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 Satellites have great potential for diagnosis of surface air quality conditions, though 

reduced sensitivity of satellite instrumentation to the lower troposphere currently impedes their 

applicability. One objective of the NASA DISCOVER-AQ project is to provide information 

relevant to improving our ability to relate satellite-observed columns to surface conditions for 

key trace gases and aerosols. In support of DISCOVER-AQ, this dissertation investigates the 

degree of correlation between O3 and NO2 column abundance and surface mixing ratio during 

the four DISCOVER-AQ deployments; characterize the variability of the aircraft in situ and 

model-simulated O3 and NO2 profiles; and use the WRF-Chem model to further investigate the 

role of boundary layer mixing in the column-surface connection for the Maryland 2011 

deployment, and determine which of the available boundary layer schemes best captures the 

observations. Simple linear regression analyses suggest that O3 partial column observations from 

future satellite instruments with sufficient sensitivity to the lower troposphere may be most 

meaningful for surface air quality under the conditions associated with the Maryland 2011 

campaign, which included generally deep, convective boundary layers, the least wind shear of all 

four deployments, and few geographical influences on local meteorology, with exception of bay 



	
	

breezes. Hierarchical clustering analysis of the in situ O3 and NO2 profiles indicate that the 

degree of vertical mixing (defined by temperature lapse rate) associated with each cluster exerted 

an important influence on the shapes of the median cluster profiles for O3, as well as impacted 

the column vs. surface correlations for many clusters for both O3 and NO2. However, 

comparisons to the CMAQ model suggest that, among other errors, vertical mixing is 

overestimated, causing too great a column-surface connection within the model. Finally, the 

WRF-Chem model, a meteorology model with coupled chemistry, is used to further investigate 

the impact of vertical mixing on the O3 and NO2 column-surface connection, for an ozone 

pollution event that occurred on July 26-29, 2011. Five PBL schemes were tested, with no one 

scheme producing a clear, consistent “best” comparison with the observations for PBLH and 

pollutant profiles; however, despite improvements, the ACM2 scheme continues to overestimate 

vertical mixing. 
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Chapter 1: Introduction 
 
1.1: Overview of Tropospheric O3 Formation 

 Tropospheric ozone (O3) is an Environmental Protection Agency (EPA) criteria pollutant 

with adverse human health effects, and a ubiquitous pollutant detrimental to human welfare (e.g., 

crop damage) (https://www3.epa.gov/ttn/naaqs/criteria.html). Ozone is formed from the 

oxidation of carbon monoxide (CO) or volatile organic compounds (VOCs) in the presence of 

nitrogen oxides (NOx; NOx = NO + NO2). Sources of CO include biomass burning and fossil fuel 

combustion, while VOCs are emitted by trees, through combustion and evaporation of fossil 

fuels, and by various industries, such as petrochemical processing plants. Sources of nitric oxide 

(NO) also include biomass burning and fossil fuel combustion, such as from motor vehicles and 

electrical generating units; NO is directly emitted from these sources. Nitrogen dioxide (NO2), in 

contrast, is usually not directly emitted but is formed photochemically from the reaction of NO 

and O3 or the hydroperoxyl (HO2) radical, which is itself produced photochemically by the 

oxidation of hydrocarbons and CO, as shown in reaction R5 below (Finlayson-Pitts and Pitts, 

2000; Jacob, 1999).  

Each O3 formation mechanism is initiated by the production of the hydroxyl radical (OH): 

O3 + hν à O2 + O(1D)                                                                                                               (R1) 

O(1D) + H2O(g) à 2OH                                                                                                              (R2) 

Ozone can then be produced from the oxidation of CO: 

CO + OH à CO2 + H                                                                                                                 (R3) 

H + O2 + M à HO2 + M                                                                                                            (R4) 

HO2 + NO à OH + NO2                                                                                                            (R5) 

NO2 + hν à NO + O                                                                                                                  (R6) 

O + O2 + M à O3                                                                                                                       (R7) 



	
	

2	
	

CO + 2O2 à CO2 + O3                                                                                                              (Net) 

Importantly, NO also reacts with O3 to form NO2, which leads to net O3 depletion; thus, R5 is the 

rate-limiting step of the above O3 formation mechanism, as conversion of NO to NO2 through 

reaction with HO2 favors O3 production. Therefore, NO2 is a critical precursor species to O3, and 

is also an EPA criteria pollutant (https://www3.epa.gov/ttn/naaqs/criteria.html). Ozone can also 

be formed from the oxidation of VOCs: 

RH + OH à H2O(g) + R                                                                                                              (R8) 

R + O2 + M à RO2 + M                                                                                                             (R9) 

RO2 + NO à NO2 + RO                                                                                                          (R10) 

RO + O2 à HO2 + R’CHO                                                                                                      (R11) 

HO2 + NO à OH + NO2                                                                                                          (R12) 

2 x (NO2 + hν à NO + O)                                                                                                       (R13) 

2 x (O + O2 +M à O3 + M)                                                                                                     (R14) 

RH + 4O2 à R’CHO + H2O + 2O3                                                                                          (Net) 

Here, RH represents the VOC species; R is the product of VOC oxidation, such as the CH3 

radical.  Ozone production is limited in this case by both Reaction R12 and the sum of R10 over 

all the VOCs that participate in these reactions; NO2 remains a critical precursor species within 

this mechanism. Both mechanisms are terminated by the reaction of the HO2 radical with itself or 

by reaction of OH with NO2 (Finlayson-Pitts and Pitts, 2000; Jacob, 1999): 

HO2 + HO2 à H2O2 + O2                                                                                                                                                              (R15) 

OH + NO2 + M à HNO3 + M                                                                                                 (R16) 

 Unlike other pollutants, O3 is often a regional rather than a local air quality problem. This 

is due to the long lifetime of O3 (~10 hours within the boundary layer), which allows O3 to be 
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vented out of the planetary boundary layer (PBL) and transported within the free troposphere 

(FT), where its lifetime is on the order of weeks. The current National Ambient Air Quality 

Standard (NAAQS) for O3, set by the EPA under the authority of the Clean Air Act, is a 

maximum 8-hour average mixing ratio of 70 ppbv (as of October, 2015), attained if the 3-year 

average of the fourth-highest daily maximum 8-hour average O3 mixing ratio at each monitor 

within a region does not exceed 70 ppbv. The current short-term standard for NO2 is a one-hour 

average of 100 ppbv, and NO2 has a lifetime on the order of 1-2 hours within the PBL (although 

NO2 may be temporarily sequestered in a reservoir species such as nitric acid). Southern and 

central California, the mid-Atlantic region, eastern Texas, Chicago and industrial centers in the 

Ohio River valley, and urban centers in the Southeast violated the previous 75 ppbv O3 NAAQS. 

These are also the regions of the US where most of the population resides (Jacob, 1999). 

However, O3 air quality in the eastern US has improved since the EPA issued its NOx State 

Implementation Plan (SIP) call in 1998, requiring 21 states to reduce their summertime NOx 

emissions. By scrubbing NOx emissions from power plants, transport of this precursor gas and 

resulting O3 have decreased, and thus ozone air quality has improved in this region (Bloomer et 

al., 2009; Gégo et al., 2007; He et al., 2013). Reduction of mobile source emissions under Tier II 

requirements for vehicles has also led to NOx and O3 improvements. 

1.2: Application of Satellite Observations to Tropospheric Air Quality 

 Satellite observations have been successfully applied to the study of air quality within the 

troposphere for nearly three decades, including quantifying the atmospheric abundances and 

distributions of many trace gas species, assessing temporal trends in these species, and top-down 

estimates of trace gas emissions (Fishman et al., 2008). For example, satellite data were used to 

determine that anthropogenic sources dominated over biogenic sources for tropospheric CO 
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during the 1980s and 1990s (Reichle et al., 1986; Reichle et al., 1999). Early research was able to 

determine the tropospheric O3 column from the “residual” information after removal of the 

stratospheric component from the total observed column (Fishman et al., 1990). Retrievals able 

to take advantage of nadir measurements were later developed for O3, NO2, and other trace gases 

more suited to the troposphere, allowing direct observation of trace gas tropospheric columns 

(Bhartia et al., 1996; Liu et al., 2006; Richter and Burrows, 2002; Martin et al., 2002). Use of 

satellite data has demonstrated that most of the tropospheric NO2 column resides in the lower 

troposphere near local emissions sources (Martin et al., 2006). Such retrievals led to the creation 

of global data sets of trace gas tropospheric column abundances, which have been applied to the 

study of many problems of atmospheric pollution. The global coverage, coupled with 

increasingly high spatial resolution, and fixed temporal resolution of such observations provide 

key advantages over other data sets. (Beirle et al., 2003; Boersma et al, 2008; Chatfield and 

Esswein, 2012; Fishman et al., 2008; Martin et al., 2008; Lamsal et al., 2011). The successful 

application of satellite observations to such challenges has thus led to the desire to relate column 

abundances directly to surface concentrations to address surface air pollution (Fishman et al., 

2008). This may be especially applicable for regions that lack sufficient surface air quality 

monitors. 

 However, several factors currently complicate the applicability of the satellite-observed 

column abundances for surface air quality assessments. These include the biases inherent in 

satellite retrievals, the method for separation of the stratospheric and tropospheric burdens, and 

reduced sensitivity of satellite instruments to the lower troposphere, where the greatest 

concentrations of many pollutants are found. Furthermore, many current air quality satellite 

instruments that make observations in the UV and visible wavelengths are onboard low-Earth 
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orbit (LEO) satellites, limiting temporal coverage to one overpass per sunlit portion of the day at 

most sites. These observations thus miss the diurnal development of meteorology, emissions, and 

chemistry that are relevant to both the column abundance and surface mixing ratio. Because of 

these factors, uncertainties remain in the relationship between column abundances observed by 

satellites and surface mixing ratios, which are directly relevant to air quality management 

(Martin et al, 2008; Lee et al., 2011; Natraj et al., 2011). The upcoming National Aeronautics 

and Space Administration (NASA) satellite instrument, the Tropospheric Emissions: Monitoring 

of Pollution (TEMPO, Chance et al., 2013) which will be part of the Geostationary Coastal and 

Air Pollution Event (GEO-CAPE, Fishman et al., 2012) mission, will address some of these 

concerns. TEMPO will be on a geostationary satellite parked over the Equator for viewing North 

America, providing high spatial and temporal resolution observations of several key pollutants, 

and improved vertical resolution of O3 profile retrievals. However, because a number of retrieval 

assumptions will still be necessary, the challenge of relating these satellite observed quantities to 

surface mixing ratios will remain. 

1.2.1: Recent Works Addressing the Column-Surface Relationship   

 To address this challenge, recent work has focused on the use of models to relate columns 

and surface mixing ratios. Lamsal et al. (2008) developed a method to infer ground-level NO2 

mixing ratios from the Ozone Monitoring Instrument (OMI) tropospheric column abundance of 

NO2 with the use of local scaling factors derived from the GEOS-Chem model. These scaling 

factors were defined as the ratio of the model-predicted surface mixing ratio to the model-

predicted column at the model grid point nearest each OMI data point. After application of these 

scaling factors, Lamsal et al. (2008) obtained significant correlation between OMI-derived 

surface mixing ratio and in situ NO2 measurements over much of the U.S. and Canada for the 



	
	

6	
	

year 2005. Ordóñez et al. (2006) employed seasonal NO2 vertical profiles from the global 

MOZART-2 model to scale NO2 in situ mixing ratios to column abundances over the Lombardy 

region of Italy for the years 1996-2002, and obtained good agreement between the column data 

derived from surface measurements and the coincident Global Ozone Monitoring Experiment 

(GOME) satellite column densities. Knepp et al. (2013) focused on tropospheric NO2 column 

data from Pandora (Herman et al., 2009), a ground-based, sun-tracking spectrometer providing 

remotely sensed column densities, from Hampton, VA, from July 2010 to October 2011, and 

from Edgewood and Padonia, MD, during the DISCOVER-AQ deployment during July 2011. In 

this work, planetary boundary layer (PBL) heights derived from the EDAS-40 model and an 

assumption of a well-mixed lower tropospheric NO2 profile were used to convert the Pandora 

data into mixing ratio values; significant correlation was obtained between the converted 

Pandora columns and in situ measurements. 

Lee et al. (2011), building upon the work of Lamsal et al. (2008), developed a scaling 

factor defined as the spatial average of the ratio of in situ NO2 mixing ratio to the coincident 

OMI column over the area surrounding Windsor, Ontario, to transform OMI tropospheric 

column data into surface mixing ratios. Lee et al. (2011) obtained significant correlation between 

OMI-derived surface mixing ratio and in situ observations over seven 2-week sampling periods 

during 2007. Boersma et al. (2009) transformed surface in situ NO2 mixing ratio data for several 

Israeli cities for the year 2006 into PBL column abundances with the assumption that NO2 is well 

mixed within the PBL. Significant correlation was found between the derived PBL columns and 

OMI or SCIAMACHY column NO2 data. Lastly, Chatfield and Esswein (2012) analyzed 

ozonesonde data over the U.S., and their results demonstrated that full tropospheric O3 columns 

are rarely useful for surface air quality applications. However, they also demonstrated that lower 
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tropospheric partial O3 columns (between approximately 0-3 km altitude) exhibited considerable 

correlation with near-surface O3 (the average O3 mixing ratio in the layer extending from the 

surface to approximately 500 m altitude). 

Several of the papers described here relied upon models to relate surface and column 

data, and use of models will likely continue in future work.  Vertical mixing within air quality 

models is one of several key parameters that have large impacts on the simulated air quality, thus 

impacting the model relationship between surface and column quantities. Lin et al. (2008) 

examined the sensitivity of the summertime U.S. O3 diurnal cycle to PBL mixing, spatial 

resolution, and emissions of precursors within the Model for Ozone and Related Tracers, version 

2, (MOZART-2), and found that vertical mixing exerted the most control over the diurnal cycle. 

Further, Lin et al. found that nonlocal mixing most realistically captured the observations of the 

ozone diurnal cycle over each U.S. region studied. This last finding is consistent with several 

other papers comparing PBL schemes within the WRF meteorological model, finding that non-

local schemes better compared to observations of PBL height than local schemes (Hu et al., 

2010; Shin and Hong 2011; Xie et al., 2012). Castellanos et al. (2011) examined CO column 

content and profiles within the regional Community Multiscale Air Quality (CMAQ) model over 

the northeastern U.S. to assess the vertical mixing. Simulated lower tropospheric CO columns 

agreed well with measured columns, while the CO profile from the model often failed to capture 

fine structure apparent in measured profiles. This suggested that model PBL vertical mixing may 

be too fast, while venting into the lower free tropospheric may be too slow.  

1.3: Overview of the NASA DISCOVER-AQ Mission 

  The ultimate goal of the NASA DISCOVER-AQ (Deriving Information on Surface 

conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project is 
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to provide information relevant to improving our ability to relate satellite-observed column 

densities to surface conditions for aerosols, O3, NO2, and formaldehyde. Additional goals include 

characterizations of differences in diurnal variability for surface and column observations and the 

horizontal scales of variability affecting satellites and model calculations. DISCOVER-AQ 

combines P-3B aircraft in situ profiling of trace gas species, aerosol properties, and key 

meteorological variables, UC-12 aircraft remote sensing of aerosols and trace gas columns, 

observations of surface conditions from the existing network of surface air quality monitors, 

remote sensing of trace gas columns and aerosols from a network of ground-based Pandora 

UV/vis spectrometers and a network of AERONET sun photometers collocated with the air 

quality monitors (and additional monitors at some sites), and model simulations for each of the 

four campaigns. 

   The first campaign was conducted in the Baltimore-Washington metropolitan region of 

Maryland during July 2011, which encountered deep, convective boundary layers, synoptic-scale 

stagnation under the influence of the Bermuda High, less wind shear than the other three 

campaigns, warm temperatures, the influence of the Chesapeake Bay breeze at the Edgewood and 

Essex spiral sties, and transport of polluted air from the Ohio River Valley. The second 

deployment was conducted in the San Joaquin Valley of California during January-February 

2013, which encountered cold temperatures, air recirculation and valley drainage winds within the 

valley due to the influence of the nearby mountains, shallow boundary layers, and high 

concentrations of NOx and aerosol species. The third campaign took place in the Houston, TX, 

metropolitan area during September 2013, which encountered deep, convective boundary layers, 

frequent cold frontal passages, wind shear, the Gulf breeze at the Galveston spiral site and the 

Galveston Bay breeze at the Smith Point spiral site, and a complex chemical environment due to 
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NOx emissions from automobiles and ships as well as VOC emissions from nearby petrochemical 

refineries. The fourth and final deployment was conducted in the Front Range region of Colorado 

during July-August 2014, which encountered upslope and downslope flow on the Front Range, 

the development of Denver Cyclone over the Denver-Boulder region (a solenoidal circulation), 

convective boundary layers, frequent afternoon pop-up thunderstorms, and a complex chemical 

environment with emissions of NOx as well as VOCs from fracking wells near some sites. Thus, 

the project covered a large range of meteorological and pollution conditions throughout these four 

campaigns, and allowed the collection of multiple, high quality column abundance, in situ profile, 

and surface mixing ratio data sets.   

1.4: Thesis Objectives and Outline  

  The papers discussed above demonstrate the potential to relate surface mixing ratio and 

column abundance data for O3 and NO2. However, most of these studies have focused on the 

correlation between column and surface data that have been averaged over time and space. The 

focus has also been placed primarily on methods to transform one data type into the other, and not 

on processes controlling the column-surface relationship.  

 The work presented in this dissertation has been conducted in support of the goals of the 

DISCOVER-AQ project, and seeks to understand the degree of correlation between column and 

surface data, as well as the processes that influence the column-surface relationship, during the 

DISCOVER-AQ deployments. Additionally, this work will focus on the EPA criteria pollutants 

O3 and NO2, because of the importance of NO2 as an O3 precursor and the adverse impacts of O3 

on human health, crop yields, and the atmospheric radiation budget, as well as the established 

history of successful measurements by satellites. We aim to answer several important questions, 

including 
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1. Can any conclusions be drawn about the types of conditions under which surface air 

quality would be best (or most poorly) estimated from column observations from a 

geostationary satellite? 

2. What is the diurnal variation of column abundances seen from integration of in-situ 

profile data, from ground-based spectrometers, from airborne remote sensing instruments, 

and from model simulations, and how do these column diurnal cycles compare to those of 

surface mixing ratio data? 

3. Can a regional air quality model, such as CMAQ or WRF-Chem, potentially  provide the 

shape factor profiles used in remote sensing retrievals, rather than a global chemical 

transport model? 

4. Can the WRF-Chem model system be improved to bring the column-surface relationship 

within the model closer to that encountered in the observations? 

This dissertation is divided into six chapters. The first (and present) chapter presents an 

introduction to tropospheric O3 chemistry, the use of satellite data for air quality, and the current 

ability to relate satellite-observed columns to surface air quality conditions. Chapter 2 presents 

results of linear regression analyses of the P-3B lower tropospheric and Pandora full tropospheric 

O3 or NO2 column data versus surface mixing ratio data during the Maryland deployment, the 

first deployment of the DISCOVER-AQ mission.  This work was the catalyst for all subsequent 

chapters, and represents the initial investigation into the degree of correlation between column 

and surface data and processes influencing these correlations. These analyses suggest that O3 

partial column observations from future satellite instruments with sufficient sensitivity to the 

lower troposphere can be meaningful for surface air quality analysis, while planetary boundary 

layer height data add meaningful information to the NO2 regressions. Furthermore, the degree of 
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correlation between the corresponding CMAQ lower tropospheric O3 or NO2 columns and 

surface mixing ratios was overestimated within the model, suggesting that vertical mixing is too 

strong within the WRF/CMAQ model system. The results of this study led to a paper that was 

published in Atmospheric Environment (Flynn et al., 2014).  

 Chapter 3 of this dissertation follows directly from the work of Chapter 2, and presents 

the results of an agglomerative hierarchical clustering analysis performed on the P-3B in situ 

lower tropospheric O3 or NO2 profiles for each of the four DISCOVER-AQ deployments; the 

results of correlation analyses between the column and surface data associated with each of the 

profile clusters obtained for all four deployments are also presented. This work characterizes the 

classes of profile shapes for each trace gas and each campaign, and explores the meteorological 

conditions that influenced the profile shape clusters and thus the column-surface correlations. 

These results suggest that satellites may be most relevant for surface air quality under the 

conditions associated with the Maryland deployment, which included deep, convective boundary 

layers and few interferences to the column-surface connection from complex meteorology, 

chemical environments, or orography. Further, vertical mixing and atmospheric stability exerted 

an important influence on the O3 profile cluster shapes and correlations for each campaign, while 

O3 photochemistry exerted the primary control on NO2 profile variability. The CMAQ model 

captured the shape factors for O3, and moderately well captured the NO2 shape factors, for the 

conditions associated with the Maryland campaign, suggesting that a regional air quality may 

adequately specify a priori profile shapes for remote sensing retrievals.  CMAQ shape factor 

profiles were not as representative of atmospheric observations for the other regions.  Coarser 

vertical resolution in the NASA Global Modeling Initiative (GMI) global chemical transport 

model (CTM) model affected the ability of that model to reproduce the observations. These 
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results demonstrate the importance of resolution for accurate representation of pollutant profiles 

as a priori information within satellite retrievals, and for the ability to relate column abundances 

to surface concentrations. The results of this study led to a paper now under review in 

Atmospheric Environment (Flynn et al., 2016).  

  Chapter 4 builds upon the work of Chapter 2 and Chapter 3 through investigation of the 

campaign-average diurnal variation of O3 and NO2 column amounts within the observational 

lower tropospheric and full tropospheric datasets for each spiral site for each campaign. The 

average column diurnal cycles are compared to the campaign-average diurnal cycles of surface O3 

and NO2 mixing ratios to determine if the column and surface cycles exhibit similar behavior, as 

well as to provide an indication of when satellite column observations may be most representative 

of surface concentrations for these two trace gases. These results indicate that neither full 

tropospheric nor lower tropospheric O3 column abundances exhibited a clear diurnal cycle for any 

spiral site or campaign, indicating that O3 column variability is largely independent of local 

synoptic meteorology and pollution conditions and is not connected to surface variability. 

Boundary layer dynamics play an important role in the regulation of the variability of these 

columns. However, the NO2 full tropospheric and lower tropospheric column abundances, 

however, did display diurnal variability at most spiral sites during all campaigns, though the 

column diurnal variability was smaller in amplitude and offset in time relative to the surface 

diurnal variation. Column NO2 variability is controlled by surface production of NO2 and 

boundary layer mixing of NO2 into the lower troposphere. Neither set of results for O3 and NO2 

suggest a time of day when satellite column observations may be most representative of surface 

concentrations. Lastly, the observed column variability was compared to the column variability 

simulated by CMAQ and GMI for both gases. Both models replicated the shapes of the observed 
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column diurnal cycles for both gases and all campaigns. CMAQ was most able to capture the 

observed O3 columns for the conditions associated with the Maryland and Texas campaigns, 

which included deep, convective boundary layers and adequate temperatures and sunlight for O3 

formation, while CMAQ best captured the observed NO2 column magnitudes for all campaigns 

except California, which experienced greater NO2 pollution and reduced O3 photochemical 

production and NO2 photolytic loss relative to the other three campaigns. 

  The ability of the coupled meteorology-chemistry WRF-Chem to effectively simulate the 

interplay between boundary layer mixing and O3 and NO2 vertical profiles, and the associated 

impacts on the column-surface correlations for these trace gases, is investigated in Chapter 5, for 

the surface O3 pollution episode that occurred on July 26-29, 2011. Further, the relevance of the 

WRF-Chem model profiles for use in remote sensing retrievals is evaluated. Five PBL schemes 

are tested, including two nonlocal schemes (the ACM2 and YSU schemes) and three local 

schemes (the BouLac, MYJ, and QNSE schemes). Overall, no one PBL scheme was able to 

accurately simulate all observed meteorological or chemical species, as expected. However, the 

ACM2 scheme best captured the observed PBL heights and observed NO2 column-surface 

correlation at each spiral site. All schemes compared well to the observed hourly O3 median shape 

factors, and the BouLac scheme most accurately simulated the observed O3 column-surface 

correlations. Additionally, WRF-Chem was able to replicate most of observed local minima and 

maxima in the O3 shape factors at the correct altitudes, presenting a distinct advantage of a 

regional online meteorology-chemistry model over offline air quality models such as CMAQ. 

These results suggest that a regional, coupled meteorology-chemistry model may reasonably 

specify a priori profile shapes for remote sensing retrievals, particularly as PBL schemes continue 

to be improved. The results of this study led to a paper now in preparation, to be submitted this 
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summer to Atmospheric Chemistry and Physics (Flynn et al., in prep.). Finally, the major 

conclusions of this dissertation and directions for future research are presented in Chapter 6. 
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Chapter 2: Relationship Between Column-Density and Surface Mixing Ratio: Statistical 
Analysis of O3 and NO2 Data from the July 2011 Maryland DISCOVER-AQ Mission 
 
2.1: Introduction 

Satellite observations have made important contributions to the understanding of 

atmospheric chemistry and pollution over the past three decades, including quantifying the 

atmospheric abundances and distributions of many trace gas species, assessing temporal trends in 

these species, and top-down estimates of trace gas emissions (Fishman et al., 2008). Global 

coverage, coupled with increasingly high spatial resolution, and fixed temporal resolution of 

such observations provide key advantages over other data sets. Retrievals of tropospheric column 

abundances have also improved (Beirle et al., 2003; Boersma et al, 2008; Bucsela et al., 2013; 

Chatfield and Esswein, 2012; Fishman et al., 2008; Martin, 2008; Lamsal et al., 2011). Trace gas 

observations from satellites thus have great potential for diagnosis of near-surface conditions. 

This can be especially useful for monitoring the Environmental Protection Agency (EPA) criteria 

pollutants ozone (O3) and nitrogen dioxide (NO2), (http://www.epa.gov/air/criteria.html),	

pollutants known to have significant adverse impacts on human health, crop yields, and the 

atmospheric radiation budget. The greatest benefit may come in regions that lack sufficient 

surface air quality monitors. 

However, several factors currently complicate the applicability of satellite-observed 

column abundances for surface air quality assessment. These include biases in satellite retrievals 

and reduced sensitivity of satellite instruments to the lower troposphere (Martin, 2008; Lee at al., 

2011). Just as importantly, uncertainties remain in the relationship between column abundances 

observed by satellites and surface mixing ratios, which are directly relevant to air quality 

management. Recent work demonstrates progress in understanding this relationship.  Chatfield 

and Esswein (2012) analyzed ozonesonde data over the U. S. and found substantial correlation 
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between partial-column O3 (0-3km) and near-surface O3 (in the lowest 500m). Consistent with 

Chatfield and Esswein (2012), Martins et al. (2015) found significant, positive correlations 

between upper troposphere (7-10 km) O3 partial column and near-surface (1-3 km) O3 partial 

columns from ozonesonde data measured at the Beltsville and Edgewood sites during the 

Maryland campaign. Martins et al. built a linear regression model to predict near-surface O3 from 

upper troposphere abundances, and found agreement to within 11% between the ozonesonde 

observations and near-surface O3 values from the regression model. This is encouraging that 

satellite instruments with sensitivity to the mid-upper troposphere may be related to O3 

abundances near the surface; however, difficulties remain in the ability to relate upper air O3 

partial columns derived from the ozonesondes to surface O3 (0-100 m; Martins et al., 2015). 

Lamsal et al. (2008) developed a method to infer ground-level NO2 mixing ratios from the Ozone 

Monitoring Instrument (OMI) tropospheric column abundances with the use of local scaling 

factors derived from the GEOS-Chem model.  Significant correlation between OMI-derived and 

in situ surface NO2 was observed (Lamsal et al., 2008, 2010). Other works have demonstrated 

significant correlation between satellite-observed NO2 columns and surface NO2 data scaled to 

obtain column amounts with the use of assumed NO2 profiles (Ordóñez et al., 2006; Boersma et 

al., 2009). Knepp et al. (2013) used model-derived planetary boundary layer (PBL) heights to 

convert Pandora NO2 tropospheric columns into average surface mixing ratios, also 

demonstrating high correlation between converted columns and surface data. Understanding the 

uncertainties in the relationship between column density and surface mixing ratio becomes more 

urgent with the up-coming NASA Tropospheric Emissions: Monitoring of Pollution satellite 

mission (TEMPO, Chance et al., 2013) which is likely to be one component of the Geostationary 

Coastal and Air Pollution Event (GEO-CAPE, Fishman et al., 2012) mission. TEMPO/GEO-
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CAPE will be centered over ~100˚ W, allowing observations over North America from 

geostationary orbit with product horizontal resolution of 8 km × 4.5 km at the center of domain, 

much higher than current Low-Earth-Orbit (LEO) measurements. GEO-CAPE may combine 

multiple spectral regions to improve the vertical resolution of ozone profile retrievals, especially 

in the lowermost troposphere (Natraj et al., 2011). However, because a number of retrieval 

assumptions will still be necessary, the challenge of relating the satellite-observed quantities to 

surface mixing ratios will remain.  

 The objectives of and instrumentation platforms that comprised the DISCOVER-AQ 

project has been described previously in Chapter 1. The July 2011 campaign was conducted in 

the Baltimore-Washington metropolitan region and involved 6 surface air quality monitoring 

sites. These included Aldino, Beltsville, Edgewood, Essex, Fair Hill, and Padonia, MD, with 

locations mapped in Fig 2.1. The P-3B accomplished over 250 profiles on 14 flight days over six 

surface air quality monitoring sites and the Chesapeake Bay during the Maryland deployment. 

These flight days covered a range of conditions, including especially clean days on July 14th and 

16th and pollution episodes during July 1-5 and July 18-23, as well as flights on weekdays and 

weekends. A complete description of DISCOVER-AQ measurements is publicly available at 

http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html 

 In support of DISCOVER-AQ, results are presented of linear regression analyses 

between O3 and NO2 surface mixing ratio and column measurements, including column 

abundances integrated over in situ profile data from the P-3B aircraft, measured by the Pandora 

UV/Vis spectrometer, and observed by the Aura/OMI instrument. Through these analyses, the 

strength of the column-surface relationship and the ability to predict simultaneous surface mixing 

ratio from column abundance during the July 2011 deployment will be assessed. The column-
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surface relationship in the CMAQ model is also evaluated and compared with the results 

obtained from the observations. 

 

Fig. 2.1: Example P-3B flight track for the July 26th flight, displaying the locations of the 6 
surface air quality monitoring sites.   
 
2.2: Description of Observational Column Datasets 

2.2.1: Aircraft Lower Tropospheric Columns 

2.2.1.1: P-3B Column_Air and Column_Ground Lower Tropospheric Columns 

 Two different column amounts were available for P-3B in situ spirals, which differed in 

the method used to fill the gap between the lowest P-3B measurement altitude and the ground: 

column_air and column_ground.  To compute column_air, the O3 or NO2 mixing ratio value at 

the lowest aircraft measurement level was held constant to the surface, while column_ground 

held the surface mixing ratio value constant up to the lowest aircraft measurement, when a 
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surface value was available. The profiles were then averaged into 100 m bins from the surface to 

the top of the P-3B spiral (typically ~3.2 km AMSL), giving an average mixing ratio for each 

vertical layer; average air density for each layer was also computed. These mixing ratios were 

then converted from mixing ratio to concentrations (molecules/cm3), allowing computation of the 

partial column amounts for each 100 m bin. Finally, these partial columns were summed over the 

depth of the P-3B spiral to obtain the P-3B lower tropospheric in situ column_air and 

column_ground. The column amounts were then computed by integration of these lower 

tropospheric in situ profiles.  The well mixed assumption inherent in the column_ground 

computation should be noted. These columns represent the aircraft lower tropospheric column 

amounts for each campaign. Furthermore, column_air and column_ground represent the lower 

and upper limits, respectively, on the true lower tropospheric column amount, as column_air 

does not assume the surface concentration is mixed into the PBL while column_ground assumes 

strong vertical mixing that efficiently communicated the surface value to the lower tropospheric 

column. Uncertainty in the column amounts is 5% for the O3 column_air and column_ground, 

and 20% for NO2 column_air and column_ground (Gao Chen and Andrew Weinheimer, personal 

communication). 

2.2.1.2: UMD Cessna Column_UMD Lower Tropospheric Columns 
 

 The Aldino P-3B profile shapes were compared to in situ profile shapes measured by the 

UMD Cessna aircraft for O3 and NO2 during the campaign. The Cessna always reached lower 

altitudes than the P-3B, so this comparison was used to identify which P-3B column better 

approximated the true column at Aldino. The Cessna profiles for O3 (Fig. 2.2) typically remained 

well mixed to the lowest P-3B altitude (~300 m above ground level, or AGL). Differences in O3 

measured by the Cessna and P-3B may be due to the different interferences experienced by the 
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respective instruments after a spike in relative humidity (Arkinson et al., in preparation). The 

Cessna NO2 profiles most often displayed a “boot shaped” appearance: very low mixing ratio 

magnitudes above the PBL, with magnitude increasing with decreasing altitude in the upper 

PBL, finally becoming well mixed within the lowest portion of the profile in the lower PBL; an 

increase in NO2 mixing ratio was often encountered in the Cessna profiles near the lowest P-3B 

altitude (Fig. 2.2). This suggests that generally column_air was closer to the true O3 and NO2 

columns; however, due to the “boot” in the NO2 profile, column_air likely underestimates the 

true NO2 partial column. However, the Cessna profiles also demonstrated that NO2 mixing ratio 

could increase dramatically in magnitude below the lowest P-3B measurement altitude towards 

the surface mixing ratio value (Fig. 2.3); this is consistent with the 95th percentile NO2 mixing 

ratio profile reported in Brent et al. (2015; see their Fig. 5). Additionally, these Cessna profiles 

were used to construct estimated profiles for the portion of the atmosphere below the lowest 

altitude of the Aldino P-3B spirals, and additional Aldino column amounts (column_UMD; 

uncertainty of 5%) were computed from these estimated profiles.  
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Figure 2.2: Example UMD Cessna a l t i tude  prof i les  for  Aldino. O3 profile plotted in 
the left profile as solid blue line; NO2 profile plotted in the right profile. NO2 profile 
displays the “boot shaped” appearance. Corresponding P-3B profiles also plotted for 
comparison (orange). Green circles represent surface O3 and NOy mixing ratio data, 
measured at the nearby Aldino ground monitoring site, averaged over the time of UMD 
profile and plotted at the elevation AMSL of the monitoring site.

 

Figure 2.3: Example P-3B and UMD Cessna NO2 altitude profiles for Aldino, displaying 
the increase in NO2 mixing ratio below the lowest P-3B measurement altitude.  

2.2.2: Pandora Full Tropospheric Columns 

 The ground-based Pandora UV/Vis spectrometers (Herman et al., 2009) were located at 

each spiral site for the Maryland campaign. The Pandora instruments observed O3 and NO2 total 

column amounts during daylight hours for all days during the campaign.  Tropospheric columns 

were estimated by subtracting the stratospheric component derived by the OMI algorithms from 
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the Pandora total observed columns. Reed et al. (2015) found good agreement between OMI and 

Pandora for total column O3 (residuals within ± 4.5%) and for total column NO2 (residuals 

within ± 25%) during this campaign. Errors in Pandora tropospheric column amount were 

approximately 5% for O3 and 7% for NO2, and are due primarily to uncertainties in the OMI 

stratospheric column amount (approximately 2% for O3 and 5% for NO2), with some 

contribution from uncertainties in the total Pandora column. It should also be noted that the 

Pandora instrument continued to observe during cloudy conditions (though this impacted the 

retrieval quality), while P-3B flight days were chosen to minimize cloud cover and the aircraft 

actively avoided clouds during flight.  It is also possible that the Pandora instrument observed 

different air masses from the P-3B spiral, if it did not point in the same direction as the aircraft 

spiral flight pattern.  

2.2.3: OMI Full Tropospheric Columns 

 Tropospheric columns from the Ozone Monitoring Instrument (OMI) onboard the Aura 

satellite were retrieved with the Version 2.1 Goddard tropospheric NO2 retrieval algorithm 

(Buscela et al., 2013; uncertainty of approximately 30%) and the ozone profile algorithm by Liu 

et al. (2011) with modifications as described in Kim et al. (2013) (uncertainty of approximately 

5%). These data were screened for cloud fraction (effective cloud fraction less than 30%), the 

instrument row anomaly, and distance from the surface site (pixel center less than 100 km 

distance).  

2.3: Description of Surface Volume Mixing Ratio Datasets 

 Surface volume mixing ratio data were provided by the Maryland Department of the 

Environment (MDE) for O3 at all spiral sites from a molybdenum-converter chemiluminescence 

monitor, for NO2 at Essex from a chemiluminescence monitor, and for NOy from such monitors 
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at the Aldino and Beltsville sites. The EPA provided NO2 measurements from 

chemiluminescence instruments with photolytic converters at the Edgewood and Padonia spiral 

sites. The NASA Chemical, Optical, and Microphysical Measurements of In-situ Troposphere 

(COMMIT; http://smartlabs.gsfc.nasa.gov) trailer provided O3 and photolytic converter NO2 

measurements for Fair Hill. Uncertainties for the surface datasets were 5% for O3, 10% for NO2 

(data archive) for the surface NO2 data provided by MDE, and 10% for the surface NO2 data 

provided by EPA. 

2.4: Description of P-3B PBLH Dataset 

 Donald Lenschow (NCAR, retired) provided boundary layer height analyses based on the 

P-3B potential temperature profiles during the Maryland campaign. The PBL top was located 

where the potential temperature lapse rate exceeded approximately 3 K/km, with a relatively 

constant potential temperature lapse rate from the surface to the PBL top. The potential 

temperature profiles were also analyzed manually to ensure the algorithm accurately diagnosed 

the PBLH. Water vapor and ozone profiles were examined in addition to the potential 

temperature profiles.  

2.5: Description of CMAQ Simulations and Column Amounts 

2.5.1: Loughner et al. (2014) WRF/CMAQ Simulation 

  A simulation of the Maryland campaign was provided by Christopher P. Loughner of 

NASA GSFC (Loughner et al., 2014). The CMAQ model version 5.0 was used to simulate air 

quality for this deployment, and was driven offline by output from the Weather Research and 

Forecasting (WRF) meteorological model, specifically the Advanced Research WRF core (WRF-

ARW; Skamarock et al., 2008). The North American Regional Reanalysis (NARR) was used for 

the initial and boundary conditions within WRF, and the WRF/CMAQ model system was run 
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with 34 vertical layers from the surface to 100 mb, with 16 layers within the lowest 2 km above 

ground level (AGL) to capture boundary layer processes. The WRF simulation also employed the 

Asymmetric Convective Model 2 (ACM2; J. E. Pleim, 2007a) scheme for vertical diffusion and 

convective mixing, the Pleim-Xiu surface layer scheme (J. Pleim, 2006), and the Pleim-Xiu land 

surface model (Xiu and Pleim, 2001). 

  Chemical initial and boundary conditions were provided by a simulation of the Model for 

Ozone and Related Chemical Tracers, version 4 (MOZART-4; Emmons et al., 2010). The CMAQ 

model used the Carbon Bond-05 (CB05; Yarwood et al., 2005) gas-phase chemical mechanism, 

the fifth generation aerosol module (aero5), and the ACM2 for vertical diffusion and convective 

mixing. The projected 2012 anthropogenic emissions based on the 2005 National Emissions 

Inventory (NEI), because 2011 emissions were not yet available at that time for the Maryland 

simulation. Anthropogenic mobile emissions were computed with the Motor Vehicle Emissions 

Simulator (MOVES, specifically MOVES2010; Kota et al., 2012), while biogenic emissions were 

computed with the Biogenic Emissions Inventory System within CMAQ, version 3.6 (BEIS; 

Pouliot and Pierce, 2009). CMAQ output was provided at 12 km horizontal resolution and in 

hourly averages. Lightning NOx emissions were also calculated in-line within the model.   

2.5.2: NOAA ARL CMAQ Forecasts 

  Forecasts of O3 and NO2 were provided by the National Oceanic and Atmospheric 

Administration (NOAA) Air Resources Laboratory (ARL) during the Maryland deployment, and 

this output was also analyzed. Like the Loughner et al. simulations, these forecasts used the CB05 

mechanism. However, these forecasts employed an experimental version of CMAQ version 4.6, 

and were driven offline by the WRF-Nonhydrostatic Mesoscale Model (NMM) core, used the 

fourth generation aerosol module (aero4), the Mellor-Yamada-Janjic (MYJ; Janjić, 1994) scheme 
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for boundary layer mixing, the Noah land surface model, and the 2005 NEI for anthropogenic 

emissions. The available horizontal resolution was 12 km, and the available vertical resolution 

was 22 layers with 13 layers within the lowest 2 km.  

2.5.3: CMAQ Partial Tropospheric Column Amounts 

  To be able to compare the CMAQ column-surface correlations to those from the P-3B, 

partial tropospheric columns were computed from the Loughner et al. or NOAA CMAQ output 

for O3 and NO2 over the depths of the P-3B spirals.  CMAQ profiles coincident to each P-3B 

profile were sampled, and the CMAQ levels below or above the lowest or highest P-3B 

measurement altitudes were excluded from the column computation. The O3 or NO2 simulated 

partial column amounts were then computed from integration of the simulated lower tropospheric 

profile.  

2.6: Linear Least Squares Regression Analyses 

2.6.1: Simple Linear Least Squares Regression Analysis for the P-3B, Pandora, and OMI 

 A simple linear least squares regression analysis was performed between the P-3B 

column_air, P-3B column_ground, Pandora, and OMI O3 and NO2 columns and surface mixing 

ratio data for each surface-monitoring site. An additional analysis between the Aldino 

column_UMD and the surface data was also conducted for comparison to column_air and 

column_ground at this site. Surface data were averaged over the time of the aircraft spiral for use 

with the P-3B analyses. Hourly averages of the surface data for the hours between 7 AM-7 PM 

EDT were computed for use with the Pandora columns, while 15 minute averages centered on 

2:45 PM EDT were computed for use with the OMI columns. Column abundance was used to 

predict the simultaneous surface volume mixing ratio (VMR), yielding a regression model of the 

form 
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 surface VMR = β*(column) + intercept                                                                             Eqn (2.1) 

 where β is the regression coefficient. The NO2 column and surface data followed an 

approximately lognormal distribution, and were therefore log-transformed (i.e., the natural 

logarithms of the NO2 surface or column data were used instead of surface or column directly, to 

account for the non-Gaussian distribution of these data) before performing statistical analyses. 

Histograms of the Pandora column NO2 observations and NO2 surface mixing ratios at Essex are 

displayed in Fig. 2.4 to demonstrate how log-transformation produced data distributions that 

followed a Gaussian distribution more closely than the untransformed data. The Pandora O3 

column data were also approximately lognormal, and were also log-transformed. The degree of 

association between the column and surface data and the errors of the regression model relative 

to the observed data were assessed.  
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Figure 2.4:  Example histograms for the surface NO2 mixing ratio data and Pandora NO2 
tropospheric column data. Untransformed data distributions plotted in top row, and log-
transformed data in bottom row. Surface data in left column and column data in right 
column. 
 
2.6.2: Multivariate Linear Least Squares Regression Analysis for the P-3B and Pandora 
 A multivariate linear least squares regression analysis was performed for P-3B 

column_air, column_ground, and Pandora O3 and NO2. Column abundance and inverse PBL 

height (1/PBLH) were used as predictor variables. This yielded an equation of the form  

surface VMR = β1*(column) + β2*(PBL-1) + intercept                                                     Eqn. (2.2) 

 where β1 is the regression coefficient associated with the column, and β2 is the regression 

coefficient associated with the inverse PBL height. To prevent limitation of the available 

Pandora columns, the Pandora analyses used PBL height estimates derived from the 
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WRF/CMAQ model system. In the ACM2 PBL scheme, the PBL top is diagnosed as the height 

where the bulk Richardson number computed for the entrainment layer exceeds a critical value, 

typically set at 0.25. 

2.6.3: Normalization by PBL Height for the P-3B and Pandora   

 The degree of correlation between NO2 column and surface mixing ratio was re-evaluated 

after normalization of the P-3B or Pandora columns by the PBL height. Column abundances 

(molecules/cm2) were divided by, or normalized by, the concurrent PBL height (cm), yielding an 

estimate of mean number concentration in the PBL. The PBL height estimates derived from the 

P-3B potential temperature profile were used with the P-3B analyses, while the Pandora analyses 

again used PBL height estimates derived from the WRF/CMAQ model system. This approach is 

similar to that of Knepp et al. (2013), and allowed a comparison between the results presented 

here and those obtained by Knepp et al. (2013).  

2.6.4: Comparison of CMAQ Column versus Surface Relationships to Observations  

 A similar simple linear least squares regression analysis was applied to the Loughner et 

al. (2013) and NOAA CMAQ O3 and NO2 output to assess the correlation between column and 

surface within these model simulations. CMAQ model output was given in hourly increments. 

The NO2 output was log-transformed before analysis. Additionally, correlation analyses for O3 

and NO2 were also performed for several different conditions to further elucidate differences 

between the observations and the model. First, P-3B, Pandora, and CMAQ O3 and NO2 column 

and surface data were separated by the time of day at which they occurred, yielding a “Morning” 

group for data occurring before 12 PM EDT, and an “Afternoon” group for data occurring at or 

after 12 PM EDT. Second, column and surface data were separated by PBL height, yielding a 

“High PBL” group for data occurring when the PBL height was at or above 1000 m, and a “Low 
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PBL” group for data occurring when the PBL was below 1000 m. Estimates of PBLH based on 

the observed potential temperature profile were again used with the P-3B analysis, while 

estimates derived from the WRF/CMAQ system were used with the Pandora and CMAQ 

analyses. The correlation within the CMAQ model for both trace gases was compared to the 

correlation within the observations for each of these four data groups. Lastly, the CMAQ NO2 

columns were normalized by the concurrent PBL height estimate, and the results for the 

correlation were re-evaluated. 

2.6.5: Significance Tests for Correlation Analyses  

2.6.5.1: F-test to Test Significance of the Correlation Analyses 

 An F-test of overall significance was used to test the significance of the regression 

analyses presented in this chapter and in all subsequent correlation analyses. The null hypothesis 

tested states that all regression coefficients β (such as column abundance or inverse PBLH) are 

equal to zero: 

β1 = β1 = … = 0                                                                                                                          (2.1) 

The alternative hypothesis states that at least one regression coefficient is not equal to zero: 

Βj  ≠ 0                                                                                                                                         (2.2) 

The F-statistic is computed by the Interactive Data Language (IDL) algorithm REGRESS.pro, by 

setting the FTEST flag when calling the program. The F-statistic represents the ratio of explained 

variance to the unexplained variance. The degrees of freedom (DF) are computed as follows: 

DF =  (number of data pairs in regression) – (number of predictors) -1                                    (2.3) 
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A significance level α of 0.05 (hence confidence level of 95%) was chosen for all significance 

tests. The sample F-statistic is then compared to the F-distribution, as computed by the IDL with 

the algorithm F_PDF.pro, for the appropriate degrees of freedom and significance level. This 

algorithm returns the p-value associated with the sample F-statistic, and is compared to the 

significance level to determine the significance of the regression: if the p-value is greater than 

0.05, the regression is not significant, and if less than 0.05, the regression is significant. Because 

only one regression coefficient is used in the majority of correlation analyses (column amount 

used to predict surface value) in this chapter and all subsequent chapters, an insignificant 

regression indicates an insignificant correlation. In the case of the multivariate regression 

analyses with two predictors, this test determines only if at least one of the predictors is 

statistically different from zero, but does not indicate which predictors are different from zero. 

2.6.5.2: Z-test to Compare Two Correlation Coefficients 

 To compare two correlation coefficients to determine if they are statistically significantly 

different from each other, a Fisher R-to-Z transformation is employed. Each correlation 

coefficient Ri is first transformed to a Z-value through 

𝑍' = 	
*
%
	ln	((*./0)

(*2/0)
)                                                                                                                       (2.4) 

The sample Z-statistic is then computed from the Z-values for each correlation coefficient and 

the number of data points used in each correlation Ni: 

𝑍 = 	 (𝑍* − 𝑍%)
*

4526
+ *

482*

                                                                                                   (2.5) 
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The Z-statistic assumes a Gaussian distribution. The p-value associated with the sample Z-

statistic is computed from the Gaussian distribution with the IDL algorithm GAUSS_PDF.pro. A 

significance level of 0.05 is again employed: if the p-value is less than or equal to 0.05, the two 

correlations are significantly different from each other, while if it is larger than 0.05, the two 

correlations are statistically the same. 

2.6.5.3: Durbin-Watson Test Statistic to Test for Autocorrelation of Residuals 

 The Durbin-Watson test statistic is used to test for the presence of autocorrelation of the 

residuals, or prediction errors, of the regression model. For a perfect regression model, the 

residuals would approximate the random errors associated with the data used to build the 

regression model. Thus, correlation among the residuals would violate one of the assumptions 

inherent in linear regression and indicate that the regression model did not fit the data well. The 

test statistic d is computed as 

𝑑 = 	 (𝑒; − 𝑒;2*)%;
%

(𝑒;)%;
*

                                                                                                  (2.6) 

where e is the regression residual and n is the number of observations. The test statistic is 

compared to the lower and upper critical values at the chosen significance level α (𝑑<,>	and 𝑑?,>, 

respectively): 

d < 𝑑<,>: statistical evidence that the residuals are positively autocorrelated. 

d > 𝑑?,>: no statistical evidence that the residuals are positively autocorrelated. 

𝑑<,>< d < 𝑑?,>: the test is inconclusive.  

To test for negative autocorrelation, the quantity (4-d) is used instead of d, and compared to the 

lower and upper critical values, with the same interpretations. 

2.7: Results of Simple Linear Regression Analysis for P-3B, Pandora, and OMI  
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2.7.1: Evaluation of the Correlation Between Column and Surface for the Full Data Set 

The degree of correlation between surface mixing ratio and column abundance found 

from the simple linear regression analyses for the P-3B, Pandora, and OMI data sets is 

summarized in Table 2.1. To assign a degree of correlation to an analysis, the correlations for at 

least four of the six surface sites must have fallen within one of the categories of correlation 

degree. Values of R2 are given in Table 2.2 (O3 analyses) and Table 2.3 (NO2 analyses), and 

representative scatter plots of the correlation are displayed in Figure 2.5 (O3) and Figure 2.6 

(NO2). Most P-3B O3 (Figure A1 in Appendix A of the Dissertation Supplementary Material), P-

3B NO2 (Figure A4), Pandora O3 (Figure A2), and Pandora NO2 (Figure A5) regressions were 

statistically significant at a confidence level of 95% (Tables 2.2-2.3). The simple linear 

regression analyses performed with the Pandora total column O3 and NO2 data were not 

significantly different from those for the tropospheric column data. The poor correlation between 

OMI column O3 or NO2 and surface data may be partly due to the large OMI footprint size; the 

pixel size at nadir is 13 x 24 km2, and increases towards the ends of the OMI swath. The OMI O3 

retrieval also loses sensitivity to the lower troposphere (Liu et al., 2010). The Pandora 

correlations for both trace gases were also poorer than those for the P-3B likely because of the 

uncertainties in the Pandora column estimates due to subtraction of the OMI stratospheric 

column, as well as the possibility that the Pandora instruments sometimes observed different air 

masses from the P-3B spiral: the Pandora is a sun-synchronous instrument, and so may not have 

always pointed in the same direction as the P-3B spiral. P-3B NO2 column_ground demonstrated 

larger correlation than did column_air, reflecting the influence of the surface data in the column 

computation; P-3B O3 column_ground and column_air demonstrated similar values. This 

indicates that O3 is vertically and horizontally better mixed than NO2 at each site. The Aldino 
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column_UMD correlations were not significantly different from those for column_air, but were 

significantly smaller than those for column_ground for both gases; this suggests that the 

column_air analyses were more representative of the true correlation between lower tropospheric 

column and the surface (Tables 2.2 and 2.3). Figure 2.7 displays scatter plots of NO2 mixing 

ratio measured at the lowest P-3B aircraft measurement altitude and surface NO2 mixing ratio 

measurements coincident to each spiral at each spiral site (when both measurements were 

available). These plots demonstrate that the surface values were typically larger than the 

coincident P-3B lowest altitude values, and that they typically did not correlate well. As the 

values of 𝜒"#$%  are typically close to or less than a value of 1.0 for Edgewood, Essex, Fair Hill, 

and Padonia, with the data points lying in a cluster with no correlation and larger error bars for 

either the surface or aircraft data (overestimated uncertainty), this suggests that the aircraft and 

surface measurements were scattered about the same mean; thus, the bias between aircraft and 

surface NO2 values may be due to the NO2 mixing ratio vertical gradient in the lowest 300 m 

below the P-3B aircraft (Section 2.2.1.2 briefly discusses NO2 profile below the P-3B). This 

likely contributed to the poor correlation between column and surface data. In contrast, Aldino 

and Beltsville displayed a low degree of correlation between surface and aircraft data, but with 

values of 𝜒"#$%  less than 1.0; in this case, the surface and aircraft data may be scattered about 

different means and thus representative of different chemical conditions, as the surface data at 

these two sites were actually NO2 with interferences from NOy species, unlike the other four 

sites. This likely impacted the bias between aircraft and surface at these two sites and the 

column-surface correlations. Extended analysis of the simple linear regressions is also presented 

in Appendix A. 
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Figure 2.5: Example scatter plots of O3 column vs. surface O3 mixing ratio for P-3B, (top) 
Pandora (middle), and CMAQ (Loughner et al, 2013, bottom) correlation analyses. Plots 
chosen represent the most typical behavior of the column-surface relationship for that 



	
	

35	
	

data set. Correlation shown between all available column and surface data for each data 
set from the simple linear regression analysis. Slopes of the regression, 𝝌𝒓𝒆𝒅𝟐  values, and R2 
values displayed in the upper left corner of each plot for the P-3B and Pandora; R2 values 
displayed in the upper left corner of each plot for CMAQ. Example uncertainty bars 
displayed data points for the P-3B (in black for column_air and blue for column_ground) 
and Pandora (in red) plots. 
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Figure 2.6: Example scatter plots of NO2 column vs. surface NO2 mixing ratio for P-3B, (top) 
Pandora (middle), and CMAQ (Loughner et al, 2013, bottom) correlation analyses. Plots chosen 
represent the most typical behavior of the column-surface relationship for that data set. 
Correlation shown between all available column and surface data for each data set from the simple 
linear regression analysis. Slopes of the regression, 𝝌𝒓𝒆𝒅𝟐  values, and R2 values displayed in the 
upper left corner of each plot for the P-3B and Pandora; R2 values displayed in the upper 
left corner of each plot for CMAQ. Example uncertainty bars displayed data points for the 
P-3B (in black for column_air and blue for column_ground) and Pandora (in red) plots. 
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Figure 2.7: Scatter plots of NO2 at lowest P-3B measurement altitude vs. surface NO2 
mixing ratio for each spiral site correlation analysis. Correlation shown between all 
available data for each site. 𝝌𝒓𝒆𝒅𝟐  values and R2 values displayed in the upper left corner of 
each plot; line displayed is the 1:1 line. Example uncertainty bars for surface and aircraft 
NO2 data also displayed on one data point. 
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 NO2 O3 
P-3B Col_air Low High 

P-3B Col_ground Moderate High 
Pandora Moderate Low 

OMI Not Significant Not Significant 
CMAQ (Loughner et al.) High Moderate 

CMAQ (NOAA) High High 
Table 2 . 1: Summary of degree of correlation found from the simple linear 
regression analyses between column amounts and surface mixing ratios. Low 
correlation: R2=0-0.16; Moderate: R2=0.16-0.64; High: R2=0.64-1.0. 
 
 
	 P-3B 

Col_Air 
R2 

P-3B 
Col_Ground 

R2 
P-3B 

Col_Air 
F-ratio 

P-3B 
Col_Ground 

F-ratio 

P-3B 
Column_UMD 

R2 
P-3B 

Column_UMD 
F-ratio 

Pandora 
 R2 

Pandora 
F-ratio 

Aldino 0.76 0.79 112.57 131.81 0.73 98.9
9 

0.06 21.72 
(<0.001) (<0.001) (<0.001) (<0.001) 

Beltsville 0.83 0.88 192.10 267.95 -- -- 0.04 12.8 
(<0.001) (<0.001) (<0.001) 

Edgewood 0.61 0.65 62.94 77.17 -- -- 0.01 3.53 
(<0.001) (<0.001) (0.057) 

Essex 0.58 0.63 52.25 61.74 -- -- 0.03 9.39 
(<0.001) (<0.001) (0.002) 

Fair Hill 0.64 0.70 72.58 95.47 -- -- 0.16 68.98 
(<0.001) (<0.001) (<0.001) 

Padonia 0.65 0.72 60.25 85.58 -- -- 0.02 8.02 
(<0.001) (<0.001) (0.004) 

 
Table 2.2: Summary of the R2 statistic and F-ratio (p-value) for the P-3B and 
Pandora O3 simple linear regressions. 
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 P-3B 

Col_Air  

R2 

P-3B 
Col_Grd  

R2 

P-3B 
Col_Air  
F-ratio 

P-3B 
Col_Grd  
F-ratio 

P-3B 
Col_UMD 

 R2 

P-3B 
Col_UMD  

F-ratio 

Pandora 

R2 
Pandora 
F-ratio 

Aldino 0.13 0.78 4.93 119.58 0.16 6.48 0.01 4.75 

(0.03) (<0.001) (<0.016) (0.030) 

Beltsville 0.13 0.55 6.16 50.44 -- -- 0.20 80.94 

(0.02) (<0.001) (<0.001) 
Edgewood 0.02 0.56 0.62 43.11 -- -- 0.21 61.03 

(0.429) (<0.001) (<0.001) 
Essex 0.05 0.37 0.812 9.59 -- -- 0.29 68.57 

(0.380) (0.009) (<0.001) 

Fair Hill 0.18 0.80 4.69 86.40 -- -- 0.09 7.43 

(0.040) (<0.001) (0.009) 

Padonia 0.07 0.49 2.22 30.70 -- -- 0.27 94.69 

(0.148) (<0.001) (<0.001) 

 
Table 2.3: Summary of the R2 statistic and F-ratio (p-value) statistic for the 
P-3B and Pandora NO2 simple linear regressions. 
 
2.7.2.1: Evaluation of the Errors of the Simple Linear Regression Model 

An overview of the average error of the regressions relative to the observations for O3 

and NO2 is presented for the P-3B data sets. The column_air- and column_ground-measured 

surface values were first combined into one data set, as were the regression estimated surface 

values for the column_air and column_ground regression analyses, before computation of the 

average percentage error of the regression relative to the observations. The average error for P-

3B O3 was typically less than 10% at each site, with the exception of Padonia; this was due to the 

presence of a very low surface observation that was not a statistical outlier. Additionally, 

approximately 50 to 75% of regression estimations fell within a ±10% error of the observed 

value (Table 2.4). These results support the conclusions presented for P-3B O3 in the previous 
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section. The average error for the Pandora O3 regressions, however, was much more variable 

among sites, and could be much larger than seen for the P-3B results. The percentage of 

estimations falling within ±10% error was typically less than 25% (Table 2.5). The Durbin-

Watson test statistic was used to test for the presence of autocorrelation of the residuals, which 

would violate the assumption of independent regression errors. All Pandora O3 regressions 

demonstrated positive autocorrelation and large average errors, indicating errors in the 

computation of the Pandora tropospheric column O3. This may be due to subtraction of the OMI 

stratospheric column, which may not be representative of the true column at each surface site due 

to the large OMI footprint size.  

	 O3 
Mean Error 

% of Cases 
w/in ±10% Error 

NO2 
Mean Error 

% of Cases 
w/in ±10% Error 

% of Cases 
w/in ±50% Error 

Aldino 3.1 61.3% 9.7 28.6% 88.5% 

(± 24.6) % (± 37.2) % 

Beltsville 6.0 74.1% 3.2 47.7% 98.8% 

(± 37.4) % (± 18.7) % 
Edgewood 7.1 51.2% -58.2 0.00% 26.3% 

(± 44.9) % (± 607.3) % 

Essex 6.1 59.7% 36.5 11.1% 52.8% 

(± 38.2) % (± 83.4) % 

Fair Hill 2.5 63.9% 4.2 10.4% 39.6% 

(± 18.8) % (± 416.0) % 

Padonia 40.2 61.4% 4.0 21.1% 63.6% 

(± 236.8) % (± 93.9) % 
Table 2.4: Summary of percentage errors (standard deviation) simple linear 
regression for all sites relative to observed surface values. Column_air and 
column_ground are analyzed together for each site. 
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 O3 
Mean	Error	

%	of	Cases	
w/in	±10%	

Error	

NO2 
Mean	Error	

%	of	Cases	
w/in	±10%	

Error	

%	of	Cases	
w/in	±50%	

Error	

Aldino 16.9 
(± 66.6)% 

 

24.8% 27.3 
(± 88.5)% 

24.7% 81.0% 

Beltsville 61.9 
(± 270.9)% 

21.0% 20.4 
(± 59.6)% 

22.1% 74.6% 

Edgewood 29.9 
(± 112.9)% 

23.6% -125.5 
(± 2381.7)% 

4.3% 28.1% 

Essex 30.6 
(± 116.6)% 

23.9% 58.1 
(± 374.1)% 

11.2% 62.9% 

Fair Hill 12.1 
(± 43.7)% 

23.9% -382.6 
(± 2554.9)% 

6.8% 44.6% 

Padonia 47.6 
(± 318.4)% 

23.1% 119.5 
(± 941.2)% 

15.4% 62.3% 

Table 2.5: Summary of percentage errors of Pandora simple linear regression 
for all sites relative to observed surface values. 
 

The P-3B NO2 regressions resulted in an average percentage error relative to the 

observations similar to the O3 regressions at most sites, with the exceptions of Edgewood and 

Essex. Less than 30% of regression estimations fell within a ±10% error of the observed value 

except at Beltsville; a typically larger but more variable percentage fell within ±50% error of the 

observed value (Table 2.4). However, the Pandora NO2 regressions displayed larger average 

errors than the Pandora O3 regressions except at Beltsville, and larger average errors than the P-

3B NO2 regressions. Approximately 50% or more of regression estimations fell within ±50% 

error of the observed value at most sites (Table 2.5). Plots of the regression residuals revealed 

other problems with this simple linear regression analysis for P-3B and Pandora NO2. The 

Durbin-Watson test statistic again indicated positive autocorrelation of the residuals in the 

Pandora NO2 regressions. Lag-1 residual correlation plots are another tool used to indicate 



	
	

42	
	

graphically the presence of autocorrelation of the regression residuals, Each residual is plotted 

against the residual immediately preceding it in time (for a time step of 1); if the errors of the 

regression are random, then structure should be present in these plots. However, structure is 

evident in the lag-1 plots of the Pandora residuals at all sites, indicating the presence of 

autocorrelation of the residuals and a violation of the assumptions of linear regression (Fig. 2.8). 

Histograms of column_air residuals and Pandora NO2 residuals demonstrated some deviation 

from normality at some sites. These problems with the simple linear regression are more severe 

for Pandora, but further suggest that a simple linear regression is not as appropriate for NO2 as 

for O3. 
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Figure 2.8: Example scatter plots for NO2 simple linear regression residuals. (top) 
Histograms of NO2 residuals for Essex P-3B column_air and Pandora. (bottom) Pandora 
NO2 residuals plotted against the lagged-1 residuals at Aldino and Beltsville. 
 
 Simple linear regression analyses were also performed for P-3B and Pandora O3 and NO2 

for the aggregate of the data over all sites; the values of R2 for the correlations between column 

and surface data for the aggregate analyses are displayed in Table 2.6. The values of R2 for the 

aggregate P-3B NO2 column_air, NO2 column_ground, Pandora O3, and Pandora NO2 

regressions were similar to those for the individual sites for these datasets; the aggregate R2 

values were much smaller than those for the individual sites for P-3B O3 column_air and 

column_ground. All P-3B and Pandora O3 and NO2 aggregate analyses suffered from positive 

autocorrelation of the residuals. The average percentage error for the aggregate P-3B O3 analysis 



	
	

44	
	

was larger than for the individual sites, and the percentage of estimations within a ±10% error of 

the observed value was smaller; the average errors for the aggregate P-3B NO2, Pandora O3, and 

Pandora NO2 regressions were similar to the individual sites. However, the standard deviations 

of the percentage errors for the aggregate P-3B O3 and NO2 regressions were larger compared to 

the individual sites (Table 2.7). Aggregation of the data thus worsened the regressions for the P-

3B datasets, relative to the individual sites, and did not result in an improved regression for the 

Pandora datasets.  

 O3 

R2 
O3 

F-Ratio 
NO2 

R2 
NO2 

F-Ratio 

P_3B Col_Air 0.26 83.41 
(<0.001) 

0.01 2.35 
 (0.126) 

P_3B Col_Air 0.28 89.66 
(<0.001) 

0.43 140.17 
 (<0.001) 

Pandora 0.04 81.86 
(<0.001) 

0.14 4.75 
 (0.030) 

Table 2.6: Summary of the R2 statistic and F-ratio (p-value) statistic for the P-3B 
and Pandora simple linear regressions for the aggregate over all data. 

 

 O3 
Mean Error 

% of Cases 
w/in ±10% 

Error 

NO2 
Mean Error 

% of Cases 
w/in ±10% 

Error 

% of Cases 
w/in ±50% 

Error 

P-3B 17.6 
(± 117.5)% 

33.5% -4.6 
(± 1155.9)% 

7.6% 56.3% 

Pandora 33.9 
(± 190.5)% 

80.9% -10.8 
(± 1807.3)% 

50.4% 85.5% 

Table 2.7: Summary of percentage errors (standard deviation) simple linear regression 
for the aggregate over all data relative to observed surface values. Column_air and 
column_ground are analyzed together for each site for the P-3B analyses. 
 
2.7.2.2: Evaluation of the Slopes for the Simple Linear Regression Model 

 Tables 2.8-2.10 list the slopes and values of the reduced chi-squared (𝜒"#$% ) goodness-of-

fit test obtained from the simple linear regression analyses at the individual spiral sites and for 

the aggregate analyses for P-3B and Pandora O3 and NO2. The reduced chi-squared statistic 
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evaluates how well the linear regression model captured the observed data, to within the 

uncertainty of the data: 

𝜒"#$% = *
4
− 𝑛 ∗ (G02H'I(J0)

K0
)%4

;L'                                                                                            (2.7) 

where N is the total number of data points and n is the index of each data point. A reduced chi-

squared value near 1.0 indicates that the regression well captured the relationship to within the 

data uncertainty, while a value much less than 1.0 indicates that the uncertainty may have been 

overestimated, that the regression model overfit the data, or both, and a value much greater than 

1.0 indicates that the uncertainty was underestimated, the regression underfit the data, or both. 

Column_air and column_ground O3 presented very similar values for the slopes and the 

uncertainties of the slopes at each of the individual sites and for the aggregate analyses, which is 

consistent with the similar values of R2 obtained for these two datasets. Additionally, the 

confidence intervals for both the column_air and column_ground slopes overlapped for almost 

all spiral sites, indicating that the slopes were not statistically different among the sites; 

Beltsville was the exception to this and presented a statistically distinct slope for these two P-3B 

data sets, as its confidence interval did not overlap with the intervals of any other site. Beltsville 

also presented the steepest P-3B slopes, which may be partially due to greater O3 photochemical 

production at this site relative to the other sites. The Pandora O3 regressions also did not produce 

statistically distinct slopes at most spiral sites. Further, the confidence interval of the aggregate 

Pandora O3 slope overlapped with the intervals for all individual sites, indicating that the 

aggregate Pandora regression produced the same result as those for the individual sites, while the 

aggregate column_air and column_ground O3 slopes overlapped with only the Edgewood and 

Essex slopes.  It is also notable that the P-3B O3 regressions displayed smaller uncertainties in 

the slopes, and thus smaller confidence intervals, than did the Pandora regressions; the same is 
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true of the comparison of the values of 𝜒"#$% 	between the P-3B and Pandora. This is again likely 

due to the uncertainties in the Pandora tropospheric column that also impacted the Pandora 

column-surface correlations: uncertainty due to subtraction of the OMI stratospheric column 

from the Pandora total column, and the distinct possibility that the Pandora instruments 

sometimes observed different air masses from the P-3B spiral: Pandora is a sun-synchronous 

instrument, and if the Pandora instrument was pointed in a different direction following the sun 

than the aircraft spiral overhead of the instrument, the Pandora may have picked up a different 

air mass from that sampled by the P-3B. However, the 𝜒"#$%  values indicate some advantage of 

the regression at Fair Hill for the P-3B and Pandora analyses; however, it should be noted that 

these values were smallest at the Fair Hil for both the P-3B and Pandora analyses relative to the 

other sites, but had large magnitudes, indicating inadequacy of the regression model to fit the 

data. Thus, full and lower tropospheric column amounts may be best related to surface mixing 

ratios at a relatively rural, clean site such as Fair Hill. However, the values of the Pandora slopes 

were smallest at Edgewood and Essex; these two sites were also fairly polluted sites, and 

experienced bay breezes; bay breezes tend to accumulate pollution over nearby coastal sites, as 

they interrupt horizontal transport, and so this “keeping pollution in place” over Edgewood and 

Essex may have contributed to the small slopes and greater ability to relate surface and column 

abundances from the perspective of a remote sensing instrument retrieving the full tropospheric 

column.. 

 The confidence intervals for the slopes for the NO2 column_air regressions overlapped 

for all individual sites, and for most individual sites for the column_ground regressions (Table 

2.9). Additionally, the confidence intervals of the aggregate NO2 column_air and column_ground 

regressions overlapped with the intervals for almost all individual sites, indicating no statistical 
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difference between a regression built for an individual site and for the entire study region. 

However, the confidence intervals for the Edgewood, Essex, Padonia, and aggregate column_air 

analyses included 0.0, indicating that these slopes are not statistically significant and no 

predictive relationship exists between the column and surface data for these analyses; the 

confidence intervals for column_ground did not include 0.0, but it should again be noted that the 

NO2 column_ground estimates are likely unrealistic. In contrast, the slopes were statistically 

distinct from those of all other sites and the aggregate analysis at Aldino and Edgewood for the 

Pandora analyses (Table 2.10). It is notable the magnitude of the slope for Aldino was the 

smallest of all sites for the Pandora regressions, while the slope was largest at Edgewood; the 

confidence intervals for the Pandora and column_air Aldino slopes overlapped, indicating that 

these slopes were statistically the same despite the use of full tropospheric column data in one 

regression and lower tropospheric column data in the other. This should perhaps not be 

surprising, as most of the NO2 column burden resides in the lower atmosphere. The values of 

𝜒"#$% , however, did not suggest a clear advantage of the regression model at any individual site 

for either the Pandora or the P-3B, though they do suggest that an aggregate regression over a 

large region, such as the Baltimore-Washington metropolitan region, is inappropriate for NO2, 

likely due to greater spatial heterogeneity than for O3. 
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 Column_Air O3 
Slope 

(uncertainty) 

Column_Ground O3 
Slope (uncertainty) 

Column_Air O3 
𝜒"#$%  

Column_Ground O3 
𝜒"#$%  

Aldino 7.69 (1.46) 7.65 (1.36) 25.86 22.43 

Beltsville 10.96 (1.59) 10.49 (1.30) 73.77 39.15 

Edgewood 4.96 (1.88) 5.12 (1.79) 92.57 70.61 

Essex 4.56 (1.29) 4.77 (1.23) 65.50 52.54 

Fair Hill 5.97 (1.42) 6.07 (1.25) 15.94 12.50 

Padonia 7.12 (1.86) 7.15 (1.57) 2706.42 1845.86 

Aggregate 2.69 (0.60) 2.76 (0.60) 596.66 539.12 

Table 2.8: Summary of slopes and 𝜒"#$%  values  for each of the individual spiral sites and 
the aggregate analysis for P-3B column_air and column_ground O3. Uncertainties of the 
slope given in parentheses next to the slope values.  
 

 

 Column_Air NO2 
Slope 

Column_Ground 
NO2 Slope 

Column_Air 
NO2 𝜒"#$%  

Column_Ground NO2 
𝜒"#$%  

Aldino 0.41 (0.38) 1.07 (0.20) 675.40 157.42 

Beltsville 0.26 (0.21) 0.69 (0.20) 16.34 6.99 

Edgewood 0.25 (0.62) 1.32 (0.41) 4.55 1.12 

Essex -0.28 (0.66) 0.89 (0.61) 719.30 566.02 

Fair Hill 1.05 (1.00) 1.67 (0.37) 1775.98 188.22 

Padonia 0.32 (0.43) 1.19 (0.44) 240.12 87.55 

Aggregate 0.17 (0.22) 1.08 (0.18) 456.13 241.56 

Table 2.9: Summary of slopes and 𝜒"#$%  values  for each of the individual spiral sites and 
the aggregate analysis for P-3B column_air and column_ground NO2. Uncertainties of the 
slope given in parentheses next to the slope values.  
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 Pandora O3 Slope O3 𝜒"#$%  Pandora NO2 
Slope 

NO2 𝜒"#$%  

Aldino 13.09 (5.52) 188.55 0.11 (0.10) 9.67 

Beltsville 12.77 (7.01) 3079.45 0.65 (0.14) 1305.69 

Edgewood 4.31 (4.51) 543.82 0.94 (0.24) 80.74 

Essex 8.07 (5.18) 579.81 0.70 (0.17) 19.57 

Fair Hill 16.79 (3.97) 81.97 0.38 (0.28) 21.72 

Padonia 6.67 (4.63) 4133.63 0.45 (0.10) 8.44 

Aggregate 9.42 (2.04) 1496.06 0.43 (0.05) 327.37 

Table 2.10: Summary of slopes and 𝜒"#$%  values  for each of the individual spiral sites and 
the aggregate analysis for Pandora O3 and NO2. Uncertainties of the slope given in 
parentheses next to the slope values.  

 

2.7.3: Multivariate Linear Least Squares Regression Analysis for the P-3B and Pandora 

All P-3B O3 column_air and column_ground multivariate regressions were significant at 

a confidence level of 95%, and the associated R2 values demonstrated modest improvement over 

those for the simple linear regressions (Table 2.11). The average percentage errors and standard 

deviations were consistently smaller than for the simple linear regressions, indicating that the 

range of the residuals had decreased. Likewise, the percentage of estimations falling within a 

±10% error of the observed value was somewhat larger than or similar to the percentage for the 

simple linear regression at each site (Table 2.12). All Pandora O3 regressions were significant, 

and demonstrated larger improvement relative to the simple linear regressions than did the P-3B 

regressions. The average percentage errors and standard deviations were much smaller, and the 

percentage of cases falling within a ±10% error of the observed value much larger (Tables 2.13, 

2.14). However, the Durbin-Watson results for Essex column_air and column_ground O3 and all 

Pandora O3 indicated positive autocorrelation of residuals. Some structure and fanning behavior, 

in which the range of residuals either increases or decreases as the abscissa increases, was also 
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present in plots of the residuals against inverse PBL height for Pandora, indicating limitations of 

this regression for the Pandora O3 data (Figure 2.8). 
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Figure 2.9: Example scatter plots for O3 and NO2 multivariate residuals. (top) Pandora O3 
residuals plotted against lagged-1 residuals at Aldino and against the logarithm of the 
inverse PBL height at Beltsville. (bottom) Histogram of residuals for Fair Hill NO2 
column_air regression and plot of residuals vs. predicted surface NO2 for Edgewood 
column_air regression for the multivariate regression analysis. 
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	 P-3B 
O3 

Col_Air 
R2 

P-3B 
O3 

Col_Ground 
R2 

P-3B 
O3 

Col_Air 
F-ratio 

P-3B 
O3 

Col_Ground 
F-ratio 

P-3B 
NO2 

Col_Air 
R2 

P-3B 
NO2 

Col_Ground 
R2 

P-3B 
NO2 

Col_Air 
F-ratio 

P-3B 
NO2 

Col_Ground 
F-ratio 

Aldino 0.82 0.83 75.62 81.87 0.30 0.78 6.69 55.32 
(<0.001) (<0.001) (0.003) (<0.001) 

Beltsville 0.90 0.93 169.79 227.91 0.44 0.66 14.88 37.58 
(<0.001) (<0.001) (<0.001) (<0.001) 

Edgewood 0.67 0.70 38.36 44.48 0.05 0.63 0.85 26.47 
(<0.001) (<0.001) (0.437) (<0.001) 

Essex 0.72 0.74 42.99 47.24 0.21 0.53 1.91 8.17 
(<0.001) (<0.001) (0.182) (0.009) 

Fair Hill 0.66 0.69 37.64 43.09 0.19 0.80 2.52 41.53 
(<0.001) (<0.001) (0.104) (<0.001) 

Padonia 0.74 0.78 46.66 57.47 0.43 0.63 11.23 25.58 
(<0.001) (<0.001) (<0.001) (<0.001) 

Table 2.11: Summary of the R2 statistic and F-ratio (p-value) for the P-3B O3  and NO2 
multivariate regressions. 

 

 

	 O3 

Mean Error 
% of Cases 

w/in ±10% Error 
NO2 

Mean Error 
% of Cases 

w/in ±10% Error 
% of Cases 

w/in ±50% Error 

Aldino 2.0 54.8% 8.3 22.1% 89.7% 
(± 18.2) % (± 33.3) % 

Beltsville 3.5 77.2% 2.2 52.4% 98.8% 
(± 23.6) % (± 15.6) % 

Edgewood 5.8 62.2% -89.2 5.6% 20.8% 
(± 34.9) % (± 439.3) % 

Essex 3.9 60.3% 30.6 11.8% 61.8% 
(± 24.4) % (± 81.8) % 

Fair Hill 2.3 67.9% 11.6 8.3% 43.8% 
(± 18.6) % (± 436.4) % 

Padonia 26.5 58.6% 0.8 21.2% 72.8% 
(± 154.1) % (± 71.7) % 

Table 2 . 12: Summary of percentage errors of P-3B multivariate regression for all 
sites relative to observed surface values. Col_air and col_ground are analyzed together 
for each site. 
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	 O3 
 R2 

O3 
 F-ratio 

NO2 
 R2 

NO2 
 F-ratio 

Aldino 0.42 130.0 0.34 84.2 
       (<0.001) (<0.001) 

Beltsville 0.54 201.7 
(<0.001) 

0.68 354.2 
(<0.001) 

Edgewood 0.36 89.2 
(<0.001) 

0.52 123.7 
(<0.001) 

Essex 0.25 47.7 
(<0.001) 

0.57 112.7 
(<0.001) 

Fair Hill 0.47 155.7 
(<0.001) 

0.27 13.5 
(<0.001) 

Padonia 0.51 183.3 
(<0.001) 

0.59 85.3 
(<0.001) 

Table 2 . 13: Summary of the R2 statistic and F-ratio (p-value) for the Pandora O3 and 
NO2 multivariate regressions. 

 

 

 

 

	 O3 

Mean Error 
% of Cases w/in 
±10% Error 

NO2 

Mean Error 
% of Cases w/in 
±10% Error 

% of Cases w/in 
±50% Error 

Aldino 0.68 82.6% 19.9 26.2% 84.6% 
(± 8.6) % (± 71.4) % 

Beltsville 3.2 72.7% 9.8 31.0% 85.9% 
(± 27.6) % (± 39.3) % 

Edgewood 1.4 78.9% -131.7 6.9% 42.4% 
(± 13.9) % (± 1027.3) % 

Essex 1.8 72.9% 38.2 17.6% 67.1% 
(± 16.6) % (± 267.3) % 

Fair Hill 0.56 85.3% -
240.7 

5.4% 43.2% 
(± 7.6) % (± 1699.0) % 

Padonia 1.4 79.8% 62.6 17.7% 68.8% 
(± 17.7) % (± 465.0) % 

Table 2.14: Summary of percentage errors of Pandora multivariate regression for all 
sites relative to observed surface values. 

 The regressions for P-3B NO2 column_ground at all sites and for NO2 column_air at half 

of the sites were significant at a confidence level of 95%; the R2 values also improved (Table 
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2.11). Like the P-3B O3 results, the average percentage error and associated standard deviation 

decreased relative to the simple linear regression at most sites. Most sites also saw an increased 

percentage of regression estimations falling within a ±10% error and ±50% error of the observed 

value (Table 2.12). The Pandora NO2 regressions also demonstrated marked improvement in the 

average percentage errors and the standard deviations at most sites. However, the percentage of 

regression estimations falling within a ±10% error and ±50% error of the observed value 

demonstrated marginal improvement (Tables 2.13, 2.14). These results indicate that both the 

column and inverse PBL height contain useful information for NO2. Fewer sites displayed 

histograms of residuals for column_air and Pandora NO2 that departed from normality, and fewer 

sites indicated autocorrelation of the residuals for Pandora. However, plots of the residuals for 

column_air and column_ground NO2 against predicted surface NO2 at Edgewood displayed 

some fanning structure (Figure 2.8). Though some improvement to the regression model is 

needed, these results indicate that the inverse PBL height adds useful information for the O3 and 

NO2 regressions, and thus mixing within the PBL has an important impact on the column-surface 

relationship for these gases. Because future geostationary air quality satellites will capture the 

diurnal cycle of their observations, these results further imply that care should be taken for the 

impact of PBL development on column quantities. 

2.7.4: Normalization by PBL Height for the P-3B and Pandora   

The normalization of Pandora column NO2 abundances by estimates of PBL height 

derived from the WRF/CMAQ model system resulted in a consistently moderate degree of 

correlation (Table 2.15; Figure 2.10). Normalization by PBL height also resulted in statistically 

significant increases in the value of R2 relative to the Pandora full data set correlation analyses at 

the 95% confidence level at most sites. Overall, a moderate degree was obtained for most sites 
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for after normalization of the Pandora columns, rather than the low degree obtained with the 

simple linear regression analysis. The P-3B column NO2 normalization analyses presented more 

mixed results. Normalization of P-3B column NO2 by estimates of PBL height derived from the 

observed potential temperature profile resulted in moderate correlation, when significant, for 

column_ground, and column_air (Table 2.15; Figure 2.9). However, normalization did not 

produce significantly different results relative to the P-3B full data set correlations. The lack of 

improvement for the P-3B normalization analyses may be due to the “well mixed PBL” 

assumption inherent in the gap-filling methods used for the column computations. Because one 

value is held constant within the lowermost PBL, the P-3B columns likely rely on a better mixed 

NO2 profile than the Pandora columns, such that normalization by PBL depth does not add as 

much useful information for the P-3B as it did for Pandora NO2. 

	

Figure 2.10: Example scatter plots of NO2 column vs. surface NO2 mixing ratio at 
Edgewood for the P-3B (left) and Pandora (right). Normalization by PBL height 
correlation analysis (surface vs. [column/PBLH] correlation). R2 values displayed at the top 
of each plot. 
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Table 2.15: Summary of the R2 statistic for the P-3B  and Pandora NO2 PBL-normalization 
analysis. NS denotes non-significant correlation. 

The correlations between Pandora NO2 surface mixing ratio (ppb) and column abundance 

(cm-2) at Edgewood and Padonia presented in Section 2.7.4 compared well to the results obtained 

by Knepp et al. (2013) for their comparison of hourly-averaged Pandora NO2 surface (ppb) and 

column data (cm-2). This agreement held after Knepp et al. (2013) excluded surface NO2 mixing 

ratios less than 1 ppb, and for their comparison of raw surface and column NO2 data (see Knepp 

et al., 2013, Table 2). The correlations between P-3B surface mixing ratio (ppb) and 

column_ground (cm-2) at Edgewood and Padonia also compared modestly well to Knepp et al. 

(2013), though the P-3B correlations were larger than either Pandora analysis. The correlations 

between the surface mixing ratios and Pandora or P-3B column_ground NO2 columns 

normalized by PBL height presented here also compared well to the correlations obtained by 

Knepp et al. (2013) after application of their PBL-correction factor at Edgewood and Padonia 

(see Knepp et al., 2013, Eqn. 1 and Table 3). Knepp et al. (2013) employed PBL heights from the 

EDAS40 model, OMI stratospheric NO2 column data, and air density to transform Pandora NO2 

total columns into PBL-average mixing ratio values, and then examined the correlation between 

 P-3B  
NO2 

Col_Air 
R2 

P-3B  
NO2 

Col_Ground 
R2 

Pandora 
NO2 
R2 

Aldino 0.32 0.62 0.31 

Beltsville 0.33 0.51 0.67 

Edgewood NS 0.49 0.50 

Essex NS 0.46 0.57 

Fair Hill NS 0.27 0.28 

Padonia 0.37 0.61 0.58 
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between in situ and Pandora-estimated mixing ratios; improved correlation was also obtained 

after application of this correction factor for Pandora. Example scatter plots are presented in 

Figure 7. Differences in the correlations presented here and in Knepp et al. (2013) may be due to 

the exclusion of data occurring at a solar zenith angle greater than 75° by Knepp et al. (2013), 

and differences in the PBL height derived from the WRF/CMAQ model system, the model used 

by Knepp et al. (2013), and from the P-3B potential temperature profile. This agreement between 

the results presented here and in Knepp et al. (2013) for Pandora further demonstrates the 

influence of mixing within the PBL on the NO2 column-surface relationship, as application of a 

PBL correction (either the normalization analysis presented here or the correction factor of 

Knepp et al.) resulted in improved column-surface correlations. The results presented in this 

section also bolster the conclusion found by Knepp et al. (2013) that, to a first order, NO2 

column abundances can be relevant to surface air quality. 

2.8: Comparison of CMAQ Analyses to Observational Analyses 

The degree of correlation between surface mixing ratio and column abundance found 

from the simple linear regression analyses for the Loughner et al. (2013) CMAQ model output is 

summarized in Table 2.1. Values of R2 are given in Table 2.16, and representative scatter plots of 

the correlation are displayed in Figures 2.3-2.4. All regressions were statistically significant at a 

confidence level of 95%. Unlike the P-3B correlations, the CMAQ O3 correlations (Figure A3) 

were not generally larger than the CMAQ NO2 correlations (Figure A6). Significant differences 

in correlation between the CMAQ and P-3B analyses occurred between CMAQ and column_air 

NO2 at most sites; CMAQ generally presented larger correlation than column_air. As discussed 

previously, the Aldino column_UMD analysis suggested that the P-3B column_ground 

correlations were likely too high. The CMAQ O3 or NO2 correlations were also statistically 
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significantly greater than those for Pandora O3 or NO2 at most sites. This indicates that O3 and 

NO2 may be too well mixed vertically and horizontally within the model.  

 

 

 Loughner et 

al. O3  R
2 

Loughner et al. 

NO2  R
2 

Loughner et al. 
O3   F-ratio 

Loughner et al. 
NO2  F-ratio 

NOAA 

O3  R
2 

NOAA 

NO2  R
2 

NOAA 
O3 

F-ratio 

NOAA 
NO2 

F-ratio 

Aldino 0.56 0.76 46.09 46.09 0.86 0.67 225.81 74.01 
(<0.001) (<0.001) (<0.001) (<0.001) 

Beltsville 0.75 0.39 126.24 26.58 0.84 0.74 221.54 117.05 
(<0.001) (<0.001) (<0.001) (<0.001) 

Edgewood 0.53 0.49 49.32 42.81 0.82 0.65 190.83 79.50 
(<0.001) (<0.001) (<0.001) (<0.001) 

Essex 0.63 0.63 62.90 63.43 0.71 0.88 91.06 270.38 
(<0.001) (<0.001) (<0.001) (<0.001) 

Fair Hill 0.54 0.93 48.68 544.03 0.83 0.88 205.91 305.17 
(<0.001) (<0.001) (<0.001) (<0.001) 

Padonia 0.81 0.68 160.75 78.30 0.78 0.68 134.42 78.13 
(<0.001) (<0.001) (<0.001) (<0.001) 

Table 2.16: Summary of the R2 statistic and F-ratio (p-value) for the 
CMAQ O3 and NO2 simple linear regression analysis. 
 

Values of R2 for the correlation separation analyses are given in Appendix B. Comparing 

the Loughner et al. (2013) CMAQ simulation to the P-3B for the correlation analyses separated 

by time of day, the CMAQ NO2 correlations were significantly larger than those for P-3B NO2 

column_air for the Afternoon group at four of the six MDE sites. However, CMAQ produced 

significantly larger correlations relative to Pandora for the O3 and NO2 Afternoon analyses at all 

sites (Tables B1-B2, B6). The larger CMAQ NO2 correlations relative to P-3B column_air but 

not column_ground for the Afternoon analysis suggests that these large CMAQ correlations 

during afternoon may be related to the growth of the boundary layer during the day and that too 

much horizontal and vertical mixing within the boundary layer is occurring in the model. For the 

separation by PBL height analyses, CMAQ produced correlations significantly larger than those 
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for P-3B NO2 column_ground for the High PBL group at three of six MDE sites, and larger than 

those for P-3B NO2 column_air for both PBL data groups at all sites. CMAQ produced 

significantly larger correlations relative to the Pandora O3 analyses for the Low and High PBL 

groups at all sites, and relative to Pandora NO2 for both data groups at four of six sites (Tables 

B3-B4, B6). Because most significant differences occurred with either the Afternoon group or 

High PBL group, this suggests that mixing influences the column-surface relationship within 

CMAQ and that horizontal and vertical mixing may be too strong within the model. Furthermore, 

the correlation between CMAQ PBL height-normalized column NO2 and surface NO2 was 

significantly larger than the full data set correlations at only two sites; normalization by PBL 

height does not add as much information to the CMAQ correlations because NO2 is too well 

mixed within the model (Table 2.17). 

 

 

 

 

 

 

 

 

Table 2.17: Summary of the R2 statistic for the CMAQ NO2 PBL-normalization analysis. 
NS denotes non-significant correlation. 

 A high degree of correlation was found between both O3 and NO2 surface and column 

output within the NOAA CMAQ forecast (Table 2.1); the correlations within this forecast were 

significantly larger than the P-3B O3 and NO2 and Loughner et al. (2013) simulation correlations 

 CMAQ 
(Loughner et 

al.) 
NO2 
R2 

CMAQ 
(NOAA) 

NO2 
R2 

Aldino 0.88 0.79 

Beltsville 0.85 0.67 

Edgewood 0.63 0.50 

Essex 0.77 0.88 

Fair Hill 0.95 0.91 

Padonia 0.90 0.82 
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at several sites, and was significantly larger than all Pandora O3 and NO2 correlations (Table 

2.17). The results for the correlation separation analyses for the NOAA CMAQ forecast are 

consistent with the results for the Loughner et al. (2013) simulation, though the impacts within 

the NOAA forecast were greater. For example, in addition to presenting significantly larger 

correlations relative to the P-3B NO2 column_air analyses for both Low and High PBL groups, 

NOAA CMAQ NO2 also produced larger correlations relative to the NO2 column_ground 

analyses for the High PBL at four of six MDE sites (Tables B7-B8). Additionally, no 

correlations between PBL-normalized NO2 column and surface mixing ratios were significantly 

different than the full data set correlations for the NOAA simulation (Table 2.17). These results 

again indicate that vertical and horizontal mixing within the model may be too strong, and that 

inaccuracies within model mixing schemes can have an important impact on the column-surface 

relationship for O3 and NO2 within CMAQ. 

2.9: Conclusions 

 A wide range of degrees of correlation resulted from the simple linear regression analyses 

between the O3 and NO2 column and surface data. The OMI tropospheric O3 and NO2 data 

resulted in non-significant correlations, the P-3B column_air NO2 and Pandora O3 demonstrated 

a low degree of correlation, P-3B column_ground NO2, CMAQ O3 and NO2, and Pandora NO2 

demonstrated a moderate degree of correlation, and P-3B column_air and column_ground O3 

demonstrated a high degree of correlation with surface air quality observations. These results 

indicate that O3 is generally well mixed in the vertical, while NO2 is not. Further, a simple linear 

regression model was found to fit the P-3B O3 column and surface data well, while it struggled to 

capture the column versus surface relationships for the P-3B NO2, Pandora O3, and Pandora NO2 

data. The multivariate regression analyses and the PBL normalization correlation analyses 
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indicate that PBL height (an indicator of mixing) add meaningful information to the column-

surface relationship. 

 The O3 correlations within the Loughner et al. (2013) simulation and NOAA CMAQ 

forecast were similar to the P-3B O3 correlations, but were more similar to column_ground than 

column_air for NO2. Both sets of CMAQ output demonstrated greater correlation between the O3 

and NO2 column and surface during the afternoon and for conditions associated with a maturely 

developed PBL than did the observations. These results suggest that vertical and horizontal 

mixing within the model is stronger than in the observational data sets.  In future work, we will 

investigate how the vertical mixing in CMAQ can be improved.	

The large OMI footprint likely contributes to the non-significant correlations obtained 

between OMI tropospheric O3 or NO2 column and surface observations; the insufficient 

sensitivity of the OMI instrument to the lower troposphere also contributes for the OMI O3 

analyses. The DISCOVER-AQ measurements suggest that O3 observations from future satellite 

instruments can be meaningful for surface air quality analysis if they have sufficient sensitivity 

to the lowest 2-3 km of the troposphere. 
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Chapter 3: Variability of O3 and NO2 Profile Shapes during the DISCOVER-AQ Project: 
Implications for Satellite Observations and Comparisons to Modeled Profiles 
 
3.1: Introduction 

  Satellite observations have great potential for diagnosis of near-surface air quality 

conditions because of their global coverage, increasingly high spatial resolution, fixed temporal 

resolution, and improved retrievals of tropospheric column abundances (Beirle et al., 2003; 

Boersma et al., 2008; Chatfield and Esswein, 2012; Fishman et al., 2008; Flynn et al., 2014;  

Lamsal et al., 2011; Martin, 2008). Satellite column observations can be especially useful for 

diagnosis of near-surface abundances of the Environmental Protection Agency (EPA) criteria 

pollutants (http://www.epa.gov/air/criteria.html) ozone (O3) and nitrogen dioxide (NO2). Recent 

work has demonstrated that such an application should be possible for NO2. Lamsal et al. (2008) 

and Lamsal et al. (2010) observed significant correlation between in situ surface NO2 mixing 

ratios and ground-level NO2 observations inferred from Ozone Monitoring Instrument (OMI) 

column amounts, after application of local scaling factors derived from the GEOS-Chem model. 

Other works have instead scaled surface NO2 values to obtain column amounts with the use of 

assumed NO2 profiles, and have found good agreement between OMI tropospheric columns and 

these scaled columns (Boersma et al., 2009; Knepp et al., 2013; Ordóñez et al., 2006). Chatfield 

and Esswein (2012) examined ozonesonde data over the U.S. and observed a significant 

correlation between partial column (0-3 km) and near-surface O3 (500 m) observations. Flynn et 

al. (2014) examined partial or full tropospheric column amounts derived from aircraft or Pandora 

UV/Vis spectrometer data sets for O3 and NO2 during July 2011 in the Baltimore-Washington 

metropolitan region, and found a wide range of degrees of correlation between column and 

surface data, with O3 generally demonstrating a greater correlation than NO2. These results 

suggest that satellite-observed ozone observations could be used to estimate surface ozone, 
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provided there is sufficient sensitivity to the lowermost troposphere.  Natraj et al. (2011) 

demonstrated that lower tropospheric O3 retrievals could be greatly improved by flying both UV 

and thermal IR sensors together on future satellites. 

  These studies are encouraging that column amounts and surface concentrations can be 

related. However, such work also highlighted the considerable difficulties inherent in 

understanding this relationship. Biases remain in satellite retrievals, while current satellite 

instruments have reduced sensitivity to the lower troposphere (Liu et al., 2010; Martin, 2008). 

The wide range of correlations obtained and the use of model- or data-derived scaling factors 

demonstrate a need for better understanding of the processes connecting the column and surface.  

  Understanding of the variability of in situ profile shapes is useful for understanding the 

degree of correlation between column and surface data. Satellite data may be more useful for air 

quality applications in some parts of the day than others and under certain meteorological 

conditions.  How well do the assumed profile shapes used in satellite retrievals capture observed 

conditions and ultimately what is the resulting impact on the ability of satellite-observed columns 

to represent surface air quality? Additionally, the assumed profile shapes used in retrievals are 

given not as profiles of volume mixing ratios, but as shape factors that are provided by 

simulations of global chemical transport models such as GMI. The shape factor is defined as the 

ratio of the partial column within a vertical layer z (Ωz) to the full tropospheric column (Ωtrop), 

and thus depends indirectly on the mixing ratio profile:  

S(z) = Ωz/Ωtrop                                                                                                                                                                                             (3.1) 

For the NASA standard NO2 product (Bucsela et al., 2013), shape factors are used in the 

radiative transfer model to calculate the air mass factor (AMF), used to convert the slant column 

abundance to the vertical column abundance according to 
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AMF = Ωs/Ωv                                                                                                                             (3.2) 

where  Ωs is the slant column and Ωv is the vertical column (Chance, 2002; Lamsal et al., 2014; 

Palmer et al., 2001). The AMF is also used with the differential optical absorption spectroscopy 

(DOAS) technique, such as used to retrieve the OMI total vertical O3 columns (Bhartia, 2002). 

Liu et al. (2010) employ a similar method in their retrieval of OMI O3 vertical columns, in which 

the AMF is not used, but rather a priori partial O3 column amounts at each model vertical layer 

in the retrieval computations. Accurate representation of the O3 or NO2 profile shapes is critical 

to accurate representation of the shape factors used in satellite retrievals, and thus retrieval 

accuracy.  A high-resolution NO2 retrieval from OMI has been performed by Russell et al. 

(2011) using NO2 profiles from the WRF-Chem model at 4-km horizontal resolution.  This work 

evaluates the ability of a regional air quality model to produce accurate NO2 profiles for use in 

satellite retrievals. 

 Previous studies have examined the observed trace gas or aerosol profile variability over 

several regions. Diab et al. (2003) investigated O3 aircraft profiles over Johannesburg, South 

Africa, through application of a clustering technique. Six unique O3 clusters were found, which 

were further related to air mass origin through back trajectory modeling. Diab et al. (2004) 

clustered ozonesonde profiles over Irene, South Africa, for the periods 1990-1994 and 1998-

2002; these clusters were also related to air mass origin and meteorological conditions. Using a 

self-organizing maps technique, Stauffer et al. (2016) obtained nine distinct clusters of 

tropospheric O3 profiles from four long-term U.S. ozonesonde locations, which corresponded to 

distinct meteorological and pollution conditions. Additionally, this work determined that O3 

profile climatologies greatly underrepresented O3 profiles at these sites. Taubman et al. (2006) 

and Hains et al. (2008) examined summertime trace gas and aerosol aircraft vertical profiles over 
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the mid-Atlantic U.S. during 1997-2003. Through a cluster analysis of back trajectories or 

pollutant profiles, distinct pollution regimes and their associated meteorological conditions and 

emissions were identified for the summertime Mid-Atlantic region. However, while these studies 

examined long time record data sets, they were limited in spatial extent and occasionally also by 

time of year examined.  These studies also did not investigate NO2 profile variability, nor 

evaluate the ability of air quality models to replicate these profile shape clusters. 	

  In support of DISCOVER-AQ (described previously in Chapters 1 and 2), results are 

presented of an agglomerative hierarchical cluster analysis of P-3B in situ profiles for O3 and NO2 

for each of the four campaigns. Through these analyses, the variability of the in situ P-3B O3 or 

NO2 profiles will be characterized for each campaign. Classes of profiles are identified for each 

trace gas and each campaign, and meteorological conditions influencing these classes will be 

investigated as well as the associated column vs. surface correlations for each cluster. Shape 

factors are computed from the O3 and NO2 observations.  The observed cluster shape factor results 

are also compared to shape factors from the Community Multiscale Air Quality (CMAQ) model 

and NASA Global Modeling Initiative (GMI) model to assess model performance and the 

relevance of the model profiles for use in satellite retrievals will be evaluated. 

3.2: Description of P-3B In Situ Profile Measurements 

  A complete description of the DISCOVER-AQ measurements is publicly available at 

http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html. In situ trace gas volume 

mixing ratio data were collected by the P-3B aircraft over a network of six surface air quality 

monitoring sites during the Maryland, California, and Colorado campaigns, and over a network of 

eight monitoring sites during the Texas campaign. Typically, three spirals were accomplished 

over each spiral site during each flight day (typically morning, midday, and afternoon), with 10-
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15 flight days per campaign. Spiral sites for each campaign are mapped in Fig. 3.1a)-d). The 

National Center for Atmospheric Research (NCAR) NOxyO3 instrument, a 4-channel 

chemiluminescence instrument for the measurement of NO, NO2, NOy, and O3, provided the P-3B 

O3 (uncertainty of 5%) and NO2 (uncertainty of 10%) in situ observations used here. P-3B carbon 

monoxide (CO) in situ observations were provided by the Differential Absorption Carbon 

Monoxide instrument (DACOM; uncertainty of 2%). The National Suborbital Education and 

Research Center (NSERC) P-3B data acquisition and distribution system provided the in situ 

observations of altitude and meteorological observations used in these analyses. 

Fig. 3.1: a) The six spiral sites for the Maryland campaign; b) the six spiral sites for the 
California campaign; c) the eight spiral sites for the Texas campaign; and d) the six spiral 
sites for the Colorado campaign. Spiral sites named in white font.  

a) Maryland 

c) Texas d) Colorado 

b) California 
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3.3: Description of P-3B Column_Air and Column_Ground Lower Tropospheric Columns 

 The P-3B column_air and column_ground O3 and NO2 values were computed as 

described previously in Chapter 2, Section 2.2.1, for all four DISCOVER-AQ campaigns. The 

well mixed assumption inherent in the column_ground computation is worth noting again. For 

the California, Texas, and Colorado campaigns, the aircraft profiles also included missed 

approach data from local airports located near some spiral sites, which reached as low as ~80 m 

AMSL, rather than the typical ~300 m AMSL.  

3.4: Description of Surface Volume Mixing Ratio Datasets 

  The surface volume mixing ratio data sets available for the Maryland campaign have 

been described in Chapter 2, Section 2.3. Uncertainties for the following surface volume mixing 

ratio datasets are the same as those described for the Maryland surface data in Chapter 2.  

  Several different surface mixing ratio data sets were available for the California 

campaign. Surface O3 data were provided by the San Joaquin Valley Air Pollution Control 

District (SJV) at all California spiral sites except Huron. The EPA provided surface photolytic 

converter NO2 measurements at Bakersfield and Porterville, The Pennsylvania State University 

Nittany Atmospheric Trailer and Integrated Validation Experiment (NATIVE; 

http://ozone.met.psu.edu/Native/) provided O3 and NOy data at the Porterville site, and The 

Millersville University of Pennsylvania (MU) provided O3 and molybdenum-converter NOx data 

at the Huron site. SJV surface NOy data were also available at the Hanford site. The California 

Air Resources Board (CARB) provided surface NO2 at the Fresno site. Photolytic surface NO2 

data were used instead of molybdenum converter NO2 (which has interferences from NOy 

species) data for the correlation analyses that follow, at those sites for which photolytic data were 

available (Bakersfield and Porterville). 
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  The Texas Commission on Environmental Quality (TCEQ) provided surface O3 data 

from a chemiluminescence monitor at the Conroe, Channelview, Deer Park, Galveston, and 

Manvel Croix spiral sites. TCEQ also provided surface molybdenum-converter NO2 data at the 

Conroe, Channelview, and Deer Park sites, and NOy data at the Galveston and Manvel Croix 

sites. The University of Houston (UH) provided O3 and NOy surface data at the Moody Tower 

site; the surface at this site was approximately 70 m AGL, as these monitors sat on the rooftop of 

the Moody Tower on the UH campus. NATIVE provided O3 and NOy at Smith Point. Almost no 

surface data were available for the West Houston site. Lastly, NOAA provided photolytic NO2 

data from a chemiluminescence monitor equipped with a photolytic converter at Galveston, and 

provided NO2 surface measurements at the Manvel Croix from a cavity ring down instrument. 

Photolytic or cavity ring down surface NO2 data were used in place of NOy measurements, where 

available. As with California, photolytic surface NO2 data were used in place of NOy 

measurements, where available.  

  The Colorado Department of Health and Environment (CDPHE) provided O3 surface 

mixing ratio data from chemiluminescence monitors at the Golden, Chatfield Park, Fort Collins, 

and La Casa spiral sites and molybdenum converter chemiluminescence NO2 from the La Casa 

site. NATIVE provided surface O3 and NOy data at the Platteville site, while the NASA Langley 

Research Center Langley Aerosol Research Group Experiment (LARGE) provided O3 and NO2 

data at the Boulder Atmospheric Observatory (BAO) site from their LARGE mobile van suite of 

instruments. EPA provided photolytic NO2 measurements at the Golden and Fort Collins sites. 

Neither NO2 nor NOy data were available for the Chatfield Park site.  

3.5: Description of Model Simulations 

3.5.1 HYSPLIT Simulations 
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 Back trajectories were computed for each P-3B spiral for each of the four campaigns with 

the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory 

(ARL) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model version 4 

(Draxler and Rolph, 2003), to analyze air mass source regions and transport. Meteorological 

inputs were taken from the North American Mesoscale (NAM) model 40 km Eta Data 

Assimilation System (EDAS) 3-hour data archive. Back trajectories were computed for each 

spiral’s center latitude and longitude back to three days prior to each spiral, and were computed 

for each 500 m increment in altitude between 500 m and 3500 m AGL. To compensate for these 

errors in this analysis, back trajectories associated with a spiral site were clustered using the 

clustering algorithm within the HYSPLIT model.  The HYSPLIT clustering algorithm is based 

on the k-means clustering approach (a different clustering technique from agglomerative 

hierarchical clustering). This cluster analysis was performed over the entirety of the campaign to 

which that spiral site belonged, to determine the source regions and transport patterns that most 

contributed to air mass transport at the site during the campaign period. 

3.5.2: Loughner et al. CMAQ Simulations  

  The CMAQ model version 5.0 was used to simulate air quality for the Maryland 

campaign, as described in Chapter 2, Section 2.5.1. 

  CMAQ version 5.0.2 was used to simulate air quality for the Texas campaign, again 

driven off-line by WRF meteorology. In this case, WRF used the North American Model (NAM) 

12-km analyses for initial and boundary conditions.  The same WRF and CMAQ options used for 

the Maryland campaign were used in this simulation, with the exception of 45 vertical layers 

instead of 34 layers, with 18 layers within the lowermost 2 km. However, 2012 Texas 

Commission on Environmental Quality (TCEQ) anthropogenic emissions were used instead of 
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projected emissions based on the NEI.; as with the Maryland simulation, BEIS and MOVES were 

used to compute biogenic emissions and anthropogenic mobile emissions, respectively. The Texas 

simulations were also run iteratively, such that only the second, improved air quality simulation 

was used in the analyses presented below. This technique required WRF to be run twice: the first 

WRF run performed analysis nudging on all domains based on the 12 km North American Model 

(NAM) output, and the second WRF run performed analysis nudging on all domains based on the 

NAM with the exceptions of 2 m temperature and humidity for the 4 km horizontal resolution 

domain; the 2 m temperature and humidity from the first WRF simulation at 12 km was used to 

nudge these two parameters for the second WRF simulation at the 4 km resolution. The second 

iterative WRF run was used to drive CMAQ. CMAQ output was provided in 20-minute averages 

for the Texas campaign, while it was given in hourly averages for the Maryland campaign. The 4 

km output was used for the following Texas analyses to capture bay and sea breeze events 

(Christopher P. Loughner, personal communication). 

3.5.3: NOAA ARL CMAQ Forecasts 

  NOAA ARL provided forecasts of O3 and NO2 from an experimental version of CMAQ 

Version 4.6 during each deployment; these simulations were examined for campaigns for which 

Loughner et al. simulations were unavailable. The CB05 chemical mechanism was also used in 

the NOAA simulation. However, the NOAA model runs were driven offline by WRF 

(Nonhydrostatic Mesoscale Model, or NMM, core) meteorology, and used the fourth generation 

aerosol module (aero4), the Mellor-Yamada- Janjić (MYJ; Janjić, 1994) scheme for boundary 

layer mixing, the Noah land surface model, and the 2005 NEI for anthropogenic emissions; 

lightning NOx emissions were not included. The available horizontal resolution was 12 km for the 

California campaign and 4 km for the Colorado campaign, and the available vertical resolution 



	
	

71	
	

was 22 layers for California and 27 layers for Colorado, with 13 layers and 17 layers, 

respectively, within the lowest 2 km. 

3.5.4: NASA GMI Simulations 

  Profiles of O3 and NO2 were obtained from the NASA GMI coupled troposphere-

stratosphere chemical transport model. GMI has a horizontal resolution of 2˚ latitude by 2.5˚ 

longitude, with 72 vertical levels (Duncan et al., 2007). Specifically, the GMI HindcastFF 

simulations (Strode et al., 2015) were used in the following analyses. These simulations are 

driven by meteorology from the Modern-Era Retrospective Analysis for Research and 

Applications (MERRA; Rienecker et al., 2011). Emissions inputs include year-specific fossil fuel 

emissions based on the Emission Database for Global Atmospheric Research (EDGAR) 2000 

emissions inventory, regional anthropogenic emissions inventories for other years, year-specific 

Global Fire Emissions Database v3 (GFEDv3; van der Werf et al., 2010) biomass burning 

emissions, Asian fossil fuel emissions from the 2006 Intercontinental Chemical Transport 

Experiment (INTEX-B; Zhang et al., 2009) experiment scaled to other years, and biofuels from 

the EPA/NEI99 over the U.S. Lightning NOx emissions are also included (Allen et al., 2010). 

3.6: Agglomerative Hierarchical Cluster Analysis 

  An agglomerative hierarchical cluster analysis was applied to the P-3B O3 and NO2 

profiles for each campaign, following the approach of Hains et al., 2008. Any type of statistical 

cluster analysis seeks to group together objects with the smallest differences, such that objects (in 

this case, the difference Dij between profiles, as defined below) within one cluster are more 

similar to each other than to objects within different clusters. Agglomerative hierarchical cluster 

analysis initially treats each object as its own cluster, and would continue to cluster until all 
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objects are grouped into a single cluster. A combination of a statistical criterion and manual 

inspection is required to determine a meaningful number of clusters.  

  As in Hains et al. (2008), the O3 or NO2 mixing ratio data for an individual profile were 

first averaged into altitude layers of 100 m, then grouped into altitude bins covering larger depths. 

Only the profiles that covered the full altitude range for each campaign were included in this 

analysis; it should be noted that all altitude data are above mean sea level (AMSL). Hains et al. 

(2008) employed the following equations to quantify the difference Dij between profiles i and j 

within each profile pair, which are also employed in this work: 

𝐷'N 1 = [ 𝑎𝑏𝑠(𝐶'(𝑎) − 𝐶N(𝑎))]VL;
VL*

%                                                                                                                     (3.3) 
𝐷'N 2 = 1 + 1 − 𝑟                                                                                                                    (3.4) 
𝐷'N 3 = 1 − exp	[− 𝑠 − 1 %]                                                                                                    (3.5) 
𝐷'N = 	 []L^

]L* 𝐷'N(1) ∗ (𝐷'N(2) + 𝐷'N(3))]                                                                                                                            (3.6)                                                                                      
 
where k is the index for the b altitude bins, a is the index for the n altitude layers within a bin, C is 

the mixing ratio for the ith and jth profiles, r is the correlation coefficient for each pair of profiles 

within each of the k bins, and s is the slope between each profile pair within a bin. The correlation 

coefficient and slope were obtained from a regression analysis between each profile pair within 

each bin. These differences Dij represent the total difference between magnitude of the mixing 

ratios throughout the altitude range, as well as how much the slope and correlation coefficients 

deviate from unity, thus accounting for how different the profile shapes are at different altitude 

levels (Hains et al., 2008). The objects of the cluster analysis presented here are these Dij values, 

and were clustered with a hierarchical clustering algorithm in the Interactive Data Language 

(IDL). An average linkage method was used to determine the similarity between clusters, in 

which the distance between two clusters was defined as the average difference between the data 

points in the first cluster and the data points in the second cluster. 
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  The optimal number of meaningful clusters was determined with a combination of 

manual inspection and a technique based on total root mean square deviation (TRMSD), as 

described by Taubman et al. (2006). The dendrogram (tree diagram displaying the arrangement of 

cl7usters) produced by the clustering algorithm was initially inspected to determine a reasonable 

maximum number of clusters to consider, before application of the TRMSD technique. In this 

technique, an average profile was calculated for each cluster, and then the root mean square 

deviation (RMSD) of each profile within the cluster from the average cluster profile was 

computed. These RMSD values were then summed over all clusters under consideration to give 

the TRMSD. This TRMSD value was computed first over all clusters initially under consideration 

based on inspection of the dendrogram, and then computed again each time the number of clusters 

was reduced. The percentage change in TRMSD as clusters were condensed was then computed, 

and the optimal number of clusters taken as the number of clusters immediately before a large 

increase (~10%) in TRMSD, with the percentage change remaining relatively high upon further 

agglomeration (Taubman et al., 2006). The member profiles of each cluster obtained with the 

TRMSD technique were also manually inspected to assess the meaningfulness of the algorithm 

results. 

  The above techniques determine the optimum number of meaningful clusters, but do not 

necessarily ensure that each median cluster profile obtained after application of these techniques 

is significantly different from the other median profiles. In other words, each median cluster 

profile shape and relative magnitude at each vertical level may differ from those of the other 

median clusters, but the distribution of magnitudes at each vertical level may overlap, for which 

the clustering algorithm and TRMSD computation do not test. Thus, to determine that a cluster is 

significantly different from the other clusters for a campaign, the cluster median profile must have 
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exhibited at least five consecutive altitude layers in which the 25th and 75th percentile values 

(error bars) did not overlap with those of any other median profile. 

3.7: Shape Factor Computation 

  Model simulated profiles were evaluated relative to the P-3B in situ profiles in terms of 

the O3 or NO2 shape factor, or column relative vertical distribution, for each P-3B cluster. 

Simulated profiles most coincident in time and space to the P-3B profiles included within a 

cluster were sampled, and a median simulated shape factor profile was computed for each cluster 

from both the model and the observations. The shape factors were computed according to Eqn. 

3.1. For both observations and model simulations, the partial columns were computed over the 

depth of each CMAQ or GMI vertical layer; thus, the vertical distribution was computed over the 

model vertical grid, analogously to the shape factors computed from global models used in 

conjunction with satellite retrieval algorithms (Lamsal et al., 2014; Palmer, et al., 2001). It should 

be noted that the CMAQ or GMI tropospheric columns used in this analysis were also computed 

over the P-3B spiral depths only, and so were lower tropospheric column abundances rather than 

full tropospheric columns, to allow for a direct comparison to the P-3B shape factors.  

3.8: Ozone P-3B In Situ Profile Clusters and Comparison to Models 

3.8.1: P-3B Ozone Profile Clusters 

 Figure 3.2a)-d) shows the median profiles of O3 for each of the clusters obtained for each 

of the four DISCOVER-AQ deployments. Clusters containing fewer than four members had too 

few members for a meaningful analysis and are excluded here. To determine that a cluster is 

significantly different from the other clusters for a campaign, the cluster median profile must 

have exhibited at least five consecutive altitude layers in which the error bars did not overlap 

with those of any other median profile. With few exceptions, the median profiles were 
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significantly different only within the planetary boundary layer (PBL), and lost distinction from 

each other within the free troposphere. Based on this significance criterion, the Texas campaign 

(Fig. 3.2c) demonstrated the greatest number of distinct clusters (five), as well as the greatest 

range of mixing ratio values, of all four campaigns. Few clusters were obtained for the California 

and Colorado campaigns (Fig. 3.2b) and Fig. 3.2d), respectively), though these clusters were 

distinct. The Maryland campaign (Fig. 3.2a), however, demonstrated only one significantly 

independent cluster (Cluster 4), unlike the other campaigns. This is contrary to initial 

expectations, and is surprising, given that the largest range in O3 mixing ratio magnitudes within 

the PBL was encountered during the Maryland campaign. However, the clustering algorithm 

considered both mixing ratio magnitude and profile shape, producing the results described in this 

section for Maryland.  
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Fig. 3.2: The median profiles for each in situ O3 profile cluster a) for the Maryland 
campaign; b) for the California campaign c) for the Texas campaign; and d) for the 
Colorado campaign. Cluster numbers displayed in legend, with number of profiles in each 
cluster given in parentheses. Error bars represent 25th and 75th percentile values. 

 These differences in profile variability, as indicated by the number of significant clusters, 

may be due to synoptic conditions favoring or inhibiting O3 formation. For example, the 

California campaign took place during winter, and thus experienced less sunlight and the coldest 

temperatures relative to the other campaigns, which inhibited O3 formation. Though the 

Colorado campaign took place during summer, cooler temperatures were also experienced here 

relative to the other warm season campaigns due to its elevation in addition to more convection 

than initially expected, which also led to some inhibition of O3 formation. Just as importantly, 

the effects of complex terrain may have led to greater horizontal mixing within the study regions 
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during the California and Colorado campaigns, further limiting the variability of the observed O3 

profiles. Plots of the wind fields from the NARR displayed complex interactions of the synoptic 

scale flow with local topography within the San Joaquin Valley during the California campaign 

and within the foothills and plains at the base of the Front Range during the Colorado campaign 

at several pressure levels. For example, along-valley flow or valley circulations were often seen 

due to upslope or downslope flow on opposing sides of the San Joaquin Valley, leading to 

horizontal mixing within the valley (Fig. 3.3). Interactions of downslope flow from the Front 

Range often interacted with northerly or southerly winds over the plains, leading to horizontal 

circulation patterns; these wind flow patterns also changed throughout the course of a day (Fig. 

3.4). On some days, a well-defined upslope flow formed on the east side of the Front Range 

during the daytime, which also influenced pollution profiles. In contrast, the Maryland campaign 

study region was embedded within the synoptic scale flow, which tended to be westerly or 

northwesterly, at most levels, and, due to this, polluted air masses from the Ohio River Valley or 

Great Lakes Region were often transported into the study region (Fig. 3.5). Ozone was thus 

likely the most well mixed vertically and horizontally during the Maryland campaign, 

dampening its profile variability. Wind patterns had less of an impact during the Texas campaign 

than for the other three, suggesting that local chemistry and emissions were much more 

important to O3 profile variability than local meteorology (except for the last two flights). This is 

perhaps due to the more complex chemical environment of the Houston metropolitan area, with 

large, nearby sources of volatile organic compounds (VOCs). 
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Fig. 3.3: NARR wind fields and geopotential height at the 750 mb and 850 mb at 10am PST 
on January 31, 2013, displaying typical circulation patterns within the San Joaquin Valley, 
California. 	
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Fig. 3.4: NARR wind fields and geopotential height at the 700 mb and 800 mb at 9am, 
12pm, and 3pm MDT on August 6, 2014, displaying typical circulation patterns and 
changes in wind flow over Colorado.  
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Fig. 3.5: NARR wind fields and geopotential height at the 750 mb and 850 mb at 11am 
EDT on July 21, 2011, displaying typical westerly flow patterns over Maryland. 	

  Further, differences in profile shapes among clusters for a campaign may be partially 

explained by differences in the atmospheric stability encountered during the P-3B spiral sampling 
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times. Median profiles of potential temperature (θ), an indicator of stability and degree of mixing, 

for each O3 profile cluster are displayed in Figure 3.6a)-d). These potential temperature profiles 

were not themselves clustered, but θ profiles coincident to each O3 profile included within a 

cluster were sampled, and the median θ profile computed for that O3 cluster. Comparison of the 

median θ profile to the median O3 profile for each cluster suggests that θ has an influence on these 

profile shapes for all campaigns; where the θ profile is well mixed within the PBL, the O3 profile 

is also relatively well mixed, and vice versa. For example, during the Colorado campaign, Cluster 

2 demonstrated a more well mixed θ median profile than Cluster 1, corresponding to a well mixed 

O3 median profile (Fig. 3.6d); during the California campaign, Cluster 1 displayed the most well 

mixed θ profile, also corresponding to a well mixed O3 profile (Fig. 3.6b). However, the influence 

of potential temperature was somewhat weaker during the Maryland and Texas campaigns; 

Clusters 3 and 4 exhibited poorly mixed θ profiles (very stable) but relatively well mixed O3 

profiles during the Texas campaign, for example (Fig. 3.6c).    
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Fig. 3.6: The median potential temperature profiles associated with each in situ O3 profile 
cluster a) for the Maryland campaign; b) for the California campaign c) for the Texas 
campaign; and d) for the Colorado campaign. Cluster numbers displayed in legend, with 
number of profiles in each cluster given in parentheses. 	

  Another indicator of stability, the temperature lapse rate (Γ), defined as  

Γ = 	−𝑑𝑇 𝑑𝑧		                                                                                                                     Eqn. (3.7) 

also emerged as an influence on profile shape for all four campaigns. The lapse rate determines 

the static stability of the atmosphere, and is a local property (i.e., stability is not constant for all 

portions of the atmosphere). Thus, the lapse rate of an air parcel determines its buoyancy, and 

thus whether vertical displacement of that parcel is supported or inhibited by the surrounding 

environment. Three stability regimes are possible: if the parcel’s lapse rate is less than the moist 

adiabatic lapse rate (4 K/km), then the local atmosphere is absolutely stably stratified and 
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vertical motion is suppressed; if the lapse rate falls between the moist and dry adiabatic (9.8 

K/km) lapse rates, the local atmosphere is conditionally unstable, and vertical motion depends on 

the parcel’s degree of saturation; and finally, if the lapse rate is equal to or greater than the dry 

adiabatic lapse rate, then the local atmosphere is absolutely unstable. Instability encourages 

vertical motions, which mixes scalar quantities such as potential temperature, water vapor, and 

pollutants and causing more uniform vertical profiles of these quantities. The lapse rate for each 

100 m altitude layer within each O3 profile included within a cluster was first computed, and 

then these lapse rates were separated into boundary layer or free tropospheric lapse rates based 

on the PBL height associated with that O3 profile. The median values and distributions of lapse 

rates within the PBL and free troposphere were then compared for each O3 cluster to determine 

its influence on profile shape; results are displayed in Fig. 3.7a)-d).  

 As expected, clusters that exhibited a larger median boundary layer lapse rate value 

(indicating boundary layers that were more unstable) also exhibited a more well mixed median 

O3 profile, while smaller median PBL lapse rate values (indicating more stable boundary layers) 

were associated with less well mixed O3 profiles; this is consistent with the influence of the 

potential temperature profiles. For each campaign, the PBL or free tropospheric lapse rates were 

often statistically the same among clusters (i.e., overlap of the boxes in Fig. 3.7 representing the 

25th and 75th percentile values), which likely dampens differences in profile shapes among 

clusters within a campaign. Additionally, for some Texas and Colorado clusters (Fig. 3.7b) and 

3.7d), the lapse rates were often statistically the same between the PBL and the free troposphere, 

resulting in smoother median O3 profiles throughout the entire profile depth than seen for the 

Maryland or California campaigns (Fig. 3.7a) and 3.7c). More interesting median O3 profile 

behavior resulted when differences existed between the PBL and free tropospheric lapse rate 
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values that were larger than for the other clusters within a campaign. For example, Clusters 1 and 

2 of the Texas campaign exhibited such large differences between the PBL and the free 

troposphere, resulting in O3 profiles that were well mixed within the PBL and which displayed 

more layered behavior within the free troposphere; the same profile behavior can be seen for 

Cluster 2 of the Maryland campaign. 

 

Fig. 3.7: The median lapse rates and distributions associated with each in situ O3 profile 
cluster, computed separately for the PBL and free troposphere (FT), a) for the Maryland 
campaign; b) for the California campaign c) for the Texas campaign; and d) for the 
Colorado campaign.  

 Lastly, flight date during the campaign and spiral sampling time influence the relative 

magnitudes of the median cluster profiles for the California (Tables 3.1 and 3.2), Texas (Tables 
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3.3 and 3.4), and Colorado (Tables 3.5 and 3.6) campaigns. The most polluted median profiles 

were associated with either O3 pollution episodes or campaign periods and sampling times 

conducive to O3 photochemistry. For example, 50.8% of the profiles in Colorado Cluster 1 

occurred during the first campaign period (July 17-21, 2014) and were sampled mainly during 

Spirals 2 and 3 (~11am and ~4pm MDT), while Cluster 2 was sampled mostly during the last 

campaign period (Aug. 6-10, 2014) and during Spirals 1 and 2 (~9am and ~11am MDT); this is 

consistent with Cluster 1 demonstrating greater O3 mixing ratios within the PBL than Cluster 2. 

It should be noted that July often experienced larger surface O3 concentrations than did August 

in Colorado (Mazzuca et al., in prep.).  Likewise, Texas Clusters 1 and 2, the most polluted 

median profiles, contained profiles entirely from the last campaign period (Sept. 24-26, 2013), 

when a pollution episode occurred, and were primarily sampled during Spiral 3 (~2pm CDT). 

Sampling time has a greater influence over the relative cluster magnitudes than campaign period 

for the California campaign, as this campaign took place during the winter. California Cluster 2 

sampled primarily during Spirals 1 and 2 (~8am and ~11am PST), while the most polluted 

Cluster 3 sampled roughly evenly among all three spiral times (~8am, ~11am, and ~1pm PST). 

The Maryland campaign also demonstrated a weak influence of spiral location for Cluster 4: only 

Edgewood and Essex afternoon profiles were included in this cluster, such that some influence of 

the bay breeze may be present. 
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California Campaign 
Campaign Period 

Dates Cluster 2 Cluster 1 Cluster 3 

20130116-20130122 48.6% 0% 56.8% 

20130130-20130206 51.4% 100% 43.2% 

Table 3.1: Percentages of profiles within each cluster that fell within each campaign period, 
as denoted by the Dates column, for the California campaign O3 clusters. Clusters listed 
from left to right in order of least to most polluted. 
 
 
 

California Campaign 
Spiral Sampling Time 

Spiral Cluster 2 Cluster 1 Cluster 3 

Spiral 1 
(~8am PST) 

42.9% 0% 31.8% 

Spiral 2 
(~11am PST) 

40.0% 0 % 31.8% 

Spiral 3 
(~1pm PST) 

17.1% 100% 36.4% 

Table 3.2: Percentages of profiles within each cluster that fell within each spiral sampling 
time, as denoted by the Spiral column, for the California campaign O3 clusters. Clusters 
listed from left to right in order of least to most polluted. 
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Texas Campaign 
Campaign Period 

Dates Cluster 3 Cluster 4 Cluster 5 Cluster 1 Cluster 2 

20130904-20130906 28.6% 21.5% 3.4% 0% 0% 

20130911-20130914 0% 65.8% 49.2% 0% 0% 

20130924-20130926 71.4% 12.7% 47.5% 100% 100% 

Table 3.3: Percentages of profiles within each cluster that fell within each campaign period, 
as denoted by the Dates column, for the Texas campaign O3 clusters. Clusters listed from 
left to right in order of least to most polluted. 

 

 

 

 

Texas Campaign 
Spiral Sampling Time 

Spiral Cluster 3 Cluster 4 Cluster 5 Cluster 1 Cluster 2 

Spiral 1 
(~9am CDT) 

71.4% 43.0% 23.7% 25% 25% 

Spiral 2 
(~12pm CDT) 

21.4% 32.9% 40.7% 25% 0% 

Spiral 3 
(~2pm CDT) 

7.1% 22.8% 35.6% 50% 75% 

Spiral 4 
(~3pm CDT) 

0% 1.3% 0% 0% 0% 

Table 3.4: Percentages of profiles within each cluster that fell within each spiral sampling 
time, as denoted by the Spiral column, for the Texas campaign O3 clusters. Clusters listed 
from left to right in order of least to most polluted. 
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Colorado Campaign 
Campaign Period 

Dates Cluster 2 Cluster 1 

20140717-20140721 28.7% 50.8% 

20140728-20140803 30.7% 42.9% 

20140806-20140810 40.6% 6.3% 
Table 3.5: Percentages of profiles within each cluster that fell within each campaign period, 
as denoted by the Dates column, for the Colorado campaign O3 clusters. Clusters listed 
from left to right in order of least to most polluted. 

 

 

Colorado Campaign 
Spiral Sampling Time 

Spiral Cluster 2 Cluster 1 

Spiral 1 
(~9am MDT) 

55.4% 26.9% 

Spiral 2 
(~11am MDT) 

39.6% 33.3% 

Spiral 3 
(~4pm MDT) 

4.9% 39.7% 

Table 3.6: Percentages of profiles within each cluster that fell within each spiral sampling 
time, as denoted by the Spiral column, for the Colorado campaign O3 clusters. Clusters 
listed from left to right in order of least to most polluted. 

 Airmass origin, as revealed by HYSPLIT back trajectories, also influenced the relative 

magnitudes for the Maryland (Table 3.7) and Colorado campaigns (Tables 3.8-3.12). Maryland 

Cluster 4, the most polluted within the PBL and the only significant Maryland cluster, contained 

profiles whose corresponding back trajectories originated over the polluted Northwest 

Canada/Great Lakes region at all altitude levels between 500 m and 2500 m; the less polluted 
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clusters included back trajectory origins over less polluted regions, such as northern Canada, at 

all levels. The Colorado profile back trajectories associated with Cluster 1 (most polluted) 

demonstrated larger percentages of air recirculated over the Denver-Boulder region, thus 

recirculating urban pollution, than did Cluster 2. Though airmass origin did not emerge as a 

significant influence on the California cluster magnitudes, it is interesting to note that the back 

trajectories emphasized recirculation within the San Joaquin Valley, which is consistent with the 

NARR plots demonstrating significant valley recirculation and horizontal mixing during this 

campaign. 

 

 

Maryland Campaign 
HYSPLIT Back Trajectories 

Airmass Origin Cluster 1 Cluster 2 Cluster 3 Cluster 5 Cluster 6 Cluster 4 

N. Canada 54.2% 27.3% 20% 11.1% 7.7% 0% 

NW Canada/Great 
Lakes 

0% 0% 10% 25.9% 0% 100% 

Long Range 
Transport 

16.7% 27.3% 0% 7.4% 7.7% 0% 

Ohio River 
Valley/Westerly 

Flow 

25% 45.5% 70% 46.3% 84.7% 0% 

Table 3.7: Percentages of profiles within each cluster that fell within each Airmass Origin 
Category, based on HYSPLIT back trajectory clusters, for the Maryland campaign O3 
clusters. Clusters listed from left to right in order of least to most polluted. HYSPLIT back 
trajectories initiated at all vertical levels included. Percentages computed as percentage of 
profiles included within a profile cluster that fell within each HYSPLIT cluster. Note that 
percentages in each column may not total to 100%, as some profiles included in the profile 
clusters may have been rejected by the HYSPLIT back trajectory clustering algorithm. 
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Colorado Campaign 
HYSPLIT Back Trajectories at 500 m 

Airmass Origin Cluster 2 Cluster 1 

Northerly Flow 12.9% 19.0% 

Southwesterly Flow 29.7% 23.8% 

Local Recirculation 22.7% 52.4% 

Westerly Flow 1.9% 0% 

Table 3.8: Percentages of profiles within each cluster that fell within each Airmass Origin 
Category, based on HYSPLIT back trajectory clusters, for the Colorado campaign O3 
clusters. Clusters listed from left to right in order of least to most polluted. HYSPLIT back 
trajectories initiated at 500 m vertical level only. Percentages computed as percentage of 
profiles included within a profile cluster that fell within each HYSPLIT cluster. Note that 
percentages in each column may not total to 100%, as some profiles included in the profile 
clusters may have been rejected by the HYSPLIT back trajectory clustering algorithm. 

 

Colorado Campaign 
HYSPLIT Back Trajectories at 1000 m 

Airmass Origin Cluster 2 Cluster 1 

Northerly Flow 22.8% 15.9% 

Southwesterly Flow 37.6% 42.9% 

Local Recirculation 11.9% 38.1% 

Westerly Flow 1.9% 0% 

Table 3.9: Percentages of profiles within each cluster that fell within each Airmass Origin 
Category, based on HYSPLIT back trajectory clusters, for the Colorado campaign O3 
clusters. Clusters listed from left to right in order of least to most polluted. HYSPLIT back 
trajectories initiated at 1000 m vertical level only. Percentages computed as percentage of 
profiles included within a profile cluster that fell within each HYSPLIT cluster. Note that 
percentages in each column may not total to 100%, as some profiles included in the profile 
clusters may have been rejected by the HYSPLIT back trajectory clustering algorithm. 
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Colorado Campaign 
HYSPLIT Back Trajectories at 1500 m 

Airmass Origin Cluster 2 Cluster 1 

Northerly Flow 9.9% 11.1% 

Southwesterly Flow 32.7% 23.8% 

Westerly Flow 3.9% 11.1% 

Local Recirculation 25.7% 44.4% 

Table 3.10: Percentages of profiles within each cluster that fell within each Airmass Origin 
Category, based on HYSPLIT back trajectory clusters, for the Colorado campaign O3 
clusters. Clusters listed from left to right in order of least to most polluted. HYSPLIT back 
trajectories initiated at 1500 m vertical level only. Percentages computed as percentage of 
profiles included within a profile cluster that fell within each HYSPLIT cluster. Note that 
percentages in each column may not total to 100%, as some profiles included in the profile 
clusters may have been rejected by the HYSPLIT back trajectory clustering algorithm. 

 

Colorado Campaign 
HYSPLIT Back Trajectories at 2000 m 

Airmass Origin Cluster 2 Cluster 1 

Northerly Flow 28.7% 12.7% 

West-northwesterly Flow 23.8% 36.5% 

Local Recirculation 16.8% 42.9% 

Table 3.11: Percentages of profiles within each cluster that fell within each Airmass Origin 
Category, based on HYSPLIT back trajectory clusters, for the Colorado campaign O3 
clusters. Clusters listed from left to right in order of least to most polluted. HYSPLIT back 
trajectories initiated at 2000 m vertical level only. Percentages computed as percentage of 
profiles included within a profile cluster that fell within each HYSPLIT cluster. Note that 
percentages in each column may not total to 100%, as some profiles included in the profile 
clusters may have been rejected by the HYSPLIT back trajectory clustering algorithm. 
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Colorado Campaign 
HYSPLIT Back Trajectories at 2500 m 

Airmass Origin Cluster 2 Cluster 1 

Northerly Flow 26.7% 12.7% 

West-northwesterly Flow 24.8% 46.0% 

Local Recirculation 19.8% 38.1% 

Table 3.12: Percentages of profiles within each cluster that fell within each Airmass Origin 
Category, based on HYSPLIT back trajectory clusters, for the Colorado campaign O3 
clusters. Clusters listed from left to right in order of least to most polluted. HYSPLIT back 
trajectories initiated at 2500 m vertical level only. Percentages computed as percentage of 
profiles included within a profile cluster that fell within each HYSPLIT cluster. Note that 
percentages in each column may not total to 100%, as some profiles included in the profile 
clusters may have been rejected by the HYSPLIT back trajectory clustering algorithm. 

3.8.2 P-3B Ozone Profile Cluster Correlations 

 Values of R2 from the simple linear regression analyses between surface mixing ratio and 

column abundance data for each profile cluster (cluster correlations) are summarized in Tables 

3.13-3.14 for the Maryland and California campaigns. The Texas and Colorado campaigns did 

not produce statistically significant cluster correlations (i.e., R2 not statistically different from 

0.0) and so are not included in the tables. The column-surface correlations over the full set of 

profiles used with the hierarchical cluster analysis (full correlations) are also included in Tables 

3.13-3.14. Representative scatter plots are displayed in Fig. 3.8a)-d). It should be noted that 

clusters containing fewer than five members contained too few members for a meaningful 

analysis and are excluded here. The California, Texas, and Colorado campaigns yielded very few 

statistically significant correlations, while the Maryland campaign yielded many significant and 

large cluster correlations. It is also notable that, for each cluster during each campaign, the 

column_air and column_ground correlation analyses typically yielded R2 values that were 
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statistically the same, despite the different gap-filling methods (and inherent assumptions about 

the strength of boundary layer mixing in these methods) used in the column computations. This 

similarity in R2 values indicates that O3 remained generally well mixed horizontally and 

vertically in the lower troposphere during each campaign, consistent with the findings of Flynn 

et al. (2014) for the Maryland campaign. 

 

Fig. 3.8. Representative scatter plots for the O3 column-surface correlations a) for the 
Maryland campaign; b) for the California campaign c) for the Texas campaign; and d) for 
the Colorado campaign. R2 values for the column_air and column_ground correlations 
displayed in the legends.	

 

 

Maryland 
California 

Texas Colorado 

a)	
b)	

c)	 d)	
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Maryland Campaign O3 Correlations 

Cluster Number Column_Air R2 Column_Ground R2 

1 0.53 0.57 

2 0.87 0.88 

3 0.24 0.34 

4 N.S. N.S. 

5 0.14 0.23 

6 N.S. 0.36 

Full 0.71 0.74 

Table 3.13: R2 values for the correlation between column and surface data for each O3 
profile cluster of the Maryland campaign. Cluster correlations denoted in red font indicate 
clusters that were statistically significantly different from the full correlation. 
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California Campaign O3 Correlations 

Cluster Number Column_Air R2 Column_Ground R2 

1 -- -- 

2 N.S. N.S. 

3 0.15 0.19 

Full 0.08 0.11 

Table 3.14: R2 values for the correlation between column and surface data for each O3 
profile cluster of the California campaign. No clusters presented a statistically different 
correlation from the full correlation. 

 Differences in degree of correlation between the Maryland campaign and the others 

campaigns may be due again to the season in which the campaign took place, as well as the 

vertical wind shear of the large-scale flow over each study region. Wintertime stagnation during 

the California campaign interfered with the column-surface connection, as O3 could not be mixed 

vertically as efficiently as for convective boundary layers, while the Colorado campaign did not 

experience convective boundary layers as deep as for Maryland or Texas. The California and 

Colorado campaigns also experienced changes in wind direction and circulation patterns with 

height, as indicated by the NARR wind fields at several pressure levels, discussed previously. 

Air was transported from different source locations at different heights, rather than simply being 

mixed in the vertical, further interfering with the column-surface connection. Again in contrast, 

as Maryland experienced similar wind patterns at most levels and deep, convective boundary 

layers, O3 was most well mixed horizontally and vertically during this campaign relative to the 

other three campaigns, allowing for greater connection between column and surface. Texas was 
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in a complex chemical environment, such that O3 production was much more localized, as 

evidenced by its low correlation with CO over all profiles included in the clustering analysis 

(Fig. 3.9). 

	

Fig. 3.9: Correlation plot of in situ CO vs. O3 over the spiral depths of the profiles included 
in the clustering analysis for the Texas campaign. 	

  These cluster correlations were also compared to the full correlation for the Maryland 

(Table 3.13) and California (Table 3.14) campaigns. As the Texas and Colorado full correlations 

were not themselves significant, the cluster correlations were statistically the same as the full 

correlations. Neither California Cluster 2 nor Cluster 3 was found to be statistically significantly 

different from the full correlation at a confidence level of 95% for both column analyses (Table 

3.14). This indicates that no correlation analysis for this campaign was greater than zero. 

However, half of the Maryland clusters (Cluster 3, 5, and 6; Table 3.13) were significantly 
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smaller than the full correlation for both analyses; the Cluster 1, 2, and 4 correlations were not 

significantly different from the full correlation analyses (which also presented a high degree of 

correlation). It is notable that the median profiles associated with Clusters 1 and 2 were well 

mixed within the PBL, whereas those for Clusters 3, 5, and 6 were less well mixed and presented 

more vertical variation within the PBL. Thus, the column-surface correlation for these clusters 

degraded relative to those for the well mixed Clusters 1 and 2 and the full correlations under 

conditions of inhibited vertical mixing. This is also consistent with the results for the California 

campaign: the Cluster 2 median profile was less well mixed than that for Cluster 3, though neither 

profile could be considered well mixed. The Maryland Cluster 4 correlation presents an 

exception: this cluster contained only five profiles, fewer than any other Maryland cluster, that 

may have been influenced by the bay breeze, causing an interruption in the column-surface 

connection. 

  The results presented above provide a mixed message for the ability to relate satellite O3 

column observations to surface mixing ratios. The complex meteorological or chemical 

conditions encountered during the Colorado or Texas campaigns indicate that satellite 

observations of lower tropospheric column O3 may not be useful for estimating surface ozone 

under such conditions. Because the correlations for each cluster and the full correlation analyses 

were essentially null during the California campaign, this suggests that it matters little if the 

satellite retrieval correctly approximates the O3 profile, as the stagnant conditions still prevent 

there being a connection between column and surface data. The Maryland campaign also 

indicated degraded column-surface correlation under conditions of poorer vertical mixing, as 

indicated by the median O3 and potential temperature profiles for Clusters 3, 5, and 6. However, 

the correlation analyses suggest that satellites may have the best chance to relate to surface ozone 
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under the conditions encountered during the Maryland campaign Clusters 1 and 2, which include 

deep, convective boundary layers and few interruptions to this connection from complex 

meteorology, chemical environments, or orography.  

3.8.3: Ozone Shape Factor Comparisons to CMAQ and GMI 

  As with the potential temperature median profiles for each cluster, the CMAQ- and GMI-

simulated O3 and NO2 mixing ratio profiles coincident to each observed profile within a cluster 

were sampled, and the median shape factor then computed for each model and each cluster. 

CMAQ well captured the shapes of the median P-3B shape factor profiles for most clusters in 

each campaign. Shape factors were compared in this analysis because these are used in remote 

sensing retrievals, rather than mixing ratio profiles; such a comparison elucidates potential 

implications of model errors for retrievals. Representative comparison plots are displayed in Fig. 

3.10a)-d). Interestingly, CMAQ reproduced the complex vertical behavior of the Colorado 

median shape factor profiles, though CMAQ also performed well relative to the P-3B during the 

other three campaigns. However, the model placed the upper PBL peak shape factor value 

approximately 0.5 km above the observed peak within the PBL for many clusters, indicating that, 

while reproducing the shapes of the median shape factor profiles, CMAQ placed a greater portion 

of the O3 column higher in the vertical than seen in the observations during each campaign. This 

is particularly evident for the Texas and Colorado comparison plots in Fig. 3.10c) and d), and 

suggests that vertical mixing may be overestimated within the model, as O3 is a relatively long-

lived gas within the PBL. Additionally, CMAQ generally displayed a slight low bias in shape 

factor values within the PBL and a slight high bias within the free tropospheric portions of the 

shape factors relative to the P-3B for the Maryland, California and Texas campaigns, and bias 
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direction varying with altitude during the Colorado campaign. This further indicates that CMAQ 

placed a greater portion of the O3 column higher in the vertical than seen in the observations. 

  CMAQ well captured the magnitudes of P-3B O3 shape factors for all clusters during the 

California campaign and for Clusters 1-3 and 5 of the Maryland campaign, with R2 values of 0.80 

and larger (Fig. 3.11a)-b), when correlating CMAQ and observed shape factor profile values for 

individual model layers across all shape factors within a cluster. However, CMAQ moderately 

well captured the shape factor values for all clusters during the Texas and Colorado (Fig. 3.11c)-

d) campaigns, and Clusters 4 and 6 of the Maryland campaign, with R2 values between 0.50 and 

0.80. It is notable that Maryland Cluster 4 contained profiles only from Edgewood and Essex, and 

that Cluster 6 contained a large percentage of profiles from Essex. These were the two most 

polluted median cluster profiles, with PBL mixing ratio values of approximately 80 ppbv or 

higher; in agreement with this, Texas Clusters 1 and 2, with median profile PBL mixing ratio 

values in excess of 80 ppbv, also displayed the lowest R2 values for that campaign. Thus, CMAQ 

was less able to capture the magnitudes of the shape factors for very polluted profile clusters, and 

for the two campaigns with complex pollution or meteorological conditions (Texas and Colorado, 

respectively). This further suggests that CMAQ best captured the O3 column relative vertical 

distribution under conditions that were unfavorable to O3 photochemical production (California 

campaign), or under conditions of moderate pollution (Maryland Clusters 1-3 and 5). However, 

the scatter plots presented in Fig. 3.11 (each scatter plot features five altitude ranges, which were 

chosen to provide one altitude range for the lowermost PBL spiral altitudes, two altitude ranges 

for the mid-PBL, one altitude range for the upper PBL/lower free troposphere, and one altitude 

range for the uppermost spiral altitudes in the free troposphere) also indicate that CMAQ often 

under- or overpredicted the magnitudes of the shape factors relative to the P-3B. CMAQ tended to 
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overpredict at many vertical levels during the California campaign (Fig. 3.11b), with the 

exceptions of the 600-1200 m AMSL altitude ranges, which corresponded to the upper PBL and 

lower free troposphere. Remote sensing retrievals are more sensitive to the upper PBL/lower free 

troposphere altitude region than near the surface (as determined by the scattering weights), such 

that errors in the shape factor in this region relative to other altitudes lead to greater retrieval 

errors. Like the median cluster shape factor profiles, this overprediction in the lower PBL and in 

the upper PBL/lower free troposphere suggests that CMAQ placed too much of the O3 column 

burden within fewer vertical layers (the lower PBL and near the tops of the California P-3B 

spirals). In contrast, during the Maryland campaign, CMAQ tended to underpredict in the lower 

PBL (300-800 m AMSL) and less often overpredicted above 2000 m AMSL (free troposphere), 

and compared well to the P-3B shape factor values in the middle portions of the shape factor 

profiles (800-2000 m AMSL; Fig. 3.11a). Such underprediction within the lowest PBL portions of 

the Maryland shape factors, with some compensating overprediction at higher altitudes, again 

suggests that CMAQ placed too much of the O3 column burden within fewer vertical layers than 

seen in the observations. The scatter plots for the Colorado campaign (Fig. 3.11d) are consistent 

with the model biases suggested by the median shape profiles: CMAQ demonstrated 

underprediction within the lower PBL (below 2500 m AMSL, or below 1000 AGL) and within 

the highest spiral altitudes (above 4000 m AMSL or 2500 m AGL), and overprediction for 

altitudes between 2500-4000 m AMSL. The values of reduced chi squared, given in the legends in 

each plot in Fig. 3.11, demonstrate the impact of these over- and underpredictions on the ability of 

CMAQ to capture the P-3B O3 shape factor values: the simulated and observed magnitudes are 

correlated for most clusters for each campaign, and clearly demonstrate a linear relationship, but 

the large errors associated with the under- and overpredicted values lead to large regression errors 
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and so larger reduced chi squared values. These results and those comparing the median shape 

factors profiles are encouraging that a regional air quality model such as CMAQ may be able to 

replicate the shape factors during winter, when photochemical O3 production is inhibited 

(California), and the moderate pollution conditions associated with the Maryland campaign 

Clusters 1-3 and 5. 

   Additionally, the CMAQ and P-3B CO shape factor magnitudes associated with each O3 

profile cluster were compared as a preliminary investigation of the errors in simulated vertical 

mixing and the impact of those errors on the simulated O3 shape factors (Fig. 3.12). Errors in the 

simulated O3 shape factors due to erroneous simulated vertical mixing are in addition to errors in 

the emissions used to drive CMAQ and in the chemical mechanism employed in the model. 

Indeed, errors in emissions and chemistry in air quality models have been extensively studied 

using observations over the eastern U.S. For example, Anderson et al. (2014) demonstrated that 

NOx emissions were overestimated within the NEI by 51-70% in Maryland, relative to 

observations from the Maryland DISCOVER-AQ deployment, while CO emissions within the 

NEI were much more accurate (average overprediction of 15%). Building upon this work, Canty 

et al. (2015) and Goldberg et al. (2016) examined the impact of updated emissions (mobile NOx 

emissions reduced by 50%), as well as changes to the chemical mechanism, on simulations with 

CMAQ and the Comprehensive Air Quality Model with Extensions (CAMx), respectively. Canty 

et al. (2015) demonstrated that CMAQ underestimated the NO2 column over rural areas of the 

eastern U.S. and overestimated over urban areas, relative to OMI NO2 tropospheric vertical 

column observations. After implementing a 50% reduction in mobile NOx emissions, a reduction 

of the lifetime of alkyl nitrates in the chemical mechanism from ~10 days to ~1 day, and updates 

to the biogenic emissions module within CMAQ to better represent isoprene emissions, the 
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simulated urban/rural NO2 column ratio improved relative to the same ratio in the OMI 

observations. Goldberg et al. (2016) implemented the same improvements as Canty et al. into 

CAMx, as well as increases to the dry deposition velocities of isoprene nitrates, which resulted in 

improved representations of formaldehyde and NOy mixing ratio magnitudes over the depth of the 

P-3B spirals in the model, relative to the Maryland campaign observations. These works 

demonstrate the clear importance of accurate emissions and chemistry within air quality 

simulations, and demonstrate impacts of such errors on the magnitude of the simulated O3 and 

NO2 profiles (and thus potentially on the shape factors). However, the impact of erroneous 

vertical mixing on the simulated shape factors is the focus of this section, as Chapter 2 

demonstrated that overestimated vertical mixing within CMAQ may have led to greater column-

surface correlation within the model relative to the observations for the Maryland campaign; this 

is consistent with other works which suggested that vertical mixing within the PBL was too fast 

relative to observations within CMAQ (Castellanos et al., 2011). 

  The CO comparisons for the Maryland campaign demonstrated the clearest case of 

overestimated vertical mixing of all four deployments (Fig. 3.12a). As with the O3 shape factors, 

the CO shapes factors were underestimated within the lowermost portion of the profiles (below 

1200 m AMSL), with the bias direction transitioning through the middle altitude range of the 

profiles, leading to general overestimation of the CO shape factor values in the upper PBL and 

lower free troposphere (1600 m AMSL and above). As CO is a long-lived chemical species 

(much longer than the time scale of turbulent mixing in the PBL; Zhang et al., 2016), with 

emissions dominated by surface sources, underestimation in the lower simulated shape factor 

profile and overestimation aloft suggests that the model mixed too much CO into the upper 

portions of the profiles, and thus likely over-mixed other pollutants such as O3. This is consistent 
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with the results of Chapter 2. The California clusters also suggested overly vigorous vertical 

mixing relative to the observed CO shape factors. The simulated CO shape factor values tended to 

be overestimated throughout most of the PBL (50-900 m AMSL), transitioning to a lack of 

preferred bias direction above 900 m. This is consistent with the overestimation of the O3 shape 

factors below 600 m. However, as the depth to which the CO shape factors were overestimated 

extends further than the depth to which the O3 values were overestimated, this suggests that, while 

errors in vertical likely caused errors in the O3 column vertical distribution, vertical mixing may 

have played less of a role than for the Maryland campaign. In contrast, the CO comparisons for 

the Colorado campaign suggest that vertical mixing may have been underestimated relative to the 

observations, and that CO emissions may have been overestimated; simulated CO shape factor 

values were overestimated below 2500 m AMSL (1500 m AGL), and tended to be underestimated 

throughout the remainder of the profile depth. This is does not correspond to the underestimated 

O3 shape factor values below 2500 m and above 4500 m AMSL, with overpredicted O3 between 

these altitude ranges. Vertical mixing may have exerted the least influence on column values 

during the Colorado campaign, relative to the other three campaigns, due to complex circulations 

such as the Denver cyclone or the mountain solenoidal circulations that models struggle to 

replicate.   
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Fig. 3.10: Representative shape factor comparison plots for CMAQ vs. P-3B for O3 a) for 
the Maryland campaign; b) for the California campaign, c) for the Texas campaign; d) for 
the Colorado campaign. Computed on CMAQ vertical grid. All altitudes are AMSL. 
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Fig. 3.11: Representative shape factor comparison scatter plots of modeled and observed 
shape factor values for CMAQ and the P-3B for O3 a) for the Maryland campaign Cluster 
1; b) for the California campaign Cluster 2, c) for the Texas campaign Cluster 3; d) for the 
Colorado campaign Cluster 1. Computed on CMAQ vertical grid. Scatter plots colored by 
altitude layers (AMSL) with legend in bottom right displaying the altitude layer ranges for 
each campaign. Example uncertainty bars also displayed in black for one point; 
uncertainty for P-3B taken from uncertainty of observed shape factors while uncertainty 
for CMAQ taken as the standard deviation over the simulated shape factors. 
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  The GMI median shape factors were also computed for each cluster of the Maryland and 

California campaigns (Fig. 3.12a)-b). GMI well captured the altitude variation of the O3 shape 

factor profiles for both campaigns, indicating that this global model captured the relative O3 

vertical distributions. However, unlike CMAQ, GMI tended to display a low bias in shape factor 

c)	
Fig. 3.12: Representative shape factor 
comparison scatter plots of modeled 
and observed shape factor values for 
CMAQ and the P-3B for CO 
associated with each O3 profile cluster 
a) for the Maryland campaign Cluster 
1; b) for the California campaign 
Cluster 2, c) for the Colorado 
campaign Cluster 1. Computed on 
CMAQ vertical grid. Scatter plots 
colored by altitude layers with legend 
in bottom right displaying the altitude 
layer ranges for each campaign. 
Example uncertainty bars also 
displayed in black for one point; 
uncertainty for P-3B taken from 
uncertainty of observed shape factors 
while uncertainty for CMAQ taken as 
the standard deviation over the 
simulated shape factors.	
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values within the lowermost PBL and a high bias within the mid-PBL, with the preferred bias 

direction changing for each cluster within the free tropospheric portion of the shape factor 

profiles, indicating that GMI did not mix O3 as high in the vertical as in the observations and 

placed too much of the O3 column burden within the PBL and lower portions of the profiles. 

Comparisons of observed and GMI-simulated CO shape factors (Fig. 3.13) typically display 

overestimates in CO shape factor magnitudes between 800 m and 1600 m for the Maryland 

campaign, and 300-900 m for the California campaign (the middle portion of the PBL for each 

campaign), with underestimates in the lowermost PBL. This suggests that mixing into the middle 

portion of the PBL from the lowermost profile is overestimated in GMI for both campaigns, 

though not as severely as for CMAQ. A global CTM such as GMI likely also suffers from similar 

deficiencies in emissions estimates and in the simulated chemical mechanisms as described for 

regional models by Canty et al., Anderson et al, and Goldberg et al. Such errors would also 

impact the simulated shape factors, though vertical mixing remains the focus of this analysis. 

GMI performed similarly well as CMAQ for each campaign relative to the P-3B O3 cluster 

median shape factors, while CMAQ was also able to capture the vertical structure of the Colorado 

campaign shape factors to some extent. This implies that a regional model may be able to estimate 

O3 shape factors accurately enough for use in remote sensing retrieval algorithms. It is also 

initially surprising that a global model performed well relative to the observations just as the 

regional model did; however, this may be explained by the vertical resolutions of both models, 

particularly within the lowermost 2 km AGL of the shape factors. The vertical resolution of 

CMAQ varied with campaign, as described previously, though CMAQ contained at least 13 

layers within the lowermost 2 km; the Texas campaign contained 18 layers within the lowermost 

2 km. In contrast, GMI contained only 13 layers for both the Maryland and California campaigns 
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within the lowest 2 km AGL, a coarser resolution than most CMAQ grids. Computing the P-3B 

shape factors on the GMI vertical grid, rather than the CMAQ grid or some other vertical 

resolution, likely smoothed out some of the variability within the observations, thereby improving 

the ability of the global model to capture the shape factors. This speaks further to the potential 

better ability of CMAQ ozone profiles to perform well within retrieval algorithms, as CMAQ 

does not smooth out as much variability as GMI and yet still produced realistic profiles that 

compared well with the P-3B. 

 GMI moderately well captured the P-3B O3 shape factor values for all clusters during the 

California campaign, and for Clusters 1-3 during the Maryland campaign (Fig. 3.14a)-b). Values 

of R2 for the correlation between P-3B and GMI shape factor values ranged between 0.60 and 

0.90. However, GMI compared more poorly for Clusters 4-6 of the Maryland campaign, with R2 

values less than 0.60 (Fig. 3.14c-d). The values of reduced chi squared also support these results; 

as the relationship between the simulated and observed shape factor values departed from 

linearity (such as in Fig. 3.14b), the value of reduced chi squared increased, reflecting the greater 

errors associated with the over- and underpredictions that caused the relationship to depart from 

linearity. The contrast in performance for these two groups of clusters is again explained by the 

difference in degree of pollution for the cluster median in situ profiles: Maryland Clusters 4-6 

were more polluted than Maryland Clusters 1-3 and all California clusters, with median PBL 

mixing ratios greater than 65 ppbv. This suggests that GMI performed better for clean to 

moderately polluted conditions. The scatter plots for GMI vs. P-3B shape factor values 

demonstrate that GMI often underpredicted the shape factor values within the lowermost 

portions of the profiles, while above this altitude range, GMI well predicted or slightly 

overpredicted the shape factor values relative to the P-3B; GMI again demonstrated a tendency 
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to underpredict in the lower free troposphere during the Maryland campaign and overpredict 

during the California campaign It is these underpredictions of small shape factor values that 

likely drive down the correlations between simulated and observed shape factors. These altitude 

biases coupled with the smooth median shape factor profiles indicate that the GMI relative O3 

vertical distributions were too homogeneous relative to the observations, as GMI placed more of 

the O3 column burden approximately evenly within the PBL and the lower free troposphere than 

seen in the observations, causing GMI to underpredict the O3 distribution within most of the free 

tropospheric portions of the profiles. The global GMI model is thus less adequate than CMAQ to 

accurately simulate the lower tropospheric O3 shape factors.  

Fig. 3.13: Representative shape factor comparison plots for GMI vs. P-3B for O3 a) for the 
Maryland campaign; b) for the California campaign. Computed on GMI vertical grid.	
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Fig. 3.14: Shape factor comparison scatter plots for O3 and CO of model bias values for 
GMI vs. P-3B for scatter plot for the Maryland campaign Cluster 6 and 2; and for the 
California campaign Cluster 2. Computed on GMI vertical grid. Scatter plots colored by 
altitude layers with legend in bottom right displaying the altitude layer ranges for each 
campaign. Example uncertainty bars also displayed in black for one point; uncertainty for 
P-3B taken from uncertainty of observed shape factors while uncertainty for GMI taken as 
the standard deviation over the simulated shape factors.	

3.9: Nitrogen Dioxide P-3B In Situ Profile Clusters and Comparison to Models 

3.9.1: P-3B NO2 Profile Clusters  

	 The median profiles for the P-3B NO2 clusters are displayed in Fig. 3.15a)-d). The 

Maryland campaign produced the greatest number of NO2 clusters, though none of these were 
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significant (i.e.; all median profiles were statistically the same; Fig 3.15a). The Texas campaign 

also produced a large number of clusters yet only two significant clusters, each containing only 

one profile; all other clusters were statistically the same (Fig. 3.15c). These results indicate that 

the NO2 profiles displayed relatively uniform behavior during these two campaigns, which may 

be expected given that these were warm season campaigns and flights were generally conducted 

on sunny days with convective boundary layers and with conditions conducive for O3 

production. On the other hand, all three clusters obtained for the California and Colorado 

campaigns were significant (Figs. 3.15b) and 3.15d). Distinction among clusters was again found 

only within the PBL rather than the free troposphere, suggesting influence of both chemistry and 

vertical mixing on NO2 profile shapes. However, as Cluster 1 contained the vast majority of 

profiles, the Colorado results again indicate that the NO2 profiles displayed relatively uniform 

behavior throughout the campaign period; only the California campaign indicated any NO2 

profile variability. The largest ranges of mixing ratio values were also encountered during the 

California campaign. The uniqueness of the California NO2 profile clusters may have been due 

to the inhibited O3 formation during this campaign; less NO2 was converted to O3 during the day, 

allowing a greater variation in profile shapes than the other three summer campaigns, in which 

NO2 was more rapidly converted to O3 during the day. The significant Texas and Colorado 

clusters may be considered as outliers, as they each contained few profile members. No clear 

meteorological conditions emerged as influences on the NO2 clusters, further indicating that NO2 

profile variability is influenced by photochemical loss of NO2 as well as vertical mixing, as may 

be expected given its short lifetime; this result is consistent with Zhang et al. (2016), which 

found that the observed NOx vertical gradient during the Maryland campaign is sensitive to both 

chemistry and boundary layer mixing.  
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Fig. 3.15: The median profiles for each in situ NO2 profile cluster a) for the Maryland 
campaign; b) for the California campaign c) for the Texas campaign; and d) for the 
Colorado campaign. Cluster numbers displayed in legend, with number of profiles in each 
cluster given in parentheses. Error bars represent 25th and 75th percentile values.	

3.9.2: P-3B NO2 Profile Cluster Correlations 

 Values of R2 from the simple linear regression analyses between surface mixing ratio and 

column abundance for each profile cluster during the California and Texas campaigns that 

presented a statistically significant correlation (i.e., statistically significantly different from 0.0) 

are summarized in Table 3.15. The remainder of the Texas and California clusters, as well as 
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Maryland and Colorado clusters, did not produce significant correlations, and are not 

summarized in the tables. Representative scatter plots are shown in Fig. 3.15a)-d). Again, 

clusters containing fewer than five members are excluded here. Flynn et al. (2014) demonstrated 

that, for NO2, the column_air estimate better represented the “true” lower tropospheric column 

than did the column_ground estimate during the Maryland campaign; thus, only the column_air 

correlations will be analyzed here. Much fewer NO2 cluster correlations were significant than for 

the O3 clusters across all campaigns, which is not unexpected given that NO2 is generally less 

well mixed than O3. No cluster correlations were significantly different from the full correlations 

for the Maryland, Texas, and Colorado campaigns; only the California Cluster 3 correlation was 

significantly smaller than the full correlation (as it was not a significant correlation). 

 It is also notable that California Cluster 2 presented a significant, albeit low, correlation, 

and was not significantly different from the full correlation for California (which was itself 

statistically significant). The key differences here between California Cluster 2 and Cluster 3 

discussed above may lie in the differences in the shapes of the median cluster profiles. California 

Cluster 2 displayed a more well mixed NO2 profile, in which NO2 mixing ratios decreased less 

sharply in the PBL, than did Cluster 3. In contrast, Cluster 3 displayed a much smoother, 

exponential decay profile shape, indicative of a less well mixed profile and more stable 

atmospheric conditions. Cluster 3 also displayed an increase in NO2 mixing ratios within the 

lowermost portion of the profile not present in the Cluster 2 profile. This comparison in median 

profile shapes is consistent with the greater correlation between column and surface data 

obtained for Cluster 2. However, as Cluster 2 contained the majority of NO2 profiles during the 

California campaign, the correlations for this cluster were not statistically significantly different 

from the full correlation for California. Additionally, the Cluster 4 column_air correlation of the 
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Texas campaign was significant, contained the vast majority of NO2 profiles, and displayed the 

most well mixed median profile shape (NO2 mixing ratios did not display as great a vertical 

gradient as for the other clusters). These comparisons further suggest that the vertical 

distribution, and, by proxy, vertical mixing, has an influence on NO2 profile variability, as well 

as photochemical loss of NOx and production of O3. Furthermore, as a small number of clusters 

contained the majority of profiles for each campaign, these results again indicate that NO2 

behavior did not change much over the course of each of these campaigns, further supporting the 

lack of NO2 profile variability, and that the ability to relate column observations to surface 

concentrations depends upon NO2 exhibiting a more uniform profile vertical gradient in mixing 

ratio.  
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Fig. 3.16: Representative scatter plots for the NO2 column-surface correlations a) for the 
Maryland campaign; b) for the California campaign c) for the Texas campaign; and d) for 
the Colorado campaign. R2 values for the column_air and column_ground correlations 
displayed in the legends. 
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California And Texas Campaign NO2 Correlations 

Cluster Number Column_Air R2 

California #2 0.21 

California Full 0.11 

Texas #4 0.21 

Texas Full 0.53 

Table 15: R2 values for the correlation between column and surface data for each NO2 
profile cluster of the California campaign. No cluster correlations were statistically 
significantly different from the full correlation. 

3.9.3: NO2 Shape Factor Comparisons to CMAQ and GMI 

 Potential errors in satellite NO2 retrievals are greater when there is bias in the shape factor 

profile at altitudes where the instrument is more sensitive.  Instruments such as OMI are more 

sensitive to NO2 in the upper PBL and lower free troposphere than near the surface (as determined 

by profiles of the scattering weights used in the retrieval), so that errors in the shape factors will increase 

retrieval error should they occur in the upper PBL/lower free troposphere.  The median CMAQ NO2 

shape factor profiles for each cluster within each campaign compared poorly to the median P-3B 

shape factor profiles, indicating that CMAQ did not capture the NO2 relative vertical distribution 

on the CMAQ vertical grid (Fig. 3.16a)-d). While CMAQ often displayed a peak in shape factor 

values within the PBL when the corresponding P-3B cluster also displayed a peak, the model 

commonly misplaced the vertical location of that peak, as seen for Colorado Cluster 1 (Fig. 

3.16d) and California Cluster 2 (Fig. 3.16b). Additionally, these simulated peaks were often too 

broad relative to the P-3B shape factor peaks, as seen for California and Texas (Figures 3.16b, c). 

These peaks often extended through the upper PBL and the lower troposphere, the altitude 
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regions to which instruments such as OMI are more sensitive for NO2 than near the surface, and 

thus where retrieval errors would be greater. The CMAQ shape factors missed the PBL peaks 

entirely and were too smooth relative to the P-3B for each cluster of the Maryland campaign 

(Fig. 3.17a). These issues further indicate a general over-mixing within CMAQ, as the NO2 

relative vertical distribution was spread too evenly among the vertical levels relative to the 

observations.  

 CMAQ typically struggled to simulate the shape factor values for most clusters during 

the Maryland, Texas, and Colorado campaigns, with R2 values below 0.40 and very large values 

of reduced chi squared, which indicate large over- and underpredictions of the NO2 shape factor 

values and that a nonlinear relationship between the simulated and observed NO2 shape factors 

exists (Fig. 3.18a)-d). CMAQ struggled most to capture the California shape factors, 

demonstrating no correlation between the simulated and observed values for any cluster (R2 

values between 0.01 and 0.05); the scatter plots of the simulated shape factor values plotted 

against the P-3B values demonstrated both over- and underprediction with no consistent bias. 

These plots also demonstrate that CMAQ often randomly and severely over- or underpredicted 

relative to the P-3B throughout the depths of the shape factor profiles for the other campaigns. 

This likely drove down the correlations between simulated and observed values for these 

campaigns, and further indicates that CMAQ struggled to reproduce the NO2 vertical 

distributions under the conditions associated with the California, Texas, and Colorado 

campaigns. Though CMAQ struggled to capture the shape factor values for the Maryland 

campaign, CMAQ did perform best relative to the observations for this campaign. In fact, 

CMAQ compared moderately well to the P-3B for Clusters 4 and 5 (R2 values of 0.44 and 0.55, 

respectively). The scatter plots for the Maryland campaign also demonstrate the least scatter of 
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all four campaigns, as well as consistent, severe overestimation of the NO2 shape factors above 

1200 m (upper PBL/lower free troposphere) and underprediction below this altitude (lower 

PBL). These patterns of bias are consistent with the patterns of bias in the associated CO shape 

factor comparison plots (Fig. 3.19), suggesting that overestimated vertical mixing contributes to 

the errors in the simulated Maryland NO2 shape factors. This NO2 comparison, in addition to the 

comparisons for O3, further suggests that simulated vertical mixing was most vigorous for the 

Maryland campaign within CMAQ, and thus likely most erroneous, relative to the other three 

campaigns. As the greatest correlations between observed and simulated values, and smallest 

scatter, occurred for the Maryland campaign, this suggests that CMAQ was best able to capture 

the NO2 relative vertical distributions under the conditions conducive to O3 photochemical 

production and NO2 photochemical loss that occurred during this campaign, despite the 

overestimation in simulated vertical mixing that contributed to the errors in the median shape 

factors for NO2 for each cluster.  Use of CMAQ NO2 profiles in satellite retrievals over 

Maryland would produce less error than in the other DISCOVER-AQ deployment regions. It 

should be especially noted here that the emissions and chemical mechanism errors described by 

Canty et al., Anderson et al., and Goldberg et al. would also impact the magnitudes of the 

simulated NO2 shape factors, as these errors concern overestimates in NOx emissions as well as 

inadequate representations of nitrogen chemistry; errors in vertical mixing are one category of 

several that likely impact the simulated NO2 shape factor profile. 
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Fig. 3.17: Representative shape factor comparison plots for CMAQ vs. P-3B for NO2 a) for 
the Maryland campaign; b) for the California campaign; c) for the Texas campaign; d) for 
the Colorado campaign. Computed on CMAQ vertical grid. 
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Fig. 3.18: Representative shape factor comparison scatter plots of modeled and observed 
shape factor values for CMAQ and P-3B for NO2 a) for the Maryland campaign Cluster 6; 
b) for the California campaign Cluster 2; c) for the Texas campaign Cluster 5; d) for the 
Colorado campaign Cluster 1. Computed on CMAQ vertical grid. Scatter plots colored by 
altitude layers with legend in bottom right displaying the altitude layer ranges for each 
campaign. Example uncertainty bars also displayed in black for one point; uncertainty for 
P-3B taken from uncertainty of observed shape factors while uncertainty for CMAQ taken 
as the standard deviation over the simulated shape factors.	
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Fig. 3.19: Representative Maryland CO shape factor comparison plots for CMAQ vs. P-3B 
associated with the NO2 clusters Maryland campaign Cluster 3 and Cluster 6. Scatter plots 
colored by altitude layers with legend in bottom right displaying the altitude layer ranges 
for each campaign. Example uncertainty bars also displayed in black for one point; 
uncertainty for P-3B taken from uncertainty of observed shape factors while uncertainty 
for CMAQ taken as the standard deviation over the simulated shape factors.	

 The GMI NO2 shape factors compared well to the observations for Maryland, but 

compared poorly for the California campaign (Fig. 3.20a)-b). GMI displayed approximately the 

same smoothly decaying shape factors as seen for the P-3B during the Maryland campaign. 

However, GMI often also displayed a high bias in NO2 shape factor values within the upper 

portion of the PBL, indicating that GMI placed a greater column burden higher in the PBL than 

was observed. However, during the California campaign, the GMI NO2 shape factors resembled 

the GMI O3 shape factors much more closely than they did the P-3B NO2 shape factors. As with 

O3, much of the good comparison between GMI and the P-3B during the Maryland campaign 

may be due to the model smoothing out the vertical variability when computing the shape factors 

on the GMI vertical grid. This grid is likely too coarse within the PBL to capture the stagnant 

conditions in the San Joaquin Valley, and thus to capture the very stable, stratified, and poorly 

mixed NO2 profile shapes and shape factors. Additionally, these median shape factor profiles 
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indicate that the NO2 column burden was distributed too evenly within GMI relative to the 

observations, as with O3. Again, the GMI vertical grid likely smoothed out much of the observed 

NO2 variability within the PBL, giving rise to a somewhat spurious good comparison between 

the P-3B and GMI. 

 GMI poorly captured the shape factor values for all clusters of the California campaign, 

with R2 values between 0.10 and 0.30 (Figure 3.20a)-b), and large values of reduced chi squared 

that indicate errors in the GMI-simulated shape factor values, as with CMAQ for this campaign; 

GMI compared moderately well for most clusters of the Maryland campaign, with R2 values 

above 0.30 (Fig. 3.21). GMI compared exceptionally poorly to the P-3B shape factor values for 

Maryland Cluster 2 (R2 = 0.18), but compared exceptionally well for Maryland Clusters 4 and 7 

(R2 = 0.82 and 0.63, respectively). The poor comparison of the GMI shape factor values to the 

observed California shape factors is particularly evident in the scatter plots, as they display both 

extreme over- and underprediction for all three clusters; most simulated shape factor values fell 

between approximately 0.05 and 0.09, regardless of the coincident observed values. This 

indicates that GMI is both under- and overpredicting. Much of this error in the GMI-simulated 

NO2 shape factors may be due to overestimated vertical mixing, as the associated CO shape 

factor comparison plots display a consistent underpredicted in CO in the lower PBL, with 

overprediction in the upper PBL/lower free troposphere (Fig. 3.21). This is consistent with the 

results of the comparisons to the observed O3 (that vertical mixing within GMI is not as 

overestimated as within CMAQ), and further highlights the influence of atmospheric stability 

and mixing on NO2 mixing ratio profiles and shape factors. The scatter plots for the Maryland 

clusters indicate that a few extreme over- and underpredicted values typically undermined the 

correlation between the simulated values and the observed shape factor values. The CO shape 
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factor comparison plots for Maryland do not indicate the same errors in vertical mixing as for 

California. These results suggest that GMI performs better for the conditions associated with the 

Maryland campaign, similarly to CMAQ, in which NO2 was more rapidly converted to O3, than 

for the California campaign, where NO2 concentrations were able to build up and the PBL was 

stably stratified. Though the correlations between simulated and observed shape factor values 

were similar between CMAQ and GMI, GMI produced somewhat higher correlations likely due 

to the difference in vertical resolution within these models. The coarser GMI vertical grid within 

the lower troposphere, compared to the CMAQ vertical grid, likely smoothed out much of the 

observed NO2 variability within the PBL, giving rise to a somewhat spurious good comparison 

between the P-3B and GMI. However, the finer vertical resolution further supports the 

superiority of a regional model such as CMAQ for use within remote sensing retrievals. The 

relative performances of GMI and CMAQ for the NO2 shape factors reveals in starker relief the 

impact on model vertical resolution on the simulated shape factors under various conditions. 

 

	

Fig. 3.20: Representative shape factor comparison plots for GMI vs. P-3B for NO2 a) for 
the Maryland campaign; b) for the California campaign. Computed on GMI vertical grid. 
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3.10: Conclusions 

 All in situ O3 profile clusters produced by the agglomerative hierarchical cluster analysis 

were significant for the California, Texas, and Colorado DISCOVER-AQ deployments, with 

Texas producing the greatest number of distinct clusters (five). Only one distinct cluster (Cluster 

Fig. 3.21: Shape factor comparison 
scatter plots for NO2 and CO for GMI 
vs. P-3B for NO2 for the Maryland 
campaign Cluster 4; for the California 
campaign Cluster 3. Computed on 
GMI vertical grid. Scatter plots 
colored by altitude layers with legend 
in bottom right displaying the altitude 
layer ranges for each campaign. 
Example uncertainty bars also 
displayed in black for one point; 
uncertainty for P3B taken from 
uncertainty of observed shape factors 
while uncertainty for GMI taken as the 
standard deviation over the simulated 
shape factors.	
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4) emerged for the Maryland deployment. The season in which the campaign took place, air 

mass history as delineated by HSYPLIT, and the relative degrees of vertical mixing and 

horizontal mixing, drove the differences in profile variability, as denoted by the number of 

significant clusters that emerged, among campaigns. Further, atmospheric stability, as indicated 

by the lapse rate and potential temperature profiles, played a key role in modulating the 

differences in median O3 profile shape among clusters within each campaign, while time period 

during the campaign, spiral sampling time of day, and airmass origin influenced the relative 

magnitudes of the clusters. In contrast, very few in situ NO2 profile clusters were distinct for 

each campaign, and those that were distinct contained very few profiles, indicating that NO2 

profile behavior remained relatively uniform throughout the course of each campaign; the 

interplay of NO2 photochemical loss and vertical mixing likely played the key role in 

determination of the amount of NO2 profile variability.  

 When significant, the correlations between the corresponding P-3B column and surface 

data for each cluster were generally larger for O3 than NO2, which is not surprising given that O3 

is more well mixed in the vertical and horizontal than NO2. However, many cluster correlations 

and correlations over the full set of profiles used in the clustering analysis were not significant 

for both O3 and NO2, suggesting that, even if the model profiles used in a satellite retrieval 

algorithm were to correctly represent the actual lower tropospheric profiles for these trace gases, 

meteorological or chemical conditions may prevent a strong column-surface connection. For O3, 

column observations may be most representative of surface concentrations under the conditions 

of deep, convective boundary layers, reduced wind shear, and few terrain influences associated 

with the Maryland deployment. The degree of vertical mixing was also found to have an 

influence on the ability to relate column and surface quantities for NO2, consistent with the 
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results of Chapter 2, as greater column-surface correlation was found for clusters with more well 

mixed median NO2 cluster profiles than for those with less well mixed median profiles. 

However, a typically low degree of correlation was associated with these well mixed median 

cluster profiles, indicating that accurate representation of the lower tropospheric NO2 profile in a 

satellite retrieval does not guarantee the ability to connect column and surface.  

Lastly, the regional CMAQ model and global GMI model simulated lower tropospheric 

O3 shape factors compared moderately well to the P-3B shape factors corresponding to most 

clusters for the Maryland and California campaigns. These results suggest that a regional air 

quality model that captures the observed shape factor variability would be potentially useful in 

remote sensing retrievals for O3. However, the effects of vertical grid resolution within both 

models are more pronounced on the NO2 shape factors than for O3, likely because O3 is generally 

more well mixed than the short-lived NO2.  In the case of NO2, the regional model (with finer 

vertical resolution) produced more realistic profiles of shape factors than the global model.  

However, both models performed better relative to the observations for the Maryland campaign 

than for any other campaign. These results demonstrate that models may be best able to capture 

trace gas profiles under the conditions of convective boundary layers and O3 photochemical 

formation associated with the Maryland campaign. These results also demonstrate the necessity 

of sufficient vertical resolution within the PBL, where the majority of the NO2 burden resides. 
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Chapter 4: Diurnal Cycles of O3 and NO2 Column Amounts and Surface Mixing Ratios in 
Observations and Model Output during DISCOVER-AQ 
 
4.1: Introduction 

 Current satellite air quality instruments are flown onboard polar-orbiting low earth 

orbiting (LEO) satellites, such as the Ozone Monitoring Instrument (OMI) onboard the Aura 

satellite. These LEO satellites generally observe the entire globe during a 24-hour period, 

providing observations for regions lacking other observation networks, and at varying horizontal 

resolutions. However, the temporal resolution of these satellites is quite low, with one or, at 

most, two passes over any given surface site during daylight hours from any one satellite. 

However, some recent works have taken advantage of observations from multiple satellite 

instruments or over multiple years to elucidate temporal variability of satellite column 

measurements. Boersma et al. (2009) examined tropospheric NO2 columns from the 

SCIAMACHY instrument onboard Envisat (overpass ~10:00 LT) and the OMI instrument 

(overpass ~13:30 LT) over Israeli cities during 2006. This work found a diurnal cycle in NO2 

columns during summer months as shown by higher morning columns measured by 

SCIAMACHY than the afternoon OMI columns; the opposite diurnal pattern was found for 

winter months. These comparisons indicate that the diurnal cycle of column NO2 is controlled by 

the diurnal cycle of anthropogenic NOx emissions and loss of NO2 through reaction with OH, 

while the seasonal variation in the diurnal cycle between summer and winter can be explained 

through the seasonal variation in photochemistry (OH concentrations are greater in summer than 

winter due to greater water vapor concentrations and greater UV flux, leading to greater 

magnitudes in the chemical loss rate of NO2 with respect to OH in summer than winter and a 

larger diurnal cycle in this loss rate in summer than winter).  A similar diurnal variation in NO2 

tropospheric column amounts was found over southeastern Europe for 1996-2001 based on 
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examination of GOME, GOME-2, SCIAMACHY and OMI observations, when these 

observations were available (Zyrichidou et al., 2009). Lamsal et al. (2008) also found that in situ 

surface NO2 measurements at OMI overpass time were 36% smaller than annual 24-hour 

concentrations, again suggesting a diurnal cycle in NO2 abundances. However, despite these 

cases, the limited LEO overpasses restrict the analysis of diurnal variability and evolution of O3 

and NO2 column amounts throughout the day.  

 Some of the limitations of LEO satellites will be resolved through the development of 

satellites orbiting in geostationary earth orbit (GEO). Upcoming geostationary satellite missions 

highlight the importance of understanding the diurnal variability of column abundances. TEMPO  

(part of GeoCAPE) will provide hourly observations of species such as O3, NO2, CH2O, SO2, 

and aerosol optical depth (AOD) during all daylight hours, allowing them to capture the diurnal 

variability of column amounts (Chance et al., 2012; Fishman et al., 2012). If an IR instrument is 

funded as part of GeoCAPE or otherwise, the diurnal variability of CO could be observed. This 

temporal resolution is much greater than for any current LEO instrument. The geostationary air 

quality satellite constellation (TEMPO over North America, Sentinel-4 over Europe, and GEMS 

over East Asia) will also cover much of the Northern Hemisphere, including data-sparse regions, 

at finer horizontal resolution than the current LEO instruments. Thus, geostationary satellites will 

open a new opportunity to observe column abundances of key trace gases at high temporal and 

spatial resolutions, to better understand pollutant abundances over the Northern Hemisphere as 

well as changes in pollutant abundance during daylight hours (Chance et al., 2012; Fishman et 

al., 2012). 

 Of particular interest is the possibility to characterize the diurnal variability of near-

surface or surface pollution conditions from geostationary observations (Fishman et al., 2008; 
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Martin, 2008). This may be especially useful for regions lacking sufficient surface air quality 

monitors. Furthermore, if such observations well capture near-surface or surface pollutant 

variability, then satellite observations may well correlate with or be easily transformed into 

surface pollutant concentrations, providing a measure of surface air quality directly relevant to 

policy makers and the public. As shown in Chapters 2 and 3, lower tropospheric column amounts 

correlate well with surface mixing ratios under certain meteorological or chemical conditions, 

supporting this potential use for geostationary observations. Thus, understanding of the diurnal 

behavior of O3 and NO2 lower or full tropospheric column amounts, as well as of surface 

concentrations, may indicate when satellite observations may be most representative of surface 

conditions. Insights into how the column-surface relationship changes throughout daylight hours 

would also be provided, giving an indication of when satellites best represent surface air quality. 

 By extension, understanding how well satellite observations capture surface variability 

necessitates understanding how well the assumed pollutant profiles used in the satellite retrieval 

process capture both observed column and surface variability, as well as profile shape.  The 

simulated pollutant profiles are currently provided by global chemical transport models, such as 

GMI. The ability of these models to capture observed column magnitudes and variability, as well 

as observed surface variability, directly impacts the ability of satellite retrievals to capture such 

observations and their relevance to surface and near-surface quantities. Comparison of the 

performance of the global model with a regional air quality model, such as CMAQ, will also 

indicate if the use of a regional model within retrievals may provide an advantage. Thus, analysis 

of the simulated column diurnal cycle for O3 and NO2 provides an assessment of the models used 

in retrievals, and insight in addition to the correlation analyses and profile cluster analyses 
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presented in previous chapter into how well the assumptions inherent in these simulations impact 

the ability of satellites to capture observed variability. 

 This chapter focuses on analysis of the diurnal behavior of O3 and NO2 column amounts 

from the P-3B aircraft (lower tropospheric columns) and from remote sensing instrumentation 

(full tropospheric column amounts) at each of the spiral sites from each of the four DISCOVER-

AQ deployments. Several remote sensing column datasets are available: Pandora spectrometers 

were available at all spiral sites during all four campaigns, observing O3 and NO2 columns; the 

Airborne Compact Atmospheric Mapper instrument (ACAM; Lamsal et al., 2016) was flown 

onboard the UC-12 aircraft during the Maryland campaign, and measured O3 and NO2 column 

amounts; and the Geostationary Trace gas and Aerosol Sensor Optimization instrument 

(GeoTASO; Nowlan et al., 2016) was flown onboard the NASA Falcon aircraft during the Texas 

campaign, and measured NO2 column amounts. These column diurnal cycles will be compared 

to each other, to determine if the remote sensing observations capture the lower tropospheric 

variability, as well as to the diurnal behavior of O3 and NO2 surface mixing ratios, to determine 

which column type, if any, captures the surface diurnal variability. Lastly, the observed column 

diurnal time series will be compared to the simulated column diurnal time series from the 

CMAQ and GMI models, to assess the performances of these regional and global air quality 

models. Such comparisons among observational data sets and to different models across all 

campaigns will provide insight into which times of day, which types of column abundance 

(lower or full, observed or simulated), and under which meteorological and pollution conditions 

column variability best captures surface variability. Thus, the work presented here will build 

upon that presented in Chapters 2 and 3, and provide insight into the column-surface correlations 

presented previously. 
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4.2: Description of Observational Column Datasets 

4.2.1: P-3B Column_Air and Column_Ground Lower Tropospheric Columns 

 The P-3B column_air and column_ground O3 and column_air NO2 values were computed 

as described previously in Chapter 2, Section 2.2.1, and Chapter 3, Section 3.3, for all four 

DISCOVER-AQ campaigns. It is again noted that the P-3B actively avoided clouds during 

flights, and flight days were chosen to minimize cloud cover. Column_ground NO2 is not 

discussed, as results from Chapter 2 indicate that column_air more accurately represents the true 

NO2 lower tropospheric column amounts.  

 Measurements of the in situ NO2 photolysis frequency j(NO2) for the photochemical loss 

of NO2 from the reaction 

NO2 + hν à NO + O(3P)                                                                                                   (Eqn. 4.1) 

were also available for the P-3B spirals. J(NO2) itself is defined as the integral of the product of 

the actinic flux I, the NO2 absorption cross section σ, and the NO2 photolysis quantum yield φ 

over the 280-420 nm wavelength (λ) range. These data were provided by the NSERC P-3B data 

acquisition and distribution system as nadir and zenith measurements, so these two values were 

summed to obtain the total photolysis frequency. Lastly, the total j(NO2) values were averaged 

over the time of each P-3B spiral, to obtain an average value that corresponded to each P-3B 

column abundance.  

4.2.2: P-3B Col_Air_Sonde Lower Tropospheric Columns 

 Measurements of the lower tropospheric NO2 column were also computed from 

tethersonde measurements at the Huron, CA, and Smith Point, TX, sites (col_air_sonde). 

Tethersonde NO2 data from Edgewood were found to be of insufficient quality (due to the 

extensive and random presence of negative mixing ratio values), and the data from Golden, CO, 
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are not yet available. These column amounts were computed analogously to the column_air 

computation, except that the NO2 tethersonde profile, rather than the NO2 measurement at the 

lowest aircraft measurement level, was used to the fill the gap between the P-3B spiral and 

ground level. The NO2 tethersonde profiles were observed from the ground to approximately 500 

m AGL.  The Huron or Smith Point P-3B and tethersonde profiles were first co-located in time, 

requiring the two types of profiles to be coincident within 30 minutes of each other. The P-3B 

and tethersonde profiles were then combined, and the lower tropospheric column computed. This 

column type represents an alternative to the column_air and column_ground abundances, using 

other profile data rather than P-3B or surface measurements to fill the gap between the P-3B and 

the ground.  

4.2.3: Ozonesonde Full Tropospheric Columns 

 Ozonesondes were launched at the Beltsville, MD, Edgewood, MD, Porterville, CA, 

Smith Point, TX, Moody Tower, TX, and the Platteville, CO, sites, covering the full depth of 

troposphere and much of the stratosphere. The ozonesonde full tropospheric O3 column amounts 

were thus computed for these sites. The tropopause was placed at the first altitude above 9 km 

where the temperature lapse rate was positive, such that data within the stratosphere were 

excluded before computing the ozonesonde column.  

4.2.4: Pandora Full Tropospheric Columns 

 The ground-based Pandora UV/Vis spectrometers (Herman et al., 2009) were located at 

each spiral site for the four campaigns. Pandora full tropospheric column amounts for O3 and 

NO2 were computed for each campaign as described previously in Chapter 2, Section 2.2.2. 

4.2.5: ACAM and GeoTASO Full Tropospheric Columns  
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 The Airborne Compact Atmospheric Mapper instrument (ACAM; Lamsal et al., 2016; 

Liu et al., 2015) and the Geostationary Trace gas and Aerosol Sensor Optimization instrument 

(GeoTASO; Nowlan et al., 2016) NO2 vertical column densities were provided in the 

DISCOVER-AQ data archive as tropospheric vertical column abundances; the ACAM O3 

column densities were provided as total vertical column abundances. For both the ACAM and 

GeoTASO retrievals, the slant columns were first retrieved through fitting a modeled spectrum to 

the observed radiance spectrum. Slant columns were converted into vertical columns through use 

of the air mass factor (AMF), as defined in Chapter 3. Scattering weights were provided by the 

VLIDORT radiative transfer model, while the a priori O3 or NO2 vertical profiles used to 

compute the shape factors for the AMF computation were provided by the CMAQ model, at 4 

km horizontal resolution. The use of a regional air quality model rather than a global air quality 

model such as GMI in both retrievals represents a departure from satellite retrievals, which 

employ global models. ACAM data are currently available only for the Maryland campaign, 

while GeoTASO data are available for the Texas campaign. Uncertainty for the ACAM NO2 

columns were approximately 20-30%, while uncertainty for the GeoTASO column was more 

variable (between approximately 10-50%). To obtain tropospheric ACAM O3 vertical columns, 

the OMI stratospheric column was subtracted from the ACAM total column; uncertainty in the 

tropospheric columns were approximately 2-10% (Lamsal et al., 2016; Liu et al., 2015; Nowlan 

et al., 2016). 

4.2.6: OMI Full Tropospheric Columns 

 Tropospheric columns from OMI were retrieved with the Version 2.1 Goddard 

tropospheric NO2 retrieval algorithm (Buscela et al., 2013) and the ozone profile algorithm by 

Liu et al. (2010) with modifications as described in Kim et al. (2013). These data were screened 
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for cloud fraction (effective cloud fraction less than 30%, as denoted by the “CRF” flag provided 

in the data files), the instrument row anomaly (screened by Lok Lamsal and Xiong Liu during 

creation of the OMI data files), and distance from the surface site (pixel center less than 100 km 

distant; “distance” flag in the data files) for each campaign. The OMI tropospheric O3 column 

was typically approximately twice as large as P-3B O3 column_air and column_ground, 

indicating a significant tropospheric burden above the tops of the P-3B spirals. The bias relative 

to P-3B NO2 column_air and column_ground varied more than for O3, though the OMI NO2 

tropospheric column was typically approximately 10-40% larger than the P-3B column amounts, 

indicating some tropospheric NO2 burden not measured by the P-3B. 

4.3: Description of Surface Volume Mixing Ratio Datasets 

  The available surface O3 and NO2 mixing ratio datasets available for each campaign are 

detailed in Chapter 2, Section 2.3, and Chapter 3, Section 3.4. However, only those sites for 

which photolytic or corrected molybdenum converter NO2 surface measurements were used in the 

comparison between campaign-average surface and column diurnal timeseries, to avoid 

comparison to surface NOy observations. These sites include Edgewood, Essex, Fair Hill, and 

Padonia, MD; Bakersfield, Fresno, Huron, and Porterville, CA; Galveston, Moody Tower, and 

Manvel Croix, TX; and the BAO Tower, Chatfield Park, Fort Collins, and Golden, CO, spiral 

sites. 

4.4: Description of CMAQ and GMI Tropospheric Column Computations 

4.4.1: Loughner et al. and NOAA CMAQ Simulations  

  The Loughner et al. CMAQ simulations and NOAA CMAQ forecasts used in the 

analyses presented below have been described previously in Chapter 2, Section 2.4.1, Chapter 2, 

Section 2.4.2, Chapter 3, Section 3.5.1, and Chapter 3, Section 3.5.2.  
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4.4.2: NASA GMI Simulations 

  The GMI simulations used in the analyses below have been described previously in 

Chapter 3, Section 3.5.3. 

4.4.3: Model Tropospheric Column Amounts 

4.4.3.1: CMAQ Partial Tropospheric Column Amounts 

  For computation of model biases relative to the P-3B lower tropospheric column 

amounts, CMAQ O3 and NO2 partial tropospheric columns were computed hourly for each 

campaign over the depth of the P-3B spirals. The procedure to compute these CMAQ partial 

columns was previously detailed in Chapter 2, Section 2.4.3, and was applied to the CMAQ 

output for all four campaigns.   

4.4.3.2: CMAQ and GMI Full Tropospheric Column Amounts 

  For computation of model biases relative to the observational full tropospheric column 

data, and for use in the time series analysis, CMAQ O3 and NO2 columns were computed hourly 

over the full depth of the model troposphere. Model layers within the stratosphere were first 

excluded before computation of the column amounts for both models. The first CMAQ layer 

within the stratosphere was taken to be the first layer above 8 km where the O3 mixing ratio 

exceeds 100 ppbv. These stratospheric layers were then excluded before integration of the CMAQ 

simulated profile to obtain the full tropospheric CMAQ column amounts.  

  The GMI column output files (the “column” files) provided column amounts at 12 Z 

directly, computed over the full depth of the troposphere only. The GMI profile output (the 

“daily” and “overpass” files, provided at 8 AM, 12 PM, and 3 PM EDT for July 2011, and at 11 

AM and 2 PM PDT for winter 2013) included the simulated tropopause heights, so that layers 
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above the tropopause were excluded before computation of the full tropospheric column from 

these simulated profiles. 

4.5: Comparison of O3 Column and Surface Mixing Ratio Diurnal Variability  

4.5.1: Observed O3 Column vs. Surface Mixing Ratio Diurnal Variability 

  All four campaigns exhibited similar campaign-average diurnal variability of the hourly 

mean surface O3 mixing ratio values, as expected. Representative surface and column diurnal time 

series are displayed in Fig. 4.1a)-d). The O3 mixing ratios were lowest during early morning, with 

mixing ratio values quickly increasing throughout the morning, as expected as O3 formation 

increases with increasing sunlight and O3 layers aloft are mixed down as the PBL grows. 

Typically, though not always, mixing ratio values increased from approximately 10 ppbv during 

early morning to approximately 60 ppbv by local noon during the Maryland, Texas, and Colorado 

campaigns. Maximum surface values were reached during the afternoon hours of 12 PM – 3PM 

local time during each campaign, when both the height of PBL development and abundant 

sunlight favored photochemical production of O3. During the Maryland, Texas, and Colorado 

campaigns, O3 mixing ratios began to decrease between approximately 4 PM – 6 PM local time, 

as the boundary layer began to collapse; the California campaign did not exhibit this collapse, 

likely because the flight day ended before collapse of the boundary layer and sundown. 

Unsurprisingly, the wintertime California deployment exhibited the smallest diurnal range of 

mixing ratio values (blue lines in Fig. 4.1).  Ozone mixing ratios grew from typically 

approximately 10 ppbv during early morning to approximately 40 ppbv during afternoon at most 

spiral sites, due to inhibited O3 formation encountered in the San Joaquin Valley during winter, 

relative to the diurnal cycles of the other three deployments. However, despite inhibited 

formation, the morning minimum and afternoon maximum in surface mixing ratios seen for the 
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other campaigns is clearly apparent at the California spiral sites, further supporting that surface O3 

displays a consistent diurnal cycle in a wide range of pollution and meteorological conditions. 

 

 
Fig. 4.1: Representative campaign average diurnal timeseries for O3 surface mixing ratios 
(ppbv) and column abundances (DU) for a) the Maryland campaign, b) the California 
campaign, c) the Texas campaign, and d) the Colorado campaign. Surface and column 
values plotted over daylight hours for each campaign. 
 
  In contrast to the surface datasets, the P-3B O3 column_air and column_ground lower 

tropospheric columns, and ozonesonde full tropospheric columns, demonstrated very little diurnal 

variability during all four deployments, and remained relatively constant in value throughout the 
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day. Additional representative scatter plots are displayed in Fig. 4.2 to highlight the variability of 

the different column datasets. Column_air and column_ground values typically remained at or 

below 20 Dobson units (DU) for all campaigns. The ozonesonde columns typically remained 

between 20 DU and 40 DU for the Maryland and California deployments, while the ozonesonde 

columns typically remained at approximately 20 DU or below during the Texas and Colorado 

deployments. It is notable that the ozonesonde and P-3B column magnitudes were similar for 

these latter two deployments, and even more so that the Platteville, CO, ozonesonde column 

diurnal behavior very closely resembled that of P-3B column_air and column_ground. Further, it 

is surprising that the P-3B lower tropospheric and ozonesonde full tropospheric column diurnal 

cycles were not coupled with the surface diurnal cycles during any campaign, given that these 

column data were computed from in situ data, were integrated from vertical levels near the 

surface in the case of the ozonesondes, and that the P-3B column datasets represent lower 

tropospheric column amounts. These results are particularly unexpected for the Maryland 

campaign, which presented large correlation between O3 column and surface data for each spiral 

site and most profiles clusters (Chapters 2 and 3).   

  The ACAM columns for Maryland (Fig. 4.1a and 4.2a) displayed some diurnal behavior, 

though the diurnal cycle was much smaller in amplitude than for the surface data. Though less 

apparent than for the surface data, the ACAM O3 column burden increased during the morning 

(approximately 7 AM to 12 PM EDT). This is reminiscent of the ramp up in surface mixing ratio 

values at all six spiral sites. However, the morning ramp up for ACAM generally occurred over 

less time than did the surface mixing ratios: maximum column values were often reached by 10 

AM EDT, rather than early afternoon.  The ACAM columns typically remained between 

approximately 50 DU and 60 DU during the afternoon, and did not exhibit clear indications of 
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decrease in magnitude as the PBL began to collapse, as the surface data did, indicating plentiful 

ozone above the top of the PBL in the late afternoon. The ACAM dataset displayed a damped 

diurnal variation, with its small morning ramp up in column abundance to maximum values. 

However, the Pandora tropospheric O3 columns most often failed to display diurnal variation 

across all four campaigns (Figs. 4.1 and 4.2), consistent with the lack of P-3B column diurnal 

variability.  Some spiral sites exhibited a damped diurnal variation in Pandora ozone column, 

similar to ACAM, such as Fair Hill, MD, Galveston, TX, and Huron, CA, in which the column 

abundance increased at these sites from a minimum value during early morning until 

approximately 10 AM standard or daylight saving time, when maximum values were reached. 

Pandora also displayed the largest range of magnitudes of any O3 column dataset, from 

approximately 40 DU to 80 DU; typically, the California and Colorado campaigns demonstrated 

larger Pandora values than the other campaigns. The magnitudes of the campaign-average OMI 

tropospheric column were often between those of the P-3B and ozonesonde column amounts and 

between the Pandora and ACAM column amounts. Like the in situ columns, the remotely sensed 

ACAM and Pandora column diurnal variation demonstrated little to no coupling with the surface 

diurnal variation. Indeed, the Pandora columns during the Colorado deployment often exhibited 

very different diurnal behavior from the P-3B columns, ozonesonde columns, and surface data, 

such as seen for Platteville, CO. 
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Fig. 4.2: Representative campaign average diurnal time series highlighting the column 
diurnal variation for the ozonesonde, ACAM, and Pandora column amounts for (left) 
Edgewood, MD, and (right) Galveston, TX.  
 
  The diurnal variability in surface mixing ratios is driven primarily by photochemistry. 

However, column variability (or lack thereof) may be driven primarily by PBL dynamics. During 

nighttime, after the convective PBL has collapsed to the shallow, stable boundary layer, O3 within 

the PBL is titrated by NOx to low concentrations. However, collapse of the convective PBL leads 

to formation not only of the stable layer, but also of a residual layer that exists immediately above 

the stable layer, which consists of air that had been turbulently mixed the previous day during the 

height of the CBL. As the NOx within the residual layer had been depleted by the previous day’s 

photochemistry, O3 levels may persist within this layer through the night, to be mixed with the 

stable layer air as the PBL grows again during the next day. Additionally, surface O3 

concentrations do not tend to dramatically differ from day to day over the course of a 30-day 

deployment, with exception for events such as cold frontal passage or the ozone buildup 

associated with a pollution episode. Thus, the O3 within a column of air does not vary much over 

the course of a day on average, as the column includes both photochemically produced surface O3 
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and residual layer O3 that are mixed as the PBL develops into the CBL during daytime. This is 

consistent with the lack of variability in the lower tropospheric column abundances. The lack of 

diurnal variability in the full tropospheric column abundances further suggests that column 

variability is controlled by PBL dynamics, as much O3 within the free troposphere is O3 that had 

been vented from the PBL and transported from its source region, in addition to freshly produced 

O3 pollution. The mixing of surface and residual layer air also explains the large correlation 

between O3 column and surface quantities for some campaigns, despite the lack of connection 

between column and surface diurnal cycles. Lastly, due to the lack of column diurnal variation, 

these results do not suggest a time of day when satellite observations may be most representative 

of surface O3 conditions.  

4.5.2: O3 Observed vs. Simulated Column Diurnal Variability 

  The CMAQ and GMI O3 full tropospheric columns displayed very little diurnal 

variability across all four campaigns, consistent with the observational column datasets. 

Representative diurnal time series are displayed in Fig. 4.3a)-d). In fact, the simulated columns 

displayed very little deviation in magnitude throughout most daylight hours at each spiral site for 

each campaign. The diurnal variability of the simulated column amounts best matches that of the 

P-3B lower tropospheric columns and ozonesonde columns for both models rather than the 

ACAM or Pandora columns, though the P-3B columns demonstrated somewhat more variation in 

column magnitude throughout the day than did CMAQ or GMI. Thus, though the models 

overestimated the lack of diurnal variability, CMAQ and GMI adequately simulated the diurnal 

cycle of O3 column amounts.  

  The CMAQ full tropospheric columns were greatly overpredicted relative to the 

ozonesonde column estimates for the Maryland and Texas campaigns, as denoted by the positive 
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median model bias value and the time series plots (bias defined as the percent difference of the 

model hourly-mean column value relative to the coincident hourly-mean observational value) 

amounts, displayed in Fig. 4.4a)-d); the simulated and ozonesonde columns were integrated to 

approximately the same altitude. CMAQ overestimated relative to the ozonesondes for the 

California and Colorado campaigns as well, but not as greatly as for the other two campaigns. The 

CMAQ full tropospheric columns were underestimated relative to Pandora during the California 

and Colorado campaigns, while CMAQ compared well to the Pandora columns during the Texas 

campaign and somewhat overestimated during the Maryland campaign; CMAQ slightly 

underestimated relative to ACAM during the Maryland campaign. The CMAQ partial 

tropospheric column amounts, computed over the depth of the P-3B spirals only, compared well 

to P-3B column_air and column_ground for all four campaigns (the Col_Air and Col_Grd boxes 

in Fig. 4.4). This result is encouraging that CMAQ may adequately capture lower tropospheric 

column burdens. Further, with the exception of the median biases relative to the ozonesondes, 

these results suggest that CMAQ was most able to capture the observed O3 columns for the 

conditions associated with the Maryland and Texas campaigns, which included deep, convective 

boundary layers and adequate temperatures and sunlight for O3 formation. 
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Fig 4.3: Representative campaign average diurnal timeseries for observational and 
simulated O3 column abundances (DU) for a) the Maryland campaign, b) the California 
campaign, c) the Texas campaign, and d) the Colorado campaign. 
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Fig. 4.4: Box-and-whisker plots of model O3 bias median values and distributions for a) the 
Maryland campaign, b) the California campaign, c) the Texas campaign, and d) the 
Colorado campaign. Model bias computed as percent difference relative to each 
observational dataset. Tops and bottoms of boxes represent the 75th and 25th percentile bias 
values, respectively, while whiskers represent outliers.  
 
4.6: Comparison of NO2 Column and Surface Mixing Ratio Diurnal Variability 

4.6.1: Observed NO2 Column vs. Surface Mixing Ratio Diurnal Variability 

  Surface NO2 mixing ratios exhibited a general decrease from maximum values (due to 

shallow PBL, morning traffic emissions, and the nighttime build up of NO2 due to lack of 

photolysis) during the early morning hours to minimum values by approximately 12 PM to 1 PM 

standard or daylight saving time, and remained at minimum values through most of the remainder 

of the day during all four campaigns, as displayed in the representative timeseries in Fig. 4.5a)-d). 

Some sites during these campaigns exhibited a slight increase in NO2 mixing ratios beginning at 
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approximately 6 PM standard or daylight saving time, indicative of the collapse of the CBL, 

titration of O3 to produce NO2, and evening traffic emissions. Maximum values were typically 

between 5 ppbv and 10 ppbv, decreasing to less than 5 ppbv during the day, for the Maryland and 

Texas campaigns, while maximum values for the California campaign were often approximately 

20 ppbv, decreasing to approximately 10 ppbv. This is again indicative of the inhibited O3 

formation (cold temperatures and less sunlight available for photolysis relative to the other 

campaigns) and shallow PBL encountered during the California campaign. Surface magnitudes 

were smallest during the Colorado campaign, and typically remained between approximately 1 

ppbv and 4 ppbv. The campaign-average diurnal variation in NO2 is consistent with that of O3 

discussed above: NO2 levels are greatest during early morning, when NO2 is produced from NOx 

emissions and O3 formation is inhibited, with NO2 levels decreasing as it is photochemically 

converted to O3 as the sun rises and temperatures increase during the day. The Colorado diurnal 

cycle plots, as they begin at an earlier than the other campaigns, clearly demonstrate the build up 

of NO2 as rush hour begins, followed by decreases in NO2 as it is converted to O3 during late 

morning and afternoon.  
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Fig. 4.5: Representative campaign average diurnal timeseries for NO2 surface mixing ratios 
(ppbv) and column abundances (1015 cm-2) for a) the Maryland campaign, b) the California 
campaign, c) the Texas campaign, and d) the Colorado campaign. Surface and column 
values plotted over daylight hours for each campaign. 
 

  Unlike O3, the NO2 column datasets presented mixed results for diurnal variability. 

Additional plots highlighting col_air_sonde and the remotely sensed column abundances are 

displayed in Fig. 4.6. P-3B column_air exhibited diurnal variation, though this variation did not 

always follow that of the surface, and was damped relative to the amplitude of the surface 
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variation. The column_air diurnal cycle was least consistent during the Colorado campaign, 

during which the Chatfield Park and Golden spiral sites displayed some diurnal variation while 

the BAO Tower and Fort Collins sites did not. During the Maryland, California, and Texas 

campaigns, and at the Chatfield Park and Golden sites, the column_air diurnal cycle typically 

followed that of the surface, but offset by several hours from the surface cycle; peak and 

minimum columns amounts typically occurred later than those for the surface mixing ratios. Not 

surprisingly, it took some time for surface-based emissions to mix upward and have significant 

effects on the column amount.  It is notable that the Fair Hill, MD, column_air cycle does not 

closely resemble that of the surface until after 4 PM EDT, when the column_air curve suggests an 

increase in column abundance coincident with an increase in surface mixing ratio. Column_air 

abundances generally remained at or below approximately 6 x 1015 cm-2 during the Maryland 

deployment, at or below approximately 10 x 1015 cm-2 during the Texas and Colorado 

deployments, and between approximately 2 x 1015 cm-2 and 20 x 1015 cm-2 during the California 

deployment; maximum column values for California are again consistent with the inhibited O3 

photochemistry during this campaign. The diurnal variation of the col_air_sonde column amounts 

at the Huron, CA, and Smith Point, TX, spiral sites is in agreement with that of column_air: 

col_air_sonde displayed a small cycle somewhat offset in time that followed that of the surface. 

The magnitudes of col_air_sonde were similar to column_air throughout the day at Huron, and 

were slightly larger than column_air at Smith Point, suggesting further that column_air is 

representative of the true NO2 lower tropospheric column.  
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Fig. 4.6: Representative campaign average diurnal time series highlighting the column 
diurnal variation for the col_air_sonde, ACAM, GeoTASO, and Pandora column amounts 
for (left) Huron, CA, and (right) Smith Point, TX.  
 
   The ACAM NO2 full tropospheric column amounts for the Maryland campaign and the 

GeoTASO column amounts for the Texas campaign displayed clear diurnal variation at most 

spiral sites. As with column_air and col_air_sonde, these cycles were offset in time from the 

surface cycle. ACAM exhibited a peak in column abundance between 9 AM and 10 AM EDT, as 

the surface cycle had already begun to decay, with another, smaller peak at approximately 3 PM 

EDT. GeoTASO displayed peak column amounts between 10 AM and 12 PM CDT, with another, 

smaller peak occurring at 3 PM CDT or later, when data were available. Thus, both aircraft-based 

remotely sensed column abundance datasets for NO2 exhibited similar diurnal cycles to each 

other; these datasets were also somewhat offset from the P-3B diurnal cycles. The Pandora 

columns, however, presented a damped diurnal variation at most sites during the Maryland, 

California, and Texas campaigns, while during the Colorado campaign, the Pandora data 

exhibited a clear diurnal cycle that was similar to those for ACAM and GeoTASO at each site. 

Again, the Pandora cycle tended to be offset from that of the surface, as well as column_air and 

col_air_sonde. Remotely sensed column amounts and those based on in situ data appear to have 
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somewhat similar diurnal cycles, but offset in time from each other and the surface. The ACAM, 

GeoTASO, and Pandora campaign-average hourly-mean column magnitudes fell within the same 

ranges as for column_air and col_air_sonde. 

 The surface NO2 diurnal cycle is controlled by NOx emissions, particularly from mobile 

sources such as automobiles, and photochemical loss of NO2 (Eqn. 4.1), the rate-limiting step in 

the O3 production mechanism, as described in Chapter 1. In accordance with the established 

literature, maximum surface NO2 mixing ratio values occurred during early morning, due to a 

combination of NOx emissions during the morning rush hour and the nighttime buildup of NO2 

from lack of photolytic destruction; increases in surface NO2 were again encountered during late 

afternoon at many spiral sites, as evening rush hour NOx emissions commenced. Minimum 

surface values occurred during afternoon, when sufficient sunlight was available to drive O3 

photochemical production and NO2 photolytic loss.  

 As the majority of the NO2 column resides in the lower troposphere (Chapter 1), 

emissions and photochemistry should also play important roles in the regulation of the NO2 

column diurnal variability, in addition to the surface diurnal cycle. This is consistent with the late 

morning maxima in column abundances followed by afternoon minima, when a diurnal cycle 

could be discerned, during each campaign. As NO2 is produced near the surface, it is also mixed 

up into the column through turbulent mixing within the PBL, as the convective PBL, or CBL, 

develops during morning. The column_ground diurnal cycles at most sites particularly reflected 

the influence of emissions, with larger early morning peaks than other column datasets, due to 

the incorporation of a surface concentration in this column computation. Comparisons of the 

column diurnal variation to the diurnal variation of j(NO2) suggest the influence of 

photochemical loss on the NO2 columns as sufficient sunlight becomes available to drive such 
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reactions, particularly during the Maryland and Texas campaigns; representative plots are 

displayed in Fig. 4.7.  The campaign-average diurnal variation of j(NO2) during each campaign 

typically displayed larger values during late morning and early afternoon, and smaller values 

during early morning and late afternoon, following the times of day of greatest sunlight, as 

expected. Again, the P-3B actively avoided cloudy conditions during flights as much as possible. 

Decreases in column abundance occurred as the j(NO2) hourly mean values increased. Some 

sites, such as Galveston (Fig. 4.7c) and Golden (Fig. 4.7d) displayed immediate responses in 

column abundances to changes in j(NO2); for example, a sudden decrease in j(NO2) occurred at 

12 PM CDT at Galveston, indicating a greater campaign-average cloud fraction at this site, that 

coincided with increased in column_air, column_ground, and GeoTASO column abundances due 

to decreased photolytic loss. The California campaign demonstrated a weaker connection 

between the diurnal cycles of j(NO2) and column abundances than did the other three campaigns, 

likely because j(NO2) values were often not as large as for the other campaigns (larger j(NO2) 

values were encountered over a shorter time span for the California spiral sites as seen in Fig. 

4.7b, relative to the broader peaks displayed in the time series for the Maryland or Texas sites, 

for example). Thus, j(NO2) demonstrated less effect on NO2 column variability during the 

California deployment relative to other influences, such as emissions. 

 However, PBL mixing likely contributed to the offset in time of the diurnal variations of 

the column and surface data for each campaign; boundary layer mixing delays the growth and 

decay of the NO2 column relative to the surface. Though turbulent mixing communicates surface 

and near-surface NO2 to the column above that surface site, as mixing from the surface into the 

PBL takes time, the column may continue to grow during late morning even as the surface 

abundance decays. During late morning and afternoon, sufficient sunlight is available for 
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photochemistry that NO2 within the column also decays, and the column amounts begin to 

decrease. Just as importantly, this offset in diurnal variation between column and surface 

amounts may also explain the poor correlations obtained between column and surface data for 

each campaign: the column abundance may be more representative of surface concentrations at a 

previous time, rather than surface concentrations coincident to that column observation.  
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Fig 4.7: Representative campaign average diurnal timeseries for observational column 
abundances (1015 cm-2) and photolysis frequency j(NO2) (s-1) for a) the Maryland campaign, 
b) the California campaign, c) the Texas campaign, and d) the Colorado campaign.  
 

4.6.2: NO2 Observed vs. Simulated Column Diurnal Variability 

  The CMAQ and GMI simulated full tropospheric NO2 column amounts exhibited clear 

diurnal variability at most sites during all four campaigns. Representative diurnal timeseries 

comparing the observational and simulated column amounts are displayed in Fig. 4.8a)-d). During 

c)	Texas	NO2	Column	Time	Series	
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the Maryland, California, and Texas campaigns, CMAQ exhibited maximum column abundances 

during morning hours, decreasing during late morning to reach minimum values during afternoon, 

much as the observational column datasets. However, the CMAQ column variability during the 

Colorado campaign (Fig. 4.8d) is unlike that of the observations or any other campaign; the cycles 

at each Colorado spiral site also often did not resemble each other. For example, at Fort Collins 

(Fig. 4.8d), CMAQ exhibited a minimum in column abundance between 10 AM and 12 PM 

MDT, with maxima during early morning and mid-afternoon, while CMAQ exhibited a minimum 

during early morning at Golden, with column abundance increasing throughout the day. Though 

much fewer GMI column amounts were available, these simulated diurnal cycles also exhibited a 

small decrease between the early morning GMI column value and the afternoon GMI column 

values during the Maryland campaign, when both morning and afternoon column values were 

available; only afternoon columns were available for the California campaign, limiting analysis of 

the GMI column diurnal variability. It is encouraging that the CMAQ and GMI diurnal cycles 

resemble each other, indicating that both the regional and global models qualitatively captured the 

observed column variability.  
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Fig 4.8: Representative campaign average diurnal timeseries for observational and 
simulated NO2 column abundances (1015 cm-2) for a) the Maryland campaign, b) the 
California campaign, c) the Texas campaign, and d) the Colorado campaign.  
 

  CMAQ full tropospheric columns typically displayed the greatest campaign-median 

model bias values relative to the observational column datasets for the California campaign, and 

compared well to most datasets for the Maryland, Texas, and Colorado campaigns. Bias values 
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are given as Box-and-whisker plots displaying the campaign-median biases relative to each 

observational dataset are displayed in Fig. 4.9a)-d). CMAQ tended to somewhat overpredict 

relative to Pandora during all campaigns, and to GeoTASO during the Texas campaign, in the 

median, though CMAQ demonstrated no preferred bias direction relative to ACAM during the 

Maryland deployment. The CMAQ lower tropospheric column amounts were also slightly 

overpredicted relative to column_air for these three campaigns, and slightly underpredicted 

relative to col_air_sonde during the Texas campaign in the median. Model bias values of 50% 

difference or greater were obtained for the California campaign, which was the campaign that 

experienced the greatest amount of NO2 pollution. Thus, CMAQ more adequately captured NO2 

column magnitudes for the campaigns that experienced significant O3 production, rather than the 

campaign that experienced inhibited O3 formation. However, the Texas campaign presented the 

smallest model biases across most observational datasets, with the smallest range of model bias 

values (as denoted by the box and whisker plots), indicating that CMAQ performed best in terms 

of column magnitude under the complex chemical conditions associated with this campaign for 

NO2.  
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Fig. 4.9:  Box-and-whisker plots of model NO2 bias median values and distributions for a) 
the Maryland campaign, b) the California campaign, c) the Texas campaign, and d) the 
Colorado campaign. Model bias computed as percent difference relative to each 
observational dataset. Tops and bottoms of boxes represent the 75th and 25th percentile bias 
values, respectively, while whiskers represent outliers.  
 
4.7: Conclusions 

  The campaign-average diurnal cycles of surface O3 and NO2 mixing ratios did not vary 

significantly across spiral sites or campaigns, indicating a consistent diurnal cycle for these trace 

gases across meteorological and pollution conditions, in agreement with established literature. In 

general, surface O3 exhibited a minimum during morning, increasing to an afternoon maximum, 

while surface NO2 exhibited a morning maximum, decreasing to an afternoon minimum. In 

contrast, neither full tropospheric nor lower tropospheric O3 column abundances exhibited a clear 
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diurnal cycle for any spiral site or campaign. This suggests that PBL dynamics play an important 

role in the regulation of the variability of these columns: O3 tends to be well mixed within the 

PBL during daytime and persists in the residual layer during nighttime, such that though the 

surface concentrations of O3 vary, the abundance of O3 within the column does not vary 

significantly throughout the course of the day. The NO2 full tropospheric and lower tropospheric 

column abundances, however, did display diurnal variability at most spiral sites during all 

campaigns, though the column diurnal variability was smaller in amplitude and offset in time 

relative to the surface diurnal variation. The NO2 column datasets presented a consistent diurnal 

variation across all four campaigns and all datasets. These results suggest that NO2 column 

variability is controlled by surface production of NO2 and boundary layer mixing of NO2 into the 

lower troposphere. Neither set of results for O3 and NO2 suggest a time of day when satellite 

column observations may be most representative of surface concentrations. 

  Comparison of the simulated column diurnal variation within the regional CMAQ model 

and global GMI model demonstrated that both models replicated the lack of O3 column diurnal 

variation, although these models overestimated the lack of variation. CMAQ demonstrated the 

smallest campaign-median model bias relative to the P-3B O3 column_air and column_ground 

abundances across all four campaigns, indicating that CMAQ well captured the magnitudes of the 

lower tropospheric columns. Additionally, the smallest biases relative to the observational 

columns were typically obtained for the Maryland and Texas campaigns, suggesting that CMAQ 

was most able to capture the observed O3 columns for the conditions associated with these 

campaigns, which included deep, convective boundary layers and adequate temperatures and 

sunlight for O3 formation. In agreement with the magnitudes and shapes of the observed NO2 

column diurnal variability, CMAQ and GMI exhibited clear diurnal variation in the simulated 
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NO2 column amounts. CMAQ also best captured the observed NO2 column magnitudes for all 

campaigns except California, which experienced greater NO2 pollution and inhibited O3 

photochemistry.  
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Chapter 5: Evaluation of Vertical Mixing and Pollutant Shape Factors in WRF-Chem 
during DISCOVER-AQ July 2011 
 
5.1: Introduction 

 Boundary layer mixing exerts an important influence on the connection between O3 and 

NO2 column and surface data (Chapters 2 and 3). For example, Flynn et al. (2016, submitted) 

found greater correlation between lower tropospheric O3 column amounts and surface mixing 

ratios during the DISCOVER-AQ Maryland campaign in July 2011 than during the California 

campaign in winter 2013, due in large part to the relative strength of the vertical mixing 

encountered during these campaigns. Other works demonstrated improvements in correlation 

between NO2 tropospheric column amounts and surface mixing ratios after inclusion of PBL 

height (PBLH) information.  Knepp et al. (2013) used model-derived PBLH values to convert 

ground-based Pandora UV/Vis spectrometer NO2 tropospheric columns into average surface 

mixing ratios, demonstrating high correlation between converted columns and surface data. 

Flynn et al. (2014) similarly normalized NO2 lower tropospheric column amounts by observed 

PBLH estimates. Greater correlation between these normalized column amounts and surface data 

was obtained than between the original column amounts and surface data. These studies suggest 

that the degree and height of PBL mixing adds useful information to the column-surface 

relationship.  

 Vertical mixing, and, by extension, atmospheric stability, exert an influence on the 

column-surface relationship through its impact on the vertical distribution of pollutants. 

Turbulent eddies communicate momentum, heat, and passive scalars such as moisture and 

pollutants between the surface and the atmospheric boundary layer (Holtslag and Boville, 1993; 

Stull, 1988). Under unstable conditions, eddies mix the PBL more efficiently and to greater 

depths than possible under stable conditions. Stronger vertical mixing, associated with greater 
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atmospheric instability, thus acts to produce more uniform pollutant vertical profiles, as 

pollutants are distributed more evenly among different levels within the PBL and are mixed to 

greater depths; pollutant profiles often exhibit a layered structure under stable conditions and 

weaker mixing (Holtslag and Boville, 1993; Lin et al., 2008; Lin and McElroy, 2010). Further, 

the shape of pollutant vertical profiles determines which altitude layers contribute most to the 

column amount associated with that profile, which in turn impacts how well that column amount 

relates to the surface. A column associated with a uniform profile within the PBL, indicative of 

strong vertical mixing, may relate better to the surface than a column associated with a profile 

exhibiting enhanced concentration in the upper or lower PBL, indicative of less vigorous vertical 

mixing as well as transport of pollutants or production of pollutants, for example. This effect is 

apparent in recent work relating OMI NO2 tropospheric column amounts to estimated in situ NO2 

columns through use of assumed profile shapes. Boersma et al. (2009) employed an assumption 

of vertically uniform boundary layer NO2 profiles, with negligible mixing ratios above the PBL, 

to convert observed surface mixing ratios to in situ column amounts, an assumption that was 

verified by the GEOS-Chem global chemical transport model (CTM). Ordóñez et al. (2006) 

computed the portion of the NO2 column within each vertical layer from the MOZART-2 global 

CTM, which also assumes a well mixed PBL NO2 profile, to scale observed near-surface NO2 

mixing ratios into vertical column amounts. These estimates compared well to the OMI 

tropospheric NO2 columns. Addtionally, these studies and that of Knepp et al. (2013) emphasize 

the need for model-derived information on PBL mixing for relating surface and column data, due 

to lack of sufficient observations. In contrast to these works, Zhang et al. (2016) examined 

potential temperature and NO2 vertical gradients during the Maryland deployment, and 

demonstrated that the NOx vertical gradient (and thus profile shape) is highly sensitive to 
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atmospheric stability: NO2 profiles exhibited an exponential decay shape under stable conditions, 

with mixing ratios decreasing sharply from a maximum near the surface to minimum values 

above the PBL, while the proifle shape becomes more well mixed (smaller vertcial gradient in 

mixing ratio) as the PBL becomes more unstable (see Zhang et al., 2016, Fig. 1). Further, Zhang 

et al. found that the use of a well-mixed boundary layer NO2 profile could lead to errors of ~45% 

in estimated boundary layer O3 production and that variabiltiy in NO2 profiles may account for 

~5-15% of variablity in retrieved NO2 tropospheric vertical columns. 

 Understanding of the interplay between boundary layer mixing and vertical profile shapes 

contributes to understanding of the degree of correlation between column and surface data, with 

implications for the applicability of observations from upcoming geostationary air quality 

satellites such as TEMPO (Chance et al., 2013) to surface or near-surface air quality conditions. 

As described in Chapter 3, assumed profiles derived from global chemical transport models 

(CTMs) provide the a priori information in the conversion of satellite-retrieved slant column 

amounts to vertical columns for NO2, and O3 when retrieved with a differential optical 

absorption spectroscopy (DOAS) technique, such as  the OMI O3 total column retrieval. Other 

retrievals of O3 vertical columns employ simulated a priori partial O3 column amounts at each 

model vertical layer. However, the assumed profile shapes are given as shape factors, or the 

fraction of the tropospheric column within each vertical layer, rather than profiles of mixing ratio 

values. It is again emphasized that the shape factor depends on the mixing ratio profile, and thus 

partially on vertical mixing, as it influences the distribution of pollutants within the profile. 

Potential errors in satellite retrievals maximize when there is bias in the shape factor profile at 

the altitudes at which the satellite instrument is most sensitive, as determined by the retrieval 

scattering weights. For example, OMI is more sensitive to NO2 in the upper PBL and free 
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troposphere than near the surface, so that errors in the NO2 shape factor at these levels will 

maximize retrieval errors here (Bhartia et al., 2002; Chance, 2002; Lamsal et al., 2014; Liu et al., 

2009; Palmer et al., 2001). The models used within satellite retrievals or used to relate column 

and mixing ratio data must therefore accurately simulate the observed O3 and NO2 profiles and 

column amounts. Therefore, they must also accurately simulate boundary layer mixing. 

Additionally, there is interest in the use of regional rather than global air quality models in 

remote sensing retrievals for finer horizontal resolution simulated profiles (Nowlan et al., 2016; 

Lok Lamsal, NASA GSFC, personal communication).  

  Given the difficulty in computation of boundary layer turbulence, regional and global 

meteorology and chemical transport models employ PBL parameterization schemes to simulate 

boundary layer mixing and compute the PBLH. These PBL schemes are classified as local, in 

which mixing occurs only between model vertical levels adjacent to each other, and nonlocal, in 

which mixing occurs between adjacent and nonadjacent vertical levels; a fuller description of 

local and nonlocal PBL schemes is given below in Sections 5.6.2-5.6.4 (Holtslag and Boville, 

1993; Hu, et al., 2010; Lin and McElroy, 2010; Shin and Hong, 2011; Stull, 1988; Tang et al., 

2011). The choice of a local or nonlocal PBL scheme can have important impacts on the vertical 

structure of temperature and moisture, as demonstrated by Holtslag and Boville (1993) within the 

NCAR Community Climate Model, version 2 (CCM2). Hu et al. (2011) examined the Yonsei 

University (YSU; Hong et al., 2006), the Asymmetric Convective Model version 2 (ACM2; 

Pleim, 2007a), and the Mellor-Yamada- Janjić (MYJ; Janjić, 1990, 1994) PBL schemes within 

the WRF model over the south-central U.S. The YSU and ACM2 schemes, both nonlocal 

schemes, produced smaller biases in temperature and moisture during daylight hours than the 

MYJ scheme, the local scheme, and hence produced more accurate simulations than the local 
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scheme.  Generally, nonlocal PBL schemes better represent the vertical structures of the PBL 

under unstable conditions, while both local and nonlocal schemes struggle to represent these 

structures under stable conditions; stable conditions remain difficult to accurately simulate (Shin 

and Hong, 2011).  

 Differences in simulated vertical mixing within different PBL schemes affects the 

accuracy of air quality simulations. Global CTMs often employ a full mixing assumption, in 

which the boundary layer is uniformly mixed, or offer a choice among local or nonlocal PBL 

schemes. Use of a nonlocal mixing scheme within MOZART and GEOS-Chem improved biases 

in surface O3 concentrations and improved the shape of the lower tropospheric NO2 relative to 

observations ( Lin et al., 2008; Lin and McElroy, 2010). Comparison of the correlation between 

O3 or NO2 column and surface data within CMAQ output and within DISCOVER-AQ 

observations (see Chapters 2 and 3) revealed that CMAQ overestimated the degree of correlation 

for both trace gases during the Maryland campaign, suggesting that vertical mixing is 

overestimated within this model and carrying implications for the use of a regional air quality 

model in relating column and surface quantities. However, though CMAQ ingests simulated 

mixing parameters from a meteorology model (which can use a variety of PBL schemes) after 

preprocessing by the MCIP routine, the CMAQ model itself is capable of using only the ACM2 

PBL scheme to simulate vertical mixing of pollutants. Recent work has thus found that surface 

O3 concentrations were relatively insensitive to the choice of PBL scheme within the 

meteorology model used to drive CMAQ (Mao et al., 2006; Tang et al., 2011). Zhang et al. 

(2016) using a one-dimensional CTM, found that accuracy of simulated NO2 profiles is relatively 

insensitive to the choice of land surface model, but that choice of PBL scheme had some impact. 

These studies present mixed results for the ability of air quality models or CTMs to accurately 
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capture vertical mixing and thus pollutant profiles. However, few studies examined pollutant 

profile sensitivity to the choice of vertical mixing scheme in the CTM, or the implications of 

uncertainties in such sensitivities to satellite retrievals. Additionally, none of these studies 

examined coupled meteorology-chemistry models. Uncertainties thus remain in the 

understanding of the interplay of vertical mixing and pollutant profiles. 

 The Maryland deployment of the DISCOVER-AQ project (Chapter 2, Section 2.1) 

presents an excellent opportunity to study the impact of boundary layer mixing on the O3 and 

NO2 vertical profiles and column-surface relationships. As discussed previously, the greatest 

column-surface correlation for O3 was during the Maryland deployment, suggesting that satellite 

observations may be most relevant to surface air quality under the conditions of deep, convective 

boundary layers, reduced wind shear, and few terrain influences associated with this region and 

deployment. The WRF model with coupled Chemistry (WRF-Chem) was chosen for use in this 

work, as chemistry and meteorology are computed in the same time step, eliminating the need 

for preprocessing of meteorology model output to drive the air quality simulation. Results are 

presented for WRF-Chem simulations with five different PBL schemes (Sections 5.6.3-5.6.4) of 

the July 26-29, 2011, period, during which an O3 pollution episode occurred. The ability of this 

regional, coupled chemistry-meteorology model to effectively simulate the interplay between 

boundary layer mixing and O3 and NO2 vertical profiles, and the associated impacts on the 

column-surface correlations for these trace gases, is investigated. Further, the relevance of the 

WRF-Chem model profiles for use in remote sensing retrievals will be evaluated. 

5.2: P-3B In Situ Profile Measurements 

  The P-3B in situ O3 and NO2 profile measurements for the Maryland campaign have been 

described in Chapter 3, Section 3.2 
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5.3: P-3B Column_Air and Column_Ground Lower Tropospheric Columns 

 The P-3B O3 and NO2 column_air and column_ground data sets for the Maryland 

campaign have been described in Chapter 2, Section 2.2.1. 

5.4: of Surface Volume Mixing Ratio Datasets 

  The surface volume mixing ratio data sets available for the Maryland campaign have 

been described in Chapter 2, Section 2.3.  

5.5: Observational PBLH Datasets 

5.5.1: P-3B PLBH Dataset 

  Donald Lenschow (NCAR, retired) provided boundary layer height analyses based on the 

P-3B potential temperature profiles during the Maryland campaign. The PBL top was located 

where the potential temperature lapse rate exceeded approximately 3 K/km, with a relatively 

constant potential temperature lapse rate from the surface to the PBL top. The potential 

temperature profiles were also analyzed manually to ensure the algorithm accurately diagnosed 

the PBLH. Water vapor and ozone profiles were examined in addition to the potential temperature 

profiles. These PBLH estimates have an uncertainty of approximately 20%. 

5.5.2: HSRL and MPL Mixed Layer Height Datasets 

  Ground-based MicroPulse Lidar instruments (MPL; Welton et al., 2002) were available 

at the Beltsville, Edgewood, and Fair Hill spiral sites and were operated during all days in July 

2011; the NASA UC-12 aircraft provided continuous remote sensing observations of aerosols 

from the High Spectral Resolution Lidar (HSRL; Hair et al., 2008) during flight days over all 

spiral sites and over the transects between spiral sites. The Haar covariance wavelet transform 

(Brooks, 2003) was used to estimate mixed layer height (MLH) values from the aerosol 

backscatter profiles observed by the MPLs and the HSRL (Ruben Delgado, http://www-
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air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-2011?ANALYSIS=1#ML.HEIGHT/; Scarino 

et al., 2014; both datasets have an associated uncertainty in PBLH of approximately 20%). It 

should be noted that the HSRL MLH values are the “best estimate” values from comparison of 

the Haar transform results and manual inspection of the backscatter profiles.  

5.6: Description of WRF-Chem Simulations and Column Amounts 

5.6.1: WRF-Chem Model Options  

 The WRF-Chem version 3.7.1, with Advanced Research WRF (ARW) core (the latest 

model version available; Grell et al, 2005; Fast et al., 2006) was used to simulate the July 26-29, 

2011, period, when an O3 pollution event occurred; this pollution event was chosen for 

simulation rather than the entire July 2011 campaign due to time constraints and the larger 

amount of computing resources required by WRF-Chem relative to offline air quality 

simulations. The online chemistry-meteorology WRF-Chem model was used in this study to 

study the effects of vertical mixing on the chemistry. The traditional, offline WRF-CMAQ 

system requires that the WRF output be processed and time-averaged (typically hourly averages) 

before passing to CMAQ in addition to preventing feedback from the chemistry onto the 

dynamics, while the coupled WRF-CMAQ model cannot be run for domains outside the testbed 

domain at the time of this writing. The simulations were begun on July 22, to provide three days 

of model spin-up time. The model options common to all simulations are listed in Table 5.1, 

while the nested simulation domains are illustrated in Fig. 5.1. WRF-Chem was run with 34 

vertical layers from the surface to 100 mb, with 16 layers within the lowest 2 km AGL to capture 

boundary layer processes. The NARR was used for the meteorological initial and boundary 

conditions, while a simulation of the MOZART-4 model provided the chemical initial and 

boundary conditions (Emmons, et al., 2010). WRF-Chem used the unified Noah land surface 
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model (Niu et al., 2011); the Fast-J photolysis scheme (Wild et al., 2000); the Goddard 

shortwave radiation scheme (NASA Goddard Space Flight Center); the Rapid Radiative Transfer 

Model (RRTM) longwave radiation scheme (Mlawer et al., 1997); the Carbon-Bond Mechanism 

version Z (CBM-Z) chemical mechanism (Zaveri and Peters, 1999); and the Model for 

Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol module with four aerosol size 

bins (Barnard et al., 2010). The Model of Emissions of Gases and Aerosols from Nature 

(MEGAN; Guenther et al., 2006) was used for biogenic emissions, and the online version 

employed in WRF-Chem v.3.7.1 is the same as the offline version 2.04. The projected 2012 

anthropogenic emissions based on the 2005 NEI described in Chapter 2 were used in these 

simulations. These older emissions were used rather than the NEI 2011 due to constraints on 

time available to run simulations, due to the amount of time taken to get a coupled model 

successfully running. The 12 km horizontal resolution output was used in the following analyses. 

Five simulations with five different PBL schemes (Table 2) were performed, to be described in 

the following three subsections. 
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Fig. 5.1: Geographical domains for the 36 km and 12 km horizontal resolution domains. The 
outermost 36 km simulation covers the continental U.S., while the 12 km simulation covers 
the eastern U. S. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
•  Dij accounts for differences 

between magnitude of mixing 
ratios and profile shapes 

 
Reference: Hains, J. C., Taubman, B. F., 
Thompson, A. M., Stehr, J. W., Marufu, L. 
T., Doddridge, B. G., Dickerson, R. R. 
(2008), Origins of chemical pollution 
derived from Mid-Atlantic aircraft profiles 
using a clustering technique, Atmos. Env., 
42, 1727-1741.  
 

1	36 km 12 km 
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WRF-Chem v3.7.1 Maryland DISCOVER-AQ Campaign Common Options 

Time Period July 22-31, 2011 
Focus of Analysis: July 26-29, 2011 

Chemical mechanism CBM-Z 

Aerosols MOSAIC with 4 aerosol bins 

Radiation Longwave-RRTM; Shortwave-Goddard 

Meteorology and Chemical Inputs NARR; MOZART-4 CTM 

LSM unified Noah LSM 

Photolysis Fast-J 

 
Table 5.1: WRF-Chem v3.7.1 simulation options common to all simulations.  
 
WRF-Chem v3.7.1 Maryland DISCOVER-AQ Campaign PBL Schemes  

PBL Scheme Simulation  Surface Layer Scheme  

YSU MM5 similarity theory (formulated for YSU scheme) 

ACM2 Pleim-Xiu surface layer scheme 

MYJ Eta similarity theory 

BouLac Eta similarity theory 

QNSE QNSE similarity theory 

 
Table 5.2: WRF-Chem v3.7.1 PBL schemes tested with corresponding surface layer 
schemes. Simulations named after the PBL scheme used in that simulation. 
 
5.6.2: Atmospheric Turbulence, the Closure Problem, and Turbulence Parameterizations 
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 A fundamental problem in the statistical description of atmospheric turbulence is the so-

called “closure problem.” The number of unknown variables will always exceed the number of 

equations for any finite set of equations used to describe turbulence (Stull, 1988). This problem 

is not critical within the free troposphere, where the turbulent eddies are resolved by the synoptic 

observational network; turbulent eddies, however, are of crucial importance within the PBL, 

because they transport heat, moisture, momentum, and other scalar quantities between the 

surface and lower portion of the atmosphere. The existence of turbulent eddies at many temporal 

and spatial scales, which may or may not be resolvable with current instrumentation, creates the 

closure problem in the description and modeling of boundary layer flow. Thus, the unresolved 

turbulent fluxes must be parameterized in terms of known mean quantities to compute turbulent 

transport within the PBL (Holton, 2004; Stull, 1988).  

 Two broad categories of turbulent parameterizations are commonly used in atmospheric 

modeling: local closure parameterizations and nonlocal closure parameterizations. In local 

closure, the turbulent fluxes at one point in space are approximated by mean atmospheric 

variables or gradients at that same point. In nonlocal closure, the turbulent fluxes at one point are 

approximated by mean variables or gradients at many points in space (Holtslag and Boville, 

1993; Hu, et al., 2010; Shin and Hong, 2011; Stull, 1988). Furthermore, parameterization 

schemes are characterized by the highest-order prognostic equation retained, which can range 

from zero-order closure to third-order closure. For example, in a first-order closure scheme, the 

prognostic equation for the x-component of the mean wind 𝑈, a first-order statistical moment, is 

retained: 

c?
cI
= 	− c

cd
(𝑢f𝑤f)                                                                                                                       (5.1) 
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 However, this equation contains a second-moment turbulent flux term, 𝑢′𝑤′, which must be 

parameterized, typically through use of an eddy diffusivity parameter K. One such possible 

parameterization is given in Eq. 5.2:   

c?
cI
= 	− c

cd
𝑢f𝑤f = 	 c

cd
[𝐾 c?

cd
]                                                                                               (5.2) 

No third- or higher moment terms are retained in first-order closure (Shin and Hong, 2011; Stull, 

1988). Typically, local first-order or one-and-a-half-order closure parameterizations, or nonlocal 

first-order closure parameterizations, are used within atmospheric models, and the following 

discussion will thus focus on PBL schemes employing such parameterizations (Holtslag and 

Boville, 1993). 

5.6.3: Local PBL Schemes Tested in WRF-Chem 

 Boundary layer and associated surface layer schemes examined in this work are listed in 

Table 5.2. Three commonly used local, 1.5-order PBL schemes include the Mellor-Yamada-

Janjic (MYJ; Janjić, 1990, 1994), Bougeault-Lacarrére (BouLac; Bougeault and Lacarrere, 

1989), and the quasi-normal scale elimination (QNSE; Sukoriansky, et al., 2005) PBL schemes. 

These schemes are classified as 1.5-order because they retain the prognostic equations for the 

first-moment terms, such as 𝑈 , and parameterize the turbulent flux terms in terms of eddy 

diffusivities, but also require an additional prognostic equation for the turbulent kinetic energy 

(TKE or e), which is computed in these schemes as 

  c#
cI
= 	 2*

j
cjkf#f
cd

−	𝑢f𝑤f c?
$d
−	𝑣f𝑤f cm

cd
+ 	𝛽𝑤f𝜃f−	∈                                                                (5.3) 

where the 𝛽𝑤f𝜃f  term represents buoyant production of TKE and ∈  represents viscous 

dissipation. TKE is used to compute the eddy diffusivities within these three schemes: 

𝐾q = 	𝑙 𝑒𝑆q                                                                                                                                (5.4) 
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where KC is the eddy diffusivity term for any mean scalar or vector quantity C, such as heat or 

momentum, l is the mixing length, and SC is the proportional coefficient. These schemes employ 

the local diffusivities within both the convective boundary layer (CBL) and the stable boundary 

layer (SBL), and make no distinction between boundary layer and free atmospheric mixing (Hu 

et al., 2010; Shin and Hong, 2011). Each scheme defines l and SC somewhat differently. 

Furthermore, the BouLac scheme assumes that the eddy diffusivities for heat and momentum are 

equivalent (Bougeault and Lacarrere, 1989):  

KH  = KM                                                                                                                                     (5.5) 

whereas the MYJ scheme assumes the following relationship for the heat and momentum 

diffusivities (Janjić, 1990, 1994): 

KH = 1.25KM                                                                                                                               (5.6) 

The QNSE scheme computes the eddy diffusivities from spectral theory, to account for internal 

wave generation in the presence of turbulence within the stably stratified PBL, and assumes the 

following (Sukoriansky et al., 2005):  

KH = 𝑃𝑟Iu2*KM                                                                                                                             (5.7) 

where 𝑃𝑟Iu2* is the inverse turbulent Prandtl number computed at the first model time step. The 

turbulent Prandtl number is defined as the ratio of the momentum eddy diffusivity to the thermal 

eddy diffusivity, which represents the ratio of the viscous diffusion ratio to the thermal diffusion 

rate. The eddy diffusivity for heat (KH) is also used for other scalars such as pollutants. Lastly, 

each of these three schemes defines the height of the PBL (PBLH) as the level at which TKE 

first decreases to a prescribed value of 0.1 m2/s2.  

5.6.4: Nonlocal PBL Schemes Tested in WRF-Chem 

 Nonlocal PBL schemes may be more appropriate than local schemes for convective or 
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unstable conditions, in which the size scale of the transporting eddies may be of the same order 

as the depth of the boundary layer (Holtslag and Boville, 1993). Two nonlocal, first-order PBL 

schemes are currently available for use in atmospheric models: the Asymmetric Convective 

Model version 2 (ACM2; Pleim, 2007a and recent revisions) and the Yonsei University (YSU; 

Hong et al., 2006) schemes. These schemes include local mixing, and account for nonlocal 

mixing through use of either a nonlocal gradient adjustment term or a transilient matrix of 

mixing coefficients. The YSU applies a gradient adjustment term (γc) to the local gradient of 

each prognostic mean quantity to implicitly express nonlocal mixing within the heat and 

momentum prognostic equations only: 

cq
cI
= 	 c

cd
[KC(cq

cd
− 𝛾w) −	𝑤f𝑐fy

d
y

6
]                                                                                        (5.8) 

where C represents any mean heat, moisture, chemical species, or momentum scalar or vector 

quantity and h is the height of the PBL; the gradient adjustment term is also shown in Eqn, 5.8, 

though it is applied only to the heat and momentum prognostic equations. The  (−	𝑤f𝑐fy
d
y

6
) 

term represents the asymptotic entrainment flux within the inversion layer that frequently caps 

the PBL. The gradient adjustment term in the heat and momentum prognostic equations is 

computed as  

𝛾w = 𝑏 (k
zw{z){

k|{y
                                                                                                                             (5.9) 

 where (𝑤′𝑐′)u represents the surface flux for heat or momentum quantity c, w is the vertical 

velocity, ws0 is the vertical velocity scale at 0.5h, and b is constant of proportionality (Hong et 

al., 2006). The ACM2 scheme, however, employs the transilient matrix technique to explicitly 

model local and nonlocal mass fluxes, for better representation of passive quantities such as 

chemical tracers or humidity. ACM2 also makes use of a weighting factor fconv in its governing 
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equation: 

cq0
cI
= 	 fw~;�𝑀𝑢𝐶* −	 fw~;�𝑀𝑑'𝐶' +	𝑓w~;�𝑀𝑑'.*𝐶'.*	

�d0�5
�d0

+	 c
cd
[𝐾q 1 − 𝑓w~;�

cq
cd
]             (5.10) 

where C is any mean scalar quantity, such as a pollutant, C1 is the magnitude of the quantity in 

layer 1, Mu is the upward convective mixing rate from the lowest vertical layer, Mdi is the 

nonlocal downward mixing rate from layer i to i-1, and Δzi  is the layer thickness (Pleim, 2007a; 

Shin and Hong, 2011). The fconv parameter is further related to the eddy diffusivity for heat (Kh) 

and the gradient adjustment term for heat (γh) through  

fconv = ����
����2��

��
��

                                                                                                                        (5.11) 

where Kh is the eddy diffusivity for heat and 𝛾y is gradient adjustment term, defined similarly to 

the corresponding term in the YSU scheme. It is this parameter that controls the degree of 

nonlocal vs. local mixing within the ACM2 scheme, as Eqn. 5.11 demonstrates that 𝑓w~;� is the 

ratio of the nonlocal flux to the total flux (nonlocal and local). As a coefficient in the governing 

prognostic equation, 𝑓w~;� partitions the upward and downward mixing rates Mu and Mdi from 

the total mixing rates to the nonlocal mixing rates. Thus, the YSU and ACM2 schemes adjust for 

stable or neutral flows through adjustments to the gradient adjustment terms and the fconv 

parameter (Hong et al., 2006; Hu et al., 2010; Pleim, 2007a; Shin and Hong, 2011).  

 The YSU and ACM2 schemes diagnose the PBLH based on the bulk Richardson number 

(Rib) rather than TKE, which is defined as 

𝑅𝑖^ = 	
�[� y 2�|](y2d�0�)
��[? y 2?(d�0�)]8

                                                                                                          (5.12) 

 The PBLH is determined as the first level at which the bulk Richardson number (Rib) first 

exceeds a critical Richardson number (Ricrit), set to 0.25 in both schemes. However, some 

differences exist between YSU and ACM2 in determination of that first level. The YSU scheme 



	
	

175	
	

computes Rib over all model levels, and then compares that value to the critical value for each 

level. Under unstable conditions, the ACM2 scheme assumes that the PBLH is the sum of the top 

of the convectively mixed layer (zmix) and the thickness of the entrainment layer, so that ACM2 

first computes zmix based on the virtual potential temperature profile and then computes Rib over 

the depth of the entrainment layer only, using a prognostic equation similar to that for Rib within 

YSU. The value of zmix is thus used in the computation of Rib within the entrainment layer, after 

Eqn. 5.12. The entrainment layer top is then diagnosed as the first level at which Rib is equal to 

Ricrit.  Thus, PBLH is the sum of the entrainment layer thickness and zmix (Hong et al., 2006; Hu 

et al., 2010; Pleim, 2007a; Shin and Hong, 2011). It is again noted that the ACM2 scheme 

exclusively is used within CMAQ to simulate vertical mixing, regardless of the choice of PBL 

scheme used in the meteorological model simulation used to drive CMAQ, and thus the ACM2 

scheme is of particular importance in the following evaluations. 

5.7:  Analysis of PBL Mixing in WRF-Chem 

5.7.1: Comparison of Observed and Simulated PBL Heights 

5.7.1.1: Comparison to P-3B PBL Heights 

 None of the five PBLH schemes tested compared well to the P-3B PBLH estimates in 

terms of magnitude of the boundary layer depth, as shown in Fig. 5.2a)-e). However, the P-3B 

dataset represents instantaneous estimates of PBLH, whereas the WRF-Chem PBLH values are 

provided as hourly averages. Though the WRF-Chem estimate most coincident in time to each P-

3B spiral was sampled for use in these analyses, the mismtach in temporal resolution likely 

prevented good correlation between simulated and observed P-3B PBLH values. The values of 

𝜒"#$%  (displayed on each plot in Fig. 5.2, and similar for all schemes) support the possiblity of 

temporal mismatch, errors in the model leading to errors in thes simulated PBLH values, as well 
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as a potential underestimation of the uncertainty in the P-3B PBLH values, while the lack of 

correlation also indicates a large degree of scatter due to the model overestimating by differing 

amounts relative to the P-3B PBLH observations. Some generalizations can be made from the 

scatter plots displayed in Fig. 5.2a)-e). The QNSE scheme most often overpredicted the PBLH 

relative to the P-3B estimates (percentage of observed PBLH values overpredicted by each 

scheme shown in Table 5.3); the ACM2 scheme also often overpredicted (Table 5.3), though not 

as severely as for the QNSE scheme. However, YSU, MYJ, and BouLac also overpredicted at 

approximately half of the data points (Table 5.3). The mean bias values, defined as the difference 

between the coincident simulated and observed PBLH values (absolute values were not taken), 

for each scheme are displayed in Table 5.4, and support the results of the scatter plots. The 

QNSE and ACM2 schemes produced the largest and second-largest mean bias values, 

respectively, of all five schemes. The mean PBLH biases produced by these schemes were also 

statistically significantly larger than those for the YSU, MYJ, and BouLac schemes; further, the 

QNSE mean bias was statistically significantly larger than that for the ACM2 scheme. The mean 

biases for the YSU, MYJ, and BouLac schemes were not statistically significantly different from 

each other. The values of the average perpendicular distance of the data points from the 1:1 line 

(displayed on the plots in Fig. 5.2) were also similar for the BouLac, MYJ, and YSU schemes, 

and larger for the ACM2 and QNSE schemes, indicating that these three schemes demonstrated 

less scatter about the 1:1 and demonstrated less over- or underprediction relative to the 

observations than the ACM2 and QNSE schemes. Thus, these three schemes performed equally 

well as each other relative to the P-3B dataset, while the lack of correlation between simulaed 

and observed PBLH values indicates that these three schemes, while systematically 

overpredicting relative to the P-3B, often overpredicted by vastly different amounts. 
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Additionally, the MYJ, BouLac, and YSU schemes performed better relative to the P-3B 

observations than the ACM2 and QNSE schemes, and the QNSE scheme performed worst of all 

five schemes. 

 

  
 

Fig. 5.2: Scatter plots displaying simulated 
PBLH vs. P-3B PBLH estimates for a) the 
YSU scheme, b) the MYJ scheme, c) the 
BouLac scheme, d) the ACM2 scheme, and 
e) the QNSE scheme. R2 values for the 
correlation between simulated and 
observed values, 𝝌𝒓𝒆𝒅𝟐 values between 
simualted and observed values, average 
perpendicular distance from the 1:1 line, 
and number of coincident data points 
displayed in the legend in the lower right. 
Example uncertainty bars displayed on 
median data point in red: uncertainty in 
measurement used for observed PBLH 
and standard deviation used for simulated 
PBLH. 
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Frequency  of Overpredictions in PBLH 

 P-3B 
(67 Total Points) 

MPL 
(167 Total Points) 

HSRL 
(110 Total Points) 

ACM2 65.7% 53.3% 26.4% 

BouLac 58.2% 50.9% 27.3% 

MYJ 49.3% 49.7% 25.5% 

QNSE 88.1% 83.8% 54.5% 

YSU 52.2% 44.9% 22.7% 

Table 5.3: Frequency of overprediction in PBLH for each PBL scheme. Total number of 
points within each dataset listed under the dataset name.  
 

Mean PBLH Bias – P-3B Dataset 

Scheme Mean Bias (m) 1 Standard Deviation (m) 

ACM2 430.9 622.5 

BouLac 259.11 616.7 

MYJ 166.5 650.3 

QNSE 823.1 637.5 

YSU 181.9 642.3 

Table 5.4: Mean PBL scheme bias values in PBLH relative to the P-3B dataset, and the 1 
standard deviation value. All values in meters.  
 
5.7.1.2: Comparison to HSRL and MPL MLH  

 The MPL and HSRL MLH estimates were computed as hourly averages; thus, the MLH 

observational datasets and WRF-Chem PBLH values are provided at the same temporal 
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resolution; the associated 𝜒"#$%  values (displayed on the plots in Figs. 5.3 and 5.4) were also 

smaller than those for the comparison to the P-3B, indicating less of a mismatch or underestimate 

in uncertainty of the observed values. Each PBL scheme compared moderately well to the MPL 

(Fig. 5.3a)-e) or HSRL (Fig. 5.4a)-e) observations, with R2 values between 0.49 and 0.66 for the 

correlations between simulated and observed estimates for each PBL scheme and observational 

dataset. The correlations between simulated and observed PBLH values for MPL and HSRL 

were not statistically significantly different from each other, indicating that WRF-Chem 

performed the same in comparison with both datasets for each PBL scheme. Additionally, the 

MPL and HSRL scatter plots demonstrate the same clear, consistent overprediction by the QNSE 

scheme as relative to the P-3B PBLH estimates. However, the ACM2 does not as clearly 

overpredict relative to the MPL and HSRL as it did relative to the P-3B: the average orthogonal 

distances to the 1:1 displayed, also displayed on the plots in Figs. 5.3 and 5.4, were similar for all 

schemes relative to both the MPL and HSRL datasets, with the exception of the QNSE scheme. 

The average distances suggest that the QNSE scheme least well captured the observed MPL and 

HSRL MLH values, while BouLac demonstrated a small advantage in capturing the observations 

over the other four schemes. Most schemes underpredicted low observed MLH values, between 

approximately 400 m and 600 m, and overpredicted high MLH values relative to the MPL 

dataset; however, the QNSE scheme did not exhibit much underprediction of low PBLH values. 

This underprediction is not apparent in the HSRL scatter plots. Additionally, all schemes except 

QNSE overpredicted relative to the MPL at approximately half of the data points; QNSE 

overpredicted most frequently (Table 5.3) The mean model biases are consistent with this 

overprediction relative to the MPL for most schemes: the MPL mean biases were statistically 

significantly larger than those for the HSRL. The YSU and MYJ schemes present an exception to 
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this pattern, with absolute values of MPL mean bias values smaller than the HSRL mean bias 

values. As with the P-3B mean biases, the QNSE scheme demonstrated the largest mean biases 

relative to the MPL and HSRL datasets, indicating significant overprediction. However, the 

ACM2, MYJ, YSU, and BouLac scheme mean biases were not statistically different from each 

other relative to the MPL dataset (Table 5.5), which, coupled with the similar average orthogonal 

distance values, suggest no scheme clearly performed better than the others. The ACM2 and 

BouLac mean biases were statistically the same relative to the HSRL dataset, while the YSU and 

MYJ mean biases were also statistically the same as each other (Table 5.6). As the absolute 

values of the mean biases for the ACM2 and BouLac schemes were smallest, this suggests that 

these two schemes best captured the HSRL MLH observations. These results suggest that the 

ACM2 and BouLac schemes are most adequate to capture boundary layer height observations 

relative to lidar observations.  
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Fig. 5.3: Scatter plots displaying 
simulated PBLH vs. MPL MLH 
estimates at Beltsville, Edgewood, and 
Fair Hill for a) the YSU scheme, b) the 
MYJ scheme, c) the BouLac scheme, d) 
the ACM2 scheme, and e) the QNSE 
scheme. R2 values for the correlation 
between simulated and observed 
values, 𝝌𝒓𝒆𝒅𝟐 values between simualted 
and observed values, average 
perpendicular distance from the 1:1 
line, and number of coincident data 
points displayed in the legend in the 
lower right. Example uncertainty bars 
displayed on median data point in red: 
uncertainty in measurement used for 
observed PBLH and standard 
deviation used for simulated PBLH. 
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Fig. 5.4: Scatter plots displaying 
simulated PBLH vs. HSRL MLH 
estimates for a) the YSU scheme, b) the 
MYJ scheme, c) the BouLac scheme, d) 
the ACM2 scheme, and e) the QNSE 
scheme. R2 values for the correlation 
between simulated and observed 
values, 𝝌𝒓𝒆𝒅𝟐 values between simualted 
and observed values, average 
perpendicular distance from the 1:1 
line, and number of coincident data 
points displayed in the legend in the 
lower right. Example uncertainty bars 
displayed on median data point in red: 
uncertainty in measurement used for 
observed PBLH and standard 
deviation used for simulated PBLH. 
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Mean PBLH Bias – MPL Dataset 

Scheme Mean Bias (m) 1 Standard Deviation 

ACM2 120.5 586.7 

BouLac 60.2 545.5 

MYJ 63.2 585.3 

QNSE 679.0 699.5 

YSU 2.9 527.5 

Table 5.5: Mean PBL scheme bias values in PBLH relative to the MPL dataset, and the 1 
standard deviation value. All values in meters.  
 

Mean PBLH Bias – HSRL Dataset 

Scheme Mean Bias (m) 1 Standard Deviation 

ACM2 26.3 351.3 

BouLac 3.2 312.1 

MYJ -92.3 372.9 

QNSE 446.6 383.7 

YSU -88.6 345.9 
 
Table 5.6: Mean PBL scheme bias values in PBLH relative to the HSRL dataset, and the 1 
standard deviation value. All values in meters.  
 
5.7.2: Comparison of Diurnal Cycles of Observed and Simulated PBL Heights 

 The average PBLH diurnal behavior within the observational datasets and for each PBL 

scheme is displayed in Fig. 5.5a)-c). All available PBLH values were averaged for each hour 

between 6 AM and 7 PM EDT for each dataset and PBL scheme tested to produce the average 
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diurnal cycles. Each scheme captured the general shape of the diurnal cycle relative to each of 

the three datasets, which is an encouraging result. Consistent with the mean simulated PBLH 

biases and the scatter plots, the QNSE scheme exhibited a clear, consistent overprediction 

relative to the P-3B, HSRL, and MPL datasets during all hours examined. The ACM2 scheme 

also exhibited overprediction from late morning (~10 EDT) through the afternoon (~4 PM EDT) 

relative to the P-3B and MPL datasets, which corresponds to the development of the CBL. It is 

notable that the YSU (nonlocal) and MYJ (local) schemes displayed very similar diurnal cycles 

to each other in terms of PBL depth and the timing of growth and decay of the PBL for each 

observational dataset examined. The BouLac diurnal cycle is often found between that of the 

ACM2 scheme and the YSU/MYJ grouping in terms of magnitude and timing for each dataset. 

Each scheme compared best to the HSRL dataset in both magnitude and diurnal behavior, from 

approximatley 8 AM EDT until collapse of the PBL initated at approximately 5 pm EDT; the 

PBL schemes decayed too quickly relative to the MPL and HSRL MLH estimates after this time. 

Changes were recently implemented into the ACM2 module with WRF v3.7 and newer that were 

meant to alleviate this error during PBL collapse, after tests in a single column version of WRF; 

however, these results indicate the problem still exists in the ACM2 implementation in the full, 

three-dimensional model. The PBL within each scheme also grew too rapidly and too deeply 

relative to the MPL MLH and P-3B PBLH datasets during the late morning and the early 

afternoon. However, like the other 4 schemes, the QNSE scheme also displayed the smallest bias 

in PBLH relative to the HSRL dataset, relative to the comparisons between QNSE and the other 

two datasets (Fig. 5.5 and Tables 5.4-5.6). Each PBL scheme would also compare more 

favorably with the P-3B PBLH datasets if not for the low average P-3B PBLH at 3 PM EDT. 

This low average is due to unusually low PBLH values at Aldino, Beltsville, and Padonia on July 
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28 and 29. Overall, each scheme well captured the shape of the average diurnal behavior of the 

P-3B PBLH estimates and the MPL and HSRL MLH estimates. The QNSE scheme exhibited a 

consistent high bias at all hours analyzed for each dataset, while the remaining four schemes 

overpredicted the PBLH during the peak depth of the CBL during late morning and afternoon 

relative to the P-3B and MPL datasets. Each scheme struggled to accurately simulate the 

development and collapse of the PBL during early morning and late afternoon. 

 

 

 

 
 
 

Fig. 5.5: Average diurnal variability of 
PBLH for simulated PBLH relative to the 
observational PBLH estimates for a) the 
P-3B, b) the MPL, and c) the HSRL 
datasets. 
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5.8 : Analysis of WRF-Chem Columns and Profiles 

5.8.1: P-3B and WRF-Chem Vertical Mixing Ratio Profiles  

  The median profiles of potential temperature (Fig. 5.6), CO (Fig. 5.7), O3 (Fig. 5.8), and 

NO2 (Fig. 5.9) were computed for each hour between the hours of 8 AM and 5 PM EDT; the 

example error bars placed at some altitudes represent the 25th and 75th percentile values at that 

altitude level. The P-3B data were first averaged into 100 m layers before computation of the 

median profiles, similarly to the column computations, while the CMAQ vertical grid was used 

with the simulated profiles. Scatter plots of simulated vs. observed values for potential 

temperature (Fig. 5.10), CO (Fig. 5.11), O3 (Fig. 5.12), and NO2 (Fig. 5.13) are also displayed for 

all available profiles at each hour between 8 AM and 5 PM. The P-3B potential temperature and 

CO median profiles demonstrate the development of the well mixed, convective boundary layer: 

by 12 PM EDT, the potential temperature profile within the lowest 1 km of the median profile has 

become well mixed, the well mixed portion of the profile deepens to approximately 1.2 km by 2 

PM, its greatest extent during the simulation period, and remains deeply well mixed throughout 

the afternoon. The CO profiles are in agreement with the potential temperature profiles, with the 

lowermost 1 km of the profiles becoming well mixed by 1 PM and remaining well mixed 

throughout the afternoon. The simulated potential temperature and CO median profiles displayed 

a well developed PBL by 11 AM; this is particularly evident for the 11 AM ACM2 CO profile, 

which is more well  mixed than the other simualtions and observations. The median P-3B O3 and 

NO2 profiles are consistent with the development of the convective boundary layer indicated by 

potential temperature and CO. The NO2 profiles transition from an approximately exponential 

decay shape, in which maximum mixing ratio values are found near the surface and sharply decay 

with altitude toward minimum values, to a more well mixed profile resembling that of O3 or CO 
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during the afternoon, with a less steep vertical gradient in NO2 mixing ratios within the PBL but 

retaining the sharp decrease in mixing ratio values at the top of the PBL and into the free 

troposphere. The O3 are fairly well mixed by 10 AM, with some interruption at 12 PM and 1 PM, 

perhaps due to the mixing up of surface O3 as the PBL matured, returning to well mixed by 2 PM.  

It is notable that the ACM2 scheme displayed too much O3 between approximately 1 km and 2.5 

km at 8 AM and 9 AM, which may be indicative that ACM2 mixed too much O3 and O3 

precursors into this altitude layer on the previous day (which became the residual layer overnight 

and lasted through early morning). 

  None of the PBL schemes demonstrated a consistent ability throughout the diurnal cycle 

to best capture the shapes of the median in situ profiles or the magnitudes of the profiles for 

potential temperature, CO, and O3. All schemes well captured the magnitudes of the observed 

potential temperature values thorughout the diurnal cycle (Fig. 5.10); no scheme outperformed the 

others. The ACM2 was the scheme to most often overpredict these quantities, particularly during 

the afternoon after the convective boundary layer (CBL) had developed and throughout large 

portions of the profiles, including the uppper PBL and the free troposphere. This scheme also 

tended to exhibit median profiles that were too deeply mixed relative to the P-3B profiles and the 

other schemes during afternoon. It is notable that all five schemes did not over- or underpredict 

median potential temperature magnitudes except for 3 PM and 4 PM, as denoted by the overlap of 

the error bars of the schemes and the P-3B; all schemes overpredicted during these two times, 

which coincided with the mature phase of the CBL, and likely drove down the correlations in Fig. 

5.10. This relative performance did not as consistently carry over to the comparison with the in 

situ CO median profiles. The ACM2 and YSU schemes most adequately captured the shape of the 

CO profiles at 11 AM, 12 PM and 3 PM, while the BouLac scheme most often compared best to 
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the shape of the in situ profiles after 1 PM. However, most schemes performed well relative to the 

magnitudes of the observed CO mixing ratios during the morning and middle of the afternoon 

(until 11 AM and 1-3 PM). The PBL schemes less well captured the CO mixing ratios during the 

beginning of the evening collapse of the PBL at 4-5 PM, which is a process which 

parameterizations are known to less well replicate. The correlation  of the ACM2 simulated 

values with observed CO mixing ratio values was significantly lower than those for the other 

schemes at 1-2 PM (and at 9 AM; Fig. 5.11): ACM2 overpredicted CO mixing ratios, indicative 

of overly vigorous vertical mixing.  It should be noted that all five schemes tended to overpredict 

the median CO mixing ratio profiles at various times throughout the day, particularly within the 

upper PBL and lower free tropospheric portions of the profiles; the ACM2 most consistently 

overpredicted relative to the observations, in agreement with the scatter plots.  Somewhat 

consistently with the comparison to the P-3B CO profiles, the BouLac and QNSE schemes most 

often performed best of all five schemes relative to the shapes of the O3 in situ median profiles 

between 11 AM and 5 PM, though the same cannot be said of the comparison of the magnitudes 

of these simulated and observed values, as the direction and magnitude of the model bias changed 

throughout the day (frequent poor correlations in Fig. 5.12). The PBL scheme-simulated and P-3B 

O3 mixing ratios compared best at 3 PM (Fig. 5.12), during the mature phase of the CBL. As with 

CO, the ACM2 scheme tended to consistently overpredict relative to the P-3B median O3 profiles 

within the upper PBL and lower free troposphere, as denoted by the error bars. Many schemes 

often missed structure in the P-3B in situ O3 profiles.  

   The best comparsion among PBL schemes and in situ observations was obtained for 

NO2, which is a surprising result, given known errors in NOx emissions and simulated nitrogen 

chemistry. The BouLac scheme most consistently captured the shapes and magnitudes of the P-
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3B median NO2 at most hours of the day (Figs. 5.9 and 5.13), while the MYJ and YSU schemes 

also compared favorably during the afternoon. The ACM2 median NO2 profiles, as expected, 

tended to be too deeply mixed, while the QNSE scheme missed the development of the “boot 

shaped” profile, in which NO2 exhibited a more uniform mixing ratio value within the PBL, with 

a sharp decrease in magnitude above the PBL. This comparison to NO2 contrasts with those of the 

other species, and suggests that a scheme with less intense vertical mixing is needed to adequately 

simulate this short-lived species, as the nonlocal YSU scheme did not consistently compare well 

thorughout the day to the P-3B NO2 observations, and the ACM2 often overpredicted and mixed 

the median profile too deeply. The least under- or overprediction relative to the observations  was 

also obtained relative to NO2, though the ACM2 retained its tendency to overpredict during the 

afternoon hours in the upper PBL and lower free troposphere 
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Fig. 5.6 a)-d): Hourly-median plots of potential temperature for the hours between 8 AM 
and 11 AM EDT from P-3B in situ measurements and WRF-Chem simulation output for 
each of the five PBL schemes. Example error bars represent the 25th and 75th percentile 
values at that altitude level. All available profiles included. 
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Fig. 5.6 e)-j): Hourly-median plots of potential temperature for the hours between 12 PM 
and 5 PM EDT from P-3B in situ measurements and WRF-Chem simulation output for 
each of the five PBL schemes. Example error bars represent the 25th and 75th percentile 
values at that altitude level. All available profiles included. 
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Fig. 5.7 a)-d): Hourly-median plots of CO for the hours between 8 AM and 11 AM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five 
PBL schemes. Error bars represent the 25th and 75th percentile values at that altitude level. 
All available profiles included. 
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Fig. 5.7 e)-j): Hourly-median plots of CO for the hours between 12 PM and 5 PM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five 
PBL schemes. Error bars represent the 25th and 75th percentile values at that altitude level. 
All available profiles included. 
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Fig. 5.8 a)-d): Hourly-median plots of O3  for the hours between 8 AM and 11 AM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five PBL 
schemes. Error bars represent the 25th and 75th percentile values at that altitude level. All 
available profiles included. 
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Fig. 5.8 e)-j): Hourly-median plots of O3  for the hours between 12 PM and 5 PM EDT from 
P-3B in situ measurements and WRF-Chem simulation output for each of the five PBL 
schemes. Error bars represent the 25th and 75th percentile values at that altitude level. All 
available profiles included. 
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Fig. 5.9 a)-d): Hourly-median plots of NO2  for the hours between 8 AM and 11 AM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five PBL 
schemes. Error bars represent the 25th and 75th percentile values at that altitude level. All 
available profiles included. 
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Fig. 5.9 e)-j): Hourly-median plots of NO2  for the hours between 12 PM and 5 PM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five PBL 
schemes. Error bars represent the 25th and 75th percentile values at that altitude level. All 
available profiles included. 
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Fig. 5.10 a)-d): Hourly scatter plots of potential temperature for the hours between 8 AM 
and 11 AM EDT from P-3B in situ measurements and WRF-Chem simulation output for 
each of the five PBL schemes. All available profiles included. 
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Fig. 5.10 e)-j): Hourly scatter plots of potential temperature for the hours between 12 PM 
and 5 PM EDT from P-3B in situ measurements and WRF-Chem simulation output for 
each of the five PBL schemes.  All available profiles included. 
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Fig. 5.11 a)-d): Hourly scatter plots of CO for the hours between 8 AM and 11 AM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five 
PBL schemes. All available profiles included. 
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Fig. 5.11 e)-j): Hourly scatter plots of CO for the hours between 12 PM and 5 PM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five 
PBL schemes. All available profiles included. 
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Fig. 5.12 a)-d): Hourly scatter plots of O3 for the hours between 8 AM and 11 AM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five 
PBL schemes. All available profiles included. 
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Fig. 5.12 e)-j): Hourly scatter plots of O3 for the hours between 12 PM and 5 PM EDT from 
P-3B in situ measurements and WRF-Chem simulation output for each of the five PBL 
schemes. All available profiles included. 
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Fig. 5.13 a)-d): Hourly scatter plots of NO2 for the hours between 8 AM and 11 AM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five 
PBL schemes. All available profiles included. 
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Fig. 5.13 e)-j): Hourly scatter plots of NO2 for the hours between 12 PM and 5 PM EDT 
from P-3B in situ measurements and WRF-Chem simulation output for each of the five 
PBL schemes. All available profiles included. 
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5.8.2: P-3B and WRF-Chem Shape Factor Computation 

  Hourly median O3 and NO2 shape factors for the times between 8 am EDT and 5 pm 

EDT were computed over all six spiral sites for the P-3B observations and WRF-Chem simulated 

profiles. Simulated profiles most coincident in time and space to the P-3B profiles for each spiral 

site were sampled, to allow a direct comparison to the P-3B shape factor profiles. The shape 

factor was defined as the ratio of the partial column within a model vertical layer to the partial 

tropospheric column over the depth of the P-3B spiral:  

  S(z) = Ωz/Ωtrop                                                                                                                                                                      (5.13) 

where Ωz denotes partial column amount at vertical layer z and Ωtrop denotes the partial 

tropospheric column over the full depth of the P-3B spirals. For both observations and model 

simulations, the partial columns were computed over the depth of each WRF-Chem vertical layer; 

thus, the vertical distribution was computed over the model vertical grid.  

5.8.3: WRF-Chem Partial Tropospheric Column Amounts 

  To be able to compare the WRF-Chem column-surface correlations to those from the P-

3B, partial tropospheric columns were computed from the WRF-Chem output for O3 and NO2 

over the depths of the P-3B spirals.  WRF-Chem profiles coincident to each P-3B profile were 

sampled, and the WRF-Chem levels below or above the lowest or highest P-3B measurement 

altitudes were excluded from the column computation. The O3 or NO2 simulated partial column 

amounts were then computed from integration of the simulated lower tropospheric profile.  

5.8.4: P-3B and WRF-Chem O3 and NO2 Shape Factors 

  Overall, all five PBL schemes compared well to the median P-3B O3 shape factors for 

each hour between 8 AM and 5 PM EDT, as shown in Fig. 5.14. No scheme emerged that 

produced a consistent, clear “best” comparison to the P-3B diurnal variation in shape factor..  The 
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values of R2 for the correlation between observed and simulated shape factor values over all 

altitudes for each hour and the average orthogonal distance from the 1:1 line, displayed in Fig. 

5.15, were similar for among all five schemes at each hour, while the R2 values were greater than 

0.75 for all schemes and all hours, indicating that each scheme well captured the observed shape 

factor magnitudes throughout the day. However, a small decrease in the values of R2, 

accompanied by a small increase in the values of the average distance from the 1:1 line, can be 

discerned after 12 PM, suggesting that WRF-Chem was somewhat less able to reproduce the 

observed O3 shape factors during afternoon, when the PBL had maturely developed. Additionally, 

all schemes tended to underpredict within the PBL relative to the P-3B at each hour except at 2 

PM and 3 PM; each scheme best estimated the PBL magnitudes or slightly overpredicted at these 

two times. These also corresponded to the mature phase of the CBL, suggesting that local and 

nonlocal schemes captured the PBL shape factor profile shapes best when the boundary layer is 

most deeply and turbulently mixed. However, all five schemes tended to overpredict relative to 

the P-3B in the free troposphere, except between 1 PM and 3PM (mature phase of the CBL) when 

the schemes tended to underpredict, though no scheme tended to most greatly over- or 

underpredict relative to the other schemes at any altitude level. As with the comparison of the 

CMAQ O3 lower tropospheric shape factors to the P-3B cluster shape factors presented in Chapter 

3, these results indicate that WRF-Chem placed too large a portion of the O3 column relative 

vertical distribution higher in the vertical relative than seen in the observations. The shape factor 

comparisons presented here indicate an advantage of a coupled meteorology-chemistry model 

over the traditional offline model of the WRF/CMAQ model system: each PBL scheme used in 

WRF-Chem was able to replicate the vertical locations of shape factor local maxima and minima, 

with few exceptions, such as the erroneous free tropospheric peak in the simulated shape factors 
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at 11 AM or the overestimated free tropospheric peak at 1 PM. CMAQ, which uses ACM2 

exclusively for boundary layer mixing (regardless of the PBL scheme employed in the WRF 

simulation that is used to drive CMAQ) often placed the peak O3 shape factor values too high in 

the vertical relative to the P-3B (Chapter 3). This further suggests that the ACM2 scheme 

performed better in the online model than in the traditional offline CMAQ model. 

  The correlations between the P-3B and WRF-Chem O3 shape factor magnitudes for each 

PBL scheme over all available shape factor profiles for all hours supports the results of the 

comparison of the diurnal variation of the observed and simulated shape factors presented above. 

Values of R2 were 0.85-0.88 for all five schemes (Fig. 5.16a)-e), a high degree of correlation, 

indicating that the model adequately represented the shape factor magnitudes. However, the 

scatter plots of simulated vs. observed shape factor values display a consistent underprediction 

relative to the P-3B within the lowermost 800 m of the shape factors across all schemes (Fig. 

5.16a)-e). Though not as dramatic, a compensating overprediction is apparent for shape factors 

values above 1200 m altitude, and some overprediction between 800 m and 1200 m altitude. 

These patterns in shape factor bias with altitude are consistent with biases suggested by the 

comparison of the shapes of the simulated and observed shape factor profiles. The low bias within 

the lowermost portions of the shape factors and high bias within the upper portions of the shape 

factors indicate that these PBL schemes placed a greater portion of the O3 column relative vertical 

distribution higher in the vertical than seen in the observations.  This is likely due to a 

combination of errors in the NEI anthropogenic emissions used in these simulations (as detailed 

in Anderson et al., 2014; Canty et al., 2015; and Goldberg et al, 2016), and overestimated vertical 

mixing of trace gas species within each PBL scheme. Scatter plots of WRF-Chem vs. P-3B CO 

shape factors demonstrate a similar pattern of underestimated CO shape factor magnitudes below 
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800 m, with overestimated magnitudes between 1200 m and 2000 m (Fig. 5.17). The YSU, 

ACM2, and QNSE also overpredicted the CO shape factor magnitudes above 2000 m. The values 

of R2 and average perpendicular distance from the 1:1 line (displayed on each plot in Fig. 5.17) 

were similar to those for the O3 shape factor comparisons, displayed in Fig. 5.16, indicating that 

each PBL scheme overall well captured the magnitudes of the observed CO shape factors. Thus, 

the underestimation in the lower PBL and overestimation in the upper PBL (and in the lower free 

troposphere for YSU, ACM2, and QNSE) relative to the observed CO shape factors suggest that 

vertical mixing is overly vigorous within WRF-Chem, and impacted the relative vertical 

placements of the O3 and CO partial column amounts within the model. However, it is 

emphasized that the median O3 shape factor comparisons as well as the correlations between 

simulated and P-3B shape factor values indicate that a regional air quality model such as WRF-

Chem may be able to replicate the observed lower tropospheric shape factors, consistently with 

the results of Chapter 3. 

  Each scheme likely well replicated the shape factors throughout the day because, firstly, 

O3 is a well mixed trace gas (chemical lifetime longer than the timescale of turbulent mixing). 

Further, the shape factor computation is based directly on partial column amounts, and indirectly 

on the in situ mixing ratio profile. The shape factor is a measure of the relative vertical 

distribution of pollutant mass rather than an absolute distribution, as the in situ profiles are. Errors 

in mixing ratio above the PBL do not produce as much error in the shape factor as errors in 

mixing ratio within the PBL, due to lower air density in the free troposphere.  With the 

moderately adequate comparison of the simulated and observed in situ O3, differences in density 

lead to a better ability of the model to capture O3 column amounts and partial column vertical 

distribution than the ability to capture the in situ mixing ratio profiles. 
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Fig. 5.14: a)-d) Hourly-median plots of O3 shape factors for the hours between 8 AM and 11 
AM EDT from the P-3B observations and WRF-Chem simulation output for each of the five 
PBL schemes. Hours between 8 AM and 11 AM. All available profiles included.  
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Fig. 5.14: e)-h) Hourly-median plots of O3 shape factors for the hours between 12 PM and 3 
PM EDT from the P-3B observations and WRF-Chem simulation output for each of the five 
PBL schemes. Hours between 12 PM and 3 PM. All available profiles included.  
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Fig. 5.14: i)-j) Hourly-median plots of O3 shape factors for the hours between 4 PM and 5 
PM EDT from the P-3B observations and WRF-Chem simulation output for each of the five 
PBL schemes. Hours between 4 PM and 5 PM. All available profiles included.  
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Fig. 5.15: a)-d) Scatter plots of O3 shape factor magnitudes for the hours between 8 AM and 
5 PM EDT from the P-3B observations and WRF-Chem simulation output for each of the 
five PBL schemes. Hours between 8 AM and 11 AM. All available profiles included. R2 for 
the correlation between simulated and observed shape factor values and average orthogonal 
distance from the 1:1 line displayed in bottom right. 
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Fig. 5.15: e)-h) Scatter plots of O3 shape factor magnitudes for the hours between 8 AM and 
5 PM EDT from the P-3B observations and WRF-Chem simulation output for each of the 
five PBL schemes. Hours between 12 PM and 3 PM. All available profiles included. R2 for 
the correlation between simulated and observed shape factor values and average orthogonal 
distance from the 1:1 line displayed in bottom right. 
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Fig. 5.15: i)-j) Scatter plots of O3 shape factor magnitudes for the hours between 8 AM and 
5 PM EDT from the P-3B observations and WRF-Chem simulation output for each of the 
five PBL schemes. Hours between 4 PM and 5 PM. All available profiles included. R2 for the 
correlation between simulated and observed shape factor values and average orthogonal 
distance from the 1:1 line displayed in bottom right. 
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Fig. 5.16: Scatter plots of simulated vs. 
observed O3 shape factor values for WRF-
Chem vs. the P-3B for a) the YSU scheme, 
b) the MYJ scheme, c) the BouLac scheme, 
d) the ACM2 scheme, and e) the QNSE 
scheme. Data points coded by altitude, as 
displayed in legend in lower right. R2 
values for the correlation between 
simulated and observed values, 𝝌𝒓𝒆𝒅𝟐 values 
between simualted and observed values, 
average perpendicular distance from the 
1:1 line, and number of coincident data 
points displayed in the legend in the lower 
right. Example uncertainty bars displayed 
on median data point in red: uncertainty in 
measurement used for observed PBLH and 
standard deviation used for simulated 
PBLH. 
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Fig. 5.17: Scatter plots of simulated vs. 
observed CO shape factor values for WRF-
Chem vs. the P-3B for a) the YSU scheme, 
b) the MYJ scheme, c) the BouLac scheme, 
d) the ACM2 scheme, and e) the QNSE 
scheme. Data points coded by altitude, as 
displayed in legend in lower right. R2 
values for the correlation between 
simulated and observed values, 𝝌𝒓𝒆𝒅𝟐 values 
between simualted and observed values, 
average perpendicular distance from the 
1:1 line, and number of coincident data 
points displayed in the legend in the lower 
right. Example uncertainty bars displayed 
on median data point in red: uncertainty in 
measurement used for observed PBLH and 
standard deviation used for simulated 
PBLH. 
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  The five PBL schemes struggled to replicate the hourly median NO2 P-3B shape factor 

profiles (Fig. 5.18). The ACM2 scheme tended to too deeply mix the NO2 shape factor in the 

vertical relative to the P-3B and the other schemes during the afternoon, between 11 AM and 5 

PM, leading to overestimations. No scheme consistently compared well to the observations 

throughout the day, as seen in the hourly shape factor scatter plots (Fig. 5.19). However, despite 

YSU overestimating shape factors above the PBL, this scheme and the BouL.ac scheme well 

captured the shape of the shape factor profiles during the early afternoon (12-2 PM). During late 

afternoon, it is notable that the ACM2 produced the best comparison at 4 PM, as it was the only 

scheme to replicate the sharp decrease in NO2 shape factor values at approximately 1.2 km, while 

the QNSE scheme well captured the shape of the shape factor profiles at 3 PM and 5 PM. The 

MYJ scheme typically did not compare as well as the other schemes to the P-3B. The shape 

factors indicate model biases varying with time of day and altitude for NO2. All schemes tended 

to overpredict in the upper free tropospheric portions of the shape factors except between 12 PM 

and 4 PM, while the five schemes tended to overpredict in the upper PBL/lower free troposphere 

at most hours of the day relative to the P-3B. No clear patterns of model bias emerged for the 

lower PBL, though bias is certainly evident in the comparison plots.  

  The correlations between simulated and observed NO2 shape factor values over all 

available profiles over all hours are consistent with the mediocre comparison of the simulated and 

observed shape factor profiles. As with O3, each PBL scheme produced a similar correlation with 

the observations (R2 values between 0.32 and 0.42; Fig. 5.20a)-e), indicating that no scheme 

clearly outperformed the others. This is also a weak to moderate degree of correlation. The scatter 
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plots (Fig. 5.20a)-e) of simulated and observed shape factor values also display much more scatter 

than did the O3 scatter plots for each PBL scheme, with average perpendicular distance values of 

approximately 0.02 for NO2 instead of values of approximately 0.008 for O3, further indicating 

that each scheme struggled to capture the shape factor magnitudes at most vertical levels. The 

greater scatter also prevented patterns of model bias from emerging that were as clear as those for 

O3, though patterns are present. Each scheme tended to overpredict above 1200 m altitude; the 

ACM2, BouLac, and YSU schemes tended to most noticeably overpredict at these altitudes. It is 

also notable that the ACM2 scheme most significantly overpredicted above 1200 m, relative to 

the other schemes. All schemes displayed a tendency to underpredict between 800 m and 1200 m. 

The amount of scatter in the comparison of simulated and observed shape factor values increases 

below 1200 m, and is greatest in the lowermost 800 m of the shape factors, such that no clear 

tendencies to under- or overpredict in the lowermost shape factor profiles emerged; all schemes 

struggled most in the lowermost portion of the profiles, and often wildly missed the observed 

shape factor magnitudes. Part of this error in NO2 shape factor magnitudes may be due to errors in 

representation of NO2 and other NOy species within the chemical mechanism, as well as errors in 

the anthropogenic emissions (Anderson et al., 2014; Canty et al., 2015; and Goldberg et al, 2016). 

However, consistent with the simulated O3 and CO shape factors, the tendency to overpredict the 

magnitudes in the upper portions of the shape factors indicates that each scheme placed a greater 

portion of the NO2 column relative vertical distribution higher in the vertical than seen in the 

observations. This suggests that overestimated vertical mixing of trace gases within each scheme 

also played a role in the errors in the simulated NO2 partial column vertical distribution.  The 

overestimation of NO2 shape factor values above 1200 m in the ACM2 scheme particularly 
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suggests the impact of overly vigorous simulated vertical mixing on the NO2 column amounts, as 

well as overestimated mixing within this particular scheme. 

  These results are not encouraging that any one scheme may best represent NO2 shape 

factor profiles, and are at odds with the comparison of the simulated and observed in situ NO2 

volume mixing ratio profiles. This may be for one of the same reasons that WRF-Chem well 

replicated the O3 shape factors: vertical mixing. The short-lived NO2 is not as well mixed 

horizontally, as much of the NO2 burden in the PBL is located near emissions sources, or as well 

mixed vertically as O3 or CO, as its chemical lifetime is of a similar order of magnitude as the 

time to turbulently mix the PBL (Zhang et al., 2016), and vertical mixing does not exert a primary 

influence on NO2 mixing ratio profile shape variability (Chapter 3), impairing the ability of the 

shape factor computation to well replicate the observed NO2 partial column relative vertical 

distribution and leading to a better comparison to the in situ NO2 mixing ratio profiles.  

Additionally, the PBL schemes tended to overpredict the NO2 shape factors within the upper 

PBL/lower free troposphere; this is the region of the atmosphere to which satellite instruments are 

more sensitive for NO2 relative to near the surface, and requires accurate simulation of shape 

factors (see Chapter 3). Thus, these errors in the WRF-Chem simulated shape factors would lead 

to greater retrieval error than similar shape factor errors located near the surface. 
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Fig. 5.18 a)-d): Hourly-median plots of NO2 shape factors for the hours between 8 AM and 5 
PM EDT from the P-3B observations and WRF-Chem simulation output for each of the five 
PBL schemes. Hours between 8 AM and 11 AM. All available profiles included. 
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Fig. 5.18 e)-h): Hourly-median plots of NO2 shape factors for the hours between 8 AM and 5 
PM EDT from the P-3B observations and WRF-Chem simulation output for each of the five 
PBL schemes. Hours between 12 PM and 3 PM. All available profiles included. 
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Fig. 5.18 i)-j): Hourly-median plots of NO2 shape factors for the hours between 8 AM and 5 
PM EDT from the P-3B observations and WRF-Chem simulation output for each of the five 
PBL schemes. Hours between 4 PM and 5 PM. All available profiles included. 
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Fig. 5.19: a)-d) Scatter plots of NO2 shape factor magnitudes for the hours between 8 AM 
and 5 PM EDT from the P-3B observations and WRF-Chem simulation output for each of 
the five PBL schemes. Hours between 8 AM and 11 AM. All available profiles included. R2 
for the correlation between simulated and observed shape factor values and average 
orthogonal distance from the 1:1 line displayed in bottom right. 
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Fig. 5.19: e)-h) Scatter plots of NO2 shape factor magnitudes for the hours between 8 AM 
and 5 PM EDT from the P-3B observations and WRF-Chem simulation output for each of 
the five PBL schemes. Hours between 12 PM and 3 PM. All available profiles included. R2 
for the correlation between simulated and observed shape factor values and average 
orthogonal distance from the 1:1 line displayed in bottom right. 
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Fig. 5.19: i)-j) Scatter plots of NO2 shape factor magnitudes for the hours between 8 AM 
and 5 PM EDT from the P-3B observations and WRF-Chem simulation output for each of 
the five PBL schemes. Hours between 4 PM and 5 PM. All available profiles included. R2 for 
the correlation between simulated and observed shape factor values and average orthogonal 
distance from the 1:1 line displayed in bottom right. 
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Fig. 5.20: Scatter plots of simulated vs. 
observed NO2 shape factor values for 
WRF-Chem vs. the P-3B for a) the YSU 
scheme, b) the MYJ scheme, c) the BouLac 
scheme, d) the ACM2 scheme, and e) the 
QNSE scheme. Data points coded by 
altitude, as displayed in legend in lower 
right. R2 values for the correlation between 
simulated and observed values, 𝝌𝒓𝒆𝒅𝟐 values 
between simualted and observed values, 
average perpendicular distance from the 
1:1 line, and number of coincident data 
points displayed in the legend in the lower 
right. Example uncertainty bars displayed 
on median data point in red: uncertainty in 
measurement used for observed PBLH and 
standard deviation used for simulated 
PBLH. 
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5.8.5: P-3B and WRF-Chem O3 and NO2 Column-Surface Correlations  

  A simple linear regression analysis, following the procedure outlined in Chapter 2, was 

performed between the O3 or NO2 column and surface values for the P-3B observations and 

WRF-Chem output for each PBL scheme, to investigate the degree of correlation between column 

and surface data during the July 26-29 period. Correlations are the focus here, to investigate if 

column and surface data were related during this time period, and the relative strengths of this 

relationship among the observations and PBL schemes, a preliminary step before a true regression 

model between column and surface data can be built. Values of R2 for these correlation analyses 

are provided in Tables 5.7-5.12. Results are presented only for the Edgewood, Essex, Fair Hill, 

and Padonia spiral sites, as photolytic or corrected molybdenum converter NO2 in situ surface 

observations were available for only these four sites. Representative scatter plots of the observed 

O3 and NO2 correlations are presented in Fig. 5.21 for Edgewood. Consistent with the correlation 

results presented in Chapter 2, all O3 correlations were statistically significant and large for P-3B 

column_air and column_ground, with R2 values between 0.84 and 0.93 (Table 5.7). The 

correlations for O3 column_air and column_ground were also not statistically different from each 

other, indicative that O3 is well mixed horizontally and vertically, as expected. No NO2 

column_air correlations were statistically significant for this period, indicating no connection 

between column and surface quantities (Table 5.7); column_ground is not presented as the 

comparison between the P-3B and Cessna NO2 column and profile data presented in Chapter 2 

demonstrated that column_air better represented the true lower tropospheric NO2 column. These 

results are also consistent with those of Chapter 2, which demonstrated that NO2 exhibited at best 
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a low correlation between P-3B column amounts and surface mixing ratios when all available 

data were used in the correlation analysis. 

  Each of the five PBL schemes produced a high degree of correlation between the 

simulated O3 column and surface amounts at most sites, with most R2 values between 0.70 and 

0.96 (Tables 5.8-5.12). Representative scatter plots for the simulated O3 and NO2 simulated 

correlations are presented for the ACM2 at Edgewood in Fig. 5.22, and correlations were > 0.80 

for all schemes at the site. However, only a moderate degree of correlation (R2  = 0.47) was 

obtained between O3 column and surface amounts at Essex for the MYJ scheme, and Fair Hill 

presented no significant correlations for any PBL scheme except BouLac. Additionally, the WRF-

Chem O3 correlations were not statistically significantly different from those for the P-3B 

column_air and column_ground at any site except Fair Hill; the P-3B correlations were 

significantly larger than those for all five PBL schemes at this site. These comparisons suggest 

that, while all five schemes performed well relative to the observed correlations at most sites 

during this pollution event, the BouLac scheme most accurately replicated the observed O3 

column-surface relationship because it produced a significant correlation at all sites including Fair 

Hill. The good comparison between the simulated O3 column-surface connection and the 

observed column-surface connection is consistent with the good comparison between simulated 

and observed O3 shape factors.  

  The PBL scheme correlations for the simulated NO2 column and surface amounts are 

much more varied than for O3 (Tables 5.7-5.12). Each PBL scheme produced a significant 

correlation between the simulated NO2 columns and surface mixing ratios for at least one site, 

and, when significant, the R2 values for these correlations were at least 0.38. Interestingly, 

significant correlations were obtained at all four sites with the BouLac scheme, with R2 values 
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between 0.48 and 0.71. The ACM2 and QNSE schemes each produced only one significant 

correlation, at the Essex (R2 = 0.38) and Fair Hill (R2 = 0.42) sites, respectively, while the MYJ 

and YSU schemes both produced significant correlations at Edgewood and Essex (R2 values 

between 0.49 and 0.57). Furthermore, the BouLac correlations at each site were statistically 

significantly larger than those for the P-3B, supporting that this scheme greatly overestimated the 

NO2 column-surface relationship. The YSU Essex and QNSE Fair Hill correlations were also 

significantly larger than those for the P-3B at these sites, indicating that, as they each produce a 

significant correlation, these schemes also overestimated the column-surface relationship. 

However, the ACM2 Essex correlation was not significantly different from that for the P-3B, 

meaning that the simulated correlation is not, in fact, statistically significant and that this scheme 

produced no significant correlations. The ACM2 scheme was thus the PBL scheme that most 

accurately simulated the NO2 column-surface relationship during this period, followed closely by 

the YSU and QNSE schemes. As with O3, the correlation results are consistent with the shape 

factor comparisons for NO2. The poor observed correlation also reflects the degree of O3 

production during this pollution event: high temperatures and abundant sunlight quickly 

converted NO2 to O3, depleting the NO2 column and surface and further interfering with the 

column-surface connection. Further, these results highlight the relative impact of overestimated 

vertical mixing in the model on the simulated O3 and NO2 column-surface correlations. Overly 

vigorous model boundary layer mixing did not impair the O3 correlations relative to the 

observations for any PBL scheme as much as it did for NO2, given the longer lifetime of O3 

within the PBL; all schemes except the ACM2 scheme mixed NO2 too well relative to the 

observations to produce greater correlations than observed. 
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July 26-29 Period Correlations – P3-B 

Site Column_Air O3 R2  Column_Ground O3 R2  Column_Air NO2 R2 

Edgewood 0.86  0.88  N.S. 

Essex 0.84  0.84  N.S. 

Fair Hill 0.93  0.93  N.S. 

Padonia 0.84  0.88  N.S. 

Table 5.7: Values of R2 for the correlations between P-3B column_air and column_ground 
O3 and column_air NO2 and surface mixing ratios at the four spiral sites. N.S. denotes a 
correlation that was not statistically significant at a confidence level of 95%. 
 

July 26-29 Period Correlations – ACM2 

Site O3 R2  NO2 R2 

Edgewood 0.80 N.S. 

Essex 0.73 0.38 (N.S.) 

Fair Hill N.S. N.S. 

Padonia 0.87 N.S. 

Table 5.8: Values of R2 for the correlations between simulated column O3 and column NO2 
and surface mixing ratios at the four spiral sites for the ACM2 scheme. N.S. denotes a 
correlation that was not statistically significant at a confidence level of 95%. 
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July 26-29 Period Correlations – BouLac 

Site O3 R2  NO2 R2 

Edgewood 0.87 0.71 

Essex 0.75 0.51 

Fair Hill 0.41 0.69 

Padonia 0.95 0.48 

Table 5.9: Values of R2 for the correlations between simulated column O3 and column NO2 
and surface mixing ratios at the four spiral sites for the BouLac scheme. N.S. denotes a 
correlation that was not statistically significant at a confidence level of 95%. 
 

July 26-29 Period Correlations – MYJ 

Site O3 R2  NO2 R2 

Edgewood 0.81 0.50 

Essex 0.47 0.49 

Fair Hill N.S. N.S. 

Padonia 0.86 N.S. 

Table 5.10: Values of R2 for the correlations between simulated column O3 and column NO2 
and surface mixing ratios at the four spiral sites for the MYJ scheme. N.S. denotes a 
correlation that was not statistically significant at a confidence level of 95%. 
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July 26-29 Period Correlations – QNSE 

Site O3 R2  NO2 R2 

Edgewood 0.82 N.S. 

Essex 0.73 N.S. 

Fair Hill N.S. 0.42 

Padonia 0.88 N.S. 

Table 5.11: Values of R2 for the correlations between simulated column O3 and column NO2 
and surface mixing ratios at the four spiral sites for the QNSE scheme. N.S. denotes a 
correlation that was not statistically significant at a confidence level of 95%. 

 

July 26-29 Period Correlations – YSU 

Site O3 R2  NO2 R2 

Edgewood 0.82 0.57 

Essex 0.72 0.56 

Fair Hill N.S. N.S. 

Padonia 0.96 N.S. 

Table 5.12: Values of R2 for the correlations between simulated column O3 and column NO2 
and surface mixing ratios at the four spiral sites for the YSU scheme. N.S. denotes a 
correlation that was not statistically significant at a confidence level of 95%. 
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Fig. 5.21: Representative scatter plots of column vs. surface O3 (left) and NO2 (right) 
correlations for the P-3B spirals at Edgewood over July 26-29, 2011. R2 values for 
column_air and column_ground displayed in upper left. 
 

 

Fig. 5.22: Representative scatter plots of column vs. surface O3 (left) and NO2 (right) 
correlations for the times of P-3B spirals at Edgewoond from WRF-Chem simulations with 
the ACM2 scheme. R2 values for column_air and column_ground displayed in upper left. 
 

5.9: Conclusions  

  Five PBL schemes were tested in the WRF-Chem v3.7.1 model, including the ACM2, 

BouLac, MYJ, QNSE, and YSU schemes. The QNSE scheme consistently overpredicted the PBL 
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height relative to all three observational datasets (the P-3B, MPL, and HSRL PBLH estimates). 

The ACM2 scheme compared best to the P-3B observational estimates, while the ACM2 and 

BouLac schemes compared well to the MPL and HSRL estimates, in terms of replicating the 

observed PBL height. However, though ACM2 and BouLac compared best to the observations 

relative to the other schemes, the ACM2 scheme also produced a consistent high bias in PBLH, 

indicating an overestimation of vertical mixing. With the exception of PBL growth that was too 

rapid in the early morning and PBL collapse that was too fast during late afternoon, each of the 

five schemes replicated the shapes of the average diurnal cycles of the P-3B, MPL, and HSRL 

datasets. The YSU and MYJ schemes behaved similarly to each other in terms of the average 

PBLH diurnal variation and simulated PBLH values. These results suggest that the ACM2 

scheme best captures PBLH of the five schemes tested, though overestimated vertical mixing 

remains an issue. 

  All schemes also better captured the NO2 hourly median in situ mixing ratio profiles than 

the in situ potential temperature, CO, and O3 profiles. The BouLac scheme best captured the NO2 

profiles, followed by the YSU and MYJ schemes, at most hours of the day. The ACM2 scheme 

tended to mix the profiles for potential temperature, CO, O3, and NO2 too deeply; however, it was 

often able to capture the shapes of the potential temperature profiles. Though no scheme emerged 

that produced a consistently good comparison to the CO and O3 in situ mixing ratio profiles, the 

BouLac scheme most often compared best to these median profiles. These results, coupled with 

the overprediction of PBLH by ACM2 and QSNE, suggest that a scheme with less intense vertical 

mixing (such as the BouLac scheme, or ACM2 modified to provide less intense vertical mixing) 

is needed to capture in situ PBLH observations and profile observations for both short-lived and 

well mixed species.  
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  Each PBL scheme well captured the shapes of the P-3B O3 hourly median shape factors 

profiles, and presented high correlation between simulated and observed shape factor values. 

Additionally, WRF-Chem was able to replicate most of observed local minima and maxima in the 

O3 shape factors at the correct altitudes, presenting a distinct advantage of a regional online 

meteorology-chemistry model over offline air quality models such as CMAQ. However, WRF-

Chem demonstrated a consistent low bias in shape factor values within the lowermost 800 m of 

the shape factor profiles, with compensating overpredictions at higher levels, indicating that 

overestimated vertical mixing caused the model to place too large a proportion of the O3 column 

burden too high in the vertical relative to the observations. This further indicates the need for 

improvements in vertical mixing within nonlocal PBL schemes. Each scheme struggled to 

reproduce the P-3B NO2 shape factors, though the ACM2 BouLac, and YSU most well compared 

to the observations during early afternoon, despite the ACM2 and YSU schemes mixing their 

respective shape factors too deeply. Each scheme tended to overpredict the shape factor values 

above 2000 m, though different schemes over- and underpredicted at different altitudes below 

2000 m, with mainly random errors within the lowermost shape factor profiles. The BouLac 

scheme most accurately simulated the observed O3 column-surface correlations, while the ACM2 

scheme most accurately simulated the NO2 column-surface correlations.  

  Overall, no one PBL scheme was able to accurately simulate all observed quantities or 

relationships. However, as the BouLac and ACM2 schemes frequently produced good 

comparisons to the P-3B for different types of analyses, this suggests that a nonlocal scheme with 

vertical mixing adjusted to be somewhat more local, may be able to more accurately simulate 

profiles and column quantities, leading to an improved column-surface connection within the 

model relative to the observed relationship. Finally, despite deficiencies that would lead to 
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retrieval errors, it bears repeating that these results are encouraging that a regional, coupled 

meteorology-chemistry model may reasonably specify a priori O3 profile shapes for remote 

sensing retrievals of O3 columns, particularly as PBL schemes continue to be improved. 
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Chapter 6: Conclusions and Future Research Directions 

 Satellite column observations of trace gases have great potential for diagnosis of surface 

or near-surface air quality conditions, particularly over regions lacking a sufficiently dense 

surface air quality monitoring network. However, biases and uncertainties within satellite 

instrumentation and retrieval algorithms currently limit our ability to relate column abundances 

to surface mixing ratios. As the launch dates for planned geostationary air quality satellites such 

as TEMPO draw nearer, this need to understand the linkage between column abundance and 

surface mixing ratio becomes more urgent. The NASA DISCOVER-AQ mission was designed to 

provide sufficient observations of key meteorological and chemical species over four different 

regions within the U.S. exactly for this purpose: to provide information relevant to improving our 

ability to relate column and surface observations for key trace gases and aerosols. 

 The work presented in this dissertation has been conducted in support of the goals of 

DISCOVER-AQ: to better understand how well column quantities represent surface air quality 

for the EPA criteria pollutants O3 and NO2 during the four DISCOVER-AQ deployments. Three 

peer-reviewed journal articles have also been produced from this dissertation, including Flynn et 

al. (2014) published in Atmospheric Environment, Flynn et al. (2016) submitted to Atmospheric 

Environment, and Flynn et al. (in prep.) to be submitted to Atmospheric Chemistry and Physics. 

This work is focused on characterizing the degree of correlation between column and surface 

abundances for O3 and NO2, understanding the variability of in situ profiles and column 

quantities and how that variability relates to surface quantities, and investigation of the role of 

boundary layer mixing in controlling the column-surface relationship through use of the WRF-

Chem model:  

Initial Investigation of Column-Surface Relationship during the Maryland Campaign 
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 In the first part, we analyzed the degree of correlation between O3 and NO2 observational 

column and surface data sets from the Maryland campaign of the DISCOVER-AQ project, as 

well as investigated the impact of boundary layer mixing and compared the observed column-

surface correlations to those simulated by the CMAQ regional air quality model. This work was 

the initial investigation into the column-surface relationship, begun immediately after the 

Maryland deployment, and served as the springboard for all subsequent analysis of this and the 

other three campaigns. A simple linear regression analysis was applied to the P-3B column_air 

and column_ground lower tropospheric column amounts and coincident surface mixing ratio 

data, to the Pandora full tropospheric column amounts and coincident surface data, and to the 

simulated lower tropospheric column amounts and surface mixing ratios within CMAQ for the 

six spiral sites of this campaign. P-3B column_ground and column_air O3 demonstrated the 

greatest correlation between column and surface quantities of all datasets, and exhibited 

correlations that were not statistically different from each other, indicating that O3 is well mixed 

horizontally and vertically; NO2 typically exhibited poor correlation for most datasets. The 

simple linear regression analyses were repeated for each additional correlation analysis, first by 

adding inverse PBLH as a second predictor variable and second by normalizing the O3 or NO2 

column amount by PBLH before performing the regressions, to investigate the impact of 

boundary layer mixing on the strength of the correlations. These results indicate that PBL height 

added meaningful information to the column-surface relationship for NO2, because it is a short-

lived species that is not as well mixed as O3. The CMAQ model well replicated the observed P-

3B O3 correlations during the Maryland deployment, but overestimated the NO2 correlations, as 

the model likely underestimated the NO2 mixing ratio vertical gradient below the lowest P-3B 

measurement altitude. The CMAQ correlations were statistically significantly larger than those 
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of the observations at most spiral sites during the afternoon, when the CBL was maturely 

developed, while PBLH did not add useful information to the CMAQ correlations for either trace 

gas, indicating that these species are too well mixed within CMAQ. Lastly, The DISCOVER-AQ 

measurements suggest that O3 observations from future satellite instruments can be meaningful 

for surface air quality analysis if they have sufficient sensitivity to the lowest 2-3 km of the 

troposphere. 

Investigation of the Variability of In Situ Profiles and Column Abundances for All Campaigns 

 Column abundances depend on the in situ mixing ratio profiles for trace gases, as the 

mixing ratio profile partially determines where the greatest burden of a pollutant is located in the 

vertical. The location(s) in the vertical of the greatest O3 or NO2 burden will also determine how 

well that column amount relates to the surface, through boundary layer mixing processes. To 

further understanding of the relationship between column and surface quantities, an 

agglomerative hierarchical clustering algorithm was applied to the P-3B in situ O3 or NO2 

profiles during each of the four campaigns, to determine if typical profile shapes emerged, 

factors that influenced these profile clusters, and how well the column and surface data 

associated with each cluster correlated. All in situ O3 profile clusters produced by the 

agglomerative hierarchical cluster analysis were significant for the California, Texas, and 

Colorado deployments, with Texas producing the greatest number of distinct clusters (five). In 

contrast, the Maryland deployment produced only one cluster significantly different from the 

remaining five clusters, indicating that O3 displayed the least profile variability during this 

deployment. Not surprisingly, atmospheric stability, as indicated by the lapse rate and potential 

temperature profiles associated with each cluster, emerged as important influences on the shapes 

of the profile clusters during each campaign. The column-surface correlations associated with no 
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Texas or Colorado O3 profile cluster were significant, while most cluster correlations for the 

Maryland campaign were significant, suggesting that O3 column observations may be most 

representative of surface concentrations under the conditions of deep, convective boundary 

layers, less intense wind shear, and few geography-meteorology interactions (with the exception 

of the bay breeze) associated with the Maryland deployment relative to the other campaigns. 

Consistent with the findings of the simple linear regression analyses performed for the Maryland 

campaign spiral sites discussed previously, the profile cluster results emphasize the important 

role of vertical mixing in the O3 column-surface relationship. Median shape factors were also 

computed for each profile cluster for each campaign for both the P-3B and the regional CMAQ 

and global GMI model output. Both models moderately well captured the P-3B lower 

tropospheric shape factors for the Maryland and California campaigns, with better performance 

relative to the observations for the Maryland deployment.  

 Unlike O3, NO2 displayed relatively uniform profile behavior for all four campaigns, as 

denoted by the lack of many significantly distinct profiles clusters, while no important influences 

beyond NO2 photochemical loss during daytime (with sufficient sunlight and warm 

temperatures) emerged that regulated the NO2 profile variability. Almost no correlations 

associated with the NO2 profile clusters were significant, indicating that accurate representation 

of the lower tropospheric NO2 profile from a model in a satellite retrieval does not guarantee the 

ability to connect column and surface. CMAQ produced more realistic NO2 shape factors than 

did GMI, though both models often struggled to capture the observed shape factors. The CMAQ 

NO2 shape factors were typically overpredicted in the upper PBL/lower free troposphere, an 

altitude region to which OMI-like instruments are more sensitive than to the near-surface. 

However, both models performed best for the Maryland campaign; the Texas and Colorado 
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campaigns also experienced deep boundary layers, but also many more cloudy days than did the 

Maryland campaign. These results demonstrate that models may be best able to capture O3 and 

NO2 profiles under the conditions of convective boundary layers and O3 photochemical 

formation associated with the Maryland campaign. It must be stressed that both the hierarchical 

profile cluster results and the linear regression analyses presented thus far emphasize that 

satellites observations may best be able to capture surface conditions for O3 and NO2 for the 

conditions associated with the Maryland campaign, and that a regional air quality model may 

adequately prescribe the O3 and NO2 profiles for use in satellite retrievals. However, the CMAQ 

shape factor errors for NO2 could lead to retrieval errors. 

 However, these results leave some important questions unanswered. First, satellite 

retrievals often employ monthly-mean simulated a priori profiles in the shape factor computation 

that goes into the air mass factor. Would use of these typical profile shapes that emerged from 

the clustering analysis within satellite retrievals over each region of the U.S. improve retrievals 

of vertical column abundances over those regions? How much variability is contained within 

each profile cluster (i.e.; how greatly does each individual profile within a cluster differ from the 

cluster median profile)? What could such a variability analysis tell us about the 

representativeness of these profile clusters of the true in situ lower tropospheric profile for the 

conditions associated with each cluster, and would additional influences on the profile shapes 

and thus column-surface relationship emerge? This work is left for future endeavors.  

 As geostationary air quality satellites will observe column abundances during all daylight 

hours, it is important to understand how the O3 and NO2 column amounts vary throughout the 

day, and if that diurnal variability relates to the diurnal cycle of surface mixing ratio. This may 

reveal indications of when during the day satellite observations may be most representative of 
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surface concentrations. The campaign-average diurnal timeseries was computed for O3 and NO2 

for each spiral site of each campaign. The O3 full troposphere and lower tropospheric column 

observational datasets demonstrated little diurnal variation, in contrast to the surface O3 diurnal 

cycle. This is indicative that boundary layer mixing plays a crucial role in controlling the O3 

column diurnal cycle: surface concentrations are mixed up into the PBL as the PBL grows, while 

O3 remaining within the residual layer is mixed down into the growing PBL, dampening the 

variability of the column amount relative to the surface. The NO2 full and lower tropospheric 

column datasets, however, displayed a consistent diurnal variability at most spiral sites during all 

campaigns, though the column diurnal variability was smaller in amplitude and offset in time 

relative to the surface diurnal variation. Additionally, NO2 photochemical loss (as indicated by 

the diurnal cycle of the photolysis frequency, j(NO2)) emerged as an important influence on the 

NO2 column variability. Neither set of results for O3 and NO2 suggest a time of day when 

satellite column observations may be most representative of surface concentrations. Both the 

CMAQ and GMI models replicated the shapes of the O3 and NO2 column diurnal cycles. Vertical 

mixing yet again emerged as an important theme in the column-surface connection, as the model 

results further highlight the importance of vertical mixing. However, questions also again remain 

unanswered and left for future endeavors. How do the diurnal timeseries on individual days at 

these spiral sites compare to the campaign average, and what could that reveal about the 

variability of the column diurnal variation? As a sanity check, how do the column diurnal 

timeseries compare to that of PBLH, and does the change in column with time for each hour 

(d(column)/dt) exhibit a similar diurnal cycle as that for the surface mixing ratios (d(surface)/dt) 

for NO2? What is it about the differences in the remote sensing retrievals that lead to differences 
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in the column diurnal variations?  Lastly, would the diurnal cycles of the O3 and NO2 columns 

normalized by PBLH better resemble the surface diurnal cycles? 

Investigation of the Boundary Layer Mixing in the WRF-Chem Model 

 The last section of this dissertation focused on evaluation of the ability of the regional, 

coupled chemistry-meteorology WRF-Chem v3.7.1 model to effectively simulate the interplay 

between boundary layer mixing and O3 and NO2 vertical profiles, and the associated impacts on 

the column-surface correlations for these trace gases, for the July 26-29, 2011, O3 pollution 

episode. An online meteorology-chemistry model was chosen to avoid the middle-man time 

averaging of the WRF output required to run CMAQ offline, while the Maryland deployment 

was chosen because it presented the greatest connection between O3 column and surface 

amounts. Five PBL schemes were evaluated, including two nonlocal schemes (ACM2 and YSU) 

and three local schemes (MYJ, BouLac, and QNSE). The QNSE consistently greatly 

overpredicted PBLH relative to the P-3B, MPL, and HSRL observational PBLH datasets. The 

ACM2 scheme also produced a high bias in PBLH relative to each observational dataset, though 

not as greatly as with QNSE, indicating an overestimation of vertical mixing. Additionally, these 

schemes presented mixed results in the comparisons to the observed in situ hourly median 

potential temperature, CO, O3, and NO2 mixing ratio profiles: no one scheme emerged that 

compared well to the P-3B for these four species, and typically no one scheme emerged that 

captured the diurnal variation of even one of these species well throughout the day between 8 

AM and 5 PM EDT. These results suggest that a scheme with less intense vertical mixing (such 

as the BouLac scheme) is needed to capture in situ PBLH observations and profile observations 

for both short-lived and well mixed species. These results emphasize the need for improvements 
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to vertical mixing within PBL schemes to more accurately capture the observed mixing and 

interplay between mixing and pollutant behavior.     

 However, each PBL scheme well captured the shapes of the P-3B O3 hourly median 

shape factor profiles, and presented high correlation between simulated and observed shape 

factor values, while each scheme struggled to capture the P-3B NO2 hourly median shape factor 

profiles. The ACM2 scheme also tended to overestimate the shape factor in the upper PBL/lower 

free troposphere, altitude levels where satellite instruments are more sensitive than near the 

surface; hence, satellite retrieval error would be much greater when there is error in the assumed 

shape factor at these levels than for error at the surface. However, the ACM2 scheme most 

accurately simulated the NO2 column-surface correlations, exhibiting no significant correlation 

at each spiral site just as the P-3B did. Despite deficiencies in the PBL schemes, it should be 

emphasized that each of the five schemes was most able to replicate most local maxima and 

minima in the observed O3 median shape factor profiles of the five schemes, bolstering the 

conclusions of the comparison of CMAQ to the P-3B in the profile clustering results that a 

regional air quality model may adequately prescribe a priori profiles for use in satellite 

retrievals. Additionally, because WRF-Chem replicated much of the observed local shape factor 

maxima and minima, these results indicate an advantage to use of a coupled model rather than 

offline meteorology/chemistry model system. 

 However, one important question remains unanswered in this section: how can the 

ACM2 scheme be improved to bring vertical mixing, and associated impacts on the column-

surface connection, more in line with the observations? The ACM2 scheme is of particular 

importance as it is the boundary layer mixing scheme used in CMAQ, the EPA regulatory model. 
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Experiments are currently underway to elucidate which parameters within the scheme, if any, 

can be modified to improve the representation of vertical mixing within this scheme. 
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Appendix A: Scatter Plots and Extended Analysis for Column vs. Surface for Full Data Set 
Correlations at Each Site for the Maryland Campaign Analysis from Chapter 2 
	
 Scatter plots of the correlation between surface and column data are presented in this 

appendix. These plots are presented for each data set at each site for O3 (Figures A1-A3) and 

NO2 (Figures A4-A6).  

The sites of maximum and minimum correlation between column and surface in each 

data set are summarized in Table A1. Fair Hill presented the largest correlation for the P-3B NO2 

data likely because it is the site farthest from large NO2 sources; NO2 is most vertically and 

horizontally well mixed at Fair Hill. It is interesting to note that Beltsville presented the largest 

correlation for the P-3B O3 data and Essex presented the lowest correlation for the P-3B and 

Pandora data, as Beltsville is one of the sites least impacted by the bay breeze while Essex is 

often impacted. The bay breeze most often impacted the Edgewood site, causing the O3 column-

surface relationship to be complex here (Loughner et al., 2013; Stauffer et al., 2012). The P-3B 

and Pandora results highlight the considerable variability in the column-surface relationship that 

exists among the surface sites for both trace gases. Because no OMI correlations were significant 

for either trace gas, no sites of maximum or minimum correlation can be identified 

 
	

Max. NO2 
Correlation 

Min. NO2 
Correlation 

Max. O3 
Correlation 

Min. O3 
Correlation 

P-3B Col_air Fair Hill Beltsville Beltsville Essex 
P-3B Col_ground Fair Hill Beltsville Beltsville Essex 

Pandora Essex Aldino Fair Hill Essex 
CMAQ (Loughner et 
al.) 

Fair Hill Beltsville Padonia Edgewood 
CMAQ (NOAA) Fair Hill Edgewood Beltsville Essex 

Table A1: Summary of the sites with the maximum and minimum degree of 
correlation between column amounts and surface mixing ratios for each trace gas 
and analysis. 
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Figure A1: Scatter plots of O3 column vs. surface O3 mixing ratio at each of the 6 
surface sites for P-3B column_air and column_ground. Full data set correlation. R2 
values are displayed in the upper left of each plot. 
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Figure A2: Scatter plots of O3 column vs. surface O3 mixing ratio at each of the 6 

surface sites for Pandora. Full data set correlation. R2 values are displayed in the upper 
left of each plot. 



	
	

250	
	

 

 

Figure A3: Scatter plots of O3 column vs. surface O3 mixing ratio at each of the 6 
surface sites for CMAQ (Lougher et al., 2013). Full data set correlation. R2 values are 
displayed in the upper left of each plot. 
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Figure A4: Scatter plots of NO2 column vs. surface NO2 mixing ratio at each of the 6 
surface sites for P-3B column_air and column_ground. Full data set correlation. R2 
values are displayed in the upper left of each plot. Surface observations for Aldino and 
Beltsville are NOy. 
	

	



	
	

252	
	

	

Figure A5: Scatter plots of NO2  column vs. surface NO2  mixing ratio at each of the 6 
surface sites for Pandora. Full data set correlation. R2 values are displayed in the upper 
left of each plot. 
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Figure A6: Scatter plots of NO2 column vs. surface NO2 mixing ratio at each of the 6 
surface sites for CMAQ (Loughner et al., 2013). Full data set correlation. R2 values are 
displayed in the upper left of each plot. 
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Appendix B: Values of R2 for the Correlations Separated into Data Groups for the 
Maryland Campaign Analysis from Chapter 2 

Table B1: Values of R2 for P-3B columns vs. surface for Time of Day Analysis 

 

Correlation 
Coefficient 

(Column_ground) 
Morning 

Correlation 
Coefficient 

(Column_ground) 
Afternoon 

Correlation 
Coefficient 

(Column_air) 
Morning 

Correlation 
Coefficient 

(Column_air) 
Afternoon 

Aldino NO2  
0.86 

 
0.84 

 
NS 

 
0.36 

Beltsville NO2  
0.29 

 
0.77 

 
NS 

 
0.33 

Edgewood NO2  
0.86 

 
0.54 

 
NS 

 
NS 

Essex NO2  
0.92 

 
NS 

 
NS 

 
NS 

Fair Hill NO2  
0.94 

 
0.43 

 
0.92 

 
NS 

Padonia NO2  
0.56 

 
0.43 

 
NS 

 
0.41 

Aldino O3  
0.70 

 
0.72 

 
0.64 

 
0.69 

Beltsville O3  
0.81 

 
0.84 

 
0.70 

 
0.82 

Edgewood O3  
0.57 

 
0.53 

 
0.47 

 
0.48 

Essex O3  
0.69 

 
0.55 

 
0.58 

 
0.51 

Fair Hill O3  
0.62 

 
0.58 

 
0.51 

 
0.53 

Padonia O3 
 

0.55 

 

 
0.81 

 

 
0.43 

 

 
0.81 
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Table B2: Values of R2 for Pandora columns vs. surface for Time of Day Analysis 

 
Correlation 

Coefficient (O3) 
Morning 

Correlation 
Coefficient (O3) 

Afternoon 

 
Correlation 

Coefficient (NO2) 
Morning 

Correlation 
Coefficient (NO2) 

Afternoon 

Aldino NS 0.02  
0.06 NS 

Beltsville NS 0.03  
0.23 0.33 

Edgewood NS NS  
0.34 0.32 

Essex NS NS  
0.52 0.34 

Fair Hill 0.08 NS  
0.23 0.10 

Padonia NS 0.03 
 

0.30 
 

0.23 
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Table B3: Values of R2 for P-3B columns vs. surface for PBL Separation Analysis 

 

Correlation 
Coefficient 

(Column_ground) 
Low PBL Group 

Correlation 
Coefficient 

(Column_ground) 
High PBL Group 

Correlation Coefficient 
(Column_air) Low 

PBL Group 

Correlation 
Coefficient 

(Column_air) High 
PBL Group 

 
Aldino NO2 

 
0.81 

 
0.85 NS  

NS 
 

Beltsville NO2 
 

NS 
 

0.70 NS  
0.30 

 
Edgewood NO2 

 
0.71 

 
NS NS  

NS 
 

Essex NO2 
 

NS 
 

0.3 NS  
NS 

 
Fair Hill NO2 

 
0.78 

NS 
 

0.26 NS 
 

 
Padonia NO2 

 
0.67 

 
0.23 NS  

0.28 
 

Aldino O3 
 

0.73 
 

0.88 0.70  
0.86 

 
Beltsville O3 

 
0.83 

 
0.89 0.75  

0.89 
 

Edgewood O3 
 

0.68 
 

0.55 0.63  
0.52 

 
Essex O3 

 
0.52 

 
0.69 0.47  

0.69 
Fair Hill O3 0.68 0.83 0.633 0.73 
Padonia O3 

 
0.65 

 
0.82 

 
0.54 0. 81 
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Table B4: Values of R2 for Pandora columns vs. surface for PBL Separation Analysis 

 Correlation 
Coefficient (O3) 

Low PBL 

Correlation 
Coefficient (O3) 

High PBL 

Correlation 
Coefficient 

(NO2) 
Low PBL 

Correlation 
Coefficient 

(NO2) 
High PBL 

Aldino 0.03 NS NS NS 
Beltsville NS NS 0.30 0.29 

Edgewood NS NS 0.21 0.38 
Essex 0.03 NS 0.25 0.23 

Fair Hill 0.14 NS 0.26 NS 
Padonia NS NS 0.27 0.31 

 
Table B5: Values of R2 for CMAQ columns vs. surface for Time of 

Day Analysis (Loughner et al. Runs) 

 Correlation 
Coefficient (O3) 

Morning 

Correlation 
Coefficient (O3) 

Afternoon 

Correlation 
Coefficient 

(NO2) 
Morning 

Correlation 
Coefficient 

(NO2) 
Afternoon 

Aldino NS 0.52 0.78 0.72 
Beltsville 0.59 0.65 NS 0.61 

Edgewood NS 0.44 NS 0.57 
Essex NS 0.55 NS 0.59 

Fair Hill 0.37 0.55 0.92 0.89 
Padonia 0.63 0.83 0.71 0.66 

 

Table B6: Values of R2 for CMAQ columns vs. surface for PBL 
Separation Analysis (Loughner et al. Runs) 

 Correlation 
Coefficient (O3) 

Low PBL 

Correlation 
Coefficient (O3) 

High PBL 

Correlation 
Coefficient 

(NO2) 
Low PBL 

Correlation 
Coefficient 

(NO2) 
High PBL 

Aldino 0.60 0.80 0.70 0.78 
Beltsville 0.61 0.73 NS 0.52 

Edgewood 0.54 0.83 0.44 0.52 
Essex 0.70 0.80 0.68 0.85 

Fair Hill 0.66 0.65 0.93 0.72 
Padonia 0.74 0.84 0.71 0.83 
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Table B7: Values of R2 for CMAQ columns vs. surface for Time of 

Day Analysis (NOAA Runs) 

 Correlation 
Coefficient (O3) 

Morning 

Correlation 
Coefficient (O3) 

Afternoon 

Correlation 
Coefficient 

(NO2) 
Morning 

Correlation 
Coefficient 

(NO2) 
Afternoon 

Aldino 0.60 0.80 0.70 0.78 
Beltsville 0.61 0.73 NS 0.52 

Edgewood 0.54 0.83 0.44 0.52 
Essex 0.70 0.80 0.68 0.85 

Fair Hill 0.66 0.65 0.93 0.72 
Padonia 0.74 0.84 0.71 0.83 

 

Table B8: Values of R2 for CMAQ columns vs. surface for PBL 
Separation Analysis (NOAA Runs) 

 Correlation 
Coefficient (O3) 

Low PBL 

Correlation 
Coefficient (O3) 

High PBL 

Correlation 
Coefficient 

(NO2) 
Low PBL 

Correlation 
Coefficient 

(NO2) 
High PBL 

Aldino 0.83 0.90 0.34 0.79 
Beltsville 0.87 0.85 0.94 0.81 

Edgewood 0.79 0.87 0.68 0.66 
Essex 0.64 0.80 0.95 0.88 

Fair Hill 0.75 0.93 0.61 0.97 
Padonia 0.69 0.82 0.25 0.91 
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Appendix C: Quadratic Least Squares Regression Analysis for the P-3B and Pandora for 
the Maryland Campaign Analysis from Chapter 2 

 A quadratic least squares regression was performed for P-3B and Pandora NO2. This 

yielded an equation of the form y = β1*x1 + β2*x1
2 + intercept, where y is the surface mixing 

ratio, x1 is the column abundance, β1 is the first regression coefficient associated with the 

column, and β2 is the second regression coefficient associated with the square of the column. A 

polynomial fit was applied only to the NO2 data because scatter plots of NO2 surface data vs. 

columns often exhibited non-linear behavior. 

A non-linear regression model was applied to only the NO2 data because the scatter plots 

of NO2 surface data versus columns often exhibited some non-linear behavior. Due to the 

shallowness of the layer containing the large NO2 values in the lower portion of the boundary 

layer, the contribution to column content may not be that great, leading to a non-linear 

relationship between column and surface values. The values of R2 for column_ground were 

larger than for the simple linear regression at most sites; many column_air regressions were not 

significant at a confidence level of 95% (Table C1). However, the average percentage errors did 

not demonstrate a consistent improvement over those for the simple linear regressions; four out 

of six sites demonstrated an increase in average error. The percentage of estimations within a 

±10% or ±50% error did not demonstrate consistent improvement (Table C2). The quadratic fit 

regressions for the Pandora NO2 data also displayed slightly improved R2 values at half of the 

sites, though the average percentage errors also did not (Tables C1, C2).  However, the standard 

deviations associated with the average percentage errors decreased relative to those for the 

simple linear regressions at some sites for the P-3B and Pandora NO2 analyses, indicating some 

reduction in the variability of the NO2 data. Histograms of the regression residuals for P-3B 

column_air revealed that residuals were more normally distributed for this analysis than for the 
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simple linear regression analysis at most sites, but plots of the residuals against the second 

predictor (log-transformed square of the column) displayed some linear structure for 

column_ground at some sites. Autocorrelation of the residuals remained apparent in the lag-1 

residual plots for Pandora at each site, but the histograms of the Pandora residuals also displayed 

a more normal distribution compared to the simple linear regressions (Figure C1). More 

investigation is needed to determine the correct model for column and surface NO2, but a 

quadratic fit improved the appropriateness of a least squares regression to fit the P-3B and 

Pandora NO2 data.  
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 P-3B NO2 
Col_Air 

R2 

P-3B NO2 
Col_Ground 

R2 

P-3B NO2 
Col_Air 
F-ratio 

P-3B NO2 
Col_Ground 

F-ratio 

Pandora 
NO2 
R2 

Pandora 
NO2 

F-ratio 
Aldino 0.15 0.81 2.93 70.2 0.03 5.03 

(0.067) (<0.001) (0.007) 
Beltsville 0.13 0.63 3.02 33.80 0.24 53.25 

(0.059) (<0.001) (<0.001) 
Edgewood 0.02 0.60 0.38 24.35 0.22 32.00 

(0.688) (<0.001) (<0.001) 
Essex 0.38 0.50 4.57 7.59 0.29 34.30 

(0.027) (0.014) (<0.001) 
Fair Hill 0.40 0.80 6.88 43.10 0.14 5.98 

(0.005) (<0.001) (0.004) 
Padonia 0.13 0.51 22.6 25.51 0.31 58.7 

(0.305) (<0.001) (<0.001) 
Aggregate 0.01 0.503 1.19 72.30 0.16 136.36 

(0.276) (<0.001) (<0.001) 

Table C1: Summary of the R2 statistic and F-ratio (p-value) for the P-3B and Pandora 
NO2 quadratic fit regressions. 
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 P-
3B 
NO 

Mean Error 

% of 
Cases 
w/in 

±10% 
Error 

% of 
Cases 
w/in 

±50% 
Error 

Pandora 
NO 

Mean Error 

% of 
Cases 
w/in 

±10% 
Error 

% of 
Cases 
w/in 

±50% 
Error 

Aldino 12.
8 

18.3% 73.2% 27.1 22.6% 80.4% 
(± 58.2) % (± 88.1) 

% Beltsville 2.9 51.2% 98.8% 19.3 24.2% 76.1% 
(± 18.2) % (± 56.2) 

% Edgewood -
64.8 

2.6% 22.4% -
118.

9 

5.2% 28.6% 
(± 512.1 %) (± 2304.1) % 

Essex 30.
4 

25.0% 66.7% 57.7 10.6% 62.4% 
(± 79.6%) (± 370.7) % 

Fair Hill -
24.9 

10.4% 37.5% -
378.

3 

2.7% 41.9% 
(± 172.1) % (± 2334.6) % 

Padonia 6.5 21.2% 66.7% 107.
8 

16.5% 63.8% 
(± 93.1) % (± 839.7) 

% 
Aggregate -3.3 7.3% 55.2% -12.8 15.5% 64.8% 

(± 1185.9) % (± 1772.9) 
% Table C2: Summary of percentage errors of P-3B and Pandora quadratic fit regression for 

all sites and the aggregate relative to observed surface values. P-3B Col_air and col_ground 
are analyzed together for each site and the aggregate. 
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Figure C1: Example scatter plots for NO2 quadratic fit residuals. Plot of residuals vs. 
square of the NO2 column for the Beltsville column_ground analysis and histogram of 
residuals for the Pandora Aldino NO2 analysis for the quadratic fit regression 
analysis. 
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