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Abstract 
The initialization of a dynamically consistent storm-scale environment with respect to 

both reality and the numerical model and of which results in a useful forecast presents a 

major challenge for convective-scale numerical weather prediction (NWP; Sun 2005; 

Stensrud et al. 2013; Johnson et al. 2015). Among the most critical sets of observations 

that can be used for initializing storm-scale NWP systems comes from the United States 

Weather Surveillance Radar-1988 Doppler (WSR-88D) network. This study will briefly 

evaluate the current capabilities of the using a GSI-based three-dimensional ensemble-

variational (3DEnVar) radial wind procedure using a high-resolution, rapidly updating 

forecast system during a heavy precipitation event on 30-31 October 2015. A set of 

experiments was conducted to evaluate the sensitivity of the analysis to the super-

observation settings, horizontal de-correlation length scale, and the velocity azimuthal 

display quality control to gain an understanding of how these parameters/quality control 

affect the resulting analysis from the radial wind assimilation. The results of this study 

will provide insight into future work for improving this procedure and more importantly 

improving the forecast of convective storms and precipitation. 
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Chapter 1. Introduction and Background 

 
Convective-scale data assimilation (DA) continues to be an emerging field and has 

important societal implications as it has the potential to improve the prediction of 

hazardous weather. A few distinct differences exist between convective- and large-scale 

DA, the most prominent of which are faster error growth, lower predictability, and the 

lack of appropriate balance constraints (Droegmeier 1997; Sun 2005). The initialization 

of a dynamically consistent storm-scale environment with respect to both reality and the 

numerical model and of which results in a useful forecast presents a major challenge for 

convective-scale numerical weather prediction (NWP; Sun 2005; Stensrud et al. 2013; 

Johnson et al. 2015).  

The prediction of a particular scale of atmospheric motion not only requires a model 

with sufficient resolution and an accurate representation of the major processes at those 

scales, but also requires that model to be initialized by assimilating observations that can 

describe that scale (Sun 2005). One such observational data set in particular for 

convective-scales, and is the focus of this study (although other observations are 

important), comes from the United States Weather Surveillance Radar 1988 Doppler 

(WSR-88D) network in the form of radial velocity (or radial wind).  

Extensive work has already been done to assimilate radial wind observations. Some 

of this work has been focused on improving the resulting NWP forecasts of convective 

storms over a variety of DA systems. For example, Gao et al. (2004); Liu et al. (2005); 

Xiao et al. (2005); Hu et al. (2006); Stensrud and Gao (2010); and Ge et al. (2012) have 

all used a three-dimensional variational (3DVar) approach with some success. The 3DVar 

method, while it is more computationally attractive, has a major limitation that it only 

incorporates a static background error covariance. Encouraging results have also been 

seen using an ensemble Kalman filter (EnKF) method (Snyder and Zhang 2003; Dowell 

et al. 2004; Caya et al. 2005; Tong and Xue 2005; Gao and Xue 2008; Jung et al. 2008; 

Xue et al. 2008; Aksoy et al. 2009; Dowell and Wicker 2009; Lu and Xu 2009; Aksoy et 

al. 2010; Yussouf and Stensrud 2010). The advantage of the EnKF over 3DVar is that it 

dynamically evolves the background error statistics through the use of an ensemble 

forecast. The EnKF method also has limitations due to the ensemble size relative to the 
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degrees of freedom for the NWP model. To overcome these challenges, a hybrid method 

(Lorenc 2003) is suggested which uses a blend of the static and ensemble background 

error covariances. A few studies have shown that the use of a hybrid DA system may 

provide the best results for convective-scale forecasting (Carley 2012; Li et al. 2012; Gao 

and Stentrud 2014; Johnson et al. 2015). Other studies have focused on deriving 

appropriate observational errors to make better use of the observations (Rihan et al. 2008; 

Simonin et al. 2014; Waller et al. 2015a; 2015b). 

Historically, assimilating radial wind observations in the 12-km North American 

Mesoscale (NAM) forecast system (Rogers et al. 2009; and its predecessor the Eta 

model) have generally shown to have a neutral impact on the resulting forecast (Carley, 

personal communication). Motivated by the successes of assimilating radial wind 

observations for convective-scale NWP in previous work and yet lack of benefit currently 

obtained in regional applications of the grid point statistical interpolation system (GSI; 

Wu et al. 2002; Kleist et al. 2009), active research will be done to extend the most current 

methods for radial wind assimilation to the GSI. This preliminary work will primarily 

focus on tuning the current implementation of radial wind assimilation in the GSI to 

evaluate if it can provide any benefit in a regional, rapidly updating, high-resolution 

model in a retrospective case study of a heavy precipitation event. Three areas of focus 

within the context of the GSI radial wind assimilation procedure will be examined: the 

velocity azimuth display (VAD) wind quality control (VADqc), the super-observation1 

density, and the horizontal de-correlation length scale used to approximate the off-

diagonal terms in the static background error covariance matrix. 

In a prior study, Liu et al. (2005) assimilated radial wind observations in an 8-km 

version of the WRF-NMM via GSI-based 3DVar. They super-obbed radial wind 

observations from five different radars to a regular grid at resolutions of 0.05, 0.1, 0.25, 

and 0.5 degrees (which corresponds to about 4.55, 9.1, 22.75, and 45.5-km respectively) 

to test the impacts of increasing the super-ob density on the analysis and on a short 

forecast. They showed that by increasing the density of the super-obs (i.e., smaller super-

ob boxes), more detailed structure is retained thus resulting in an analysis closer to the 

																																																								
1 The term for a surrogate datum that replaces several partially redundant actual data is a “super-
observation” sometimes referred to as a “super-ob” (Purser et al. 2000). 
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observations. Their results only showed one 6-hour forecast, which may have been too 

long to see any real benefit using 3DVar where the advantage from radar DA is ~1-hr 

(Johnson et al. 2015). It was not demonstrated whether the benefit from the radial wind 

observations was retained in the resulting forecast during a shorter forecast period. 

Increasing the resolution also increased the computational cost of the analysis; therefore, 

finding a balance between the cost and the quality of the analysis is necessary. Their 

results also revealed that if the de-correlation length is too large for the analysis of radar 

data, the analysis will become unreasonably smooth thus losing the convective-scale 

structures that might be present in the data. Furthermore, this causes grid points far away 

from the observation to be incorrectly influenced. Another result of their work was the 

use of the VAD winds as a quality control marker, which may discard observations that 

might be worth keeping. 

Since then, the National Center for Environmental Prediction (NCEP) has developed 

more sophisticated regional numerical forecast systems, which could greatly benefit from 

an improved radial wind assimilation procedure than what is currently available in the 

GSI. Furthermore, an extensive amount of work has been done in many other DA 

systems to assimilate radial wind observations whereas the GSI is much less mature in 

this regard. In this study, the current capabilities of the GSI radial wind procedure will be 

evaluated using a high-resolution, rapidly updating forecast system during a heavy 

precipitation event. The results of this study will provide insight into future work for 

improving this procedure and more importantly improving the forecast of convective 

storms and precipitation. 

Chapter 2 will begin with a description of the numerical model, the data assimilation 

system and hybrid 3D ensemble-variational (hybrid 3DEnVar) cost function, the super-

obbing procedure, and the experimental design. Chapter 3 presents the results of single-

observation experiments testing the hybrid 3DEnVar configuration followed by the 

effects of super-obbing, and experiments assimilating super-observations from a single 

radar. These experiments test the effects of the VADqc, horizontal de-correlation length 

scale, and super-observation resolution. The next section contains results from the 

modifications in a retrospective forecast. Chapter 4 contains a summary and the 

conclusions of the experiments followed by Chapter 5 which discusses future work.   
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Chapter 2. Model Configurations and Experimental Design  

2.1 Forecast Model 

 Retrospective weather forecasts were produced using the North American Mesoscale 

Rapid Refresh (NAMRR) forecast system (Carley et al. 2015). The NAMRR is an 

extension of the conventional NDAS/NAM forecast system (Rogers et al. 2014) and 

provides hourly analysis and forecast cycles over the NCEP operational NAM parent and 

CONUS nest computational 

domains (Fig. 2.1) using 

NCEP’s non-hydrostatic multi-

scale model on the B-grid 

(NMMB; Janjić and Gall 2012) 

dynamic core. 

For this study, the forecast 

model was configured to match 

a developmental version the 

NAMRR for consistency with 

the NCEP NAM v4 upgrade. 

The horizontal grid spacing of 

the outer parent domain was 12-

km (954 × 835 grid points) and 

the inner nested CONUS domain 

was 3-km (1828 × 1466 grid points) (Fig. 2.1). Both domains were configured to use 60 

atmospheric layers (61 model levels) using a hybrid sigma-pressure vertical coordinate 

system and a 2-hPa model top. The vertical coordinate changes from sigma to pressure at 

300-hPa. The time steps were 25s for the 12-km parent domain and 6.25s for the 3-km 

CONUS nest. The following physical parameterizations were used: RRTM (Rapid 

Radiative Transfer Model; Iacono et al. 2008) for both long wave and short wave, 

Ferrier-Aligo (Aligo et al. 2014) for microphysics, Mellor-Yamada-Janjić (MYJ; Janjić 

2001) for turbulence and the surface layer, Noah (Ek et al. 2003) for the land surface, and 

the Betts-Miller-Janjić (BMJ; Janjić 1994) for cumulus parameterization in the 12-km 

	
Fig. 2.1 Computational domains. The outer (black) and inner (red) 
domains are the 12-km parent and 3-km CONUS nest domains 
respectively. 
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parent, the 3-km nest is convection-allowing (no parameterized convection). Table 2.1 

summarizes the parameterizations. 

 

 
 

2.2 Data Assimilation Cycling in the NAMRR 

The data assimilation cycling procedure for the NAMRR is similar to that described 

in Djalalova et al. (2016) and graphically demonstrated by Fig. 2.2. DA is performed on 

both the 12-km parent and the 3-km CONUS nest domains (Fig. 2.1). The assimilation 

cycles are separated into two categories: catch-up and hourly. The catch-up cycles occur 

four times per day at the traditional cycle times (00, 06, 12, and 18 UTC). The catch-up 

cycles begin 6-hours prior to each cycle time (TM06; time minus 6 hours). At TM06, the 

NAMRR is partially cycled (Rogers et al. 2009) by using the first guess atmospheric state 

from the Global Data Assimilation System (GDAS) and the TM01 NAMRR forecasted 

land states from the previous catch-up cycle. Hourly analyses are then performed until 

TM00 when 60- and 84-hour forecasts are generated for the 3-km CONUS and 12-km 

North American domains, respectively. In the case of the experiments in this study, the 

catch-up cycle free forecast is reduced to a 36-hour forecast for both domains. Hourly 

cycles are then performed between each catch-up cycle and are fully cycled (i.e., uses 

both the atmospheric and land states from the previous cycle). For each hourly cycle, an 

18-hour free forecast is generated for both domains. 

  

Table 2.1 Summary of the physical parameterizations used by the NMMB. 

Domain Grid space Radiation (LW/SW) Microphys. Turbulence Surface lyr. Cumulus 

Parent 12-km RRTM Ferrier-Aligo MYJ MYJ BMJ 

CONUSnest 3-km RRMT Ferrier-Aligo MYJ MYJ None 
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2.3 The Grid Point Statistical Interpolation (GSI) Data Assimilation System 

The gridpoint statistical interpolation (GSI; Wu et al. 2002; Kleist et al. 2009) system 

is a variational analysis system formulated in model grid space and is used in many 

operational applications at NCEP including the NAMRR forecast system. Additional 

information regarding the GSI can be found in the DTC GSI user manual online at 

http://www.dtcenter.org/com-GSI/users/docs/. For NAMRR applications, the GSI is 

configured using a hybrid 3-dimensional ensemble-variational (3DEnVar) algorithm 

(Wang et al. 2013; Kleist and Ide 2015a). Numerous studies (Wang et al. 2007, 2008; Liu 

et al. 2008, 2009; Zhang and Zhang 2012; Liu and Xiao 2013; Zhang et al. 2013; Kleist 

and Ide 2015a, 2015b) have suggested the use of a hybrid system (i.e., blended 

covariances) over the traditional variational or ensemble-based methods, which utilize 

exclusively a static or ensemble covariance respectively. The GSI hybrid is formulated 

using the variational framework and an ensemble covariance (EnVar; Lorenc 2013) 

blended with a static covariance. 

2.4 Hybrid 3D Ensemble-Variational Cost Function 

Variational methods determine the analysis (i.e., the most likely state given the prior 

forecast and observations) by the direct minimization of a cost function. Following the 

	
Fig. 2.2 Flowchart describing the analysis and forecast catch-up and hourly cycles. 
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notation of Ide et al. (1997) wherever possible, the hybrid 3DEnVar cost function may be 

written in incremental form as (see Wang 2010): 

J δxf, α =βf
1
2
δxf TBf-1 δxf +βe

1
2

αn TL-1 αn
N

n=1

+
1
2
Hδxt-d TR-1 Hδxt-d . (1) 

The incremental form is used for simplicity and the analysis increments and the 

innovation are defined as follows 

δxf=xa-xb (2) 

δxt=δxf+ αn∘δxen
N

n=1

 (3) 

d=yo-Hxb (4) 

The analysis increment derived from the static error covariance, δxf, measures the 

departure of the optimal state or analysis, xa, from the previous forecast or background, 

xb, and is weighted by the inverse of the static (fixed) background error covariance 

matrix, Bf. The innovation or observation residual, d, measures the departure of the 

observations, yo, and the background state by means of the non-linear, H and linear 

observation operators H, and is weighted by the inverse of the observation error 

covariance, R. The flow-dependent, ensemble estimated covariances are included in the 

cost function through the extended control variable method (Lorenc 2003; Buehner 2010). 

The extended control variable, αn, is a scalar quantity used to scale the ensemble 

perturbation, xen using a Schur product where N is the number of ensemble members and 

L denotes the error covariance for the alpha control variable and is specified to be of unit 

amplitude. The total analysis increment, δxt, is a linear combination of the analysis 

increment derived from the static error covariance and that which is derived from the 

ensemble perturbation prescribed by the alpha control variable. The tuning parameters, 

βf
-1 and βe

-1, are used to control the weight given to the static or ensemble contributions 

respectively (e.g., βf
-1=0.25 gives 25% of the weight to the static and 75% to the ensemble 

error covariance). These tuning parameters are currently assumed to sum to one in the 

GSI. 
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2.5 Background Error Statistics  

Hybrid DA systems, use a blend of covariances: one part from static, climatological 

statistics and another from flow-dependent, ensemble estimated statistics. The static 

background error statistics were estimated using the National Meteorological Center’s 

(NMC) method (Parrish and Derber 1992), which averages the differences between 

lagged forecast pairs (e.g., 24- and 48-hour forecasts) valid at the same time. The static 

background error covariance is formulated to vary vertically and latitudinally. The 

ensemble background error covariance is estimated by an ensemble of 80 members from 

the Global Data Assimilation System’s (GDAS) ensemble Kalman filter (EnKF), which 

runs at T574 (~45-km at the equator). Estimating the background error covarainces in this 

way introduces flow-dependence and provides multivariate correlations. These cross 

correlations between variables allow for increments of unobserved variables to be made 

by the observed variables. For example, a pressure observation may be able to update the 

precipitable water field if such correlation in the ensemble perturbation exists, where in 

just pure 3DVar, the increment would be zero without the introduction of balance 

relationships in Bf, complex forward operators, and/or through constraint terms in the 

cost function. The flow-dependence allows for analysis increments to be spread in a more 

realistic direction (e.g., along a front vs. isotropically). For the pre-operational 

configuration of the NAMRR, the weighting between the static βf
-1 and the flow-

dependent βe
-1 background error covariance are set to be 25% and 75% respectively. 

Wang et al. (2007) showed that the optimal weighting is dependent on the quality of the 

static or ensemble estimated BEC. It is generally more desirable to place a higher weight 

on the ensemble covariance (Zhang et al. 2013; Wang et al. 2013; Schwartz et al. 2014). 

2.6 Doppler Radar Radial Winds and Super-Observations 

In the U.S., there are 150 WSR-88D’s and each can provide a single volume scan in 

about 5-min. Each volume scan includes elevation angles ranging from 0.5 to 14-degrees, 

with azimuthal and along beam range sampling resolution of 1-deg and 250-m 

respectively. Given the high spatial and temporal observation frequency, the number of 

radial wind observations may be on the order of 7 ×108 per day (Liu, personal 

communication), and are able to observe much finer scales of motion (~500-m) than can 
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be accurately resolved within most NWP models. The errors that arise from the disparity 

between observation and model resolution are known as errors of representativity. 

Super-obbing is a common method to reduce the representativeness errors in 

observations. The current super-obbing method used in the GSI uses a simple spatial and 

temporal averaging of the observed values (Alpert and Kumar 2007), however, other 

methods exist (e.g., Lorenc 1981, which averages innovations). The averaging is 

performed over a super-ob box whose dimensions can be controlled via adjustable 

parameters including: the azimuth angle range, elevation angle range, radial range, time-

window, max elevation angle, and the minimum number of samples. The featured super-

ob parameters in the GSI are summarized in a later section by Table 3.1 with their 

associated default values.  

In addition to representativeness errors, there are three other main sources errors 

associated with observations: instrument errors, observation operator errors, and data pre-

processing errors. The observation errors are to some extent correlated, which may be 

dependent of the state and model resolution (Janjić and Cohn 2006; Waller 2013; Waller 

et al. 2014a,b). However, in many DA systems including the GSI, it is assumed that the 

radial wind observations errors are uncorrelated (i.e., the observation error covariance 

matrix is diagonal); however, this is not a fundamentally necessary assumption and may 

not make the best use of the observational data. To reduce the large number of 

observations and to satisfy the assumption of uncorrelated observation errors, the 

observations are super-obbed. 

2.7 Experimental Design 

A set of experiments was conducted to evaluate the sensitivity of the analysis to the 

super-observation settings, horizontal de-correlation length scale, and the VADqc to gain 

an understanding of how these parameters/QC affect the resulting analysis from the radial 

wind assimilation. The super-ob settings were first reduced in an experiment comparing 

the resulting super-obs with the Level-II radial wind observations to better understand the 

effects of each tuning parameter. Single observation experiments were then conducted by 

creating a single synthetic observation designed to have come from the Fort Hood, Texas 

radar (KGRK) to test the impact of the background error covariance structure from the 

assimilation system. Experiments using real observations only from KGRK were then 
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made to test the super-observation settings, de-correlation length scale, and the VADqc. 

These experiments use a 3-km NAMRR 1-hour forecast valid at 1800 UTC 30 October 

2015 as the background forecast, an 80 member plus the mean 6-hr forecast from the 

1200 UTC GDAS T574 EnKF valid at 1800 UTC, and assimilated only radial wind 

observation(s) from KGRK using the GSI-based 3DEnVar system. 

Retrospective simulations using the settings tested by the previous experiments were 

then conducted using the NAMRR forecast system. The base line experiment mimics the 

pre-operational configuration of the NAMRR over a 48-hour period (0000 UTC 30 

October 2015 – 0000 UTC 01 November 2015) and includes the integration over the full 

12-km parent and 3-km CONUS nest domains. Data assimilation was performed on both 

the 12-km parent and the 3-km CONUS nest domains; however, the experimental 

modifications to the radial wind assimilation were only made on the CONUS nest domain. 
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Chapter 3. Results and Discussion 

3.1 Single-Observation Test 

 A set of single-observation 

experiments were made to evaluate the 

background error covariance structure 

used in the assimilation system by 

creating a single synthetic observation 

designed to have come from the Fort 

Hood, Texas radar (KGRK) depicted by 

Fig. 3.1 with a value of 30.0 m s-1 (6.23 

m s-1 above the background) and an 

observation error of 1.0 m s-1. 

The first set of experiments test the 

weights for the static and ensemble error 

covariances to ensure that the hybrid 

configuration is working properly. The weighting factors βf
!! and βe

!! are designed to 

sum to one in the current formulation of the GSI hybrid. Under this assumption, setting 

the weight of the static error covariance to 1 (i.e., βf
-1=1; βe

-1=0) results in the system 

defaulting to 3DVar, which has no contribution from the ensemble error covariance. With 

this configuration, the increment should have a structure one would expect with 3DVar 

(i.e., quasi-isotropic; Fig. 3.2a). The background error covariance is usually prescribed to 

have such or similar characteristics because it has no knowledge of the uncertainty in the 

current background flow. Adjusting the weighting to the hybrid, pre-operational 

configuration where the contribution of the static background is 0.25 (i.e., 

βf
-1=0.25; βe

-1=0.75) shows a considerable impact to the analysis increment (Fig. 3.2b) 

with differences on the order of about +/-2.0 m s-1 (Fig. 3.2c). Giving weight to the 

ensemble covariance introduces flow-dependent characteristics into the analysis 

increment. Additional adjustment of the weightings to the other end of the spectrum 

giving 0 weight to the static covariance (i.e., βf
-1=0; βe

-1=1) results in the system defaulting 

to non-hybrid 3DEnVar which exclusively uses the ensemble covariance but still uses the 

	
Fig. 3.1 Depiction of the single-observation value and 
position relative to the Fort Hood, Texas radar (KGRK; 
center). Distances from the center along the radial are 
given in meters. For reference, the location of KGRK is 
shown by Fig. 3.2 as the red star. 
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variational framework to compute the analysis increments. The difference between non-

hybrid and hybrid 3DEnVar experiments (Fig. 3.2e) was much less than the difference 

between the 3DVAR solution and either 3DEnVar experiments (Fig. 3.2c). Thus, for the 

remainder of the sensitivity experiment, the pre-operational configuration with the static 

background weighted 25% will be used.   

 

	
Fig. 3.2 Model level 22 (~850-hPa) horizontal wind (m s-1) increments (a, b, & d) and 
difference plots of experiments (c & e). The single-observation test using 𝛽! = 1 (3DVar; a), 
𝛽! = 0.25 (hybrid 3DEnVar; b), and 𝛽! = 0 (non-hybrid 3DEnVar; c). The difference 
between 3DVar and hybrid 3DEnVar (c) and the difference between hybrid 3DEnVar and 
non-hybrid 3DEnVar (e). The magnitude of increment/difference (color filled) and direction 
(barbs; m s-1). The red star indicated the location of the Fort Hood, Texas radar (KGRK). The 
location of the single observation is to the north-west of KGRK as shown by Fig. 3.1 

a) 

e) 

c) b) 

d) 
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Fig. 3.4 Storm reports for 30-31 October 2015 from the Storm Prediction Center. 

3.2 Case Study Overview 

Retrospective forecasts during the convectively active period 30-31 October 2015 in 

the southern plains were made to evaluate the impacts of the modifications to the radial 

wind assimilation. Future experiments will incorporate additional cases to more robustly 

evaluate the impacts of these modifications. This case was chosen because it consists of a 

fairly diverse set of forcing mechanisms including an upper-level short-wave trough, cold 

front, and interaction between the low-level jet (LLJ) and a warm front, and a pre-frontal 

confluence zone. Additionally, this case exhibited heavy precipitation, flooding, 

damaging winds, and several tornadoes. More than one foot of rain fell in less than 24-

hours between Austin 

and San Antonio, 

Texas (Fig. 3.3), which 

caused extensive 

flooding throughout 

that region. Another 

line of heavy 

precipitation occurred 

later in the period near 

Houston, Texas and to 

the northeast. Several 

tornadoes rated between EF-0 and EF-2 were reported in these two regions on 30 October 

2015. Heavy precipitation and tornadoes rated EF-0 to EF-1 were also reported on the 

31st in Louisiana and Mississippi (Fig. 3.4). 

	
Fig. 3.3 Observed total 24-hour precipitation (inches) valid 20151031 
1200Z (Hou et al. 2014)  
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A deep, positively tilted upper-level trough was centered over the four corners region 

of Colorado, Utah, Arizona, and New Mexico and extended farther south into Mexico at 

1200 UTC on 30 October 2015 (Fig. 3.5a, b). Associated with the upper-level trough was 

a well-defined 300 hPa jet streak (Fig. 3.5a) with winds in excess of 100 kts. An area of 

surface low pressure developed in response to the divergence associated with the upper-

level forcing and was centered over New Mexico with a central low pressure of about 

1002 hPa (Fig. 3.5d). 

A warm/stationary front extended from the low pressure southeastward through 

central Texas (Fig. 3.5d). The presence of a 50 kt LLJ aided in destabilization of the 

warm sector enviornment by providing a rich transport of heat and moisture from the 

Gulf of Mexico into the low-levels of the region (Fig. 3.5c). The warm surface 

temperatures (high 70s) and dew-points (low 70s) helped to support an unstable 

environment having 1000+ J kg-1 mixed layer CAPE with values rising throughout the 

day. The region of intersection between the warm front and the LLJ resulted in a region 

favorable for super-cell development. A north-northeastward moving storm system 

approached this region and over the course of a few hours (1000 UTC to 1200 UTC on 

the 30th) intensified into a slow moving organized system. This lead to the majority of the 

precipitation over the Austin and San Antonio, Texas region as reflectivity values of 50 

dBZ trained over this discrete area for several hours (1300 UTC to 1530 UTC). 

To the west of this region, storms associated with the passage of the cold front began 

to initiate around 1500 UTC on the 30th . A pre- cold frontal boundary existed in the 

region of the warm moist air transport. As this boundary progressed southeastward 

throughout the day, it provided forcing for storms extending farther south near Corpus 

Cristi, Texas. A cluster of storms initiated from this boundary around 0300 UTC on the 

31st just off the coast of Corpus Cristi in a region of confluent flow between this 

boundary and the on-shore winds and mixed layer CAPE around 1000-2000 J kg-1. The 

motion of these storms was north-northeastward where they eventually moved onshore 

and interacted with the warm frontal boundary located near Houston, Texas. The strong 

0-6 km shear associated with these storms supported the formation of mesocyclones 

especially after interacting with the warm front. This slow moving storm system trained 

for several hours (ahead of the cold front), which led to the majority of the heavy 
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precipiation in the Houston, Texas area. The cold front and the associated storms 

eventually caught up to the pre-frontal storms and formed a single line of strong 

convection which added to the total rainfall amounts for each of these areas.  

 

 
 
 
 
 
 
 
 
 

	
	
Fig. 3.5 Synoptic patterns at 1200 UTC 30 October 2015. Shown are maps of 300-hPa (a), 500-hPa (b), 850-hPa 
(c), and surface maps (d) from SPC.  The 300-hPa maps color fill isotachs above 75-kts at 25-kts intervals, 
contoured stream lines (black), contour divergence (yellow), and wind barbs (kts). The 500-hPa maps contour 
geopotential height (black), temperature (dashed red), and wind barbs (kts). The 850-hPa maps contour 
geopotential heights (black), temperature (red/blue dashed for above/below freezing), dew points above 0 C, and 
wind barbs (kts). The surface maps contour isobars (brown) overlaid with high and low pressure centers, analyzed 
surface fronts, and surface observations. 

d) 

b) a) 

2
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3.3 Super-Obbing Observations from a Single Radar 

The GSI internally processes the radial wind observations by means of a super-obbing 

technique (Alpert and Kumar 2007) to remove representativeness error and to help satisfy 

the assumption of uncorrelated observation errors (although it may not completely de-

correlate them). The super-obbing procedure can be envisioned as a spatial and temporal 

averaging of the observations within a volume defined in radar coordinates by the tuning 

parameters in Table 3.1. The observation error (“thiserr”) associated with the new super-

observation is estimated using the square root of the variance of the observations within 

the super-ob box according to Eq. 5 (http://www.dtcenter.org/com-GSI/users/docs/). 

 

𝑡ℎ𝑖𝑠𝑒𝑟𝑟 = 𝑉!! − 𝑉!
!  

(5) 

 
 

 
 
The effects of the super-ob parameters can be captured by visualizing the radar 

observations before (Fig. 3.6a) and after (Fig. 3.6b, c) the GSI has processed them as 

super-obs. Therefore, sensitivity experiments testing the effects of the super-ob 

parameters were made using observations from a single radar (KGRK) valid at 1800 

UTC 30 October 2015. The experimental values for the super-observations were chosen 

because they were the smallest values that could be used at the time without using an 

unreasonable amount of resources.  

Decreasing the size (in space and time) of the super-ob box from the default size (Fig. 

3.6b) to the experimental values in Table 3.1 (2 degrees azimuthal range, 2.5-km radial 

range, +/- 7.5 minutes, and a minimum of 10 samples; Fig. 3.6c) reduces the volume for 

which the observations are averaged and as expected are more representative of the 

observations (Fig. 3.6a). These settings are likely too fine for a 3-km grid, because 

several grid points are needed to accurately represent a wave, and therefore still contains 

Table 3.1 List of the super-observation parameters and their default and experimental values. 

 Azimuth 
range 

(degrees) 

Elevation 
angle range 

(degrees) 

Radial range 
(meters) 

One-half 
time range 

(hours) 

Max 
elevation 

angle 
(degrees) 

Minimum 
number of 

samples 

 ∆𝜽 ∆𝜺 ∆𝒓 ∆𝒕 𝜺𝒎𝒂𝒙 𝑵 
Default 5 0.25 5000 +/- 0.500 5 50 

Experimental 2 0.25 2500 +/- 0.125 5 10 
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some amount of representativeness error associated with a 3-km model. This decrease of 

about a factor of two in the smoothing parameters resulted in an increase by a factor of 

four in the observation density which also increased the computational cost of running 

the analysis (statistics on the computational efficiency were not done). 

 

 
 
 
 
 
 

	
Fig. 3.6 Visualization of the radar observations before and after the GSI super-ob processing. Shown is the Level-II 
radial wind observation before super-obbing (a) and the default super-ob setting (b) and experimental super-ob 
settings (c) for the radial winds. 

a) 

b) c) 
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3.4 Analysis Impacts Using Super-Observations from a Single Radar 

As discussed in section 2.7, the impacts on the analysis of two other configurations 

were tested: bypassing the VADqc and reducing the horizontal de-correlation length scale 

tuning parameters and super-ob parameters. Table 3.2 (bottom section) further 

summarizes these experiments and their settings. 

 

 
 

3.4.1 Velocity-Azimuth Display Quality Control Impacts on the Analysis  

QC is an import aspect when assimilating any type of observation. The radial wind 

undergoes several QC procedures; however, this study will only focus on one of those 

procedures. The procedure evaluated in this study uses the VAD winds as a QC mark. 

This quality control procedure is performed internally in the operational assimilation 

system (GSI) and was originally developed to detect migrating bird contamination 

(Collins 2001).  

VAD winds are a vertically derived profile of the horizontal wind field based on the 

radial wind observations and a linearized wind model (Holleman et al. 2005). Linearizing 

the wind field will inevitably cause deviations from the highly nonlinear radial wind 

observations. The procedure of the VADqc is to compare the super-obbed radial wind 

observations to the VAD derived winds. If there are large differences between the super-

obs and the VAD winds, then the observations are rejected. In other words, only 

observations that agree with the VAD winds within some predetermined tolerance are 

used and might be problematic for convective scale DA. A more specific description of 

Table 3.2 Summary of the various parameter settings for each experiment. The top section 
describes the settings for the single-observation experiments and the bottom section describes 
the experiments using observations from a single radar and for the retrospective simulations. 
The default settings/pre-operational configurations for each setting are bolded. 

Exp 𝜷𝒔 VADqc HZSCL ∆𝜽 ∆𝒓 ∆𝒕 𝑵 

SNGLOB0 0.25 No 0.373, 0.746, 1.500 5 5000 30 50 

SNGLOB1 0 No 0.373, 0.746, 1.500 5 5000 30 50 

SNGLOB2 1 No 0.373, 0.746, 1.500 5 5000 30 50 

CTL 0.25 Yes 0.373, 0.746, 1.500 5 5000 30 50 

HZSCL 0.25 No 0.200, 0.500, 0.750 5 5000 30 50 

SUPOB 0.25 No 0.200, 0.500, 0.750 2 2500 7.5 10 
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the VADqc routine is covered by the Development Testbed Center GSI user guide 

available online at http://www.dtcenter.org/com-GSI/users/docs/. 

Removing the VADqc procedure (Fig. 3.7b) resulted in more super-observations 

getting into the assimilation than when the VADqc procedure is used (Fig. 3.7a). Using 

the default super-observation values in Table 3.1 (5 degrees azimuthal range, 2.5-km 

radial range, +/- 30 minutes, and a minimum of 50 samples) there were 9,089 super-

observations created and after the VADqc procedure, only 1,490 of those were kept. 

After additional QC was performed 4 additional super-observations were removed. In the 

experiments bypassing the VADqc, 7,761 super-observations made it past the remaining 

QC. As a result, there are differences on the order of ~5 m s-1 between VADqc and 

noVADqc (Fig. 3.7c). 

 

	
Fig. 3.7 Model level 5 (σ=0.975782 or very roughly 1000 ft. AGL) increments of the horizontal wind field for the 
VADqc control (a) and the experiment noVADqc (b) and their difference (VADqc – noVADqc; c) with the 
magnitude (color filled) and direction (barbs; m s-1).  

	

a) 

b) c) 
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3.4.2 Scaling the Horizontal De-correlation Length Scale Impacts on the Analysis 

In DA, a model equivalent is computed for each observation for comparison. The 

difference between these values is known as the innovation. The innovation is one factor 

that controls the magnitude of the optimal increment added to the previous guess or 

forecast. The analysis increment for each observation is not computed for only the initial 

model grid point used to determine the innovation, but the increment also influences 

surrounding grid points. The way that the increment is spread depends on many factors 

such as the specific DA method as well as through correlation relationships through the 

static and/or ensemble background error covariance (Bf and L from Eq. 1 respectively). 

In DA systems, each analysis control variable has its own estimated de-correlation length 

scale. This is the e-folding distance at which an analysis increment will have an impact 

on surrounding grid points.  

In this study, tuning parameters for the horizontal de-correlation length scales 

(configured for the 12-km parent domain) for all variables are adjusted to evaluate their 

sensitivity on the analysis. These parameters are scalar multipliers used to modify the off-

diagonal auto-correlations in the static background error covariance matrix estimated 

using the NMC method (Parrish and Derber 1992). 

There are differences of about 2 m s-1 in some areas (Fig. 3.8b) between the default 

horizontal de-correlation tuning parameter values (0.373, 0.746, and 1.5; Table 3.2; 

noVADqc; Fig. 3.7b) and the experimental values (0.200, 0.500, 0.750; Table 3.2; 

	
Fig. 3.8 Model level 5 (σ=0.975782 or very roughly 1000 ft. AGL) analysis increments for HZSCL (a) and  the 
difference (b) from noVADqc (as in Fig. 3.7b; Table 3.2). The magnitude of increment/difference (color filled) and 
direction (barbs; m s-1) 

	

a) b) 
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HZSCL; Fig. 3.8a) despite that the background error covariance is weighted 75% toward 

the ensemble error covariance and 25% toward the static.  

It is difficult to know if this resulted in a better analysis because the true state is 

unknown. But this motivates many questions such as what length scale should be used, 

should we also tuned the vertical length scale, should different analysis control variables 

be used (different control variables may have different de-correlation length scales), and 

what localization should be used for our ensemble (this is the ensemble counterpart to the 

static error de-correlation length)? 

3.4.3 Super-Observation Density Impacts on the Analysis 

Up until now, only the radial wind QC adjustments and the sensitivity to the 

horizontal de-correlation length scales have been briefly explored in a single 

experimental analysis. In this section the impact of changing the super-observation 

density, similarly to what was done in section 3.3, will be tested. The settings for this 

experiment are described in Table 3.2 (SUPOB). These experimental values were chosen 

because they were the smallest values that could be used at the time without using an 

unreasonable amount of computational resources.  

It was shown in section 3.3 (Fig. 3.6a-c) that by increasing the super-observation 

density, more of the storm-scale features could be retained because the averaging is done 

over a smaller area. Reducing the super-ob box size has multiple trade-offs. With a 

smaller area to average, there will naturally be fewer observations to average and thus 

	
Fig. 3.9 Model level 5 (σ=0.975782 or very roughly 1000 ft. AGL) increments for experiment SUPOB (a) and 
difference (b) from HZSCL (as in Fig. 3.8a; Table 3.2). The magnitude of increment/difference (color filled) and 
direction (barbs; m s-1) 

a) b) 



	 22 

would be more representative of the observed state. Simultaneously, the super-

observations are becoming less representative of what the model can resolve (i.e., 

representativeness error). Furthermore, the error assigned to the super-ob by Eq. 5 will be 

more affected by outliers within the grid box and less de-correlation of observation errors. 

In this experiment (SUPOB; Fig. 3.9a), there is a large difference of about 5-10 m s-1 

(Fig. 3.9b) between the SUPOB and HZSCL (Fig. 3.8a) experiments as a result of the 

increased density of super-observations. 

3.5 Forecast Impacts 

Retrospective weather forecasts were generated using the NAMRR forecast system 

simulating the convectively active period 30-31 October 2015 in the southern plains in 

order to evaluate the impacts of the modifications to the radial wind assimilation. Three 

experimental configurations were run (Table 3.2 bottom section) and are compared using 

subjective analyses. These analyses include visual comparisons of 3-hr total accumulated 

precipitation and 3- and 4-hr simulated radar reflectivity mosaics across each experiment 

and against observations. 

3.5.1 Heavy Precipitation in the Vicinity of Austin and San Antonio, Texas  

As described in the case study overview, a storm system organized and intensified at 

the boundary of the LLJ and the warm front in the vicinity of Austin and San Antonio, 

Texas painting a bulls-eye of 5+ inches of precipitation over the course of a 3-hr period in 

that region as shown by observations (Fig. 3.10a). Each of the models has a decent 3-hr 

forecast for these total amounts and it is hard to discern improvements subjectively. It 

appears that for both experiments (Fig. 3.10c,d), the bulls-eye is slightly farther north 

aligning closer to observations than in CTL (Fig. 3.10b). 

  The 3-hr simulated reflectivity mosaics (Fig. 3.11b-d) also show good agreement 

with observations over this same period (Fig. 3.11a), in the vicinity of the heavy 

precipitation. It is important to note that these forecast were initialized during the 1200 

UTC NAMRR catch-up cycle, which could play a role in the quality of the forecasts. 
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Fig. 3.11 Reflectivity mosaics valid 20151030 1500Z. Observations are shown (a), CTL experiment (b), HZSCL 
experiment (c), and SUPOB experiment (d). Details about each experiment are given in Table 3.2 bottom section. 

a) 

c) d) 

b) 

	
Fig. 3.10 Total 3-hour precipiation (inches) valid 20151030 1500Z. Observations (a; Hou et al. 2014), CTL 
experiment (b), HZSCL experiment (c), and SUPOB experiment (d). Details about each experiment are given in 
Table 3.2 bottom section. 

a) 

c) d) 

b) 
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The 4-hr simulated reflectivity mosaics from the 1100 UTC cycle (valid at the same 

time as the previous comparison; Fig. 3.12b-d) that it might be the case that the 1200 

UTC catch-up cycle, in addition to more up-to-date observations, allowed the CTL to 

have less noticeable difference from the experiments. It appears that SUPOB and HZSCL 

are able to better forecast the heavy precipitation, before the 1200 UTC cycle was 

available, near Austin and San Antonio, Texas. This is an important result, as the purpose 

of the hourly-cycles is to benefit from more frequent observations and updates to the 

forecast between each catch-up cycle. Furthermore, some of the high reflectivity values 

situated over north central Texas and Oklahoma seem to be slightly more suppressed in 

the experimental simulations. Although these results are based on only one case study, it 

is motivating that even with the basic changes made in this study, it might be expected 

that more sophisticated advancements may have the potential to see even better results. 

 

1

	
Fig. 3.12 Reflectivity mosaics valid 20151030 1500Z. Observations are shown (a), CTL experiment (b), HZSCL 
experiment (c), and SUPOB experiment (d). Details about each experiment are given in Table 3.2 bottom section. 

a) 

c) d) 

b) 
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3.5.2 Heavy Precipitation in the Vicinity of Houston, Texas 

Later during this event, a storm system developed off the Coast of Corpus Cristi, 

Texas from the effects of a convergent zone entering a very unstable environment. These 

storms move north-northeastward into the Houston area around 0600 UTC through 0900 

UTC. There was intense rainfall (7+ inches) associated with these storms (Fig. 3.3).  

The 3-hr forecasted and observed precipitation valid at 0900 UTC are now compared 

(Fig. 3.13). Each of the simulations appear to be slightly dry compared to the 

observations near Houston and have spurious rain bands all throughout Texas. It seems 

that each of these experiments do not pick up on the confluent zone that is apparent in the 

reflectivity observations (not shown). This zone is the primary forcing mechanism for 

initiating the storms off the Coast of Corpus Cristi which eventually moved into this 

region. 

 
 

  

	
Fig. 3.13 Total 3-hour precipiation (inches) valid 20151031 0900Z. Observations are shown (a; Hou et al. 2014), 
CTL experiment (b), HZSCL experiment (c), and SUPOB experiment (d). Details about each experiment are given 
in Table 3.2 bottom section. 

a) 

c) d) 

b) 
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Chapter 4. Summary and Conclusions 
In this study, the impacts of a reduced horizontal de-correlation length scale for all 

analysis variables, increased radial wind super-ob density, and no VADqc procedure are 

examined in a pre-operational configuration of the NAMRR over a 48-hour period using 

a hybrid 3DEnVar configuration of the GSI. The experiments are verified using 

subjective analyses; however, objective statistical analyses are expected to be available in 

the system in the future to further process these results and the results of any future work. 

The super-ob technique is graphically interpreted and compared to the raw Level-II 

radial wind observations. The default settings are shown as well as the settings used for 

the experiments. The azimuthal and radial super-ob ranges were reduced by a factor of 

two and the time range by a factor of four. Reducing the spatial coarseness of the 

observations show, as one would expect, more detail in the observations, but are less 

representative of what the model can accurately simulate. Determining an optimal setting 

will require further testing.  

The three configurations are tested first using observations from a single radar. The 

same configurations are then run using the full NAMRR and hybrid 3DEnVar. Reducing 

each of the parameters and bypassing the VADqc alone did not significantly improve the 

analysis and forecast results. This is somewhat expected because elevation angles from 

the radial wind observations > 5-degrees are still ignored as well as many other factors 

that have yet to be considered (see future work section).   

  



	 27 

 
Chapter 5. Future Work 

5.1 Assimilation of the Vertical Component of the Radial Wind Observations 

This preliminary work barely scratches the surface of improving the radial wind 

assimilation in the operational GSI for storm-scale NWP. One difficulty, in particular, is 

that only the horizontal components of the radial wind observations are assimilated in the 

GSI. Furthermore, radar observations from elevation angles greater than 5-degrees are 

ignored in order to remove effects of vertical motion on the radial wind retrieval because 

vertical velocity is not a component of the radial wind observation operator or an analysis 

control variable. The observation operator for radial velocity (Vr) in the GSI is currently 

given by 

 
Vr = u cos(θ) cos(α) + v sin(θ) cos(α) (6) 

 
where u and v are the horizontal wind components, θ is  90-degrees minus the azimuth 

angle, and α is the elevation angle. By assimilating only the lowest five elevation angles, 

there is potentially a considerable amount of useful information being discarded (scan 

angles may exceed 14-degrees). Moreover, ignoring vertical velocity in the vicinity of 

strongly non-hydrostatic flows, i.e., where vertical velocity can be significant (5-50ms-1), 

is potentially problematic.  

Xiao et al. (2005) assimilated radial wind observations to initialize a 10-km model 

using scan angles as high as 9-degrees. In their experiments they included vertical 

velocity with effects of terminal velocity in their observation operator and as an analysis 

control variable following Sun and Crook (1997). The observation operator was 

computed as 

 
Vr = u cos(θ) cos(α) + v sin(θ) cos(α) + (w-vT) sin(α) (7) 

 
which follows as an extension from (Eq. 6) to include the vertical velocity and the effects 

of terminal velocity vT by hydrometeors. The terminal velocity is estimated by Sun and 

Crook (1997) using an analytical equation using a ratio of a base pressure p0 and the 

pressure at the surface and the rainwater mixing ratio qr in units of g kg-1. 
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vT = 5.40
p0
p

0.4
qr
0.125 

 

(8) 

The rainwater mixing ratio qr can be estimated by a relationship between the reflectivity 

factor Z from Doppler radar observations using the Marshall-Palmer distribution of 

raindrop size which is explained more thoroughly by Sun and Crook (1997). If Z is in 

units of dBZ, then the Z-qr relationship becomes 

 
Z = 43.1 + 17.5 log ρqr  (9) 

 
Certainly, this addition to the radial wind observation operator more accurately describes 

the observations resulting in less representativeness errors and will not require ad hoc 

methods to restrict the observation to the lowest 5 degrees in order to limit the vertical 

component of the observations. A poorly designed observation operator may also result 

in larger de-correlation length scales (Waller et al. 2015b). Even the lowest scan angles 

contain at least some vertical component, especially at a sufficient distance from the radar. 

Thus, with this extension, the horizontal components of the observations will be more 

appropriate because the vertical component will be taken into account. Although better 

characterizing the horizontal component is an important outcome, the primary objective 

of extending the observation operator to three dimensions is to obtain information about 

vertical velocity. Under the current formulation of the operational GSI analysis system, 

observations of vertical velocity have no direct connection to the analysis. 

Adding vertical velocity as an analysis control variable will allow for the vertical 

component of the radial wind at higher scan angles to bring information about the vertical 

velocity into the analysis. It will also help constrain the divergent part of the wind 

increment through balances prescribed within the ensemble. Furthermore, if a dynamic 

relationship for vertical velocity and other variables can be applied, it might be possible 

to begin resolving non-hydrostatic features in the GSI analysis.  

According to Janjić and Gall (2012), vertical velocity and its tendency are not 

considered independent prognostic variables in the NMMB. The hydrostatic and non-

hydrostatic pressures and temperature using the hypsometric equation uniquely define the 

geometric height. Because these three variables are prognostic they can be used to 
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calculated vertical velocity given the definition of vertical velocity from a reduction of 

the non-hydrostatic continuity equation 

 

w=
1
g
∂Φ
∂t s

+v·łsΦ+ s
∂π
∂s

∂Φ
∂π

+W(λ,ϕ,t) 

 

(10) 

Here, w is the vertical velocity, s is the vertical velocity on model surfaces, s is the 

hydrostatic coordinate system, g is gravity, Φ is geopotential height, v is the horizontal 

wind vector, π is the hydrostatic pressure, λ and ϕ are latitude and longitude, and W is the 

integration constant that is dependent on the location and time. The vertical velocity must 

satisfy the prognostic vertical equation of motion. It is expected that replacing the 

diagnostic vertical velocity and its tendency in the model by what is obtained in the 

analysis will allow that information to be communicated into the later forecast (Janjić, 

personal communication). This should, in practice, reduce the amount of spin-up/down 

early in the forecast so long as a balanced increment can be passed along. Assuming that 

a relationship between vertical velocity and other variables are introduced, increments of 

vertical velocity, regardless if used by the model, can benefit other variables in the 

analysis and retained later in the forecast. 

In order to ensure that the aforementioned modifications to the assimilation of the 

radial wind observations remain dynamically consistent with both reality and the 

numerical model, dynamical constraints using equations such as the mass continuity and 

diagnostic pressure equations (Gao et al. 2004 and Ge et al. 2012) and others can be used. 

Constraints such as these may be incorporated within the variational cost function as a 

weak constraint. 

5.2 Tuning Static Background Error Statistics, De-correlation Length Scales, and 

Control Variables for Convective Scale DA  

For the pre-operational NAMRR, the analysis is computed on a grid that is usually 

three times coarser than the model grid (e.g., a 3-km grid would have an analysis grid of 

9-km). For storm-scale data assimilation, this could degrade the analysis. However, the 

static background error covariance is estimated for the NAMRR’s North American parent 

domain (Fig. 2.1), a 12-km grid, so changing the analysis grid ratio parameter to anything 

less would not change the analysis. If it were changed now to match the current model 
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resolution, it would be effectively wasting three times more computational resources. 

Furthermore, having the GDAS EnKF (T574, ~45-km in the tropics) does not provide 

any storm-scale information. To overcome these issues, it might be necessary to run an 

ensemble with the desired resolution to bring storm-scale, flow-dependency into the 

analysis as well as to recompute the static covariance for the 3-km grid and tune the 

localization within the storm-scale ensemble. 

It might also be necessary to reconsider the relation by which the horizontal 

components of the radial wind observations are brought into the analysis. The analysis 

control variables that control this in the operational GSI are the stream function and 

unbalanced velocity potential. Sun et al. (2016) suggests the use of momentum control 

variables, i.e. u and v, for high-resolution data assimilation for improving precipitation 

forecasts. In this study, they claim that using stream function and velocity potential will 

have a larger de-correlation length scale and the use of horizontal momentum control 

variables allow better fits using radial wind data, and it will improve the 0-12 hour 

precipitation forecasts.  However, there is concern about treating analysis increments of a 

vector quantity as scalars when updating the analysis.  Therefore, it may instead be worth 

pursuing vorticity and divergence as control variables, something not evaluated in Sun et 

al. (2016). 

5.3 Optimizing the use of the Super-Observations 

A better understanding of the super-obbing technique and how to optimally utilize 

this technique for high-resolution forecasting and ensuring that it de-correlates 

observational errors will be needed. It might be worthwhile to account for correlated 

errors in the radial wind observations (Waller et al. 2015a, b) and implement a different 

super-obbing technique as initially proposed by Lorenc (1981). Instead of averaging the 

values of the actual observations, this method averages the innovations. This method still 

accounts for representativeness errors but allows meteorological info to be retained 

within the super-ob especially if the observation operator is nonlinear. A spectral analysis 

using various super-ob settings could be done to identify the smallest scale wave that can 

be represented by the super-obs and will provide the optimal settings for a given model 

grid resolution. Creating a single observation experiment changing the super-observation 
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settings may be able to provide an understanding of how this technique accounts for 

representativeness errors. 

5.4 Assimilation Methods and Frequency for Convective Scale DA 

In this study, a hybrid 3DEnVar hourly cycling data assimilation method is used and 

is already a computationally heavy configuration. To make the best use of the radial wind 

observations, employing a hybrid 4DEnVar data assimilation method with sub-hourly 

assimilation cycles will likely produce the most robust results (Youssouf and Stensrud 

2010; Johnson et al. 2015; Wheatley et al. 2015). In the 3D systems, observations over an 

assimilation window are all assumed to be valid at the analysis time and may be weighted 

according to their respective distance from the analysis time. In 4D systems, the 

observations are used at their appropriate times to fit an analysis trajectory in time; 

however, in a 4DEnVar system the use of a tangent linear model and its transpose (the 

adjoint) are not needed. These modifications will require a significant amount of 

additional computational resources especially due to the introduction of a storm-scale 

ensemble. 

Because of the important role radial wind observations play for initializing storm-

scale NWP forecasts, we are motivated to examine several aspects of the radial wind 

analysis procedure used by the GSI, the data assimilation system used by all atmospheric 

NWP systems at the National Weather Service. By including the vertical component of 

the radial wind observations; replacing the stream function and unbalanced velocity 

potential analysis control variables with vorticity and divergence; introducing vertical 

velocity as an analysis control variable; utilizing equations to constrain the analysis to be 

more dynamically consistent with reality and with respect to the model; recomputing the 

background statistics and generating a convective-scale ensemble for the flow-dependent 

background statistics; creating super-obs by averaging their innovations; and increasing 

the temporal frequency of DA cylcing of these observations, it is expected that a more 

accurate estimate of the true state of the storm-scale environments can be obtained. Thus, 

if the model is initialized with such a state that it can retain, it is expected that this will 

lead to improved short-term forecasts of hazardous convective storms relative to what is 

currently done with the U.S. operational NWP forecast systems.  
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