrix whose row is the weighting for each observation, 

and the symbol ∘ denotes the element-wise multiplication (Schur product). 𝐑 is the 

observation error covariance.  (∆𝑒2)𝐸𝐹𝑆𝑂is the EFSO estimation, where a negative 

(positive) sign represents the beneficial (detrimental) observation for the forecast 

verified at time t.  
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1.3.2 Applications of EFSO 

    Ota et al. (2013) successfully implemented EFSO on the NCEP GFS-EnKF system 

and demonstrated the effectiveness of EFSO in quantifying the impacts of 

observations from different platforms. Lien et al. (2018) designed a novel data 

selection strategy based on EFSO for assimilating new measurements. Chawang and 

Kutty (2022) applied EFSO on the WRF model to monitor the impact of satellite 

atmospheric motion vectors (AMV) during the intensification period of tropical 

cyclons Hudhud (2014) and Phailin (2013) formed over the Bay of Bengal. Yamazaki 

et al. (2021) implemented EFSO in an atmospheric general circulation model and 

examined the feasibility and spatial characteristics of EFSO with different ranges of 

forecasts. They found that EFSO can be useful in estimating the observation impacts 

in short-range forecasts at all latitudes and in medium-range forecasts for the Arctic. 

A proactive quality control (PQC) system that removes instantaneous detrimental 

observations based on EFSO within a single DA cycle was shown to be effective in 

enhancing the analyses and forecast quality (Hotta et al., 2017; Chen et al., 2020). All 

the above studies have shown how powerful and effective EFSO is in investigating 

the observation impacts and guiding the observation use for DAs. 

 

1.4 Outline of this research 

        Pioneering efforts on CDA have been increasingly proposed in recent years, 

while challenging issues related to optimizing the ensemble-based CDA still require 
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deeper investigations. For example, what are the observation impacts in the coupled 

system? How to optimize the use of observations for CDA and improve the coupled 

forecasting? This dissertation aims to propose three advanced approaches from 

different aspects using LETKF. The ultimate goal of this dissertation research is to 

investigate the observation impacts in a coupled system, explore potential approaches 

for improving CDA, and gain more insights into enhancing the predictability of Earth 

system models.    

    

1. Applying prior correlations for ensemble-based spatial localization (Chap 

2) 

       

    This study introduces a non-adaptive, correlation-dependent localization scheme 

evolved from the correlation cutoff method (Yoshida and Kalnay, 2018; hereafter, 

YK18). The key idea is to "localize" the information from observation to analysis 

according to their square background error correlations estimated from a preceding 

offline run. Although YK18 was initially proposed as a variable localization strategy 

for coupled systems, it can be further utilized as a spatial localization by appropriately 

employing the cutoff function (Yoshida 2019). Similar to AL13, YK18 provides a 

static and flow-dependent localization function from posterior ensembles. However, 

YK18 does not need a truth value for OSSEs nor run iteratively like AL13, while an 

additional cutoff function described in Section 2.3 is required to filter out small 

perturbations in the error correlations. In this study, we applied the YK18 as spatial 

localization and investigated its feasibility using the Lorenz 96 model and LETKF. 

We also extensively explored the potential of integrative localization strategies.  
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2. Correcting the existing SST biases with SST WCDA (Chap 3) 

 

    The presence of significant SST biases in the CFS and their potential influences on 

degrading the accuracy of seasonal predictions have been much discussed (Kumar et 

al., 2012; Jin and Kinter, 2009; Wang et al., 2010; Chaudhari et al., 2013; KBRR et 

al., 2020). Traditionally, the SST and surface sea salinity (SSS) in the CFSv2 are 

mainly constrained by relaxing (nudging) to the "Reynolds SST" (Reynolds et al., 

2002, 2007) and to the annual salinity climatology (Conkright et al., 1999), 

respectively. However, we noticed that SST nudging is not very effective in reducing 

existing SST biases (Sluka, personal communication, (2019)). To address this issue, 

we propose to replace nudging with the WCDA of level 2 (L2) and level 4 (L4) SST 

products to reduce the existing SST biases. Several conceptual experiments were 

carried out on the operational-like CFSv2-LETKF system (Sluka et al., 2018) with 

real observations. Given the more effective reduction in the SST biases with WCDA, 

we expect the CFSv2 analysis and forecast to be beneficially improved. 

 

 

3. Estimating the oceanic observation impacts on CDA using EFSO (Chap 

4) 

 

    While the EFSO has become increasingly popular for atmospheric DAs, it has not 

yet been applied to any ocean or coupled systems to the best of our knowledge. The 

primary challenge for the oceanic EFSO development is the lack of a proper error 

norm to simultaneously include the forecast errors in salinity and sea temperature, the 

two most important variables that govern the dynamical characteristics of the ocean, 

such as heat transport and circulations. The error norm used in the EFSO formulation 

tends to incorporate comprehensive impacts into a single scalar, allowing the forecast 
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errors of different variables to be quantified under the same unit. For atmospheric 

EFSO, the dry and moist energy norms (Ehrendorfer et al., 1999) are commonly used 

to measure the forecast errors of essential meteorological variables, such as wind, 

temperature, and surface pressure. However, salinity is not directly attached to a 

known energy term as atmospheric variables, which leads to a significant obstacle in 

the oceanic EFSO development.  

    This study first proposes the oceanic EFSO by introducing a novel ocean density-

based error norm that simultaneously includes sea temperature and salinity. The 

oceanic EFSO was implemented on the atmosphere-ocean coupled system, the 

CFSv2-LETKF, and used to investigate the impacts of ocean observations under the 

WCDA framework. 

    Finally, the results of this dissertation research are briefly summarized in Chapter 

5. Chapter 5 also discusses the ongoing works, potential applications, and future 

studies inspired by current research.         

 

 



 

 20 

 

Chapter 2: Applying prior correlations for ensemble-based spatial 

localization 

 

2.1 Introduction 

    This chapter investigates the feasibility of the correlation cutoff method (Yoshida 

and Kalnay, 2018; hereafter, YK18) as a spatial localization using the LETKF and 

Lorenz 96 model. The key idea of YK18 is to "localize" the information from 

observation to analysis according to their square background error correlations 

estimated from a preceding offline run. Although YK18 was initially proposed as a 

variable localization strategy for coupled systems, it could be further utilized as a 

spatial localization by appropriately employing the cutoff function (Yoshida 2019). 

We compared the YK18 with the well-explored traditional distance-dependent 

localization GC99 and further explored the potential of the hybrid use of GC99 and 

YK18 under different configurations, aiming to gain more insights into integrative 

localization applications.   

     

2.2 Methodology and Model 

2.2.1 Model 

    The classic Lorenz model (hereafter L96 model; Lorenz and Emanuel, 1998) is a 

one-dimensional, univariate simplified atmospheric model that consists of a nonlinear 

term (e.g., representing advection), a linear term (e.g., representing mechanical or 

thermal dissipation), and an external forcing. The governing equations are: 
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𝑑𝑋𝑖

𝑑𝑡
= (𝑋𝑖+1 − 𝑋𝑖−2)𝑋𝑖−1 − 𝑋𝑖 + 𝐹 (+𝑓𝑖),                                                              (2.1) 

where the model variable is denoted by 𝑋𝑖  , 𝑖 = 1, … , 𝑀 , and 𝑀 = 40 . F is the 

constant external forcing and is set to be 8 here. The variables form a cyclic chain, 

where 𝑋−1 = 𝑋𝑀−1  and 𝑋0 = 𝑋𝑀 . The varying forcing term 𝑓𝑖  is neglected for the 

classic L96 model. The model is integrated with the fourth-order Runge-Kutta 

scheme with a time step of 0.0125 units (four steps correspond to 6 hours) and was 

initialized by adding a single random perturbation onto the rest state and integrating 

for 90 days to remove the model spin-up.  

    A variant L96 model with a spatially varying forcing 𝑓𝑖  appending to the L96 

model is proposed here to mimic a more sophisticated model dynamic. We 

constrained the total external forcing (𝐹 +𝑓𝑖) with a value range of 6 to 10, ensuring 

the model dynamic remains chaotic and has a wavenumber of 8. This additional 

forcing characterizes a land-ocean pattern (Figure 2.1 (a)), where the land region has 

an irregular and more substantial forcing (e.g., source), and the ocean region has a 

uniform and smaller forcing (e.g., sink). The primary influence of the changes in F is 

on its error growth rate. That said, increasing F has only a little effect on the 

qualitative appearance of the wave curves, while the error doubling time has an 

observable decrease (Lorenz and Emanuel, 1998).  
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Figure 2.1  (a) The external forcing (𝐹 +𝑓𝑖) used in the variant L96 model. The 

temporal mean of (b) the growth rate and (c) absolute bred vectors. (d) The time 

evolution of the absolute bred vectors for the variant L96 models. The breeding 

rescale cycle is 4 steps (𝑛 = 4, ∆𝑡 = 0.0125), which equals our DA window length. 

The breeding rescale amplitude is 1.0. 

 

 

    To understand the fundamental properties of the variant L96 model, we examined 

the bred vectors (BV, Toth and Kalnay, 1993, 1997; Kalnay et al., 2002) of the two 

models. BV is a nonlinear generalization of the leading Lyapunov vectors (see Toth 

and Kalnay, 1993 and 1997, for a more detailed exposition). Their growth rate is 

calculated as 
1

𝑛∆𝑡
ln (‖𝛿𝑥𝑓‖/‖𝛿𝑥0‖) , where 𝛿𝑥𝑓  and 𝛿𝑥0  are the final and initial 

perturbations within the breeding window, respectively. n is the window size and ∆𝑡 

is the integration step. The growth rate can be seen as a measure of the local 

instability of the flow. Figure 2.1 (b) shows the temporal mean BVs growth rate for 

the classic and variant L96 models. The variant L96 model has an overall higher 
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growth rate than the classic L96 model (Figure 2.1 (b)), which agrees with the 

statement of Lorenz and Emanuel (1998). Moreover, the perturbations tend to grow 

on the land-sea interface (Figure 2.1 (c)) and propagate eastward with the group 

velocity (Figure 2.1 (d)). In summary, we expect the variant L96 model to offer more 

complicated dynamics than the L96 model, and its more rapid error growth would let 

the corrections from DA be more quickly lost.   

 

2.2.2 The distance-dependent localization 

     Following Hunt et al. (2007), we use the positive exponential function as the 

localization function: 

𝜌𝑖𝑗
= 𝑒𝑥 𝑝 [

𝑑(𝑖,𝑗)2

2𝐿2 ],                                                                                                  (2.2) 

where 𝜌𝑖𝑗
 is the localization weight and d(i,j) is the distance between the ith analysis 

grid and the jth observation. L is the localization length which is usually manually 

defined. Eq. (2.2) is a smooth and static Gaussian-like function that offers the same 

localization effect as the GC99 when applied to LETKF. Since the observation errors 

are assumed to be uncorrelated in our experiments (R is diagonal), the localization 

weight would be independently assigned for the assimilated observation j and 

analysis grid i. So, when the distance (𝑑(𝑖, 𝑗) in Eq (2.2)) increases, a larger value of 

𝜌𝑖𝑗
 would be multiplied to R, inflating observation error for the jth observation. That 

would lead to a smaller value in the corresponding rows of the Kalman gain (𝑿𝑏[(𝑘 −

1)𝐈 + (𝐇𝑿𝑏)𝑇𝐑−1(𝐇𝑿𝑏)]−1(𝐇𝑿𝑏)𝑇𝐑−1 ) of LETKF, down-weighting the 

observation on updating the background; thus, the impact of distant observations 
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would be suppressed on the analysis. When the compact support is presented with the 

localization function, the observations located beyond a certain distance (this study 

uses 3.65 times L) from the analysis grid would be discarded by assuming 𝜌𝑖𝑗
= 0. 

 

2.2.3 The correlation cutoff method 

    The correlation cutoff method (Yoshida and Kalnay, 2018; Yoshida, 2019), a 

pioneering localization approach for coupled systems, localizes the information from 

observation to analysis according to their square background error correlations. 

This method is carried out with two steps: 

 

Step 1. Obtaining the square error correlation from an independent run 

    The prior square error correlations are collected from a preceding independent DA 

cycling run. At each analysis time t, an instantaneous background ensemble 

correlation between the ith analysis grid and the jth observation is computed as: 

𝑐𝑜𝑟𝑟𝑖𝑗
(𝑡) =  

∑ [𝑥𝑘𝑖 (𝑡)− 𝑥𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅][ℎ𝑗(𝑥𝑘(𝑡))−ℎ𝑗(𝑥𝑘(𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]𝐾
𝑘=1

√∑ [𝑥𝑘𝑖
(𝑡)−𝑥𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅]

2𝐾
𝑘=1

√∑ [ℎ𝑗(𝑥𝑘(𝑡))−ℎ𝑗(𝑥𝑘(𝑡))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
2

𝐾
𝑘=1

                                        (2.3) 

where 𝑥𝑘𝑖
(𝑡) is the state vector of the kth ensemble at the ith analysis grid at time t. 

ℎ𝑗(𝑥𝑘(𝑡)) is the linear interpolation to the background state 𝑥𝑘(𝑡) from the analysis 

grid to the jth observation location. The symbol  ( )̅̅ ̅ denotes the ensemble mean of a 

given vector. K is the total ensemble size. 

    Then, the temporal mean of the squared correlation is computed by: 

< 𝑐𝑜𝑟𝑟𝑖𝑗
2 >=

1

T
 ∑ 𝑐𝑜𝑟𝑟𝑖𝑗

2(𝑡)𝑇
𝑡=1                                                                                 (2.4) 
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T is the total analysis cycles in the independent run. In the original YK18, this prior 

error correlation is used as a criterion for variable localization in the coupled DA, by 

which only those highly correlated observations would be assimilated. For the spatial 

localization approach, the value < 𝑐𝑜𝑟𝑟𝑖𝑗
2 > will serve as the "prior error correlation" 

to estimate the localization function as described in Step 2. 

    

Step 2. Converting the prior error correlation into the localization weighting 

    The localization function is derived by substituting the prior error correlation 

obtained in Step 1 with a chosen cutoff function. The purpose of using the cutoff 

function is to generally smooth out small perturbations and ensure the weight range is 

between 0 and 1. Here, we followed Yoshida (2019) using the quadratic function (Eq 

(2.5)) as our choice of the cutoff function. The localization weight 𝜌𝑖𝑗
 assigned for 

the jth observation at the ith analysis grid can be written as: 

 

𝜌𝑖𝑗
= {

0                                       (𝑥 ≤ 𝑐),

1 − (
1−𝑥

1−𝑐
)

2

             (𝑐 < 𝑥 ≤ 1)

1                                        (𝑥 > 1)

 ,                                                                 (2.5) 

 

where 𝑥 =< 𝑐𝑜𝑟𝑟𝑖𝑗
2 > and c is a tunable parameter that defines the slope for the 

function. We set c equal to 0.05 and 0.01 for the classic and variant L96 experiments, 

respectively.  

    An additional threshold was applied to exclude observations with a square error 

correlation smaller than 1/(K-1). This threshold is chosen because the squared sample 
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correlation estimated by K random samples extracted from an uncorrelated 

distribution would converge to 1/(K-1) (Pitman, 1937). So, any value not much larger 

than 1/(K-1) is assumed to be unreliable (Yoshida, 2019). 

 

2.3 Experimental settings 

2.3.1 Localization methods 

In this study, we investigated four types of localization strategies: 

• GDL: Distance-dependent localization introduced in Section 2.2.2. The 

localization length used for each experiment is experimentally tuned for a 

minimum temporal mean analysis RMSE. The cutoff radius is set to be 3.65 

times the localization length.   

• YK18: Correlation-dependent localization, in which the weighting function is 

derived from the correlation cutoff method introduced in Section 2.2.3.  

• Hybrid: a hybrid application of GDL and YK18, in which the localization 

weighting is equal to 𝛼 𝐺𝐷𝐿 + (1 − 𝛼)𝑌𝐾18. The combination ratio 𝛼 is 0.5 

for our experiment. This method was tested for the classic L96 model 

experiment. 

• Hybrid II: Combination use of GDL and YK18, in which YK18 is employed 

for the first 80 DA cycles for shortening the DA spin-up, and GDL is 

subsequently applied for the rest of the DA cycles. This method is used only 

for the variant L96 model experiment. 
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    For YK18, an independent offline run with sequential DA cycling is conducted to 

acquire the prior error correlation before running the DA experiments. The running 

period for the offline run is three years with a 6-hr analysis window. The first four 

months are assumed to be the DA spin-up period and were removed. We used 10 

ensembles for the offline run with configurations the same as the GDL experiments in 

Sections 2.4.2 and 2.4.3. Offline runs were performed respectively for the classic and 

variant L96 models.   

    Theoretically, the best localization length for GDL is directly proportional to the 

ensemble size, and there must exist an optimal combination of the localization length 

and the inflation factor (Hamill et al., 2001). This study applied the multiplicative 

covariance inflation (Anderson, 2001), and its best combination with localizations is 

experimentally defined based on the minimum averaged analysis error for each 

experiment. The parameters used in the experiments for the L96 and L96 variant 

models are listed in Table 2.1 and Table 2.3. 

 

2.3.2 Truth and Observations 

    The truth was obtained from the model free-run, and the observations were 

generated by adding random Gaussian errors with a variance of 1.0 onto the truth 

state every 6 hours. The initial ensembles are obtained from the perturbed model 

states and integrated for 75 days until the ensemble trajectories converge to the model 

attractor. The total experiment period is one year.  

    The analysis result is evaluated by the root-mean-square error (RMSE) with the 

true state. For each variable, the RMSE can be represented as: 
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RMSE = √
1

𝑀
∑ (𝑥𝑖

𝑎̅̅ ̅ − 𝑥𝑖
𝑒)2𝑀

𝑖=1  ,                                                                                 (2.6) 

 

where M is the number of model grids, which equals 40 for the L96 model. The 𝑥𝑖
𝑎̅̅ ̅ 

and 𝑥𝑖
𝑒 are the analysis ensemble mean and the verified state, respectively. 

 

2.4 Results 

2.4.1 The characteristics of the YK18 function 

    The squared error correlation estimated from the independent background 

ensembles is the core of the YK18 localization function. Before moving to DA 

experiments, we first discussed: 

(1) How do different factors (ensemble and observation) in the offline run impact the 

corresponding error correlation estimation (Eq (2.4))? 

(2) What are the main differences in the localization functions (e.g., GDL and 

YK18)?     

    First, we examined the temporal mean squared correlation (Eq (2.4)) estimated by 

different observations and ensemble sizes of the offline runs. Trials with observation 

sizes of 40, 20, and 13 (representing uniform coverages of 100%, 50%, and 30%, 

respectively) are carried out on the classic L96 model with 40 ensembles. We found 

that the squared correlation estimation (Eq (2.4)) is not very sensitive to the 

observation size changes (Figure 2.2 (a)) as long as the analysis of the offline run is 

well-constrained. Moreover, the minor differences in the estimated squared error 
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correlation (Figure 2.2 (a)) would be ultimately smoothed out by the cutoff function 

(Eq (2.5)) in practice. Therefore, the final localization weights derived from the 

offline runs with different observation sizes will be almost identical. This 

characteristic, in other words, provides clear evidence to use past data to estimate the 

error correlations for newly added observations, which is a significant advantage for 

the applicability of YK18 in modern DA.     

        Figure 2.2 (b) shows how the offline run period (e.g., the number of samples) 

would affect the prior error correlation estimation (Eq (2.4)). The mean-square error 

(MSE) was verified with the result estimated by large ensembles (ens =100) and a 

long period (3 years). It is noticeable that the required number of samples (e.g., length 

of offline run) for the estimated error correlation to converge to climatology is 

associated with the ensemble size and model complexity. When the model is more 

complicated (blue and red lines), or the ensemble size is smaller, the required cycles 

for the convergence of estimated error correlations would accordingly increase 

(Figure 2.2 (b)). Therefore, a longer offline run or past data may be required when 

using fewer ensembles or a more complicated model.   
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Figure 2.2 (a) The temporal-mean squared error correlations estimated from different 

observation amounts. The yellow star represents the correlated observation location. 

(b) The MSE of Eq (2.4) estimated by the past data with 10 ensembles (black) and by 

the ideal offline runs with the L96 model (red) and the L96 variant model (blue).  

 

        The localization functions of GDL and YK18 applied for our DA experiments 

are shown in Figure 2.3. The optimal localization length for GDL is associated with 

multiple factors like ensemble size, observation distributions, and model dynamics. 

For example, when the ensemble size shrinks, the optimal localization length would 

correspondingly decrease so that a more substantial suppression effect can be 

performed on those spurious correlations in distant regions (Ying et al., 2018). In 

contrast, the YK18 localization function, once it is defined, is independent of the 

ensemble size changes. Unlike GDL, which provides a fixed function for every 

observation, YK18 offers customized localization functions for each observation 

based on their prior error correlations; for example, the different asymmetric features 

of the YK18 function (red line) in Figure 2.3 (b) and (c).   
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Figure 2.3 The localization functions of GDL (blue) and YK18 (red) for the (a) 

classic L96 model and (b)(c) the variant L96 model but for the different observation 

sites. The yellow stars represent the corresponding observation sites. The results 

presented here are for the case of 10 ensembles and 40 observations. 

 
 

2.4.2 DA Experiment Scenario I: classic L96 model 

   This section utilized the classic L96 model to investigate the impacts of GDL, 

YK18, and Hybrid. The total experiment period is one year (after the first 60 cycles 

of spin-up) with a DA window of 6 hours. The tested ensemble sizes are 8 and 10. 

Observations are uniformly distributed with a total number of 20 and 40. The 

parameters for the localization and inflation for the experiments are shown in Table 

2.1. 
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Table 2.1  The parameters used in the class L96 model experiments given in Eq (2.2) 

and Eq (2.5). The symbol 𝛼 represents the multiplicative inflation parameter. 

  GDL YK18 Hybrid 

ens =10 

obs = 40 L = 5, 𝛼 = 1.04 c = 0.05, 𝛼  = 1.03 L = 7, 𝛼  = 1.03 

obs = 20 L = 4, 𝛼  = 1.03 c = 0.05, 𝛼  = 1.03 L = 6, 𝛼  = 1.03 

ens = 8 

obs = 40 L = 3, 𝛼  = 1.04 c = 0.05, 𝛼  = 1.04 L = 7, 𝛼  = 1.06  

obs = 20 L = 3, 𝛼  = 1.07 c = 0.05, 𝛼  = 1.04 L = 7, 𝛼  = 1.06 

 

 

    Figure 2.4 shows the analysis RMSE of GDL, YK18, and Hybrid. The YK18 

presented the lowest RMSEs among all the methods during the DA spin-up period 

(Figure 2.4), particularly when the ensemble size and observations were reduced 

(Figure 2.4 (d)). This result shows that YK18 can shorten the DA spin-up and 

perform a comparable analysis as GDL. The DA spin-up means the required period 

for the ensemble-based DA system to build a reliable background error covariance, 

and the analysis error reaches convergence. The phrase “spin-up” used in the 

following sections refers to the DA spin-up. 
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Figure 2.4  The time series of the analysis RMSE for GDL (blue line), YK18 (red 

line), and Hybrid (green line) for the cases of 10 ensembles with (a) 40 and (b) 20 

observations; and cases of 8 ensembles with (c) 40 and (d) 20 observations. 

 

 

    The capability of YK18 in accelerating the spin-up mainly comes from its more 

precise interpretation of the error correlations derived from the independent (or past) 

ensembles. Figure 2.5 shows the localized background error covariance (𝜌𝐗𝑏𝐗𝑏
𝑇) of 

GDL (blue line) and YK18 (red line) at the first (Figure 2.5 (a)) and the second 

(Figure 2.5 (b)) DA cycles. The true covariance (black line) was obtained by 

perturbing the truth state and evolving through the corresponding DA window (6 

hours) with a large ensemble size of 5000, which can be seen as an optimal estimation 

without sampling errors. At the first DA cycle, where GDL and YK18 were 

initialized with the same ensembles, it is apparent that the localized error covariance 
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of YK18 is significantly closer to the true covariance, showing less spurious than 

GDL, especially for distant covariances. (Figure 2.5 (a)). With a better estimate of the 

background error covariance, YK18 performed a superior analysis at the initial cycle 

and subsequently improved the background error estimation for the next cycle (Figure 

2.5 (b)). Thus, with prior knowledge of the error correlations, YK18 can optimize the 

use of observations, inducing more "on-point" corrections for the analysis and 

reducing the required number of cycles for the DA system's spin-up. This advantage 

of YK18 is also present in the variant L96 model (Figure 2.5 (c)(d)). 

 

 

Figure 2.5  The true (black) and localized background error covariances (𝜌𝑿𝑏𝑿𝑏
𝑇) of 

GDL (blue) and YK18 (red) for the L96 model at (a) the first and (b) the second DA 

cycles, and for the variant L96 model at (c) the first and (d) the second DA cycles. 

The localization functions and configurations are the same as in Figure 2.3.   
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    Table 2.2 shows the 1-yr mean analysis RMSE without the spin-up period (first 

100 cycles). Generally, the long-term averaged performance of the three localizations 

is very similar, while Hybrid is slightly better than the other two (Table 2.2). The best 

localization length for Hybrid is longer than pure GDL, which allows it to gain more 

observation information after the DA convergence. Note that it is unlikely for GDL to 

apply such long localization length at the beginning because it needs a relatively 

shorter localization length to constrain the spurious error covariances during the spin-

up. In our experiments, the GDL went through filter divergence at the early stage 

when using localization lengths larger than 7. In contrast, by averaging with the 

tighter function from YK18, the Hybrid was able to get through the spin-up with a 

longer localization length. However, on the other hand, it requires a significantly 

longer spin-up period than the other two methods due to its weaker constraint in the 

early stage.       

 

Table 2.2  The long-term mean analysis RMSE for the classic L96 model. 

 
Observation = 40 Observation = 20 

Ens = 8 Ens = 10 Ens = 8 Ens = 10 

GDL 0.178 0.175 0.292 0.245 

YK18 0.192 0.185 0.302 0.280 

Hybrid 0.176 0.163 0.271 0.253 
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2.4.3 DA Experiment Scenario II: the variant L96 model  

    Considering the classic L96 model is favorable for GDL due to its simple model 

dynamics, the variant L96 model that offers a more complicated model dynamic was 

employed here. We used 10 ensembles with different observation sizes of 40, 30, and 

20. The 20 and 40 observations are uniformly distributed. The 30 observations are 

distributed densely on the land (20 observations) and coarsely in the ocean area (10 

observations). Three localization methods were tested here: GDL, YK18, and Hybrid 

II. Hybrid II uses YK18 for the first 80 DA cycles to accelerate the spin-up, then 

GDL for the rest of the cycles. Since the parameters are respectively tuned for each 

method, the localization length used in GDL and Hybrid II may differ. The 

parameters used for this section are listed in Table 2.3. 

 

Table 2.3  The parameters used in the variant L96 model experiments given in Eq 

(2.2) and Eq (2.5). The symbol α represents the multiplicative inflation parameter. 

  GDL YK18 Hybrid II 

ens =10 

obs = 40 L = 5, 𝛼 = 1.06 c = 0.005, 𝛼  = 1.03 L = 5 , 𝛼  = 1.03 

obs = 30 L = 4, 𝛼  = 1.06 c = 0.005, 𝛼  = 1.04 L = 5, 𝛼  = 1.04 

obs = 20 L =3, 𝛼  = 1.03 c = 0.005, 𝛼  = 1.05 L = 5, 𝛼  = 1.06 

 

 

    Figure 2.6 shows the analysis RMSE of the three methods on the variant L96 

model. Since Hybrid II is identical to YK18 for the initial 100 DA cycles, the green 

overlaps with the red line in Figure 2.6. As expected, GDL requires a significantly 

longer spin-up for the more complicated model, especially when fewer observations 
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are available (Figure 2.6 (b) and (c)). The YK18, again, showed impressive efficiency 

in accelerating the spin-up, particularly with fewer observations, and generated a 

better analysis than GDL at the early stage. Nevertheless, this advantage of YK18 

became more pronounced with a more complicated model and fewer observations.  

 

Figure 2.6  The analysis RMSE of the GDL (blue), YK18(red), and Hybrid II (green) 

with observations of (a) 40, (b) 30, and (c) 20 for the variant 96 model experiment.  

 

Table 2.4 The long-term mean analysis RMSE for the variant L96 model (10 

ensembles). 

 obs = 40 obs = 30 obs = 20 

GDL 0.185 0.254 0.317 

YK18 0.210 0.255 0.319 

Hybrid II 0.178 0.234 0.312 
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    Table 2.4 is the 1-yr average of the analysis RMSE after the first 100 spin-up 

cycles. After the system's spun-up, the averaged analysis RMSEs of all methods are 

similar, while Hybrid II is slightly better than the other two methods (Table 2.4). We 

found that the mixed use of YK18 and GDL Hybrid II is superior to solely using 

YK18 or GDL. Hybrid II inherits the benefit of YK18 of accelerating spin-up and 

outperforms GDL after the system convergence, presenting the best performance 

among all methods. That is, possibly, because Hybrid II has a longer optimal 

localization length than GDL, allowing it to acquire more observation information 

during the assimilation and provide a more accurate analysis. Moreover, Hybrid II has 

a significantly shorter spin-up than Hybrid I, making it a better hybrid strategy for 

cases requiring DA spin-ups.      

    Finally, it is important to highlight that YK18 is an exceptionally efficient 

localization method. In practice, using GDL requires multiple preceding trials to find 

an optimal length for the experiments of interest, which may consume considerable 

computational resources and time. Moreover, when the ensemble size or observation 

amount changes, the optimal localization length may vary accordingly, so additional 

tuning for the localization length might be needed for GDL. In contrast, YK18 only 

needs one offline run to determine the error correlations, whereas it performs a 

comparable analysis as GDL, even with a faster spin-up. Although an initial tunning 

for the parameter c in Eq (2.5) is necessary at the beginning, once it is tuned, it can 

adapt to future ensemble or observation size changes since it is not sensitive to the 

variation of those factors. This feature, on the other hand, allows YK18 to avoid 

further trial-and-error tunings and be more efficient than GDL. 
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2.5 Summary and discussion 

    This study explored the feasibility of using the correlation cutoff method (YK18, 

Yoshida and Kalnay 2018; Yoshida 2019) as a spatial localization and compared the 

accuracy of the two types of localization, the correlation-dependent (YK18) and 

distance-dependent (GDL), preliminarily on the Lorenz (1996) model with the 

LETKF. We also proposed and explored the potential of the two types of hybrid 

localization applications (Hybrid and Hybrid II). Our results showed that YK18 

performs a similar analysis as GDL but with a significantly shorter spin-up, especially 

when fewer ensembles and observations are presented. YK18 can accelerate the spin-

up by optimizing the use of observations with its prior knowledge of the actual error 

correlations, effectively reducing the required number of cycles toward the analysis 

convergence. In our experiments with the variant L96 model, we demonstrated that 

these advantages of YK18 would become even more pronounced under a more 

complicated dynamic.  

    It is worth highlighting that YK18 is more efficient and economical than GDL. 

Traditionally, the use of GDL requires multiple trial-and-errors to define the optimal 

localization length for the experiments of interest. In contrast, YK18 only needs one 

offline run to obtain the prior error correlations, whereas it provides a comparable 

analysis as GDL, even with a faster spin-up. For operational or research centers that 

have plentiful archives of historical ensemble datasets, it is possible to directly obtain 

the required prior error correlation for YK18 from the past data (e.g., historical 

ensemble forecasts) without executing additional offline runs.      
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    We found that the hybrid methods, the combination uses of YK18 and GDL, 

generated a more accurate analysis than that solely using GDL or YK18. Hybrid II 

has the same advantages as YK18 in accelerating the spin-up and a larger optimal 

localization length than GDL. These features allow Hybrid II to spin up quicker, 

obtain more observation information after the system convergence, and generate a 

slightly better analysis than GDL and YK18. Since the analysis unbalances would be 

relaxed by a larger localization length, we expect the hybrid methods would deliver a 

more balanced analysis than GDL with a multivariate model. Further investigation of 

this advantage will be part of our future work.   

      We would like to emphasize that the L96 model used in this study is highly 

advantageous to GDL because of its univariate and simple dynamic without 

teleconnection features. So, the two known problems in GDL, unbalanced analysis 

and losing long-range signals, would not appear here to degrade its performance. 

Despite that, this model is still an excellent testbed for preliminary DA studies 

because it offers a simple and ideal environment for first exploring the fundamental 

characteristics of new methods. With that in mind, it is encouraging that YK18 

performed a comparable analysis to GDL (even with a shorter spin-up) under such an 

environment that is particularly advantageous to GDL. We believe YK18 has a great 

potential to generate a relatively accurate and balanced analysis than GDL in a more 

sophisticated, multivariate model. More studies with a multivariate and more realistic 

model would be required and will be conducted as our future works.         

    Another future work will be extending the use of YK18 to location-varying 

observations. One potential solution is to use neural networks to estimate 
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corresponding error correlations for YK18 applications (Yoshida, 2019). Yoshida 

(2019)’s experiments proved that neural networks could estimate the background 

error correlations for observation at arbitrary locations. Although high computational 

costs and numerous samples are inevitable for training neural networks, once the 

network is developed, it can provide significant advantages in estimating the error 

correlations for location-varying observations such as satellite data.  
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Chapter 3: Reducing the SST biases in the CFSv2 analysis 

under the WCDA framework 
 

 

 

 

3.1 Introduction 

    This chapter explores the impact of alternatively using WCDA instead of the 

traditional relaxation (nudging) scheme to the CFSv2 on constraining the surface and 

upper sea temperature. We investigated how WCDA and nudging affect the ocean 

temperature and atmosphere analyses and forecasts with conceptual experiments on 

the operational-like CFSv2-LETKF and real observations.   

 

3.2 Methods 

3.2.1 The NCEP Climate Forecast System version 2 (CFSv2) 

    The second version of the NCEP Climate Forecast System (CFSv2) (Saha et al. 

2010, 2014) is a fully coupled atmosphere-ocean-land model that provides 

retrospective forecasts, reanalysis, and operational predictions of climates on a global 

scale. The CFSv2 includes an atmospheric component of the Global Forecasting 

System (GFS) and an ocean component from the GFDL Modular Ocean Model 

version 4 (MOM4). The land component is from the 4-level Noah land surface model 

(Ek, 2003), which runs as part of the GFS model with dynamic vegetation. A 
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three‐layer interactive sea ice model (Winton, 2000) is utilized as a subcomponent 

performing ice dynamics, vertical thermodynamics, ice transport, and surface albedo. 

    The atmospheric model is integrated with a spectral resolution of T126 in 

horizontal (~ 100 km) and 64 sigma-pressure hybrid vertical levels. The ocean model 

is run with a horizontal resolution of 0.25 degrees near the equator (10°S to 10°N 

latitude band) for better capturing the equatorial dynamics and 0.5 degrees elsewhere. 

There are 40 vertical layers for the MOM4, and above the ocean surface, a coupler is 

employed between the atmosphere and ocean components, interpreting the air-sea 

interactions and flux exchanges.    

 

3.2.2 The CFSv2-LETKF 

    The CFSv2-LETKF (Sluka et al., 2018) is built based on the CFSv2 and the 

LETKF and can update the CFSv2 ensembles under WCDA and SCDA. For WCDA, 

the atmosphere and ocean components are updated independently with observations 

in their respective domains. The background error covariance of LETKF is estimated 

from CFS forecast ensembles, delivering flow-dependent features in its error statistics. 

For a coupled system, the state vector x includes the atmosphere and ocean 

components. Namely, 

𝐱 = [𝐱ATM  𝐱OCN ] . 

    In the CFSv2-LETKF, the atmospheric analysis variables (𝐱ATM) are winds (U, V), 

air temperature (Tair), moisture (Q), and surface pressure (Ps). The oceanic analysis 

variables (𝐱OCN) are sea temperature (T) and salinity (S). Our experiments were 
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conducted under WCDA, so the 𝐱ATM  and 𝐱OCN  are updated independently with 

observations in their respective domains. Although no cross-domain increment is 

involved in DA, the increments made in one domain (e.g., ocean) can still affect 

another domain (e.g., atmosphere) through the CFSv2 coupled forecasting.   

 

 

 

Figure 3.1  Schematic of the CFSv2-LETKF under WCDA framework. 

 

 

3.3 Experiment Design 

      This study conducted a series of 1-month experiments to investigate the impact of 

WCDA and nudging on constraining the CFSv2 SST. The effect of different types of 

SST observations was also explored and compared.   

 

3.3.1 Observations 

    A subset of the NCEP PREBUFR data described in Table 3.1 were assimilated for 

all experiments for the atmosphere components. We used the Canadian 
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Meteorological Center (CMC) daily mean foundation sea temperature as the Level 4 

(L4) SST observations (Brasnett B., 2008) and NOAA Advanced Very High-

Resolution Radiometer (AVHRR) infrared satellite SST data as the Level 2 (L2) SST 

in our WCDA experiments. The NOAA Optimum Interpolation Daily SST version 2 

(OISSTv2, Reynolds et al., 2007), also known as the Reynolds SST, was applied in 

the nudging experiments for imitating the operational CFSv2 SST relaxation. L4 SST 

is a global, gridded, blended, and gap-free SST analyzed field generated by satellite-

retrieved SST observations, and L2 SST is reprocessed, satellite-retrieved SST at the 

observed pixels. A detailed description of these three SST data is listed in Table 3.2. 

The observation distributions of atmosphere and SST observations are shown in 

Figure 3.2 and Figure 3.3, respectively.  

    The L2/L4 SST data can be downloaded from the Group for High-Resolution Sea 

Surface Temperature (GHRSST, https://www.ghrsst.org/). 
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Table 3.1  Observations used in this study 

Types of observation Description Experiment used 

Atmospheric Observation   

ADPUPA Upper-air (RAOB, PIBAL, RECCO, DROPS) 

reports 

 

 

 

 

All experiments 

ADPSFC Surface land (synoptic, metar) reports 

SFCSHP Surface marine (ship, buoy, c-man/tige gauge 

platform) reports 

AIRCFT 

 

PROFLR 

SATWND 

VADWND 

WDSATR 

AIREP, PIREP, AMDAR, TAMDAR aircraft 

reports 

Wind profiler and acoustic sounder reports 

Satellite-derived wind reports 

VAD (NEXRAD) wind reports 

Windsat scatterometer wind data (reprocessed) 

 

Ocean Observation   

CMC L4 SST CMC High-resolution Blended Analysis of Daily 

Foundation sea temperature 

WCDA & 

Nudging 

NOAA OISSTv2 NOAA Optimum Interpolation Daily SST Nudging 

NOAA L2 SST NOAA AVHRR L2 SST WCDA 

 

 

Table 3.2  SST observations used in this study 

 

 

 OISSTv2 CMC L4SST NOAA AVHRR L2SST 

Resolution Level 4 (0.25 degrees) Level 4 (0.25 degrees) Level 2 

Platforms 

NOAA AVHRR 

NASA EOS AMSR-E 

In-situ (ships, buoys) 

 

TRMM  TMI 

CORIOLIS WINDSAT 

NOAA AVHRR 

NASA EOS AMSR-E 

ERS ATSR 

Buoys 

ENVISAT AATSR 

NOAA AVHRR 
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Figure 3.2  A snapshot of the location of assimilated atmospheric observations. 

 

 

 

Figure 3.3 The location of assimilation (a) L2 SST and (b) L4 SST. 
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3.3.2 WCDA and nudging experiments 

    Four experiments listed in Table 3.3 were carried out on the CFSv2-LETKF for 

one month. The main difference between the nudging and the WCDA experiments is 

how they use the gridded SST data to constrain the SST. For nudging, SST and SSS 

are directly relaxed to the selected data to constrain the fields at the interface domain 

(between the atmosphere and ocean) of CFSv2. In contrast, WCDA tends to update 

the subsurface sea temperature in the MOM4 by the assimilation of SST data. With 

an improved sea temperature analysis at the upper ocean (e.g., 5m depth), the model 

can better estimate the interface SST for CFSv2.  

    For the nudging experiments, the SST was relaxed to the OISSTv2 (Reynolds et 

al., 2002, 2007) and L4SST with a time scale of 5 days, and the SSS was relaxed to 

the annual salinity climatology (Conkright et al., 1999) with a time scale of 30 days. 

This configuration mimics the operational global ocean data assimilation system at 

NCEP (GODAS). For the WCDA cases, the ocean temperature was updated daily at 

12 UTC. The SST relaxation was suspended while we kept the SSS relaxation the 

same as in the nudging case to avoid field drifting. A comparison between the 

nudging case, GODAS, and WCDA case is shown in Table 3.4.  
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Table 3.3  The SST WCDA and nudging experiments 

 

 

 

 

 Table 3.4  Comparison of GODAS, WCDA, and nudging experiments 

 Operational GODAS Nudging EXPs WCDA EXPs 

Sea Surface    

Temperature Relax to NOAA OISST (Reynolds 

et al. 2002) with a time scale of 5 

days 

Relax to gridded SST 

field (OISSTv2 and 

CMC L4 SST) with a 

time scale of 5 days 

No relaxation 

Salinity Relax to annual salinity 

climatology (Conkright et al., 

1999) with a time scale of 10 days 

Same as GODAS but with a time scale of 30 

days 

Sub-surface    

Temperature - Top level (5m): Relaxation to 

gridded daily mean SST 

(every 6hr) 

- Subsurface: 3DVAR 

assimilation with surface and 

profile data 

Free run WCDA high-

resolution SST at 

10m (CMC L4 

SST) and 0m (L2 

SST) 

Salinity Free run Free run 

 

 

 

EXP name Nudge OISSTv2 Nudge L4SST WCDA L4SST WCDA L2SST 

ATM DA NCEP prebufr / DA cycle = 6 hours 

OCN DA x x 
CMC L4SST 

DA cycle : 1 day 
AVHRR L2SST 

DA cycle: 1 day 

SST Nudging   
OISSTv2   

Tscale: 5 days 
CMC L4SST 

Tscale: 5 days 
x x 

SSS Nudging   Climatology (Tscale: 30 days)  



 

 50 

 

    For all experiments, the meteorological variables of wind field (U, V), temperature 

(T), specific humidity (Q), and surface pressure (Ps) were updated by assimilating the 

conventional data (e.g., no radiance, GPS, and precipitation data) of NCEP 

PREBUFR every 6 hours at 00, 06, 12, 18 UTC.   

    The experiment period is one month and initialized from 00 UTC, June 01, 2006, 

with 40 analysis ensembles provided by IITM. The covariance inflation is the 

relaxation to prior spread (RTPS) method (Whitaker and Hamill, 2012). The RTPS 

rate is 0.9 for both atmosphere and the ocean. The localization (Gaspari and Cohn 

(1999)) length scale is 500 km horizontally and 0.4 scale height vertically for the 

atmosphere domain. For ocean localization, the horizontal length scale varies from 80 

km to 300 km with respect to the latitude of the analysis grid, and the length scale in 

vertical is 50 meters.        

 

3.4 Results of the CFSv2 analysis 

3.4.1 The impacts of WCDA and nudging 

    Before comparing the impacts of WCDA and nudging on the SST constraint, we 

would like first to examine the fundamental effects of the two methods on the CFS 

SST field. It is known that CFS has a significant warm bias in SST simulation which 

may degrade its accuracy of seasonal predictions (Kumar et al., 2012; Jin and Kinter, 

2009; Wang et al., 2010; Chaudhari et al., 2013; KBRR et al., 2020). We found the 

same issue in our CFSv2-LETKF, as shown in Figure 3.4, that the initial state of all 
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experiments (the first background) had noticeable warm biases, especially in the 

tropical region and the northern Pacific. 

 
Figure 3.4  The SST bias (WCDA minus ERA5 reanalysis) at 20060601 (first 

background). 

 

 

    To understand the effects given by SST DA, we compared the analysis of 5m and 

15m sea temperatures with and without SST DA. Figure 3.5 shows that the SST DA 

gave an overall cooling effect on the SST, which mitigated the SST warm bias in the 

CFS (Figure 3.5 (c)(d)).   
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Figure 3.5  The ocean 5m depth temperature of (a) noDA and (b) with WCDA. The 

temperature differences between WCDA and no DA for (c) 5m and (d) 15m depth 

temperatures. 

 

 

 

 
Figure 3.6 The time series of the global and monthly mean RMSE of 5m (a) sea 

temperature and (b) salinity for no DA (blue) and WCDA L4SST (red) experiments. 
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(c)(d) the same as (a)(b) but are for the Tropics (-15 to 15 degrees). The RMSEs were 

verified with ocean profiles. 

 

 

    Next, we examined the RMSE reduction of WCDA in upper sea temperature and 

salinity. Figure 3.6 shows the time series of the mean RMSEs of 5m sea temperature 

and salinity with (red) and without SST DA (blue). It is clear that with SST DA, the 

5m sea temperature RMSE was significantly lower than without DA, indicating that 

SST DA is effective in constraining the upper ocean temperature. In contrast, the SST 

DA didn’t greatly impact the salinity RMSEs. This result is reasonable because sea 

temperature is not highly correlated to salinity in the upper ocean (e.g., mixed layer). 

That said, the increment given by assimilating SST observations on salinity is very 

limited. Therefore, the salinity field at the surface and subsurface were mainly 

constrained by the salinity relaxation applied at the ocean surface. As a result, the 

salinity analysis from the nudging and WCDA experiments will be comparable under 

the current framework, where salinity assimilation was not yet conducted. 

    Vertical localization plays a vital role in determining the observation impact from 

the observed level to other levels. The vertical cutoff radius (182 meters) we used in 

this study makes the corrections from the SST observations mainly happened at the 

surface and the mixed layer. Although some increments could be brought to the 

thermocline and deep ocean through the vertical mixing and ocean current, the 

amount was minimal within the 1-month experiment.  

    In conclusion, we confirmed that WCDA and nudging both could reduce the warm 

SST bias in the CFSv2 based on the above results. We expected the difference in 

salinity between the two methods might not be significant, and the increments from 
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SST observations would be basically presented within the mixed layer. Therefore, the 

discussions in the following sections will focus on the SST and sea temperature in the 

mixed layer.         

 

 3.4.2 Impact on the SST constraints 

     This section investigates the impact of the four experiments (Table 3.1) on the 

CFSv2 SST and upper sea temperature analysis. Figure 3.7 is the time series of the 

mean SST analysis RMSE within the regions of Tropics (24 ⁰S ~ 24 ⁰N), Extratropic 

in the North hemisphere (NH, 25 ⁰N ~ 65 ⁰N), and Extratropic in the South 

hemisphere (SH, 25 ⁰S ~ 65 ⁰S) for the four experiments. Here, we used ERA5 

reanalysis as the independent reference to evaluate the RMSEs for our experiments. 

Since we only assimilated/nudged SST into MOM4, the ECMWF reanalysis (e.g., 

ERA5) and Operational Sea Temperature and Ice Analysis (OSTIA), which 

assimilates satellite-retrieved SST, ice data, and ocean profiles for its ocean, is 

expected to be more accurate than our ocean analysis, making it an appropriate 

independent reference for our conceptual experiments.   

    First, the WCDA cases noticeably outperform the nudging cases, especially for 

Tropics and SH, where WCDA shows ~ 60% improvements in the SST analysis. For 

the NH, WCDA performed a superior SST analysis for the first 15 days and a 

comparable performance as the nudging cases in the later stage, where the RMSEs of 

the WCDA cases in the NH slightly increased at the end of the experiment period. 

That is because of the shrinking spread after several DA cycles. The inflation we 

applied was adequate for Tropic and SH; however, it might be too small for the 
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summer NH due to its comparatively lower SST variability. Figure 3.8 shows the map 

of the monthly mean SST analysis biases, which provides geographical information 

on the presence of improvements. It is very impressive that WCDA significantly 

mitigated the SST biases almost everywhere. 

     

 

 

Figure 3.7  The time series of the analysis RMSE for the four experiments at the 

region of (a) NH extratropics, (b) Tropics, and (c) SH extratropics. 
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Figure 3.8  The map of monthly-mean SST bias (experiment minus ERA5 reanalysis) 

for four experiments. 

 

 

       We found that the method plays a more critical role than the choice of data in 

SST constraining. For example, nudging to the OISSTv2 and L4SST gives virtually 

identical SST results. Similar to WCDA cases, assimilating L4 SST or L2 SST 

generally provides similar global biases patterns. To be more specific, L4 SST 

improved the Tropics more, and L2 SST represented a smaller error in the high-

latitude regions, though the differences were tiny. A shred of more clear evidence to 

back this argument is the comparison of WCDA L4 SST and the nudge L4 SST 

shown in 
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Figure 3.9. These two experiments used the same observations but in different ways. 

We found that the SST warm/cold biases shown in nudge L4SST were significantly 

reduced in WCDA L4SST. This result demonstrates how the observations being 

digested into the CFSv2 substantially impact the effectiveness of SST constrain and 

the consequent analysis, and apparently, WCDA has superior performance than 

nudging.     
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Figure 3.9  The monthly-mean SST bias map of nudge L4SST (upper) and WCDA 

L4SST (middle), and the SST bias difference (WCDA minus nudge) (bottom). The 

SST bias is verified with ERA5 reanalysis. For the improvement figure (bottom), the 

blue (red) color means WCDA (nudge) is better.   

 

3.4.3 Impacts on the ocean temperature 

    The SST corrections made by either nudging or WCDA at the ocean surface would 

gradually impact the subsurface or deeper layers through the vertical mixing or ocean 

current during the model integrations, so it can be expected that SST WCDA and 

nudging could consequently affect the interior ocean temperature after a period of 

time. Figure 3.10 is the vertical profile of the monthly mean analysis RMSE of the 

sea temperature (ST) for all experiments. The black line represents the RMSE of the 

free-run, where the ocean state was the pure forecast from initial ensembles (its 

atmosphere state was updated by DA the same as other experiments). The free-run 

result can be seen as a bottom line of the experiments, which gives us an idea of how 

much improvement each experiment provided against the unadjusted state.  

    In general, both WCDA and nudging could reduce the RMSE of SST and 

effectively constrain the SST error within 1 ⁰C. We found that the WCDA provides 

more improvements than the nudging within the mixed layer, especially in the 

Tropics and SH (Figure 3.10). The presence of a deeper and more extensive RMSE 

reduction in the SH is due to a thicker ocean mixed layer in the local wintertime, 

where the improvements could be brought down to a deeper depth through active 

vertical mixing.  
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    We also found that the corrections from WCDA can reach a deeper depth more 

quickly than nudging. For example, the ocean temperature at 150 meters depth can be 

simultaneously corrected in the first WCDA cycle, while it needs ~ 7 to 10 days 

(depending on regions) for the model to convey the increments from the surface to the 

same depth in the nudging experiments. The same conclusion is also mentioned by 

Counillon et al., 2016, who found assimilating SST observations can improve the 

interior ocean simultaneously by the ensemble-derived cross-covariance. This feature 

makes DA a more efficient method for conveying observation information from the 

surface to deeper layers to update the subsurface and interior ocean.  

 

 

 

Figure 3.10  The vertical profile of the sea temperature monthly-mean analysis 

RMSE of control (black), nudge OISSTv2 (red), nudge L4SST (yellow), WCDA 

L4SST (green), and WCDA L2SST (blue) for NH (left), Tropics (center), and SH 

(right). 
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3.4.4 Impacts on the atmospheric 2m temperature 

    The WCDA updates the atmosphere and ocean states independently. Namely, there 

will be no cross-domain increment from SST observation to the atmospheric 

variables. However, the corrections in the SST fields made by WCDA or nudging 

could impact the lower-level atmosphere through the air-sea flux exchanges during 

coupled forecasting. One of the representative variables for examing the air-sea 

coupled effect is the 2-meter air temperature (2mT). When the SST varies, the 

variations will impact the heat flux exchange in the coupler of CFSv2 and gradually 

influence the atmosphere above the sea surface, such as skin temperature and 2mT. 

Note that the 2mT field is a diagnosis variable estimated by other model variables. 

That means the SST variation affects the 2mT in an indirect way. 

     Figure 3.11 is the monthly-mean 2mT RMSE for the four cases. We found that the 

2mT fields were significantly improved by replacing the nudging with WCDA 

(Figure 3.11 (e) (f)), especially for the high-latitude and tropical regions. This result 

clearly shows that the improvements in the SST field could further improve the 

atmosphere through coupled forecasting, and WCDA could provide a more accurate 

2mT estimation due to its more significant improvements on the SST analysis.   
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Figure 3.11 The monthly-mean analysis RMSE (verified with ERA5) of 2m 

temperature for (a) nudge OISSTv2, (b) nudge L4SST, (c) WCDA L4SST, and (d) 

WCDA L2SST. (e) The RMSE differences between (a) and (c). (f) The same as (e), 

but for (b) and (d). 
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3.5 Impacts on the CFSv2 SST forecasts 

    This section explored the impacts of  WCDA and nudging on the CFSv2 forecasts. 

A series of 10-day ensemble forecasts initialized from five analyses in a row from 

June 15 to 19, 2006, at 12Z were conducted (Figure 3.12). The forecast results were 

verified with ERA5 reanalysis (SST) and ocean profiles (depth > 5m).  

 

 

 

Figure 3.12  Schematic of the CFSv2  forecast experiments. 

 

 

     Figure 3.13 shows the 10-day forecast RMSE of SST on the global and regional 

scales. The result indicates that the forecasts initialized from WCDA analyses were 

significantly better than those from nudgings. We found that the WCDA L2SST has a 

superior forecast than WCDA L4SST at the upper ocean, while WCDA L4SST 

performed slightly better predictions in a deeper depth (Figure not shown). Since 

L4SST is the foundation temperature at 10m depth, and L2SST is the surface 

temperature at 0m, L2SST could give more precise information about the sea surface, 

such as the diurnal heating and cooling, and the increment from L4SST could go 

slightly deeper than L2SST. However, these differences were insignificant and 

generally provided similar forecast results. 
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Figure 3.13  The time series of the 10-day forecast RMSE of SST for nudge 

OISSTv2 (black), WCDA L4SST (green), and WCDA L2SST (blue) for global and 

different regions. Figure provided by Dr. Kriti Bhargava. 

 

3.6 Summary 

    This chapter discussed the impacts of SST WCDA and nudging on the CFSv2 

ocean analysis and forecasts. We found that SST WCDA, either with L4SST or 

L2SST, outperforms the nudging, especially in Tropics and SH. The WCDA reduces 

the SST biases almost everywhere, significantly enhancing the SST analysis 

accuracy. Another advantage of WCDA over nudging is its efficiency in bringing the 

observation information to other unobserved ocean layers. WCDA can 

simultaneously correct the ocean state at different unobserved layers with the surface 

observations based on their error correlations during assimilation. That makes WCDA 
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capable of improving the ocean mixed-layer temperature more efficiently and 

effectively than nudging, thus performing a better temperature analysis in the ocean 

sub-layers. 

    Although the atmosphere and ocean states were updated independently under the 

WCDA framework, the forecast of the lower surface atmosphere (e.g., 2m 

temperature) and its subsequent analysis could also benefit from a better SST field 

through the coupled forecasting. We found that the 2m air temperature analysis was 

significantly improved by replacing the nudging with WCDA, especially for the 

tropical region. 

    Finally, we compared the accuracy of the ensemble forecasts initialized from 

WCDA and nudging cases. Results show that WCDA performed better ocean 

forecasts than nudging, indicating that WCDA effectively enhanced the CFSv2 

forecasts.     

    This conceptual experiment shows the effectiveness of using WCDA instead of 

traditional nudging in the CFSv2 SST constraining. A possible future direction would 

be exploring the SST SCDA on the ocean and atmosphere states. 
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Chapter 4: Estimating the ocean observation impacts on 

coupled DA using EFSO 
 

 

 

 

4.1 Introduction 

    In Chapter 3, we investigated the role of WCDA in enhancing the predictability of 

the coupled system and how assimilating high-resolution SST products could benefit 

the reduction of SST bias in the CFS. Since a large number of oceanic observations 

from different platforms have become available for WCDA, it is essential to explore 

techniques capable of monitoring the impact of individual observation in DA.  

    One of the powerful tools for efficiently identifying the beneficial/detrimental 

impacts of every observation in ensemble-based DA is the Ensemble Forecast 

Sensitivity to observation (EFSO). EFSO has been widely used in atmospheric DA 

but has not yet been applied to any ocean or coupled DA due to the lack of a proper 

error norm for oceanic variables. This chapter aims first to introduce a novel density-

based error norm that simultaneously includes sea temperature and salinity forecast 

errors, by which EFSO becomes available to ocean DA. We then implemented the 

oceanic EFSO on the CFSv2-LETKF for quantifying the individual impact of ocean 

observations under the weakly coupled DA framework. 
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4.2 Model and Methodologies 

4.2.1 The error norms for EFSO on the CFSv2 

    The EFSO can be estimated by different error norms. A common choice for 

atmospheric EFSO is the dry and moist energy norm (Ehrendorfer et al., 1999). 
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Here, 𝑢′, 𝑣′, 𝑇′, 𝑝𝑠
′  and 𝑞′ are the forecast error of prognostic meteorological variables 

of U, V, Tair, Ps, and Q, respectively. S represents the target region, 𝜎 is the vertical 

sigma coordinate. 𝐶𝑝, 𝑅𝑑, and L are the specific heat of the air at constant pressure, 

the gas constant of the dry air, and the latent heat of condensation per unit mass, 

respectively. Tr and Pr are the reference temperature and surface pressure, for which 

we use constant values of 280K and 1000 hPa, respectively. 𝑤𝑞 is 1 for moist energy 

norm and 0 for dry energy norm. 

    For the oceanic EFSO, two error norms are proposed: the ocean 

temperature/salinity Euclidean norms (T/S L2 norms) and the ocean density norm, 

which includes the dominant prognostic ocean variables T and S. The details of each 

error norm are listed in Table 1. For the density norm, the density conversion can be 

conducted by the Thermodynamic Equation of Seawaters-2010 (TEOS-10, 

McDougall and Barker, 2011), where a function of ocean T, S, latitude (θ), and 

vertical ocean depth (z) was applied to estimate the density perturbation. A more 

detailed description of the conversion can be found in Appendix A. 
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Table 1. The oceanic EFSO norms. T’, S’ , and d' denote the perturbation of the 

ocean T, S, and converted density, respectively. S represents the target region, z is the 

vertical ocean depth, and θ is the latitude.  

 T L2 norm S L2 norm Density norm 

Variable Ocean T Ocean S Ocean T and S 

Unit K PSU  𝑘𝑔/𝑚3 

Error 

norm 
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4.3 Experimental Settings 

        In this study, we followed the same configuration of CFSv2-LETKF described in 

section 3.2.2. The CFSv2 atmosphere model resolution is spectral T126 (~ 1 degree) 

with 64 vertical levels (up to 0.02hPa). The ocean model has 40 vertical subsurface 

layers and a horizontal resolution of 0.25 degrees near the equator (10°S to 10°N 

latitude band) and 0.5 degrees elsewhere. The 40 ensemble members were initially 

chosen from the NCEP CFS Reanalysis (CFSR) data and freely ran for four months to 

let the ocean ensemble grow enough spread. Then, we proceeded with a 2-month DA 

cycling run as the spin-up and started our 1-month experiments from 00 UTC 01 

March 2010.   

    We assimilated the conventional data (e.g., no radiance, GPSRO, and precipitation 

data) in the NCEP PREPBUFR every 6 hours (00, 06, 12, 18Z) for the atmosphere. 

For the ocean, the high-resolution NOAA Geo-Polar Blended level-4 Sea Surface 
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Temperature (L4SST) (Harris and Maturi, 2012) and the ocean T and S profiles from 

the World Ocean Database (Boyer et al., 2013) were assimilated daily at 12Z. We 

suspended the SST relaxation (nudging) and instead assimilated the NOAA blended 

SST to constrain the near-surface ocean temperature, which shows superior results in 

improving the CFS SST analysis, as discussed in Chap 3.    

    The localizations (Gaspari and Cohn, 1999) were applied with a length scale of 500 

km horizontally and an e-folding scale of 0.4 scale height vertically for the 

atmospheric observations. For the ocean, the vertical length scale is 50 m, and the 

horizontal localization length varies from 80 km to 300 km according to latitudes, 

which is longer at the equator and shorter in high-latitude regions. The latitude-

dependent localization aims to include the impact of the Rossby radius of 

deformation. If the localization radius is too small, such as less than the Rossby radius 

of deformation, it may lead to an imbalanced analysis and induce gravity waves in the 

forecast (Sluka, 2018).  

    The covariance inflation is the relaxation to the prior spread (RTPS) method 

(Whitaker and Hamill, 2012) with a rate of 0.9 for the atmosphere and 0.95 for the 

ocean. Since the RTPS inflates analysis ensembles after assimilation, it would 

magnify the Kalman gain in EnKF (Eq (5) in Ota et al., 2013), which, in turn, would 

lead to an overestimation of the forecast error reduction, magnifying the EFSO value 

compared to the original formulation but without changing the sign of EFSO (Kotsuki 

et al., 2019). 

   The atmospheric and oceanic EFSOs were evaluated with their own analyses daily 

at 12Z. For the atmospheric EFSO, we followed the same configuration as Hotta et al. 
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(2017). Our results of the atmospheric EFSO on the CFSv2 were consistent with 

Hotta et al., 2017. For the oceanic EFSO, since the evaluation forecast length of 24 

hours is a short timescale for the ocean current motions (e.g., on the order of 10 

cm/s), the use of moving localization in K12 is not necessary here. 

 

4.4 Results    

4.4.1 Comparison of ocean T/S norm and density norm 

 
    Since the density forecast performance is directly related to the T and S field, we 

expect the two types of norms would deliver similar EFSO patterns but with different 

units. Here, we compared the mean EFSO estimated by the two norms with respect to 

the ocean depth (Figure 4.1). We found that the two norms performed similar EFSO 

patterns along with the depth, and both show that assimilating the T and S profiles is 

generally beneficial for the ocean state at all levels. More specifically, the EFSO 

impacts are most notable in the mixed layer and are relatively small in the deep 

ocean. It is because of the abundance of observations and the more substantial 

forecast error changes due to the active dynamics at the upper ocean. Additionally, 

due to the assimilation of the high-resolution L4SST, the impact of T profiles near the 

surface would be diluted, so it is relatively small (but not zero) near the surface 

(Figure 4.1 (a)).  
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Figure 4.1 The mean EFSO estimated by the T/S norms (blue) and density norm 

(red) for (a) the T profile and (b) the S profile observations. The value of the blue 

(red) line corresponds to the blue (red) axis. 

 

 

 
 

Figure 4.2  The mean EFSO estimated by the T/S norms (blue) and density norm 

(red) for the T profile (upper panel) and S profile (lower panel). 
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Figure 4.3  The positive rate of ocean profile observations for different EFSO norms 

with (a) the ocean depth and (b) the latitude changes. 

 

 

    Figure 4.2 and Figure 4.3 (b) are the zonal mean EFSOs and the zonal mean 

positive rates estimated by the two norms. The positive rate is calculated as  

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 × 100%. 

We found that the EFSOs and positive rates are consistent in the Tropics but not in 

the high-latitude regions. That is because the relative importance of changes in 

temperature and salinity in determining seawater density varies with water 

temperature. For the density conversion, temperature variations are more dominant in 

warm ocean waters (e.g., Tropics), whereas salinity variations are more important in 

cold ocean waters (e.g., high latitude regions). Therefore, the consistency of the two 

norms is more elevated for temperature in the Tropics and salinity in the high-latitude 

regions. Moreover, the mixed water area of Kuroshio Current and the Atlantic 

meridional overturning circulation (AMOC) around 35⁰N to 40⁰N also increases the 

variability in the temperature and salinity, together resulting in a more significant 
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mismatch between the T L2 norm and density norm at 35⁰N to 40⁰N (Figure 4.2). 

Figure 4.4 shows the annual mean state of salinity, temperature, and density between 

80°W and 20°E. Noticeably, the temperature and salinity perform more substantial 

gradients at the overturning region than the potential density.  

    The positive rates estimated by the two EFSO norms generally agree with each 

other with varying depth (Figure 4.3 (a)) and latitude (Figure 4.3 (b)). Overall, the 

positive rate of density norm was slightly smaller than the T/S norms. That is because 

the density norm includes the multivariate impacts, and the forecast errors from 

another variable would influence the overall density estimation. Therefore, it is not 

surprising that the positive rate estimated by the density norm is lower than by the 

T/S L2 norm at higher latitudes (Figure 4.3).  

    In summary, this section compares the EFSOs estimated by the T/S L2 norms and 

the density norm. The results show that the two norms offer similar EFSO patterns, 

and the density norm could effectively provide a comprehensively incorporated EFSO 

for ocean temperature and salinity. In the later sections, we will discuss the oceanic 

observation impacts primarily using the EFSO with density norm.  
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Figure 4.4 The zonally averaged (between 80°W and 20°E) annual mean (a)  salinity 

(psu), (b) temperature (°C), and (c) potential density (kg/m3) as a function of depth 

and latitude. Figure adapted by Wang et al., 2010. 

 

 

 

 

4.4.2 Oceanic EFSO dependency with the lead-time 

    This section aims to investigate the oceanic EFSO impacts with respect to the 

ocean depth and evaluation forecast lead time. Figure 4.5 (a) and Figure 4.6 (a) are 

the mean EFSO impacts of ocean profiles estimated with different depth intervals and 

forecast lead times for sea temperature and salinity, respectively.  
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    First, assimilating ocean profiles benefits the ocean state at all depths. Since the 

forecast error grows nonlinearly with time, the magnitude of the EFSO impact would 

generally increase with respect to a longer forecast lead time.   

    Secondly, it is noticeable that the EFSOs within the mixed layer and at the surface 

are more significant than in the deep ocean. That is because of the more active 

dynamics and the shorter timescales at the upper ocean. The dynamical timescale of 

the ocean substantially varies with depth. For example, the timescale at the ocean 

surface could be as rapid as hourly to daily, while in the deep ocean (> 3000m depth), 

the timescale increases to hundreds of years. Therefore, the magnitude of the forecast 

error difference, evaluated as the EFSO impacts, would be more significant at the top 

of the ocean while very small in the deep ocean within the same evaluation forecast 

lead time. Thus, the smaller EFSO at a deeper depth doesn’t mean that the 

observation there is less important. Note that the relatively smaller EFSO for sea 

temperature (Figure 4.5) at the surface is due to the assimilation of dense L4SST, 

where the observation impacts of temperature profiles would be significantly diluted.   
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Figure 4.5 The EFSO impact of the temperature profile with respect to depth and 

forecast lead time for (a) the typical EFSO and (b) the normalized EFSO. Blue (red) 

color represents the beneficial (detrimental) impact. 

 

 

 

Figure 4.6  Same as Figure 4.5, but for the salinity profile.  
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    Since the EFSO is estimated by the error differences between the two forecasts, it 

would generally be proportional to the evaluation forecast lead time due to the 

nonlinear error growth. To better understand the actual dependence of EFSO on the 

evaluation forecast lead time and depth, we followed Chen (2018) calculating the 

normalized mean EFSO, which can be represented as 𝑒𝑖�̃� = 𝑒𝑖𝑗̅̅ ̅/√∑ 𝑒𝑖𝑗̅̅ ̅𝑗  , where 𝑒𝑖𝑗̅̅ ̅ 

denotes the EFSO of the jth depth interval with lead time i.  By normalizing the 

EFSOs, the impact of the nonlinear error growth can be generally included, allowing 

us to have a more fair comparison of EFSOs between different depths and lead times. 

Figure 4.5 (b) and Figure 4.6 (b) are the normalized mean EFSOs for sea temperature 

and salinity. We found that   

• The impacts of the deep ocean observations are actually very pronounced, and 

the high impacts can last at least half a month. 

• Near the surface (0 - 50m depth), the observation impacts fade away quickly 

with time. The impacts continuously decrease after 24hrs. 

• The observation impacts can last longer in the thermocline (300 – 1000m 

depth). For salinity, it can last up to three days. 

• The mixed layer (0 – 250m depth) has relatively larger EFSO impacts, which 

peak in one to three days, and drop after five days. 

    

     Figure 4.7 shows the positive rate of L4SST and ocean profiles with forecast lead 

time. We found that the salinity profile obviously has a higher positive rate than 

temperature observations, especially within 500m to 700m depths. The positive rates 

of the three types of observation all decreased with a longer forecast lead time. This 
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result indicates that some observations benefit short-term forecasts but might be 

detrimental for longer forecasts.    

 

 
 

Figure 4.7  The mean positive rate of L4SST (blue), T profile (red), and S profile 

(green) with respect to forecast lead time. 

 

 

4.4.3 Geographical impacts of satellite SST and ocean profiles 

    This section investigates the geographical significance and relative importance of 

the oceanic observations using the EFSOs of L4SST and ocean profiles. The L4SST 

are global foundation SST uniformly distributed with a resolution of 0.25 degrees, 

making its EFSO a perfect illustration of the geographical distribution of ocean 

observation impacts near the surface. In contrast, the ocean profiles consist of various 

in-situ measurements such as moored buoys, Argo floats, and ships, which are 

generally more abundant in the Tropics, coastal regions, and following the ocean 

currents. Their distributions and EFSOs typically reflect the relative abundance of 
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observations over the ocean and represent the geographical observation impact on 

entire water columns. 

 

 

Figure 4.8  Geographical distribution of (a) the monthly-mean EFSO of L4SST and 

the snapshots of EFSOs of the (b) T and (c) S profiles on March 10, 2010. The 
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corresponding EFSO for each observation is shown with colors, where blue (red) 

represents beneficial (detrimental) impacts. 

 

    Overall, assimilating L4SST and profiles provides positive impacts on the CFS 

forecast. Figure 4.8 shows the global map of the monthly-mean EFSO of L4SST 

(Figure 4.8 (a)) and the snapshots of the EFSOs of T (Figure 4.8 (b)) and S (Figure 

4.8 (c)) profiles, where each dot on the plots represent one assimilated observation. 

For both observations, relatively more significant impacts are seen in areas with 

larger climate variabilities, such as the eastern equatorial Pacific Ocean, the Gulf 

Stream in the Atlantic Ocean, and the Kuroshio Current in the North Pacific (Figure 

4.8). We also found two cyclonic features with substantial EFSOs (Figure 4.8 (a)) in 

the southwestern Pacific Ocean. That was related to the air-sea interactions between 

the upper ocean and the Tropical Cyclones (TCs) Tomas and Ului (2010). The storm 

activities would thermally (e.g., latent heat fluxes from evaporations and 

precipitations) and dynamically (e.g., turbulent mixing by surface winds) perturb the 

upper ocean temperature and salinity, leading to significant error variations in the 

ocean state (Emanuel, 2001; Bueti et al., 2014; Sriver et al., 2010). For example, the 

heavy rainfall the storm brings may dilute the salinity, and the strong wind stress may 

induce a cooling effect on the upper sea temperature. In other words, those 

perturbations would introduce more considerable uncertainties in the background, 

gaining the weighting of observation information during DA and thus resulting in 

larger EFSOs along the storm tracks. Moreover, the quantified EFSO result shows 

that the influences from TCs could be more considerable than that from its underlying 

SST variability on ocean DA. All these results demonstrate that the ocean 
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observations located at storm-track and high SST variability areas would be more 

influential and valuable for DA, and the appearance of TC should be evaluated for 

ocean DA when designing future observing systems. 

 

4.4.4 The vertical distributions of ocean observation impacts         

    The ocean T and S profiles are multi-platforms, three-dimensional observations 

measuring ocean temperature and salinity at various depths and locations. The 

profiles contain observations from the surface to as deep as 1000m depth, but over 

75% of the profile data were within the mixed layer (Figure 4.9 (a) and (d)). Note that 

we are simply referring to the mixed layer as the top 200 meters of the ocean, as a 

globally averaged thickness, but the mixed layer thickness could vary based on 

seasons and latitude.  

     The observation impacts could vary with latitudes and ocean depths. Figure 4.9 (b) 

and (e) are the zonal mean EFSOs per observation of the T and S profiles. The overall 

negative EFSOs (blue-shaded color) show that assimilating profiles benefit all ocean 

levels. The impacts are most significant in the tropical mixed layer (Figure 4.9 (b) and 

(e)), where more active dynamics, such as stronger flux exchanges and mixings, 

wind-driven turbulence, and active storm activities, are taken place and lead to more 

considerable forecast error variations. Note that due to the assimilation of dense 

L4SST and the CFS surface salinity relaxation, the impact of profiles near the surface 

would be diluted, so their EFSOs would be relatively small at the surface.  

     The deep-water formation and mixed water areas around 40⁰N also have 

noticeable EFSOs (Figure 4.9 (b) and (e)). These areas, which are related to the 
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mixed water area of Kuroshio Current and the Atlantic meridional overturning 

circulation (AMOC), have considerable temperature and salinity gradients (Wang et 

al., 2010), which would result in more considerable density variations and, thereby, 

more significant EFSOs. Finally, we found slight degradations in the upper ocean 

above 65 ⁰N (red region in Figure 4.9 (b) and (e)). That is possibly due to the 

appearance of sea ice. When sea ice is involved, the density conversion will become 

very complicated and challenging. Since the density norm applied here is based on 

seawater, further investigations on sea ice EFSOs would be needed. 

 

 

Figure 4.9  The monthly mean of the (a)(d) observation amounts, (b)(e) the zonal-
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mean EFSOs, and (c)(f) the positive rate with respect to ocean depths. Variables 

shown here are the ocean T (a,b, and c) and S profiles (d, e, and f). 

 

    Figure 4.9 (c) and (f) are the positive rates of T and S profiles, respectively. The 

positive rate is calculated as the percentage of beneficial observation amount among 

all assimilated observations. We found that the positive rates are ~60% for the T 

profile and ~70% for the S profile, and both are not sensitive to depth changes.    

 

4.4.5 The data-denial experiments 

    To validate the oceanic EFSO estimation and explore its potential in improving 

CFSv2 forecasts, we conducted a 1-month offline (e.g., non-cycled) data-denial 

experiment. At each ocean analysis time (e.g., daily at 12Z), the analysis was 

generated again by only assimilating those beneficial ocean observations identified by 

the EFSO. Then, we compared its subsequent forecasts with the original forecasts. 

The examined variables are the ocean T, S, and the atmospheric 2-meter temperature 

(2mT). The ocean T and S forecasts were verified with ocean profiles, and the 

atmospheric 2mT forecast was evaluated with the ECMWF reanalysis. Since nearly 

90% of the rejected ocean observations were above 250m depth (Figure 4.10 (a) and 

(b)), we expected that most forecast improvements would occur in the upper ocean. 

    Figure 4.10 (c) shows the monthly-mean MSE differences between the EFSO-

refined and original forecasts. As expected, most improvements are within the mixed 

layer. The T forecasts for all levels were significantly improved by removing the 

detrimental observations (Figure 4.10 (c)). In contrast, the S forecast was notably 
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improved in the mixed layer but slightly degraded in the thermocline. A possible 

cause is too few S observations after the data removal. Hotta et al. (2017) found that 

removing all the detrimental observations does not always guarantee the best result. 

That said, removing too many observations simultaneously in the thermocline may 

negatively impact the salinity analysis, especially since S observations are minimal 

there. Moreover, removing one observation could be beneficial for one variable but 

detrimental for another. This effect would be more pronounced in the thermocline 

than in the mixed layer because T and S are strongly correlated there. Despite the 

slight degradation in the thermocline salinity, it is noticeable that the mean S forecast 

for the entire water column was still improved. 

    Finally, we extended the CFSv2 forecast to five days and evaluated the relative 

forecast improvement (hereafter RFI), which is calculated as: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝑅𝐹𝐼) =
𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑓
− 𝑒𝑛𝑒𝑤

𝑓
 

𝑒
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑓 × 100%, 

where the 𝑒𝑛𝑒𝑤
𝑓

 and 𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑓

 are the error of the forecasts initialized from the EFSO-

refined and original analyses. So, a positive RFI means the EFSO-refined forecast is 

more accurate than the original, and vice versa. Figure 4.10 (d) shows the monthly-

mean RFI of the mixed layer T and S and the atmospheric 2mT of the CFSv2 5-day 

forecasts. It is impressive that the EFSO-refined improvements could last for at least 

five days for CFSv2 ocean forecasts and two days for the low-level atmosphere 2mT 

forecast. This result demonstrates the importance and significant advantage of 

optimizing the oceanic observation use in a coupled system. As the ocean state is 

improved, the corrections could instantly be delivered to the low-level atmosphere 
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through the air-sea flux exchanges, consequently improving the entire CFSv2 

forecasts.   

 

 

Figure 4.10  The averaged total and removed observation amount for the (a) T and 

(b) S profiles. (c) The monthly-mean differences (EFSO-refined minus original) in 

mean-squared errors (MSE) of the 24-hr forecasts. (d) The monthly-mean relative 

forecast improvement (%) of the ocean T (blue), S (red) in the mixed layer, and the 

atmosphere 2mT (yellow) forecasts. 
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4.5 Summary and discussion 

    This study proposes a new approach to oceanic EFSO with a novel density-based 

norm. We implemented the oceanic EFSOs on the operational-like CFSv2-LETKF 

and investigated the ocean observation impacts under the WCDA framework. Then, a 

1-month data-denial experiment was conducted to validate the impact estimation and 

the feasibility of using oceanic EFSO to improve the CFSv2 forecasts. 

Our results show that the oceanic EFSO can effectively identify each ocean 

observation impact, including the L4SST and ocean profiles. Our main findings 

include: 

1. The ocean observations distributed over regions of higher variabilities, ocean 

current overturning, mixed water area, and storm track have more significant 

impacts and could be more useful for DA. 

2. The CFSv2 forecasts were significantly improved by removing the 

detrimental ocean observations detected by EFSO. The improvements in the 

forecasts can last at least five days for the ocean and two days for the 

atmosphere 2mT.   

 

    Potential future directions include extending the ocean EFSO/PQC from current 

offline to cycling so that the improvements due to PQC can be accumulated and 

brought to the next DA cycle. Another future study is exploring a universal ocean 

energy norm that shares the same unit as the atmospheric energy norm, so it can be 

used to evaluate the impacts of sea surface observations on fully coupled DA.    
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Chapter 5:  Conclusion 
 

 

5.1 Summary 

    In summary, this dissertation proposes several advanced approaches to exploring 

the observation impacts on DA and enhancing the predictability of the coupled 

system from different aspects.  

    First, we examined the feasibility of the correlation cutoff method (YK18, Yoshida 

and Kalnay, 2018) as a spatial localization on the Lorenz 96 model. We found that the 

YK18 provides a similar analysis to the traditional distant-dependent localization 

(e.g., GC99) but with a shorter DA spin-up period. The advantage of YK18 in 

accelerating DA spin-up becomes more significant when the observation and 

ensemble sizes are reduced and under a more complex model. We also found that the 

integrated localization offers an even better analysis than solely using YK18 or 

GC99. The result of this study has been published in Chang and Kalnay (2022). 

    Second, we attempt to replace the traditional SST relaxation with the WCDA of 

satellite-retrieved SST products in the CFSv2. A series of conceptual experiments 

with real observations were conducted on the operational-like CFSv2-LETKF system. 

We found that the SST WCDA reduced the existing SST biases almost everywhere 

and significantly improved the CFSv2 analysis and forecast. Our result indicates that 

the WCDA would be a more effective scheme than the relaxation to constrain the 

surface ocean state in the CFSv2.  
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    Finally, we proposed a novel ocean density norm for the EFSO to be applied to the 

ocean state for the first time. We implemented the oceanic EFSO on the CFSv2-

LETKF and investigated the ocean observation impacts on the coupled system. Our 

results demonstrated that the ocean EFSO is effective and efficient in identifying the 

beneficial/detrimental impact of each observation. Our data-denial experiment also 

shows that the oceanic EFSO has great potential to be used as a quality control 

method (e.g., Proactive Quality Control (PQC), Hotta et al., 2017) to enhance the 

predictability of the coupled system. 

 

5.2 Possible future works 

5.2.1  Implementing YK18 on the EMARS  

    One of the ongoing and future works is implementing YK18 on the Ensemble Mars 

Atmosphere Reanalysis System (EMARS, Greybush et al., 2012, and 2019) to 

improve the Mars analysis and forecast. The EMARS is the first ensemble-based 

system that integrates the GFDL Mars Global Climate Model (MGCM) and LETKF 

DA system, providing Mars analysis and prediction. 

    One of the significant advantages of YK18 is that it localizes the information based 

on error correlations rather than distance so that the distant signals can be preserved 

during DA. This advantage is especially important for Mars DA to resolve the large-

synoptic scale weather dynamics and teleconnection features, such as the transient 

eddies and dust storms that could range to half the hemisphere (Gillespie et al., 2020). 

Current EMARS applies the traditional GC99 localization with a 600km Gaussian e-
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folding distance. This radius length is much shorter than the scale of large-scale 

weather features. Namely, using GC99 may cause a loss of distant information for 

Mars DA. 

    As a first step, we built a new observation operator for the surface station in 

EMARS. We proposed to conduct a series of OSSE experimentsThe simulated 

surface observation is preliminarily set to be at the lowest model level 28, 

corresponding to a reference pressure of 607.9 hPa. A detailed reference of MGCM 

model levels, pressure, and heights can be found in Greybush (2011) Table 2.1.   

    To better illustrate the impact of GC99 and YK18 on Mars DA, we calculated the 

error correlations between the simulated surface temperature observation and model 

state from 16 ensemble forecasts during MY29 Ls 210 to 240, early in dust storm 

season. Figure 5.1 compares the long-term averaged error correlation of the simulated 

surface station and model state between daytime and nighttime. We found that the 

error correlation of Mars temperature has significant diurnal variation. It is evident 

that the error correlation has a horizontal and vertically more significant extent in the 

area. Therefore, using GC99 with a fixed localization length may not be an ideal 

strategy for Mars DA.  

    Figure 5.2 demonstrates the correlation and tentative localization maps using YK18 

and GC99. It is noticeable that the YK18 successfully captures the main error 

correlation with long-range features. In contrast, the GC99 performs a flow-

independent feature in weighting the observation impacts and intentionally discards 

the distant signals. Thus, based on the above evidence, we expect the YK18 can 
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further improve the Mars analysis with its advantages of better adapting to dynamic 

variations and preserving more distant information. 

 

 

 

Figure 5.1  The mean squared error correlation map between the temperature at 

model level 28 and the observation at (a) (longitude, latitude) = (57⁰, 48.85⁰N), and 

(b) (longitude, latitude) = (23⁰, 48.85⁰N).  (c)(d) is the same observation as (a)(b) but 

presented vertically. The observation site is plotted as a black triangle.        
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Figure 5.2 (a) The mean error correlation map between the surface temperature 

observation and temperature at model level 28. (b) and (c) are the localization 

weighting maps for YK18 and GC99, respectively. The observation site is plotted as 

the black triangle.      

 

     

 

5.2.2  Applications of the oceanic EFSO 

    Inspired by the encouraging results demonstrated in Chapter 4, there are two 

potential directions for future oceanic EFSO applications. First, it is promising to 

extensively apply the oceanic EFSO as a data selection strategy (e.g., PQC, Hotta et 

al., 2017) to improve the CFS analysis and forecasts. A flowchart of the cycling PQC 

is shown in Figure 5.3.  
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Figure 5.3  Flowchart of cycling PQC (Chen and Kalnay, 2019). 

 

    The second is the development of EFSO for the SCDA system. A possible 

direction is extending the density norm to an ocean energy norm. This energy norm 

can be derived by multiplying the height variations with the inversion of the density 

norm (Appendix A). Since the ocean energy norm has the same unit as the 

atmospheric energy norm, it would be possible to be used for evaluating the EFSOs in 

SCDA. In addition to SCDA application, this energy norm also can be used to 

evaluate the impact of sea surface height observations through the forecast error 

variations of the height in the proposed energy norm.  
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Appendix A: The ocean density norm conversion and its 

extension to energy norm 

  

 

I. The density operator for the oceanic EFSO 

    The density operator is developed based on the Thermodynamic Equations of 

Seawater 2010 (TEOS-10) tool. The goal of this operator is to derive the in-situ ocean 

density from the CFS temperature and salinity fields. There are three steps included in 

the operator: 

(1)  Convert the practical salinity (PSU) into absolute salinity (g/kg) 

    The conversion follows the algorithm of McDougall et al., 2012. Here, the 

required ocean pressure field can be either obtained from the CFS outputs or 

estimated from the ocean depth with the computationally-efficient 75-term 

expression (gsw_p_from_z) in TEOS-10. This step can be achieved by the 

function “gsw_sa_from_sp.”  

 

(2)  Convert the in-situ temperature into the conservative temperature   

    Next, we obtain the conservative temperature of seawater from CFS in-situ 

temperature. This step can be achieved by the function “gsw_ct_from_t” in 

TEOS-10. 

 

(3) Derived the in-situ density (𝒌𝒈/𝒎𝟑) 
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Finally, we calculate the in-situ density from the absolute salinity and 

conservative temperature derived from steps 1 and 2, using the 

computationally-efficient expression for specific volume in terms of 

conservation temperature, absolute salinity, and pressure (Roquet et al., 2015). 

This step can be achieved by the function “gsw_rho” in TEOS-10. 

 

II.  Converting the density norm to the energy norm 

    It is possible to extensively convert the density norm into an energy norm. That can 

be achieved by reversing the density term and multiplying it by a pressure term. 

Namely, 𝑛𝑜𝑟𝑚 = (𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑃𝑎)) ∗ (
1

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑘𝑔/𝑚3)
), so that the unit will be 𝑃𝑎 ∗

𝑚3/𝑘𝑔 = 𝐽/𝑘𝑔, which is the same unit as the atmosphere EFSO. That means the 

ocean and atmosphere can share the same universal unit, which opens the door to the 

“strongly coupled” EFSO for future applications.  

    The energy norm is not yet applied to our current configuration. Since we only 

assimilate T and S and our evaluation forecast length is short, the pressure forecast 

error difference would be extremely small, leading to an approximate zero EFSO 

value. 
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Appendix B: Handling the Chaotic-Oscillatory System with the 

"online" approaches of the EnOC and RIP schemes 

 

 

1. Introduction 

    Chaotic-oscillatory modes commonly exist in phenomena forced by cyclical 

forcings, such as Madden-Julian oscillations (MJO), El Niño/Southern Oscillation 

(ENSO), and diurnal/annual carbon cycles. Oscillations are more predictable than 

chaotic processes due to their periodic nature and lower sensitivity to the initial 

condition. Inspired by this advantage of oscillation forecasting, Bach et al. (2020) 

proposed the Ensemble Oscillation Correction (EnOC) method that optimizes the 

initial ensembles and consequently enhances the predictability of chaotic-oscillatory 

systems (e.g., systems that consist of both chaotic and oscillation processes). The core 

concept of EnOC is to purposely select “good” ensembles based on their data-driven 

forecasts in the oscillatory mode, which results in a minimum forecast error in both 

the oscillation and the physical spaces.  

    Unlike EnOC, which improves the background ensembles by purposely selecting 

ensembles, the Running-In-Place method (RIP, Kalnay and Yang, 2010) refines the 

background by reusing observations within the DA window. RIP can effectively 

handle strong nonlinearity, accelerates the spin-up, and enhances the predictability of 

a chaotic system (Yang et al., 2012).  
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       EnOC is an offline method in which a preceding offline run conducts the 

ensemble selection procedure with a known truth. However, the use of offline runs 

could limit the feasibility and flexibility of EnOC in practical DA applications. In this 

thesis, we proposed an "online" approach for EnOC, in which the ensembles are 

optimized at each analysis cycle based on their data-driven forecast 

and innovation (e.g., observation minus background). This approach allows EnOC to 

adapt to practical DA systems without any offline runs and can effectively refine the 

mean state of the background. We further investigated the characteristics and 

feasibility of these two types of ensemble-refining strategies on the forced Lorenz 63 

model.  

 

2. The forced Lorenz 63 (L63) model 

    The forced Lorenz 63 model is an advanced version of the Lorenz (1963) model 

with a sinusoidal forcing in the x component. This model includes both oscillatory 

and chaotic behaviors, making it an ideal testbed for methods employed in chaos-

oscillatory systems. In this thesis, we follow the version used by Bach et al., 2020 

with governing equations:        

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥) + 𝑐𝑢                                                                                                (B.1) 

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦                                                                                                   (B.2) 

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧                                                                                                           (B.3) 

𝑑𝑢

𝑑𝑡
= 𝑣 ,    

𝑑𝑣

𝑑𝑡
=  −𝛺2𝑢                                                                                            (B.4) 
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Here, equations (B.1) to (B.3) are the dynamical core of the L63 model, and equation 

(4) represents the periodic forcing and Ω = 0.3. The L63 parameters are the classic 

(𝜎, 𝜌, 𝛽) = (10, 28,
8

3
 ) and c = 5. The model is integrated by the 4th-order Runge-

Kutta scheme with a time step of 0.05 units. 

 

3. Running-In-Place (RIP) method 

    The main idea of RIP (Kalnay and Yang, 2010) is to improve the background 

ensembles by using the information from "future" observations. At each analysis 

cycle, RIP utilizes the no-cost smoother (Kalnay et al., 2007), which is the central 

core of its algorithm, iteratively to maximize the use of the observations within the 

assimilation window. The iterations will stop when no additional helpful information 

is estimated to be extracted. For a typical RIP of 𝑖𝑡ℎ iteration, the updated analysis 

ensemble 𝑥�̃�𝑖+1
𝑛−1 at time 𝑡𝑛−1 is given by: 

𝒙�̃�𝑖+1
𝑛−1 =  �̅�𝑛−1

𝑎,𝑖 + 𝐗𝑛−1
𝑎,𝑖  𝐰𝑛

𝑎,𝑖̅̅ ̅̅ ̅ , 

where the updated perturbations are derived as: 

𝐗𝑎,𝑖+1̃
𝑛−1 =  𝐗𝑛−1

𝑎,𝑖  𝐖𝑛
𝑎,𝑖 + 𝐄𝑛−1

𝑖+1  , 

Where 𝐸𝑛−1
𝑖+1  are small Gaussian perturbations added before integrating the smoothed 

analysis from 𝑡𝑛−1 to 𝑡𝑛 during the iteration. It is added to avoid the same analysis 

ensemble as previously derived under a linear condition (Yang et al., 2012).   

    The RIP method is more capable of handling the system's nonlinearity than the 

pure LETKF and can significantly accelerate the spin-up of LETKF.   
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4. Ensemble Oscillation Correction (EnOC) 

    The EnOC (Bach et al., 2020) is an ensemble correction method for chaos-

oscillatory systems to enhance their predictability. The core concept is to project the 

model variables from physical space to oscillation space, where the oscillatory signals 

can be more easily predicted with few modes, then define optimal ensembles based 

on their forecasts in the oscillation space. It includes three steps:  

(1) Extract the oscillation modes from the historical data using the Multi-

channel singular spectrum analysis (M-SSA, Ghil et al., 2002). The 

trajectory of the historical data in the oscillation space is assumed to be the 

"truth" in the oscillation mode.  

(2) Projecting the state in the physical space onto the oscillation space and 

running data-driven forecasting in the oscillation mode. Data-driven 

forecasting can be achieved by the analog method (Krishnamurthy and 

Sharma, 2017).  

(3) Evaluate the forecast result with the truth state and select the ensembles 

that result in the smallest error. These selected ensembles are then used as 

the corrected initial condition to improve the model prediction. One can 

find more details in Bach et al., 2020. 

 

      The "online" approach we proposed for EnOC is to identify "good" ensembles 

based on their data-driven forecast in the oscillation mode and the direct measurement 

of the oscillatory variables, instead of evaluating with the known truth as in the 

original EnOC. With this new approach, the preceding offline run with known truth is 
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no longer needed, so the online EnOC can be implemented on DA systems to obtain 

optimal ensembles within a given window.  

  

5. Experimental Setup 

    Experiments with the pure LETKF, the LETKF-EnOC, and the LETKF-RIP were 

conducted with the forced Lorenz 63 model. A random Gaussian error with a variance 

of 2.0 is added as the model error for each variable every 15 steps. 

 

6. Preliminary Results 

    Figure B.1 shows the mean analysis RMSE of the three methods with different 

ensemble sizes. In general, LETKF and LETKF-RIP, like most EnKFs, performed 

better with a larger ensemble size. As demonstrated by Yang et al., 2012, it is difficult 

for LETKF to handle the strong nonlinearity within a long DA window (e.g., 25 

steps), especially when the ensemble is limited (e,g., ens=5). In contrast, RIP can 

significantly improve the LETKF analysis and avoid potential filter divergence. We 

found that LETKF-EnOC is not sensitive to the ensemble size and performs similar 

analyses no matter how the ensemble size changes. This characteristic of LETKF-

EnOC makes it outperform the other two methods when having a small ensemble 

size.   
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Figure B.1 Mean analysis RMSE of LETKF (blue), LETKF-EnOC (red), and 

LETKF-RIP (green) for (a) chaotic variables (x,y,z) and oscillatory variables (b) u 

and (c) v with respect to different ensemble sizes.  

 

 

Figure B.2 The truth state (black) and the analysis of LETKF (blue), LETKF-EnOC 

(red), and LETKF-RIP (green) for oscillatory variables (a) u and (b) v.     
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    We further examined the feasibility of the three methods in flux estimation. In the 

flux estimation problem, the flux variables (u,v) are unobserved and estimated by 

other prognostic variables during DA. Figure B.2 represents the flux analysis result of 

the three methods. We found that both the LETKF-EnOC and LETKF-RIP can 

capture the signal of unobserved fluxes more quickly than the pure LETKF. The 

LETKF-EnOC has the best analysis with very few ensembles. However, it is the most 

expensive method that requires nearly five times more CPU time than the pure 

LETKF. The primary computational cost for LETKF-EnOC is the data-driven process 

(e.g., analog forecasting) at each DA cycle. In contrast, the costliest part for LETKF-

RIP is its iterations, particularly during the spin-up period. After the DA system 

convergence, the number of required iterations for RIP would accordingly drop, and 

the computational cost would be gradually reduced.  

    So, which method is better, EnOC or RIP? The answer depends on users' needs. 

For a low-dimensional model with an oscillatory feature, EnOC is an ideal tool since 

it can offer better analysis and forecasts with limited ensembles and adapt to a longer 

observation window. However, EnOC may not be feasible for a pure chaotic system 

because its algorithm mainly depends on the forecasts in oscillation mode. In contrast, 

RIP is more flexible to different types of systems and is effective in accelerating DA 

spin-up. Moreover, it can significantly improve the analysis of highly nonlinear, 

chaotic systems.   
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