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Abstract 

 

In this work, we first extend the Potential Vorticity (PV) inversion technique developed in 

Wang and Zhang (2003), which has proven to be of practical applications in hurricane 

studies and obtained some remarkable results, from the case of one PV piece to the case of an 

arbitrarily large number of PV pieces. Second, a new algorithm for solving piecewise PV 

inversion with any number of pieces will be proposed, which does not require solving 

simultaneously 2N nonlinear equations as proposed in previous works. Former approaches to 

piecewise PV inversion have a key obstacle: the number of equations needed to be solved 

increases as twice as the number of PV pieces. This makes iteration method become very 

sensitive to model parameters and to each specific application. Our new approach overcomes 

particularly this difficulty. In addition, the boundary condition problem for piecewise PV 

inversion will be investigated in more detailed. We also present an alternative way to 

calculate the mean balanced fields so that the application of piecewise PV inversion will be 

more practical and more wide-ranging. These above improvements will then be applied to 

Hurricane Bonnie 1998 to study diagnostically the mechanisms responsible for eyewall 

replacement processes. Previous studies as well as observations have recorded sometimes a 

stage of double eyewall in hurricane development but there appears to have no specific 

answer about the mechanisms for this process to date. Using the newly developed piecewise 

PV system, we have obtained some remarkable results that offer new insights into the 

processes leading to the replacement of hurricane eyes. Results obtained show evidently the 

high applicability of our improvements, which allow piecewise PV inversion to have broader 

applications.  
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PART I. THEORETICAL DEVELOPMENT 

Chapter 1. Introduction 

  

Balanced flow is an important concept in understanding the atmospheric dynamics. 

At the meso- or smaller scales, meteorological flows are often dominated by many stochastic 

motions, leading to the development of unbalanced flows. However the unbalanced flows 

will quickly adjust to a balanced state through the so-called adjustment process (Holton 

1993; Gill 1982). The adjustment processes often accompany many different kinds of waves 

such as gravity waves or inertial-gravity waves, and the time scale for such adjustments 

depends very much on the scale of motion, ranging from a few hours to several days. An 

important question is: given a meteorological system, such as an upper-level trough, a 

supercell storm, or a hurricane, to what spatial and temporal extents will this system 

influence the large scale flows at the later time? Answering such a question requires the 

knowledge of the balanced flows rather than the instantaneous flows because it is the 

balanced flows that persist long enough and contribute the most after adjustment processes. 

As an example, consider the case of an upper –level trough migrating into some area. The 

upper-level trough usually induces a process called cyclogenesis at the surface, and it is the 

balanced flows associated with this trough that are able to penetrate deeply to the surface. 

Another example is the question of how much a hurricane can influence the track and 

intensity of another hurricane nearby. In all of these cases, balanced flows play an important 

role. 

Several approaches could be used to obtain balanced flows. Krishnamurti (1968) 

presented a system of balance equations which can be used to find the balanced flows for the 
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cases of large Rossby number. Nevertheless, this approach conceals the conservative 

characteristics of the system, and it does not allow for investigating the balanced flows 

associated with a specific weather pattern inside the domain. The second approach is based 

on the concept of potential vorticity (PV) Inversion. The striking feature of PV has long been 

recognized since its first introduction by Rossby in 1947. Emerging first as a good tracer of 

air mass, it was then quickly realized that PV is a very powerful and succinct dynamical 

quantity. A more comprehensive review of the historical development of PV can be found in 

Hoskin et. al. (1985). There are two important properties of PV concept which allow for an 

understanding of the three-dimensional (3D) balanced dynamics: the conservation of PV in 

the absence of frictional and diabatic processes, and the invertibility principle. Given a PV 

distribution and appropriate boundary conditions, it is possible to obtain the 3D balanced 

dynamical fields by using the invertibility principle. The balanced flows obtained from the 

PV system consist of geopotential height and streamfunction. From these two balanced 

flows, all the other variables, such as wind, temperature, and pressure fields, will follow 

immediately. 

The PV inversion is usually categorized into two different forms: one is referred to as 

quasi-geostrophic PV (QG PV) inversion, and the other is isentropic PV inversion (IPV1). 

For the case of QG PV, the geostrophic relationship between the wind and mass fields will be 

employed. This approximation results in a linear system for PV inversion, which makes QG 

PV inversion simple and easy to perform. The disadvantage of QG PV is the inaccuracy as 

the Rossby number becomes large, or flows are baroclinic. In the case of fully baroclinic and 

                                                 
1 IPV is also sometimes mentioned as Ertel PV or Rossby PV.  Usually, Ertel PV is reserved for the vertical 
projection of IPV. 
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compressible flow, it is necessary to take into account the 3D absolute vorticity vector which 

forms the essence of IPV.  

Before the work of Hoskin et al. (1985), most of the applications of PV inversion 

were confined to QG PV inversion. It had to wait until the detailed works of Davis and 

Emanuel (1991, hereafter referred to as DE91) and Davis (1992) about the piecewise PV 

inversion does the application of PV inversion receive more attention, especially at the 

mesoscale. The philosophy of piecewise inversion is to separate the total PV distribution q 

into a mean field q  and an anomaly field q’. The PV anomaly q’ will then be partitioned into 

N smaller PV pieces q’i. The way we partition the total PV anomaly q’ into smaller pieces 

depends on each specific application. For example, one may want to investigate the balanced 

impacts of the upper-level PV on the surface flows. In this case, one can divide the total PV 

anomaly q’ into two parts: one at the upper level q’u and the other is the remaining q’r, and 

perform a PV inversion for the upper PV piece q’u. From the requirement that the mean 

fields2 satisfy a nonlinear balance equation, we will obtain a system of equations for 

perturbations and it is possible to calculate the 3D balanced perturbations associated with any 

PV piece. The method proposed by DE91 guarantees that the sum of all balanced 

perturbation fields obtained by inverting each PV piece q’i will be equal to the inversion of 

the total PV anomaly q’. Piecewise PV inversion allows one to study the impact of any PV 

piece in a balanced way.  

Because of the high applicability of DE91’s work, piecewise PV inversion has been 

employed extensively in many studies to investigate the 3D balanced fields of mesoscale 

systems since then. For example, Wu and Emanuel (1995a, b), Shapiro and Franklin (1995) 

                                                 
2 The mean fields (or perturbation fields) mentioned in this work are the fields associated with the PV system, 
which consists of streamfunction, geopotenital height, and potencial vorticity 
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applied the piecewise PV inversion technique to investigate the impact of environment PV 

anomalies on hurricane movement. Using the same piecewise PV technique, Zhang et. al. 

(2002), have shown some significant influences of upper-level PV anomalies on multiple 

frontal cyclogenesis. In another fashion, Huo et. al. (1997, 1999) used the piecewise PV 

inversion to improve the initial condition for the prediction of a superstorm. Another example 

is the work of Shapiro and Möller (2002) in which they used the piecewise PV inversion to 

examine the influence of asymmetrical flows on the intensification of hurricane Opal.  

So far, the most disturbing issue of the current piecewise PV inversion technique is: 

when there are N PV pieces (N > 1), it is required to iterate simultaneously 2N nonlinear 

partial differential equations (the details for the inversion of N pieces can be found, e.g. in 

Shapiro 1996). If the number of PV pieces and the number of grid points are large enough, 

this iteration method will become unstable, time consuming, and not practical. In addition, 

the convergence of iteration for 2N nonlinear equations is challenging, and it appears to be 

unrealistic to follow DE91’s scheme when there are more than three PV pieces. This 

limitation of piecewise PV inversion is the reason why many applications of PV inversion 

technique have so far confined only to one piece rather than N pieces as theoretically 

developed. Recently, Wang and Zhang (2003, hereafter referred to as WZ03) have developed 

a PV inversion technique applied to hurricanes and obtained some significant results. The 

technique developed in ZW03 has an advantage of introducing a new parameter ε, which can 

be adjusted to control the convergence of PV system, and shows some improvements in 

examining hurricane dynamics. However, WZ03’s development is again applicable to the 

case of one PV piece only.  

Thus, the objectives of the present scholarly paper will be to: 
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i) Extend the PV inversion developed in WZ03 from one PV piece to N PV pieces; 

ii) Develop a new algorithm for solving the N-piecewise PV system so that the 

application of the piecewise technique will be more practical; and 

iii) Address the problem of partitioning the total fields into mean and anomaly in detail. 

There are two motivating scientific questions that can be approached from point of 

view of piecewise PV inversion: 

1. What are the mechanisms responsible for eyewall replacement process captured 

from both observations and numerical simulations? 

2. Why the PV at the core of a hurricane keeps following closely the general 

development of a hurricane in the absence of any source of heating? 

 The main purpose in this work is to tackle the first question to provide more 

understandings to eyewall replacement processes. The newly developed PV inversion 

scheme will be applied to Hurricane Bonnie (1998) for this purpose. During the August 26 

1998, Bonnie showed a stage of double eyewalls with the eyewall replacement process 

occurring quite evidently, and it is therefore a good case to investigate. By applying the 

piecewise PV inversion technique developed herein, we obtain some remarkable results that 

address specifically the processes leading to the replacement of Bonnie’s eyewall.   

A more careful scrutiny of previous studies (e.g. DE91; Shapiro 1996; Morgan 1999; 

WZ03) indicates that little has been discussed about the uniqueness and the existence of the 

solution for the system of equations associated with piecewise PV inversion (with the 

combined Newman and Dirichle boundary conditions). Although there are some 

experimental indications about the criteria for the convergence (e.g., PV > 0 in DE91), a 

mathematical proof for the existence and uniqueness does not exist. Note that it is not 
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possible to categorize the system of equations for piecewise PV inversion into elliptic, 

hyperbolic, or parabolic types as usual because this is a system of nonlinear equations, not a 

single linear partial differential equation. It turns out that the questions of uniqueness and 

existence are virtually impossible to answer analytically and will be neglected here. For 

hereafter applications, it will be assumed that solutions will always exist and be unique.      
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Chapter 2. Formulation 

 

It is necessary first to derive the nonlinear balance (NLB) equation. Starting with the 

divergent equation in the pressure coordinate: 
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Using the Helmholtz theorem, the horizontal wind field Vh is decomposed into the rotational 

and divergent components: 

   Vh = (u,v) = Vψ + Vχ =  -∇Ψ×k + ∇χ    (2.3) 

Substituting Eq. (2.3) into Eq. (2.2) and restricting the resulting equation to the order of 

O(Rψ), where Rψ ≡ Vψ/Lf0 is defined as the Rossby number for rotational wind, gives the 

NLB equation: 

 rhhh F
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where J is Jacobian operator. In deriving NLB equation (2.4), terms of order O(Vχ/Lf0) have 

been neglected3. It should be emphasized that this scaling approximation is applied only to 

the divergent equation (2.2), and this neglect does not mean that Vχ is completely ignored. It 

turns out that the quasi-balanced divergent wind component Vχ will be recovered in the 

omega equation (DE91; Wang and Zhang 2003, see the appendix for the system of omega 

equations) 

To close the system for two unknowns ψ and φ, it is required to have one more 

equation relating ψ and φ. A careful inspection will show that the hydrostatic equation is a 

good candidate for our purpose. This hydrostatic equation connects geopotential with 

potential temperature by the following relationship: 

    
π

θ
∂
Φ∂

=      (2.5) 

where π is the Exner function (π=Cp(p/po)κ, κ= Rd/Cp). Given a potential temperature 

distribution, one can easily obtain the balanced geopotential height φ by directly integrating 

the hydrostatic equation (2.5). Using equation (2.4), the balanced streamfunction ψ will 

follow immediately. However, the information from the potential temperature alone does not 

contain any dynamical properties of the system. Moreover, this simple approach does not 

allow one to have a knowledge of the balanced impacts related to some particular systems 

such as upper-level troughs, mesoscale convective systems, or hurricanes. Here, PV becomes 

an important dynamical variable to address the above issues. The definition of IPV is given 

as  

    
ρ
1

=Q η . ∇θp      (2.6) 

                                                 
3 Vχ is mentioned as the Rossby number for divergent wind (see DE91) 
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where ρ is the density of air, η = 2Ω + ∇×V is the absolute vorticity vector, and θp is the 

potential temperature. The information contained in this PV quantity is not only potential 

temperature but also absolute vorticity and the stratification of the atmosphere. Using the 

hydrostatic equation to replace the potential temperature in Eq. (2.6) by geopotential, and 

decomposing the wind field into the rotational and divergent components, equation (2.6) can 

be rewritten in a different form as follows: 

⎥
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where z = [1 – (P/P0)R/Cp](Cpθ0/g) is the vertical pseudo-height coordinate, G is gravitational 

constant, and r(z) = ρ0(P/P0)R/Cp is pseudodensity. Note that vertical velocity has been 

neglected when we go from (2.6) to (2.7). Also in deriving this equation, the disappearance 

of the χ-component of wind is due to the curl operator (∇×∇χ=0), not because of the 

nondivergent approximation as in deriving the balance equation (2.4).  

Eqs. (2.4) and (2.7) form a close system for ψ and φ. That is, given a distribution of 

PV and appropriate boundary conditions, Eqs. (2.4) and (2.7) could be iterated 

simultaneously to find ψ and φ. It is clear that computing the balanced flows from the system 

of Eqs. (2.4) and (2.7) is much more complicated than from the system of Eqs. (2.4) and 

(2.5), whilst both systems give the same 3D balanced dynamics. So, what is the role of PV 

here? As we shall see later, the main advantage of PV concept will be apparent when 

piecewise PV inversion is introduced. It turns out that PV can be used to classify quantities 

of different meteorological origins, such as upper-level troughs, environmental PV 

anomalies. Using piecewise PV inversion, it is possible to study the impacts of these different 

PV anomalies in a balanced way.  
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In practice, one is often more interested in examining the PV anomaly rather than 

investigating the whole PV distribution. This is because it is the PV anomaly that is closely 

associated with weather patterns. Therefore, it is essential to develop an efficient way to 

separate the total PV into mean and perturbation fields. In this work, the method developed 

by DE91 will be employed for which the total PV field is partitioned into a mean field and a 

perturbation field as follows: 'QQQ += , Ψ= Ψ +Ψ’, and Φ = Φ +Φ’. The mean fields: 

Q , Ψ  and Φ  are not taken arbitrarily, but two mean fields out of three must be obtained by 

inverting equations (2.4) and (2.7) given the remaining. With the total and mean PV field 

available in hand, the total PV anomaly Q’ can follow easily, and our next task is to perform 

an inversion to find the perturbation streamfunction ψ’ and geopotential φ’.   

As a matter of fact, the PV anomaly Q’ is still too wide-ranging. Some particular 

weather patterns have a spatial scale much smaller than the domain under consideration. For 

example, hurricanes have an extent of 500 km while the model domain may cover an area as 

large as 3000 km. As a result, a large part of PV anomalies in the whole domain has little 

importance. One thus continues to partition the total PV anomaly Q’ into smaller PV pieces 

Qi’, and tries to find the balanced perturbation fields ψk’ and φk’ associated with one 

particular PV piece Q’k, which contains some useful information.    

Because of the nonlinearity of the system of equations (2.4) and (2.7), the 

perturbation fields ψ’i and φ’i are not only determined by the PV piece Q’i but also 

influenced by other PV pieces. This means that given some PV piece Q’k with all required 

boundary conditions, it is not enough to find ψ’k and φ’k associated with Q’k by using the 

invertiblity principle. Only in the case of one and only one PV piece (N = 1), it is possible to 

perform an inversion of piece Q’k to find ψ’k and φ’k. In the case N > 1, we are confronted 
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with the problem of how to obtain the perturbation balanced fields ψ’i and φ’i related to PV 

piece Q’i such that the sum of all perturbation fields ψ’i and φ’i will be equal to the inversion 

of total PV perturbation Q’, i.e., the following relations must hold: 
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(φi
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N

∑ . Recall that Q , Ψ  and Φ  in equations (2.8) and (2.9) 

satisfy both equations (2.4) and (2.7). The price we have to pay for the requirement that the 

sum of the inversion of each PV piece Q’i be equal to the inversion of total PV anomaly Q’ is 

that all ψ’j and φ’j with j ≠ i must be known in advance in order to find ψ’i and φ’i. Because 

these perturbation fields ψ’j and φ’j are unknown, a system of 2N nonlinear equations in the 

form of equations (2.8) and (2.9) need to be solved simultaneously.  

 14



In their work, WZ03 have presented a method for one-piece PV inversion by 

combining (2.8) and (2.9) to obtain a new set of equations in which a new parameter ε is 

introduced. By allowing this free parameter to vary from 0 to 1, it is possible to control the 

convergence of the system effectively. Our purpose now is to extend this technique to a full 

piecewise inversion applied for the case with an arbitrary number of PV pieces (N > 1).  

Following WZ03, we multiply Eq. (2.8) by a parameter ε (0 < ε < 1), and add it into Eq. 

(2.9). Using the explicit expression for ψ* and φ*, after some manipulations, we get: 
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A second equation for ψ’i and φ’i can be obtained by subtracting Eq. (2.8) from (2.9) and 

rearranging: 
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Note that although the system of equations (2.10) and (2.11) are now applied for the case of 

N PV pieces, the elliptic condition for Eq. (2.10) is still the same as that for the case of one 

PV piece (using the same elliptic criteria of equation (2.10) as in WZ03) and is given by: 
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The advantage of this ε-multiplication is that the value of ε can now be varied appropriately 

so that the system of equations (2.11) and (2.12) will converge. As it is clear from (2.12), this 

ε parameter is expected to be small in order for the elliptic condition (2.12) to be satisfied. 

This is because the first product term on the LHS of (2.12) is proportional to ε and thus 

decreases slower than the last term, which is second order in ε, when ε approaches to zero. In 

the case of only one piece (N = 1), equations (2.10) and (2.11) will be exactly identical to 

equations (2.10) and (2.11) in WZ03. 

It should be noted that, in deriving equations (2.8) and (2.9) and subsequently 

equations (2.10) and (2.11), there is no use of the smallness of ψ’ or φ’ with respect to Ψ  
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and Φ . The only requirement in deriving these equations so far is that Ψ  and Φ  will be 

solution of equations (2.4) and (2.7), and equations (2.10) and (2.11) will then follow 

automatically without appealing to the concept of mean and perturbation. The validity of 

equations (2.8), (2.9), (2.11) and (2.12) is always assured if the mean fields Ψ  and Φ  are 

chosen to satisfy equations (2.4) and (2.7) a priori. In this sense, the concept of means and 

perturbations will no longer exist, and we still have the system of piecewise PV inversion.  
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Chapter 3. Boundary conditions 

 

As we know, PV inversion is basically a boundary value problem. The philosophy of 

piecewise PV inversion will consist of two key steps: 1) separate the total geopotential φ, 

streamfunction ψ, and potential vorticity Q into means and perturbations, 2) select a PV 

piece Q’i out of the total PV anomaly Q’ to perform an inversion. It is necessary to 

distinguish two different types of problems  

     a) Given the total PV anomaly Q’ with all boundary conditions associated with Q’, it is 

required to partition Q’ into N pieces and then find the 3D balanced fields ψ’k and φ’k 

associated with a selected PV piece Q’k.  

b) Given N PV pieces Q’i (i = 1...N) with the appropriate boundary conditions for each 

piece Q’i, it is required to find the 3D balanced fields ψ’k and φ’k associated with a selected 

PV piece Q’k  

To facilitate our subsequent discussion, the former case is named “partitioning 

piecewise” (PP) and the later case will be named “superposition piecewise” (SP). In many 

applications, the PP problem is encountered more frequently. We now examine each problem 

separately. 

PP problem 

For the sake of clarity, consider an operator L acting upon two unknown functions φ’1 

and φ’2 with appropriate boundary conditions as follows4:  

                                      L(φ’1) = F1 ,            φ’1⏐boundary = ϕ1     (3.1) 

                                      L(φ’2) = F2 ,            φ’2⏐boundary = ϕ2    (3.2) 

                                                 
4 it is immediate to generalize to an arbitrary number of unknown functions without any significant changes 
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where F1 and F2 are two given forcing functions, ϕ1 and ϕ2 are also given functions. Consider 

next a new unknown function φ’3 that is the solution of the same operator L for which the 

forcing function of φ’3 is given by the sum of the forcing functions of (11a,b), i.e., F3=F1+F2, 

but the boundary of φ’3 is an unknown function ϕ3

                                      L(φ’3) = F1 + F2 ,         φ’3⏐boundary = ϕ3     (3.3) 

A question now is that whether φ’3 = φ’1 + φ’2. In general, solution φ’3 will not be equal to 

the sum of φ’1 and φ’2. The equality occurs if and only if: 

iv) L(φ’1) + L(φ’2) = L(φ’1 + φ’2)        (C1) 

v) ϕ3 = ϕ1 + ϕ2         (C2) 

vi) Solution of equation: L(φ’) = F exists and is unique     (C3) 

The first condition is usually referred to as the linearity of operator L. In piecewise PV 

inversion problem, equations (2.4) and (2.7) are nonlinear and it seems to be that this 

linearity condition is not satisfied. However, the piecewise method developed by DE91 

guarantees that condition (C1) is held. Condition (C2) is assured if the homogenous 

boundaries for all pieces are used, but it will be not valid in general. Note that nothing has 

been mentioned about condition (C3) so far because it is virtually impossible to answer 

theoretically. We will assume that condition (C3) is valid without any justification as 

mentioned in the introductory section. As a matter of fact, this condition can be checked 

experimentally by changing model parameters, grid mesh, initial guess, etc, to see whether 

the balance system converges to the same solution.  

In some applications, the homogeneity of boundary conditions is so strict and needs 

to be relaxed. For the PP problem, the total boundary condition ϕ3 for φ’3 is given while the 

boundary conditions ϕ1 and ϕ2 could be unknown. Evidently, there are an infinite number of 
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ways to divide the boundary condition ϕ3 into ϕ1 and ϕ2 such that the sum of ϕ1 and ϕ2 is 

equal to ϕ3. The problem of partitioning boundary conditions now becomes very arbitrary. In 

DE91, they employed the homogenous lateral boundary conditions for all PV pieces and their 

partition therefore always guarantees the superposition principle. A question is: In case the 

boundary conditions are inhomogeneous, how can we partition the total boundary condition 

in a meaningful way? In this work, we handle the boundary conditions for the PP problem in 

the following way: we first divide the problem: 

                                      L(φ’) = F ,              φ’⏐boundary = ϕ      (3.3) 

into two small problems: 

 

                                      L(φh’) = F ,            φh’⏐boundary = 0      (3.4) 

                                      L(φo’) = 0 ,            φo’⏐boundary = ϕ      (3.5) 

The piecewise PV partitioning is then applied for the homogeneous boundary problem only 

(i.e. problem 13a). In this case, the sum of all perturbation fields ψ’i and φ’i (i = 1,.. N) 

obtained by performing inversion of each piece Q’i will not equal to the perturbation (ψ’,φ’) 

inverted from , but it is equal to (ψ’∑
=

=
N

i
iQQ

1
'' h,φ’h), which is inverted from with 

homogenous boundary conditions. The difference between and (ψ’,φ’) is given by 

the solution of (3.5). In most of the practical cases, this difference is small if the domain is 

large enough (Shapiro 1996), but the difference between the sum ∑  and (ψ’,φ’) 

could be large when the boundary effects are significant.    
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Unlike PP problem in which the total boundary condition ϕ3 is given and both ϕ2 and 

ϕ3 are unknown, the boundary conditions ϕ1, ϕ2 are given for SP problem. This makes the SP 

problem simpler and much less arbitrary than the PP problem. All we need to do is to 

perform an inversion of operator L right away for φ1’ and φ2’. To find φ3’, we just take the 

sum ϕ1 + ϕ2 as the boundary and F1 + F2 as forcing function for φ3’ and perform an inversion. 

The superposition principle will be satisfied automatically.  

The most common lateral boundary conditions used for piecewise PV inversion are: 

Dirichlet boundaries for ψ’ and φ’ along the lateral boundaries, where φ’ matches the 

simulated output (or from observations) and ψ’ will be given by: 
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where l is a path along the lateral boundaries, s is vector tangent to that path and n is a 

normal vector of that path. The bottom (z = zB) and top (z = zT) boundaries for ψ’ and φ’ will 

be given by Neumann conditions: 
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(see DE91 or WZ03 for more detail) 
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Chapter 4. Calculations of mean fields 

 

In order to make piecewise PV inversion more versatile, the problem of how to 

calculate the mean fields Ψ  and Φ  will be addressed further in this chapter. There are 

several ways to perform this task. For example, DE91, Wu and Emanuel (1995a,b) used a 

temporal average over a period of 5 days of PV field to obtain the mean PV Q . Eqs. (2.4) 

and (2.7) will then be iterated until they converge to obtain Ψ  and Φ  in the whole domain. 

In a different way, WZ03, Shapiro (1996), Shapiro and Franklin (1999) obtained the 

balanced field by first taking the azimuthal average of Ψ . The balance equation (2.4) is then 

inverted to obtain Φ , and finally Q  is calculated from Eq. (2.7). In this way, the fields Ψ  

and Φ  are automatically in balance. However, as noted in WZ03, this latter approach, when 

applied to hurricane studies, may lead to negative static stability near the top of the PBL 

where the tangential wind is maximized and the inversion for ψ’ and φ’ therefore may not 

converge. Another point is that the azimuthal average, as applied to hurricanes, results in a 

mean field possessing nearly all the mean characteristics of hurricanes. For example, the 

mean tangential wind is the same order of magnitude as the total field. This method thus 

gives a small residual perturbation after subtracting the mean PV field from the total PV 

field.  

However, if one is interested in the contribution of a PV in the core region of a 

hurricane, this kind of average would not be useful. In this work, we suggest an alternative 

way to obtain the balanced mean fields. Instead of taking the azimuthal average of 

streamfunction Ψ , we first take the running mean of Φ so that the mean field Φ is nearly flat 

(of no hurricane character). The reason for using running means is because we can control 
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the flatness of Φ  flexibly. Recall that the perturbation φ’ would have been a small residual 

after subtracting the azimuthal-average from the total field. We next invert Ψ  from Φ by 

using NLB equation (2.4). This kind of inversion needs a special treatment as follows: 

From equation (2.4)  
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Rewrite the fourth term on the right hand side of (4.1) as follows: 
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plugging (4.3) into (4.2) and rearranging it gives 

022))4()()(22)( 22
2

2
2

2

2

2
222 =∇−∇+

∂∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

∂
∂

+
∂
∂

∂
∂

+∇+∇ φψψψψψψψ fF
yxyxyy

f
xx

ff  

(4.4) 

This is a quadratic equation of Laplacian of ψ . Therefore, we can solve for ∇2ψ to yield: 
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The plus sign is chosen since it results in an familiar geostrophic approximation: ∇2Ψ = 

∇2Φ/f. Equation (4.5) will then be solved iteratively, 
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The iteration will converge when |Ψn+1 - Ψn| is less than some limitation. The convergent 

condition for this equation is  

 f2 + 2∇2Φ > 0        (4.7) 

Experiments with hurricane Bonnie showed that there is less than 10% of total grid points at 

which this condition is not valid at the first iteration.  

After obtaining the mean streamfunction  from Ψ Φ , the mean PV field Q is 

compu ti ated using equation (2.7). All fields are automa cally in b lance without performing an 

inversion of both Eqs. (2.4) and (2.7) as in previous studies. It should be noted that although 

it is not required to perform an inversion of Eqs. (2.4) and (2.7), this does not mean that there 

are no need of boundary conditions. The boundary conditions will enter in calculating the 

mean PV field Q . This is because by using (2.7) to calculate Q  the calculation will be 

restricted to the inside points only. To complete the value for Q at boundaries, boundary 

conditions are required. The advantage of this method is that we can make, in principle, the 

mean fields Φ  as flat as we want, depending on each specific situation. This allows us to 

investigate the PV anomaly more effectively since it is feasible to separate a large 

perturbation PV piece in the same dynamically balanced way as in the previous studies. 
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Chapter 5. New methodology of piecewise inversion 

 

As mentioned in Chapter 1, the piecewise inversion technique used in DE91 has a main 

obstacle: the number of equations required to be solved increases as twice as the number of 

PV pieces. The large nonlinear equations system does not guarantee the convergence and 

stability of the solution. As presented in DE91 and more detailed in Shapiro (1996), the 

piecewise inversion system [i.e., Eqs. (2.10) and (2.11)], consisting of 2N equations for N 

pieces, will be iteratively solved. This iteration turns out to be very sensitive to model 

parameters such as the underrelaxing factor, the scaling dimensional numbers, the stability 

parameter, the threshold for PV magnitude, the free parameter ε in WZ03’s method, etc. This 

is because it is necessary to take into account not only the convergence of each equation but 

also the convergence of the whole system of 2N equations. In this work, we propose a new 

algorithm to deal with piecewise PV inversion with an arbitrary number of pieces. Our 

purpose is to find a way to solve for Eqs. (2.10) and (2.11) so that the piecewise PV inversion 

technique is more applicable.  

Our methodology is based on one key property of piecewise inversion; that is, the 

sum of all perturbations obtained by inverting each piece Q’i must be equal to the 

perturbations obtained by inverting the sum of all PV piece Q’i, i.e. 
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where ψ’i and φ’i (i = 1…N) are inverted from Q’i, and ψ’ and φ’are inverted from Q’. With 

this remark, instead of solving 2N equations of type (2.10) and (2.11) simultaneously, we 

carry out the following procedure: 
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- Step 1: We first use the system of equations for one PV piece developed by WZ03 to 

solve for ψ’ and φ’ in which the PV piece is Q’ with the full boundary conditions as 

noted in Chapter 4. 

- Step 2: Replacing all of the summations of derivatives of ψ’i and φ’i in (2.10) and (2.11) 

by the same derivatives applied for ψ’ and φ’, respectively, e.g.  
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      and similarly for all other derivatives of φ’n. Note that at this step, ψ’ and φ’ are 

known from step 1 above. 

- Step 3: Solving both equations (2.10) and (2.11) for each selected PV piece Q’i with its 

appropriate boundary conditions, provided that the sum of boundaries of all PV 

pieces Q’i will be equal to the boundary conditions of the total PV anomaly Q’. The 

boundary issue will become much simpler (and less arbitrary) if the boundary of the 

total PV anomaly Q’ is homogeneous. In this case, the boundary condition of all 

pieces Q’i is simply homogeneous as discussed in detail in Chapter 4. By carrying out 

this procedure, there is no requirement for knowing ψ’j and φ’j (j ≠ i) in advance 

because they are already included in ψ’ and φ’, which have been calculated from step 

1. Therefore, the system (2.10) and (2.11) is closed for ψ’i and φ’i, and it is only 

necessary to solve for the i-th PV piece.   

This procedure is particularly simple and is not involved in an annoying process of solving 

2N equations all together. By following this way, it is possible to invert any PV piece no 

matter how many pieces they are (N can be very large). 
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PART II. APPLICATION TO HURRICANE BONNIE (1998) 

Chapter 6. Overview of Hurricane Bonnie 

 

Hurricane Bonnie (1998) originated from the West coast of Africa on 14 August 

1998. After a five-day development, it reached a tropical depression stage with central 

pressure falling below 1009 hPa. It became category-1 hurricane on 0600 UTC 22 August  

and moved west-northwestward under the influence of the Bermuda high. Bonnie then 

deepened rapidly with time, reaching the minimum pressure of 954 hPa two days later. Zhu 

et al. (2004) obtained a 5-day successful simulation of Hurricane Bonnie (1998) with the 

triply nested-grid (36/12/4 km) version of the PSU/NCAR (MM5, V3.4) model that covers 

the initial rapid deepening, steady variation and landfalling stages of the storm. The 

simulation reproduces reasonably well the track, intensity change and asymmetric inner-core 

structures of the storm, including a partial eyewall and an eyewall replacement cycle.  

To have some general ideas of how PV comes into play in the whole development of 

hurricanes and to what extent PV is capable of characterizing the different stages of the 

development, it is necessary first to examine some PV structures and its evolution with time. 

Figure 1 shows the time evolution of maximum surface wind, minimum sea-level pressure, 

and the mass-weighted storm-scale PV for the 5-day simulation, initialized at 0000 UTC 22 

August. The model captures well a slow deepening period in the first 36 h, a rapid deepening 

stage from 36 h to 54 h, a quasi-steady stage from 54 h to 102 h, and finally a weakening 

stage after landfall (see Zhu et al. 2004 for details). It is evident from this figure that 

hurricane intensity changes could be consistently represented by PV, a view that is recently 

received more attention (Chen and Yau 2001, Yau et al. 2004). Of interest is that during the 
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period of 24 h to 48 h, PV averaged within a core region of Bonnie keeps intensifying while 

there is little source of heating. It is expected from the equation of PV that the PV in the eye 

should be unchanged or at most decrease with time under the influence of (numerical 

diffusive) frictional effects. A calculation of the contribution of the eddy terms in PV budget 

equation revealed that the eddy fluxes associated with wave activities are the main factor in 

intensifying PV at the center of a hurricane (Fig. A1a). Under the strong influence of 

northwesterly shear during the intensifying stage (24 h to 48 h), eddy fluxes tends to be 

negative (inward flux) at the upshear side and positive at the downshear side as shown in Fig. 

A1b. The total flux is slightly negative which indicates the total inward flux of PV at the 

center. The eddy fluxes of PV calculated above, however, contains wave activities over the 

whole domain including: Vortex-Rossby waves propagating around the eyewall, gravity 

waves propagating radially, or the combinations of both waves as studies in Schecter and 

Montgomery (2004). By using piecewise PV inversion, it is possible to qualify specifically 

how much a Vortex-Rossby waves propagating around the eyewall where PV is constantly 

generated due to convection will contribute to the PV intensification at the center.  

It should be particularly remarked here that the eddy fluxes calculated from PV 

inversion are different radically from the fluxes using simple perturbations as the differences 

between total and mean. The eddy fluxes based on PV inversion are associated exclusively 

with a selected piece of PV anomaly. Therefore, eddy fluxes from PV inversion will be in 

balance (i.e. persist for a long time), whereas the eddy fluxes from simple perturbation 

calculations is instantaneous. Model results show that PV was continuously generated by the 

eyewall convection during this maintenance stage but not immediately advected into the core 

region. To see this point, Fig. 2 shows the snapshots of PV distribution at 45-minute intervals 

 28



at level z = 3 km at 0200 UTC 25 August. A large volume of PV is concentrated in the eye, 

accounting for the intensity of storm-scale rotation.  A few isolated PV anomalies could be 

seen in the eyewall. Because of the strong forcing of large-scale northwesterly shear (see Fig. 

3), cloud convection, as indicated by the latent heating rates and radar reflectivity, occurs 

mostly in the northeast quadrant of the eyewall, i.e., on the downshear-left, which is 

consistent with the conceptual model of Black et al. (2002). This shear tends to provide 

favorable upward motion on the downshear side, i.e., in the southeast quadrant (Wang and 

Holland 1996; Frank and Ritchie 1999; Zhang and Kieu 2005). More clouds develop on the 

downshear-left because of the growth and downstream advection of cloud condensates, 

where PV anomalies are generated and advected mostly around the eye rather than directly 

into the eye. This conclusion can also be seen from the radar reflectivity in Fig. 4, which 

characterizes evidently the appearance of clouds.  

To gain insight into the 3D structures of PV, an East-West cross section through 

Bonnie’s center and an azimuthal-height cross section at the RMW of both PV and PV 

anomaly are given in Figs. 5 and 6, respectively. Apparently, both PV and PV anomaly show 

pronounced asymmetries with high PV in the northeast quadrant where deep convection and 

vertical motion are intense. One remarkable feature that can be easily seen from Figs. 5 and 6 

is the downshear tilt of the stripes of PV maximum/minimum with height with the 

wavenumber-1 structures. This seems to be explained by the impact of the sheared flow in 

the eyewall, i.e. the stronger advections of tangential winds at the lower levels than those at 

the upper levels. However, if this is the case, the region of maximum PV anomaly at the 

lower levels will move faster than that at the upper level after a while and will result in both a 

downshear tilt and an upshear tilt alternatively when the lower PV maximum moves around 
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the eyewall. A time series of azimuth-height cross section of PV, nevertheless, indicates 

mostly the upshear tilt of PV pattern and the above argument based on sheared flow of 

tangential wind is thus incomplete. A second mechanism is believed due to the large-scale 

northwesterly shear. As seen in Fig. 6, PV anomaly is continuously generated at the middle 

levels and then advected downward at the NW quadrant under the influence of large-scale 

northwesterly vertical shear, where vertical motion is downward at upshear side as pointed 

out in Zhang and Kieu (2005). This mechanism depends critically on the asymmetry of 

vertical motion around the eyewall and will no longer valid in the case there is a uniform 

upward motion all around the eyewall and no large scale vertical shear. If this explanation is 

right, it can be anticipated that for a strong hurricane with upward motion all around the 

eyewall with no environmental shear, there should have both the upshear and downshear tilts 

of PV with height alternating with time because the tangential advection now is the only 

mechanism.  

The most attractive stage of Bonnie’s lifetime, which is the main concentration in our 

work here, is an eyewall replacement process occurring between 86h and 96 h of model 

simulation during which there appeared double eyewalls. A motivating question is whether 

PV variable has capability of capturing this important stage and, if so, how PV can provide 

some understandings to this replacement mechanism. Fig. 8 shows the PV evolution during 

the eyewall replacement stage starting from 88h. One can notice evidently a PV 

concentration at the center as well as a distinct PV ring at the outer eyewall, which represents 

well the double eyewalls during this stage. The outer PV ring is quite faint at 1615 UTC 

August 26, and then becomes more and more organized as it propagates cyclonically, and 

finally attains its clear outer ring about 2 hours later. A further noteworthy feature of PV 
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evolution is that the replacement process lasted only 2 to 3 hours starting from 1600 UTC 

August 26. After that the PV concentration within the eye tends to disperse outward as shown 

in Fig. 8. The vertical East-West cross-sections of PV corresponding to Figs. 7b and 8b are 

given in Fig. 9. They reveal a monopolar structure of PV with the maximum PV 

concentrating at the center around middle levels. The mechanism for this replacement 

process has not been addressed in detail so far and will be presented in the next chapter. It 

should be noted that the monopolar structure of PV after 96h is somewhat the same as that in 

dry-run experiment in Chen and Yau (2001). However, this similarity can not be taken 

further because in their experiment there is no source of latent heat release, while in our 

simulation the convective processes play an important role.  
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Chapter 7. Piecewise PV inversion 

 

In this chapter, the techniques developed in Chapters 2 and 5 will be applied to 

Hurricane Bonnie (1998) to examine some possibilities responsible mainly for the eyewall 

replacement process mentioned in Chapter 6 (Fig. 7). This will prove the applicability of 

piecewise PV inversion technique developed in Part I to hurricane studies. The model outputs 

of Hurricane Bonnie, which are described briefly in Chapter 6, will be chosen for this study. 

The 4 km-resolution outputs consist of 163×163 grid points in (x, y) plane and 23 uneven σ 

levels. For our piecewise PV inversion program, we restrict the original domain to a smaller 

domain with 97×97 grid points in (x, y) plane around the hurricane center and interpolate 

from 23 uneven σ levels to 33 even levels in pseudo-height coordinate. More detailed 

descriptions can be found in WZ03. As discussed in Chapter 6, the piecewise PV inversion is 

expected to offer some mechanisms for the transitional stage from double eyewall at 86h 

(Fig. 7) to eventually a ring of outer PV as in Fig. 8 after 96h of simulation. The verifications 

of our new scheme for inversion are presented in the appendix for the clarity.  

The time slice at 1700 UTC August 16 will be chosen for our purpose because the 

outer PV ring has the most distinct separation from the PV at the center, and the ring is 

nearly close. A portion of PV at the eastern side is selected and will be regarded as a piece of 

PV anomaly. The remaining will be treated as a second PV piece. Of course, there is nothing 

preventing us from choosing the whole PV ring to work with. However, a portion of PV ring 

will be more realistic and meaningful as in practical situation a PV ring is barely closed 

completely. It is important to note here again that if PV anomaly is defined as a difference 

between the total PV and azimuthal average, the PV anomaly is then just a small residual and 
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it is not possible to obtain the whole outer PV ring to invert (see chapter 4 for more detailed). 

In our work, the outer PV ring will not be taken as the difference between total and azimuthal 

average but simply cut out of the total PV and treated as a piece of PV anomaly 

superimposed on a balanced vortex.  Fig. 10 shows the perturbations of pressure, potential 

temperature, and vertical motion associated with this PV piece at z = 3 km (the same general 

patterns are also obtained at all lower levels and only level z=3km is thus provided). Vertical 

motion and divergent winds in Fig. 10c are obtained by solving the omega equation without 

heating and frictional effects (see Zhang and Kieu 2005). This running option provides a 

clear picture of the sole impacts of outer PV on secondary circulation. One notices 

immediately from Fig 10a that the outer positive PV produces a very deep low pressure 

region with cyclonic wind confined closely to the outer PV ring. The stronger the PV 

anomaly, the deeper the pressure perturbation and the stronger the rotational wind field. This 

is nothing new but a consequence of the elliptic property of the PV system (cf. Eqs. 2.10 and 

2.11). It is well-known that for a Laplacian operator acting on a function, a positive forcing 

will correspond to a negative value of the function everywhere, provided that the boundaries 

are all homogeneous. In the case of piecewise PV system, the ellipticity of equation (2.11) is 

always checked during iteration process to guarantee the convergence of both Eqs. (2.10) and 

(2.11) (the points where the elliptic condition are not satisfied will be adjusted immediately). 

Therefore, the positive PV anomaly on the RHS of (2.11) will be certain to give the negative 

perturbation geopotential height, which is then converted to pressure perturbation. It is 

familiar that the low pressure system will result in cyclonic motion, and the cyclonic 

circulation in Fig. 11a once again acknowledges this common truth. Note particularly that the 

southly wind at the inner side of the PV ring will compensate the rotational wind inside the 
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ring (but outside the inner eyewall) while the northly wind at the outer side will enhance the 

rotational wind outside the ring. This explains why the appearance of an outer PV ring 

enclosing a pre-existing hurricane eye will subsequently weaken rotational wind and 

consequently vorticity inside this ring.   

A second noteworthy feature of the outer PV ring is the warming anomaly inside and 

cooling anomaly outside the ring as shown in Fig. 10b. One usually expects intuitively to see 

the warming anomaly everywhere in order to be consistent with the development of low 

pressure system in Fig. 10a. What have happened with the cooling effect outside the PV 

ring? The nature of this interesting feature roots in the fact that the outer PV ring has radius 

increased with height (Figs. 11a and 12a). As observed in Fig. 10a, the maximum in 

magnitude of pressure perturbation occurs within the PV ring. Therefore, there will have a 

deep low pressure system right above the outside of PV ring at z =3 km (Fig. 11a), which is 

best seen from the outward tilt of the low center of pressure perturbation (Fig. 12a). This 

deep low system aloft results in a positive potential temperature at the upper level so strong 

that the outer side of PV ring at the lower levels must cool down to offset the large expand of 

the column of air aloft (Figs. 13b, 12b and 11b). Pictorially, we can imagine that the upper 

column expands larger than the shrink at the lower level so that, totally, there still has an 

expansion of the whole column of air, consistent with the existence of the low pressure 

system at the surface.  

A question now is that what is the consequence of this warming inside and cooling 

outside5 effect as seen in Fig. 10b. Interestingly, the warming inside tends to expand the 

warm core (enlarge the bow shape of isentropic surface), while the cooling outside tends to 

                                                 
5 To avoid a lengthy expression, inside and outside here are always meant inside and outside of the outer PV 
ring in question.  
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sharpen the core region (maintain subsequently the bow shape). Without cooling outside, the 

bow shape of the isentropic will spread out and the bow shape will be shallower, leading to 

the disappearance of warm core. The warming inside and cooling outside together with the 

enhancement outside and reducing inside of rotational winds are believed, from the point of 

view of our piecewise PV inversion, to be one of the main mechanisms responsible for the 

eyewall replacement process and for the gradual disappearance of the PV at the center 

region at the later time.  

Besides the major impacts of the perturbation rotational winds and warming/cooling 

effects discussed above, the PV outer ring also induces significant divergent winds and 

vertical motion as well. These circulations are obtained by using the omega system, which is 

employed in our recent work to study the impacts of shear on secondary circulation (see 

appendix). Fig 10c shows the vertical motion induced by the outer PV ring superimposed by 

divergent wind. Evidently, the PV ring results in a considerable vertical motion (up to 0.7 

m/s), which enhances convection activity significantly within the ring. The alternative 

upward and downward motions in Fig. 10c are due to the non-uniformity of the PV 

distribution within the ring (see shaded area in Fig. 10). Correspondingly, upward/downward 

motion is associated with convergent/divergent wind at the lower levels as seen in Fig. 10c 

(The opposite situation: divergent/convergent winds associated with upward/downward 

motions is also observed at the upper levels but not shown here). It is the dominance of the 

convergent winds and vertical motion within the ring that help maintain and intensify the 

newly appeared outer eyewall. If we say perturbation potential temperature and wind fields 

are responsible for broadening the eye, then it is the convergent wind and vertical motion 
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within in ring that leads to the large concentration of PV around the outer ring at the later 

time as seen in Fig. 8 

The second interesting question of how the PV at the core of Bonnie keeps increasing 

and why there is no source of heating (Fig.1c) was also attempted in our work but will be 

mentioned briefly here only for the purpose of completeness.  As we know, PV is expected to 

be conserved in the absence of heating and friction. Within the eye, there is no source of 

latent heat released and it is expected that PV inside the eye core should not be changed 

significantly or at most decrease with time due to frictional effect. However, as seen in Fig. 

1c, PV averaged within eye core region follows quite closely to the general development of 

Bonnie, with a steady increase from beginning up to 48 h before decreasing. Piecewise PV 

can provide the balanced perturbation winds associated with a specific PV piece, which can 

be used to calculate eddy fluxes of momentum and vorticity specifically for this piece only. 

Though the second question of wave activities is not our main concentration, it is worthy to 

note that our piece PV inversion does offer an answer for this interesting question. As a 

mater of fact, Montgomery and Kallenchback (1997) have addressed this question through a 

series of theoretical developments of Vortex-Rossby wave as well as their subsequent 

numerical experiments (Montgomery and Kallenchback 1997; Moller and Montgomery 

1998; Schecter and Montgomery 2004). In connection with their work, it is also possible to 

see the wave activities on the mean PV within the core of a hurricane from our work. 

Explicitly, one may ask how much a piece of PV anomaly within the eyewall will contribute 

to the eddy fluxes of vorticity. Some experiments with our new piecewise PV inversion 

system have supported a conclusion that it is the PV anomalies around the eyewall which are 

generated constantly by convection that account for most of the eddy fluxes of vorticity. 
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During the intensifying stage of a hurricane, convective heating generates new PV in the 

eyewall, and this will indirectly influence the PV inside the eyewall, resulting in the change 

of PV as seen in Fig. 1c (dash curve). Here, we can see this mechanism again in the light of 

PV inversion, which gives us specifically how much a PV piece will contribute to the 

balanced eddy flux. Note that eddy fluxes obtained from PV inversion are calculated (this 

will be included in this part, as discussed) based on balanced perturbation winds, which are 

very different from perturbations taken simply as the difference between total fields and 

azimuthally average. The latter perturbations are not in balance. Several further steps need to 

be conducted before a final conclusion can be obtained and we would like to point out here 

that piecewise PV inversion is a very useful and appropriate tool for this purpose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 37



Chapter 8. Summary and conclusions 

  

In this work, a system of equations for piecewise PV inversion, which employs the 

WZ03’s technique, with an arbitrary number of pieces is developed in Chapter 2. This 

WZ03’s technique has an advantage of introducing a free parameter ε to control the 

convergence of the system of nonlinear PV equations, which is especially suitable when 

applied to hurricane researches. However, their PV system so far has been applied to the case 

of one PV piece only, and their technique is extended from one PV piece to an arbitrary 

number of pieces in this work. We next propose an algorithm to handle the problem of 

solving the piecewise PV system for the case of many PV pieces.  The traditional approach to 

solving piecewise PV system is to follow DE91’s methodology in which the system of 2N 

nonlinear balanced equations needs to be simultaneously iterated. The weakness of iteration 

method lies in its convergence and stability, especially when there are more than three PV 

pieces. Our new approach overcomes particularly this difficulty, which makes piecewise PV 

inversion become more practical in applications. Third, a systematical treatment of boundary 

problem was presented in Chapter 3, which so far has not been addressed fully in previous 

studies. Finally, an alternative way of determining mean balanced fields is also mentioned, 

which allows us to separate meaningfully a perturbation PV piece to investigate (Chapter 4).  

These new developments are then applied to examine the mechanisms accounting for 

eyewall replacement process that was explicitly captured in a simulation of Hurricane Bonnie 

(1998) with the finest mesh of 4km. By treating the outer PV ring as a piece of PV anomaly 

superimposed on a balanced vortex and the remaining PV anomaly as a second piece, we 

have obtained some results that provide detailed insights to the transitional stage from double 
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eyewall to a single eyewall at the later time. Specifically, perturbation rotational winds 

associated with the outer PV ring will weaken tangential winds within the annulus created by 

the inner eyewall and outer PV ring. In the meantime, perturbation potential temperature 

warms the region between the inner edge of the PV ring and the outer edge of inner eyewall 

and thus enlarges the bow shape of isentropic surface at the low levels. On the other hand, 

the cooling effect of perturbation potential temperature will sharpen this bow shape. Under 

these impacts of both perturbation winds and potential temperature, the inner eyewall tends 

to be weakened and dispersed outward. The vertical motion and divergent winds induced by 

the outer PV ring will subsequently draw the entire moisture source into the outer PV ring, 

leading to a new larger eyewall replacing the inner eyewall inside.  

It should be particularly noted that our results offer explanations for the eyewall 

replacement process only after the outer eyewall has some initial appearance. Once the outer 

PV ring appears, it will quickly grow to full outer eyewall and weaken the inner eyewall no 

matter how weak the outer PV ring is.  Our results do not provide an answer for why and 

how some initial PV ring appears. This initial appearance of outer PV ring may be due to 

some spontaneous processes or Vortex-Rossby waves propagating radially and azimuthally.  

 

 

 

 

 

 

 

 39



Appendix 1: Omega system 

 

The ω-equation in the vertical upward-pointing, pseudo-height z-coordinates (Hoskins 

and Bretherton 1972), including the water loading effects, is given by (see Wang and Zhang 

2003) 
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where ∇ is a horizontal gradient operator on constant pseudo-height surfaces, µ = Cv /Rd and 

za = Cp θ0/g; η = ζ + f; ψ  and φ  are the balanced total streamfunction and geopotential 

height inverted from a given PV field; χ is the (quasi-balanced) velocity potential; Vh = Vψ + 

Vχ  is the horizontal velocity including both the balanced (Vψ) and divergent (Vχ) 

components (i.e., Vh = ); is the latent heating rate; fχψ ∇+∇×k
v

q& x and fy denote the 

boundary-layer and (small) numerical diffusion effects along the x- and y- axes, respectively; 

and all the other variables assume their typical meteorological meaning. Given fictional, 

heating terms, ψ , and φ , the omega equation consists of two unknowns: ω, ∂ψ/∂t. To close 

the system, we need to appeal to the vorticity equation  
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where the velocity potential χ is related to vertical motion ω through the continuity equation,  

])[()(2 ωχ µµ zz
z

zz aa −
∂
∂

−−=∇ − .       (A3) 

Thus, Eqs. (1) – (3) form a closed set of equations in ω, χ  and t∂∂ /ψ that can be iteratively 

solved to yield the quasi-balanced vertical motion and horizontal divergent winds or the 

FSCs, 
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Appendix 2. Verification of Piecewise PV inversion 

 

It is necessary to demonstrate that our new numerical scheme for piecewise PV inversion is 

capable of recovering the superimpose principle as original developed by DE91. This 

principle is verified by taking the difference between the sum of all perturbations associated 

with each PV pieces and the perturbations associated with the sum of all PV pieces (See 

Chapter 5 for more detail). Perturbations here mean rotational winds, potential temperature 

and geopotential. The latter is usually expressed as pressure perturbation rather than using 

direct geopotential).  The smaller the difference, the better our scheme. In the testing 

experiment, the total PV anomaly is partitioned into four pieces: positive PV anomaly inside 

the eyewall (P1), negative PV anomaly inside eyewall (P2), PV anomaly within the eye core 

(P3), and the remaining PV anomaly (P4). Figs. 10 and 11 show the differences in pressure 

perturbations and in potential temperature, respectively, associated with pieces P1, P2, P3 

and P4. As once can easily notice, our new algorithm scheme is good at all levels within a 

high accuracy. The complete results of balanced perturbations associated with all four pieces 

are given in the figure appendix for they provide no essential information of the eyewall 

replacement.
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Figure captions 

Figure 1. Time series of (a) maximum wind (ms-1) at z = 1km, (b) surface pressure level 

(mb), and (c) mass-weighted Potential Vorticity (PVU unit) of a 5-day simulation of 

Hurricane Bonnie initialized at 0000 UTC 22 August 1998. The mass-weighted PV is an 

average over the volume 100 km x 100 km x 10 km (bold solid line), 50 km x 50 km x 10 km 

(light solid line), and 25 km x 25 km x 10 km (dashed line) 

Figure 2. The total PV distribution (PVU unit) at z = 3 km from a 50 h-simulation of 

Hurricane Bonnie during its maximum stage at (a) 0200 UTC, (b) 0245 UTC, and (c) 0330 

UTC on 24 August 1998. Superimposed is the heating distribution (contours at 30 K/h for 

positive value and 10 K/h for negative value). Bold letter A indicates the trace of the 

movement of PV 

Figure 3. (a) An area-averaged (storm-relative) hodograph over an area of 576 km x 576 km 

centered in the eye, which are obtained at 0000 UTC 24 August 1998, and (b) cross sections 

through the storm center along the shear vector of (storm-relative) in-plane flow vectors and 

the vertical motion forced by  the dry dynamical processes (every 0.2 m s-1), which are 

obtained at 0000 UTC 24 August 1998. Solid (dotted) lines are for upward (downward) 

motion. Note that the vertical motion vectors have been amplified by a factor of 5. 

Figure 4. The same as Fig. 2 but for the radar reflectivity (dBz) at z = 5km. Superimposed is 

vertical motion (contoured at 1 ms-1) 

Figure 5. The distribution of PV valid at the maximum stage of Bonnie (0245 UTC 24 

August 1998) for (a) West-East vertical cross section taken as an average of four slices 

through the center, and (b) the height-azimuth cross section averaged within the eyewall. All 
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are superimposed by the wind flow vectors. Note that vertical velocity have been amplified 

by a factor of 5. 

Figure 6. The same as Fig 5 but for the distribution of PV anomaly. The bold gray circle in 

panel (a) represents the partitioning of total PV anomaly into four pieces used in this study. 

The positive PV anomaly (red shading) between the bold solid line at the lower right corner 

and the bold gray dash line represents piece P1, and negative PV anomaly between the bold 

gray dash line and the bold solid line at the top left corner represents piece P2. Letter A 

corresponds to that in Fig. 5b 

Figure 7. Total PV distribution (shaded) in PVU unit superimposed with the wind fields at z 

= 3 km from the 88h-simulation of Hurricane Bonnie during its eyewall replacement stage at 

(a) 1615 UTC, (b) 1700 UTC, and (c) 1745 UTC on 25 August 1998.  The bold grey closed 

curve in panel b represents a portion of PV which will be inverted 

Figure 8. The same as Fig.3 but for (a) 0015 UTC, (b) 0100 UTC, and (c) 0145 UTC on 26 

August 1998. Note the domain size is 180 km x 180 km instead of 100 km x 100 km as in 

Fig. 3 because the outer eyewall during the eyewall replacement process is as large as 120 

km. 

Figure 9. West-East vertical cross sections of PV (shading in PVU unit) superimposed by the 

in-plane secondary circulation for (a) 1700 UTC August 2 corresponding to Fig. 7b, and (b) 

0100 UTC August 26 1998 corresponding to Fig. 8b . Note that vertical motion has been 

multiplied by a factor of 10 to enhance the double eyewall. 

Figure. 10. The perturbation fields (contours) associated with positive PV anomaly (shaded) 

at the outer eyewall valid at 1630 UTC 25 August 1998 for (a) pressure perturbation at 

intervals of 1 hPa at z = 3 km, (b) potential temperature at intervals of 0.3 K at z = 3 km, and 
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(c) vertical motion at intervals of 5 x 10-2 ms-1 at z = 1 km. Panels (a) and (b) are 

superimposed by the rotational wind field induced by the corresponding PV anomaly, while 

(c) is superimposed by the divergent wind.  Shadings denote the PV anomaly piece (PVU 

unit). Solid (dash) lines are for positive (negative) values. The bold gray dot-dash circle 

represents the inner radius at the corresponding levels. 

Figure. 11. The same as Fig. 10 but for z = 10km. Note that the contours in panel 11a are at 

0.3 hPa intervals for the purpose of presentation 

Figure. 12. East-West vertical cross sections of perturbation fields (contours) superimposed 

with in-plane flow vectors associated with the PV anomaly (shaded) at the outer eyewall 

valid at 1630 UTC 25 August 1998 for (a) pressure perturbation at intervals of 0.5 hPa,  (b) 

potential temperature perturbation at intervals of 0.3 K at z = 3 km Shadings denote the PV 

anomaly piece (in PVU unit). Solid (dash) lines are for positive (negative) values. Note the 

scale of vector is in unit of 10-1 ms-1

Figure. A1. (a) Distribution of eddy term (
r

qur
r ∂

∂ )]''({1 ) with radius (in unit of 10-5 PVU x s-

1) due to wave activities obtained by temporally averaging 24 datasets at 15-min intervals 

during the 6-h period from the 36 – 48 h simulation ending 0000 UTC 24 August 1998 and 

mass weighted from surface to 5 km. The abscissa is radius in km, and the ordinate is in unit 

of 1 x 10-9 s-2., (b) distribution of the same eddy term with azimuthal angle averaged over 24 

data sets at z = 3km within the eyewall (c) distribution of eddy flux term (u’q’) (in ms-1 x 

PVU unit) with azimuthal angle averaged over 24 data sets at z = 3km during the same 

period as in panel a.  

Figure. A2. The difference between the sum of pressure perturbations associated with four 

PV anomaly pieces and the pressure perturbation associated with the sum of four pieces of 
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PV anomalies at 0000 UTC 24 August 1998 (contoured at interval of 0.1 hPa) for (a) z = 10 

km, (b) z = 5 km, and (c) z = 1 km    

Figure. A3. The same as Fig. 10 but for perturbation potential temperature 

Figure A4. The total PV distribution (PVU unit) at z = 5 km from a 50 h-simulation of 

Hurricane Bonnie during its maximum stage at (a) 0200 UTC, (b) 0245 UTC, and (c) 0330 

UTC on 24 August 1998. Superimposed is the heating distribution (contours at 30 K/h for 

positive value and 10 K/h for negative value). Bold letter A indicates the trace of the 

movement of PV. 

Figure A5. The same as Fig. 2 but for the distribution of PV anomaly. The anomaly is 

computed by subtracting the azimuthally averaged PV from the total. Superimposed is the 

perturbation flow field. Letter A is the trace of positive PV anomaly corresponding exactly to 

that in Fig. 2. The bold gray circles represent the eyewall.  

Figure A6. The pressure perturbation field (contour) associated with piece P1 valid at 0245 

UTC 24 August 1998 of Hurricane Bonnie for (a) z = 10 km at intervals of 0.1 hPa, (b) z = 5 

km at intervals of 0.3 hPa, and (c) z = 1 km at intervals of 0.3 hPa. All are superimposed by 

the wind field induced by the corresponding PV anomaly. Shadings denote the PV anomaly 

piece P1 (PVU unit). Solid (dash) lines are for positive (negative) values. The bold gray dot-

dash circle is the radius of maximum wind at the corresponding level. 

Figure A7. The potential temperature perturbation field (contours at intervals of 0.5 K) 

associated with piece P1 valid at 0245 UTC 24 August 1998 of Hurricane Bonnie for (a) z = 

10 km, (b) z = 5 km, and (c) z = 1 km. All are superimposed by the wind field induced by the 

corresponding PV anomaly. Shadings denote the PV anomaly piece P1. Solid (dash) lines are 

for positive (negative) values 
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Figure A8. East-West vertical cross section through the center of Bonnie associated with 

piece P1  valid at 0245 UTC 24 August 1998 for (a) pressure perturbation at intervals of 0.3 

hPa, (b) potential temperature perturbation at intervals of 0.5 K, and (c) y-component of wind 

field at intervals of 1 ms-1. Shadings denote the PV anomaly piece P1. Solid (dash) lines are 

for positive (negative) values 

Figure A9. The pressure perturbation field (contour) associated with piece P2 for (a) z = 10 

km at intervals of 0.1 hPa, (b) z = 5 km at intervals of 0.3 hPa, and (c) z = 1 km at intervals 

of 0.3 hPa. 

Figure A10. The potential temperature perturbation field (contours at intervals of 0.5 K) 

associated with piece P2 for (a) z = 10 km, (b) z = 5 km, and (c) z = 1 km. All are 

superimposed by the wind field induced by the corresponding PV anomaly. 

Figure. A12. East-West vertical cross section through the center of Bonnie associated with 

piece P2  for (a) pressure perturbation at intervals of 0.3 hPa, (b) potential temperature 

perturbation at intervals of 0.5 K, and (c) y-component of wind field at intervals of 1 ms-1. 

Figure. A13. The pressure perturbation field (contour) associated with piece P3 for (a) z = 10 

km at intervals of 0.1 hPa, (b) z = 5 km at intervals of 0.3 hPa, and (c) z = 1 km at intervals 

of 0.3 hPa.  

Figure. A13. The potential temperature perturbation field (contours at intervals of 0.5 K) 

associated with piece P3 for (a) z = 10 km, (b) z = 5 km, and (c) z = 1 km. All are 

superimposed by the wind field induced by the corresponding PV anomaly. 

Figure. A14. East-West vertical cross section through the center of Bonnie associated with 

piece P3  for (a) pressure perturbation at intervals of 0.3 hPa, (b) potential temperature 

perturbation at intervals of 0.5 K, and (c) y-component of wind field at intervals of 1 ms-1.  
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Figure. A15. The sum of pressure perturbations (contoured at intervals of 1 hPa) associated 

with pieces P1, P2, P3, P4 valid at 0245 UTC 24 August 1998 of Hurricane Bonnie for (a) z 

= 10 km, (b) z = 5 km, and (c) z = 1km. All are superimposed by the wind field induced by 

the all PV anomalies. Shadings denote the total PV anomaly. Solid (dash) lines are for 

positive (negative) values 

Figure. A16. The sum of potential temperature perturbations (contoured at intervals of 1 K) 

associated with pieces P1, P2, P3, P4 for (a) z = 1 km, (b) z = 5 km, and (c) z = 10 km. Solid 

(dash) lines are for positive (negative) values 
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Figure 1. Time series of (a) maximum wind (ms-1) at z = 1km, (b) surface pressure level (mb), 
and (c) mass-weighted Potential Vorticity (PVU unit) of a 5-day simulation of Hurricane 
Bonnie initialized at 0000 UTC 22 August 1998. The mass-weighted PV is an average over 
the volume 100 km x 100 km x 10 km (bold solid line), 50 km x 50 km x 10 km (light solid 
line), and 25 km x 25 km x 10 km (dashed line) 
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 Figure 2. The total PV distribution (PVU unit) at z = 3 km from a 50 h-simulation of Hurricane 

Bonnie during its maximum stage at (a) 0200 UTC, (b) 0245 UTC, and (c) 0330 UTC on 24 
August 1998. Superimposed is the heating distribution (contours at 30 K/h for positive value 
and 10 K/h for negative value). Bold letter A indicates the trace of the movement of PV. 
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Figure 3. (a) An area-averaged (storm-relative) hodograph over an area of 576 km x 576 km 
centered in the eye, which are obtained at 0000 UTC 24 August 1998, and (b) cross sections 
through the storm center along the shear vector of (storm-relative) in-plane flow vectors and the 
vertical motion forced by  the dry dynamical processes (every 0.2 m s-1), which are obtained at 
0000 UTC 24 August 1998. Solid (dotted) lines are for upward (downward) motion. Note that 
the vertical motion vectors have been amplified by a factor of 5. 
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Figure 4. The same as Fig. 2 but for the radar reflectivity (dBz) at z = 5km. Superimposed is 
vertical motion (contoured at 1 ms-1) 

 
 
 
 
 

 56



 

 

 
 
 
 
 
 
 
 
 

Figure 5. The distribution of PV valid at the maximum stage of Bonnie (0245 UTC 24 August 
1998) for (a) West-East vertical cross section taken as an average of four slices through the 
center, and (b) the height-azimuth cross section averaged within the eyewall. All are 
superimposed by the wind flow vectors. Note that vertical velocity have been amplified by a 
factor of 5.  
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Figure 6. The same as Fig 5 but for the distribution of PV anomaly. The bold gray circle in 
panel (a) represents the partitioning of total PV anomaly into four pieces used in this study. 
The positive PV anomaly (red shading) between the bold solid line at the lower right corner 
and the bold gray dash line represents piece P1, and negative PV anomaly between the bold 
gray dash line and the bold solid line at the top left corner represents piece P2. Letter A 

d h i Fi 5b
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Figure 7. Total PV distribution (shaded) in PVU unit superimposed with the wind fields at z = 
3 km from the 88h-simulation of Hurricane Bonnie during its eyewall replacement stage at (a) 
1615 UTC, (b) 1700 UTC, and (c) 1745 UTC on 25 August 1998.  The bold grey closed 
curve in panel b represents a portion of PV which will be inverted 
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Figure 8. The same as Fig.3 but for (a) 0015 UTC, (b) 0100 UTC, and (c) 0145 UTC on 26 
August 1998. Note the domain size is 180 km x 180 km instead of 100 km x 100 km as in Fig. 
3 because the outer eyewall during the eyewall replacement process is as large as 120 km. 
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Figure 9. West-East vertical cross sections of PV (shading in PVU unit) superimposed 
by the in-plane secondary circulation for (a) 1700 UTC August 2 corresponding to Fig. 
7b, and (b) 0100 UTC August 26 1998 corresponding to Fig. 8b . Note that vertical 
motion has been multiplied by a factor of 10 to enhance the double eyewall.  
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Figure. 10. The perturbation fields (contours) associated with positive PV anomaly (shaded) at the outer 
eyewall valid at 1630 UTC 25 August 1998 for (a) pressure perturbation at intervals of 1 hPa at z = 3 km, 
(b) potential temperature at intervals of 0.3 K at z = 3 km, and (c) vertical motion at intervals of 5 x 10-2 
ms-1 at z = 1 km. Panels (a) and (b) are superimposed by the rotational wind field induced by the 
corresponding PV anomaly, while (c) is superimposed by the divergent wind.  Shadings denote the PV 
anomaly piece (PVU unit). Solid (dash) lines are for positive (negative) values. The bold gray dot-dash 
circle represents the inner radius at the corresponding levels. 
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Figure. 11. The same as Fig. 10 but for z = 10km. Note that the contours in panel 11a are 
at 0.3 hPa intervals for the purpose of presentation 
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Figure. 12. East-West vertical cross sections of perturbation fields (contours) superimposed with in-
plane flow vectors associated with the PV anomaly (shaded) at the outer eyewall valid at 1630 UTC 
25 August 1998 for (a) pressure perturbation at intervals of 0.5 hPa,  (b) potential temperature 
perturbation at intervals of 0.3 K at z = 3 km Shadings denote the PV anomaly piece (in PVU unit). 
Solid (dash) lines are for positive (negative) values. Note the scale of vector is in unit of 10-1 ms-1
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Figure Appendix 
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Figure. A1. (a) Distribution of eddy term (
r

qur
r ∂

∂ )]''({1 ) with radius (in unit of 10-5 PVU x s-1) 

due to wave activities obtained by temporally averaging 24 datasets at 15-min intervals during the 
6-h period from the 36 – 48 h simulation ending 0000 UTC 24 August 1998 and mass weighted 
from surface to 5 km. The abscissa is radius in km, and the ordinate is in unit of 1 x 10-9 s-2., (b) 
distribution of the same eddy term with azimuthal angle averaged over 24 data sets at z = 3km 
within the eyewall (c) distribution of eddy flux term (u’q’) (in ms-1 x PVU unit) with azimuthal 
angle averaged over 24 data sets at z = 3km during the same period as in panel a.  
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Figure. A2. The difference between the sum of pressure perturbations associated with four PV 
anomaly pieces and the pressure perturbation associated with the sum of four pieces of PV 
anomalies at 0000 UTC 24 August 1998 (contoured at interval of 0.1 hPa) for (a) z = 10 km, (b) z = 
5 km, and (c) z = 1 km    
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Figure. A3. The same as Fig. 10 but for perturbation potential temperature. 
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Figure A4. The total PV distribution (PVU unit) at z = 5 km from a 50 h-simulation of 
Hurricane Bonnie during its maximum stage at (a) 0200 UTC, (b) 0245 UTC, and (c) 0330 
UTC on 24 August 1998. Superimposed is the heating distribution (contours at 30 K/h for 
positive value and 10 K/h for negative value). Bold letter A indicates the trace of the 
movement of PV. 
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Figure A5. The same as Fig. 2 but for the distribution of PV anomaly. The anomaly is 
computed by subtracting the azimuthally averaged PV from the total. Superimposed is the 
perturbation flow field. Letter A is the trace of positive PV anomaly corresponding exactly to 
that in Fig. 2. The bold gray circles represent the eyewall.  
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Figure A6. The pressure perturbation field (contour) associated with piece P1 valid at 0245 
UTC 24 August 1998 of Hurricane Bonnie for (a) z = 10 km at intervals of 0.1 hPa, (b) z = 5 
km at intervals of 0.3 hPa, and (c) z = 1 km at intervals of 0.3 hPa. All are superimposed by the 
wind field induced by the corresponding PV anomaly. Shadings denote the PV anomaly piece 
P1 (PVU unit). Solid (dash) lines are for positive (negative) values. The bold gray dot-dash 
circle is the radius of maximum wind at the corresponding level. 
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Figure A7. The potential temperature perturbation field (contours at intervals of 0.5 K) 
associated with piece P1 valid at 0245 UTC 24 August 1998 of Hurricane Bonnie for (a) z = 
10 km, (b) z = 5 km, and (c) z = 1 km. All are superimposed by the wind field induced by 
the corresponding PV anomaly. Shadings denote the PV anomaly piece P1. Solid (dash) 
lines are for positive (negative) values 
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Figure A8. East-West vertical cross section through the center of Bonnie associated with piece P1  
valid at 0245 UTC 24 August 1998 for (a) pressure perturbation at intervals of 0.3 hPa, (b) 
potential temperature perturbation at intervals of 0.5 K, and (c) y-component of wind field at 
intervals of 1 ms-1. Shadings denote the PV anomaly piece P1. Solid (dash) lines are for positive 
(negative) values 
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Figure A9. The pressure perturbation field (contour) associated with piece P2 for (a) z = 10 km at 
intervals of 0.1 hPa, (b) z = 5 km at intervals of 0.3 hPa, and (c) z = 1 km at intervals of 0.3 hPa.  
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Figure A10. The potential temperature perturbation field (contours at intervals of 0.5 K) associated 
with piece P2 for (a) z = 10 km, (b) z = 5 km, and (c) z = 1 km. All are superimposed by the wind 
field induced by the corresponding PV anomaly.    
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Figure. A11. East-West vertical cross section through the center of Bonnie associated with 
piece P2  for (a) pressure perturbation at intervals of 0.3 hPa, (b) potential temperature 
perturbation at intervals of 0.5 K, and (c) y-component of wind field at intervals of 1 ms-1.  
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Figure. A12. The pressure perturbation field (contour) associated with piece P3 for (a) z = 10 km at 
intervals of 0.1 hPa, (b) z = 5 km at intervals of 0.3 hPa, and (c) z = 1 km at intervals of 0.3 hPa.  
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Figure. A13. The potential temperature perturbation field (contours at intervals of 0.5 K) 
associated with piece P3 for (a) z = 10 km, (b) z = 5 km, and (c) z = 1 km. All are superimposed 
by the wind field induced by the corresponding PV anomaly.    
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Figure. A14. East-West vertical cross section through the center of Bonnie associated with 
piece P3  for (a) pressure perturbation at intervals of 0.3 hPa, (b) potential temperature 
perturbation at intervals of 0.5 K, and (c) y-component of wind field at intervals of 1 ms-1.  
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Figure. A15. The sum of pressure perturbations (contoured at intervals of 1 hPa) associated 
with pieces P1, P2, P3, P4 valid at 0245 UTC 24 August 1998 of Hurricane Bonnie for (a) z = 
10 km, (b) z = 5 km, and (c) z = 1km. All are superimposed by the wind field induced by the all 
PV anomalies. Shadings denote the total PV anomaly. Solid (dash) lines are for positive 
(negative) values 
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Figure. A16. The sum of potential temperature perturbations (contoured at intervals of 1 K) 
associated with pieces P1, P2, P3, P4 for (a) z = 1 km, (b) z = 5 km, and (c) z = 10 km. Solid 
(dash) lines are for positive (negative) values 

 
 
 

 80


	Abstract
	Acknowledgment
	PART I. THEORETICAL DEVELOPMENT
	Chapter 1. Introduction
	Chapter 4. Calculations of mean fields
	Chapter 7. Piecewise PV inversion

	Chapter 8. Summary and conclusions

