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ABSTRACT

The main goal of the present study is to lay the theoretical foundation of a

practical approach to predict the spatio-temporal changes in the performance of

an ensemble prediction system. The motivation to develop such an approach is

the recognition that the performance of an ensemble prediction system is inher-

ently flow dependent.

Linear diagnostics applied to the ensemble perturbations in a small local

neighborhood of each model grid point are used to explore the spatio-temporally

changing predictive qualities of the ensemble. In particular, a local state vector

and the associated local covariance matrix is defined to represent the state and

the uncertainty in the state estimate at each grid point. A set of local diagnostics

based on the eigen-solution of the local covariance matrix is introduced.

Numerical experiments are carried out with an implementation of the Lo-

cal Ensemble Transform Kalman Filter (LETKF) data assimilation system on a

reduced resolution (T62L28) version of the National Centers of Environmental

Prediction (NCEP) Global Forecast System (GFS). It is found that the ensemble

dimension (E-dimension) diagnostic is a good predictor of the ensemble per-

formance, in the sense that a low value of the E-dimension indicates that the

ensemble efficiently captures the uncertain forecast features. The significance of

this result is that the location of large forecast errors in the 1-5 days are also the

locations of low E-dimension.
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1. Introduction

The purpose of an ensemble prediction system is to account for the influence of the

spatio-temporal changes in predictability on the forecasts [e.g., Kalnay (2002); Palmer and

Hagedorn (2006)]. It is often assumed that an ensemble prediction system can provide a

closure of the predictability problem: failures of the system in predicting the forecast error

statistics are usually attributed to design flaws of the system. Kuhl et al. (2007), KEA07

hereafter, argued that this view should be reconsidered by showing that the performance of

an ensemble prediction system is inherently flow dependent. We refer to this dependence as

the local predictability of the ensemble performance.

The study of KEA07 was based on assimilating randomly located simulated observations

under the perfect model scenario with an implementation of the Local Ensemble Transform

Kalman Filter data assimilation system (Hunt et al. 2006; Szunyogh et al. 2008) on a reduced

resolution (T62 and 28 vertical levels) version of the model component of the National Cen-

ters for Environmental Prediction (NCEP) Global Forecast System (GFS). The purpose of

the present study is to extend the investigation of KEA07 building to a more realistic setting

by first assimilating simulated observations in realistic locations under a perfect model sce-

nario and then assimilating an operationally used set of observations of the real atmosphere.

The main goal of our study is to lay the theoretical foundation of a practical approach to

predict the spatio-temporal changes in the performance of an ensemble prediction system.

The structure of the paper is as follows. In section 2, we introduce the diagnostics we

use to assess and explain the performance of the ensemble prediction system at the different

locations and times. In section 3, we describe the design of the numerical experiments.
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In section 4, we examine the spatio-temporal evolution of the forecast errors, which is our

preferred way to assess the spatio-temporal evolution of predictability, and we analyze the

relationship between predictability and our diagnostics. In section 5, we summarize our

conclusions.

2. Diagnostics

We use linear diagnostics applied to the ensemble perturbations in a small local neighbor-

hood of each model grid point to explore the spatio-temporally changing predictive qualities

of the ensemble. In particular, we define a local state vector and the associated local co-

variance matrix to represent the state and the uncertainty in the state estimate at each grid

point. In addition, we introduce a set of local diagnostics based on the eigen-solution of

the local covariance matrix and a measure of nonlinearity in the evolution of the local state

vectors.

a. Local vectors and their covariance

We define a local state vector x(ℓ) with all N state variables of the model within a local

volume centered at location (grid point) ℓ. For the rest of this article, we will discuss what

to do at an arbitrary location ℓ, and so we now drop the argument ℓ. The mathematical

model we adopt to predict the evolution of uncertainty in a local state estimate (analysis or

forecast), xa,f , is based on the assumption that the error in the state estimate,

ξ = xa,f − z, (1)
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is a random variable. In Equation (1) z is the, in practice unknown, true state of the

atmosphere. In addition, we assume that ξ is normally distributed with a zero mean. Under

this assumption the error in the state estimate can be fully described by an error covariance

matrix, P, that defines the covariance between the different components of ξ.

We employ a K-member ensemble of local state vectors, x(k), k = 1 . . .K, to represent

the uncertainty in the knowledge of the local state. The ensemble-based estimate of the

covariance matrix P is,

P̂ = (K − 1)−1
K

∑

k=1

δx(k)
(

δx(k)
)T

, (2)

where the ensemble perturbations δx(k), k=1. . .K, are defined by the difference,

δx(k) = x(k) − x̄, k = 1 . . .K, (3)

between the ensemble members x(k), k = 1 . . .K, and the ensemble mean,

x̄ = K−1
K

∑

k=1

x(k). (4)

In Equation (2), T denotes the matrix transpose. Based on Equations (3) and (4) the sum

of the ensemble perturbations is zero at all forecast lead times, that is,

K
∑

k=1

δx(k) = 0. (5)

Equation (5) indicates that the K ensemble perturbations are not linearly independent.

Thus, the dimension of the linear space S spanned by the ensemble perturbations cannot be

larger than K-1.

Since P̂ is a nonnegative definite and symmetric N by N matrix, it has N non-negative

eigenvalues, λ1 ≥ λ2 ≥ . . . ≥ λr . . . ≥ λN ≥ 0, and the N associated eigenvectors, un,
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n = 1, . . . , N , are orthogonal with respect to the Euclidean inner product. That is, when

the eigenvectors are chosen to be of unit length with respect to the Euclidean vector norm,

(

ui

)T
uj = δij , (6)

where δij = 1 for i = j and δij = 0 for i 6= j. When the number of components of the

local state vector is larger than the number of ensemble members (N > K), only the first

K − 1 eigenvalues can be larger than zero (In what follows, N > K is assumed unless noted

otherwise). In this case, the normalized eigenvectors associated with the first K − 1 eigen-

values, uk, k = 1, . . . , K − 1, define an orthonormal basis in S. The physical interpretation

of the N -vectors uk, k = 1, . . . , K − 1, is that they represent linearly independent uncertain

analysis and forecast patterns in the ensemble in the local region.

An arbitrary local state vector x can be decomposed as

x = x̄ + δx, (7)

where δx is the deviation of x from its ensemble mean x̄. The perturbation vector δx can

be further decomposed as,

δx = δx(‖) + δx(⊥) (8)

where δx(‖) is the component that projects into S that is,

δx(‖) =

K−1
∑

k=1

δxkuk (9)

where the coordinate δxk, k = 1 . . .K − 1, can be computed by

δxk = δx(‖)T uk (10)

The vector δx(⊥) denotes the component of δx that projects into the null space of P̂, that is

δx(⊥) is that component of the perturbation, which cannot be represented by the ensemble
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perturbations. Using this notation, the error ξ in the state estimate xa,f can be decomposed

as

ξ = xa,f − z =
K−1
∑

k=1

(

δx
a,f
k − δzk

)

uk +
(

δxa,f(⊥) − δz(⊥)
)

= δξ(‖) + δξ(⊥), (11)

where,

δzk = zTuk, δξ(‖) =

K−1
∑

k=1

(

δx
a,f
k − δzk

)

uk, δξ(⊥) = δxa,f(⊥) − δz(⊥) (12)

Although the ensemble mean, or the error in the ensemble mean, does not appear directly

in the local decomposition of the error (the rhs of Eq 11), the ensemble mean provides the

reference point for the definition of the basis vectors that span the space S.

The main focus of our investigation in this paper is the linear space S. We choose

diagnostics and design numerical experiments to identify the conditions under which the

evolution of the forecast uncertainties can be efficiently described in S. We emphasize that an

ensemble forecast system can, in principle, describe the evolution of the forecast uncertainty

even if it follows a probability distribution much more complex than normal. Restricting our

attention to S, however, has a number of practical advantages. First, studies that attempt

to directly verify the probability distribution forecast face the problem that a probabilistic

forecast can be verified only in a statistical sense, which means that one cannot validate the

ensemble forecast at a given time and location. Also, extreme weather events are rare and

it is often impossible to collect a large enough sample of them to verify the performance of

the ensemble in their prediction by probabilistic verification scores (e.g., Toth et al. (2006)).

In contrast, S is a deterministic forecast of the space of uncertain forecast features, thus,

it can be verified on a case by case basis. Also, one can verify whether the error in the

prediction of an extreme weather event projects into S. Of course, S carries less information
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than a quantitative probability forecast in cases where the probability distribution is more

complex than normal, but an accurate prediction of the potential error patterns is still

valuable forecast information. Second, because S is a linear space, it justifies the use of linear

statistical post-processing techniques, such as Hamill and Whitaker (2007), to enhance the

raw probability forecasts provided by the ensemble.

b. Explained variance

In order to quantify the performance of S in capturing the uncertain components of the

flow in a state estimate, we use the explained variance diagnostic. Formally, it is calculated

as

EV =
‖δξ(‖)‖
‖ξ‖ =

‖δξ(‖)‖
‖δξ(‖) + δξ(⊥)‖ . (13)

Here ‖ · ‖ is the Euclidean vector norm on the space of the local state vectors. (Since S

is a subspace of the space of the local state vectors, this norm can be used to measure the

magnitude of both the error and its projection into S.)

The larger EV , the more efficient is S in capturing the uncertain components of the

analysis and forecast fields. EV takes its maximum value of one when the entire forecast

error projects into S (δξ(‖) = ξ and δξ(⊥) = 0), and takes its minimum value of zero when

the forecast error does not have projection into S (δξ(‖) = 0 and δξ(⊥) = ξ).
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c. E-dimension

The ensemble dimension (E-dimension),

E =

[

∑K

i=1

√
λi

]2

∑K

i=1 λi

, (14)

which was introduced by Patil et al. (2001) and discussed in details in Oczkowski et al. (2005),

characterizes the local complexity of dynamics. E is a spatio-temporally evolving measure of

the steepness of the eigenvalue spectrum, λ1 ≥ λ2 . . . ≥ λr . . . ≥ λK , having smaller values

for a steeper spectrum (Szunyogh et al. 2007). For our choice of the perturbations, where

the K perturbations are linearly dependent, λK = 0, the largest possible value of E is K-1.

For a set of linearly independent ensemble perturbations, the maximum value of E is equal

to the number of ensemble perturbations, K, which occurs when the uncertainty predicted

by the ensemble is evenly distributed between K linear spatial patterns in S.

d. Spectrum of the d-ratio

While the explained variance diagnostic quantifies the efficiency of the space S in captur-

ing the space of the uncertainty in the state estimate, it does not measure the performance of

the ensemble in distinguishing between the more and less important directions within S. To

introduce a diagnostic that can measure the performance of the ensemble in quantifying the

importance of the different state space directions within S, we first recall that the eigenvalues

λ1, λ2 . . . λK−1 measure the relative importance of the eigen-directions uk, k = 1, . . . , K −1,

in a statistical sense. More precisely, λk is the ensemble-based prediction of the variance of
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the uncertainty in the k-th eigen-direction1. Our goal is to verify this prediction.

Since the prediction of a variance is a probabilistic prediction, it cannot be verified on

a case by case basis. Instead, the verification of such a prediction requires a probabilistic

verification score and a sufficiently large sample of the prediction of the variance. Our choice

for the probabilistic verification score is the d-ratio, which was first introduced in Ott et al.

(2002). Since the d-ratio

dk =

√

(

δξk

)2

λk

, (15)

is defined independently for each eigen-direction, it is more appropriate to talk about a

spectrum of the d-ratio. If the ensemble, on average, correctly predicts the uncertainty in

the k-th direction, the mean of dk over a large sample is one. If the ensemble overestimates

the uncertainty in the k-th direction, the mean of dk is smaller than one, while a mean value

of dk larger than one indicates an underestimation of the uncertainty in the k-th direction.

3. Experiment Design

We carry out numerical experiments both under the perfect model scenario and in a

realistic NWP setting. In the perfect model experiments, we generate simulated observations

of the hypothetical “true” trajectory of the atmospheric state, where the time series of “true”

states, z, is generated by a 60-day model integration of the GFS model at T62L28 resolution

starting from an operational NCEP analysis truncated to T62L28 resolution. We first repeat

the experiment of KEA07 to verify that the findings of that paper remain valid for the

1Graphically, the vectors
√

λkuk are the principal axes of the ellipsoid defined by (x−x)T (P)−1(x−x) = 1.

This ellipsoid represents states of equal probability in S.
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different time period investigated here (January and February of 2004 instead of January

and February of 2000).2 Then, we build to the realistic NWP setting in two steps: first we

replace the randomly located simulated observations by simulated observations taken by a

realistic observing network, then we replace the simulated observations with observations of

the real atmosphere.

a. Observational data sets

1) Randomly placed simulated observations

The “truth”, z, is taken to be an integration of the GFS model starting from the opera-

tional NCEP analysis at 0000 UTC 1 January 2004. At each grid point and model level, we

generate simulated observations of the two horizontal components of the wind, the tempera-

ture, and the surface pressure by perturbing the “true” states with normally distributed, zero

mean assumed observational errors with standard deviations of 1 K, 1.1 m/s, and 0.6 hPa

for temperature, wind, and surface pressure, respectively. Next, similar to Szunyogh et al.

(2005) and KEA07, we randomly choose 2000 soundings, to reflect a 10% observational cov-

erage of the model grid. By choosing observations randomly, we ensure that the simulated

observing network has little systematic impact on the geographical distribution of analysis

and forecast errors.

2Another important difference between the experiment design of the two studies is that we use a later

version of the LETKF. Most importantly, the LETKF used in this study provides more accurate analyses

in the polar regions.
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2) Simulated observations at realistic locations

In the second set of experiments, we assimilate simulated observations at the locations of

routine non-radiance observations of the real atmosphere. These simulated observations are

generated by adding random observational noise, created by using the standard deviation of

the estimated observational error provided with each observation by NCEP, to the “true”

grid point values of the surface pressure, the temperature, and the two horizontal components

of the wind vector. The location and type of observations is obtained from a database that

includes all observations operationally assimilated at NCEP between 000UTC 1 January

2004 and 000UTC 15 February 2004, with the exception of satellite radiances, but including

satellite derived winds. We also exclude all surface observations, except for the surface

pressure and the scatterometer wind measurements over oceans.

3) Observations of the real atmosphere

Finally, the observations of the real atmosphere, which are used to obtain the type and

location for the simulated observations at realistic locations, are assimilated.

b. Selection of the LETKF parameters

For each observational data set, an analysis is obtained at the native model resolution

every 6 hours. Diagnostics are computed at a reduced 2.5◦ × 2.5◦ grid resolution. We

assimilate observations between 1 January 2004 0000 UTC and 15 February 2004 0000 UTC.

In these experiments, multiplicative covariance inflation is used at each analysis step to
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increase the estimated analysis uncertainty to compensate for the loss of ensemble variance

due to sampling errors, the effects of nonlinearities and model errors. The parameters of the

LETKF used in this experiment are the following:

• The ensemble has K = 40 members.

• Observations are considered in a 800 km horizontal radius of the grid point, where the

state is estimated.

• Observations have equal weight within a 500 km radius of the given grid point, beyond

which the weight of the observations tapers linearly to zero at 800 km.

• Observations are considered in a vertical patch radius centered at the grid point. This

layer has depth 0.35 scale height between model levels 1 to 15 and gradually increases

to 2 at the top of the model atmosphere.

• For simulated randomly distributed observations, we use a 10% covariance inflation at

all vertical levels in all geographic regions.

• For the simulated observations taken at realistic locations, the covariance inflation is

2.5% at all vertical levels in the SH extratropics and 10% in the NH extratropics. In

the Tropics, the covariance inflation varies from 2.5% to 7.5%.

• For the conventional observations of the real atmosphere, the covariance inflation ta-

pers from 25% at the surface to 20% at the top of the model atmosphere in the SH

extratropics and from 50% to 30% in the NH extratropics, and changes smoothly in

the tropics (between 25◦S and 25◦N) from the values of the SH extratropics to the

values of the NH extratropics.
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• For all data sets, surface pressure is assimilated at the first model level and temperature,

and zonal and meridional winds are assimilated at all 28 model levels.

The variance inflation factors were determined by numerical experimentation, searching for

values that minimized the analysis root-mean-square errors.

c. Initialization

In the two sets of experiments which assimilate observations in realistic locations, high-

frequency oscillations (typically associated with gravity waves) are filtered from all back-

ground ensemble members with a digital filter scheme (Huang and Lynch 1993), which is

part of the NCEP GFS model and can be turned on or off by choice. (Unlike in the original

formulation of the digital filter algorithm, where a filtered analysis is produced, the NCEP

filter provides only a filtered background field.) We use the filter with a 3 hr cutoff frequency.

We find that turning the digital filter on in these two sets of experiments leads to a major

improvement of the analyses.

In the experiments with randomly placed observations, turning the digital filter on de-

grades the analysis in the Tropics (Figure 1). More precisely, the surface pressure errors

with the digital filter turned on (top panel of Figure 1) have a clear wavenumber two pattern

in the tropics. This suggests that the digital filter leads to the distortion of an equatorial

wave type motion in the forecasts that serve as the background ensemble in the LETKF

calculations. A more careful examination of the structure of the error fields reveals that the

distortion is in the amplitude of the semidiurnal tidal wave 3. We illustrate this distortion

3The possibility that the error field in the top panel of Figure 1 may be associated with the semidiurnal
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by showing the spectrum of Fourier amplitudes of the time series of surface pressure at the

location 0◦N, 160◦W for the nature run and the two analyses (Figure 2). The 12-hour fre-

quency oscillation characteristic of the semidiurnal tidal wave is not present in the run that

uses the digital filter, even though this oscillation is the dominant signal in the nature run

and in the analysis cycles that do not use the digital filter. (We also note that the digital

filter initialization has a negative effect on the analysis of the semi diurnal tidal wave, but

this problem gets exposed only in the experiment with the randomly placed observations,

where the analysis does not generate spurious gravity wave oscillations elsewhere.)

The semidiurnal tidal wave is primarily caused by the absorption of solar radiation by

ozone in the stratosphere and the atmosphere. The response to this stratospheric excitation

propagates downward in the form of an inertia-gravity wave (Chapman and Lindzen 1970).

Our conjecture is that the digital filter affects this inertia-gravity wave. We also suspect that

applying a digital filter initialization to the analysis increment instead of filtering the six-

hour background forecast, would eliminate the negative effect of the filter on the semi-diurnal

tidal wave 4.

d. Forecasts

We prepare the deterministic forecasts daily, started from the mean analysis at 0000UTC

and 1200UTC, and output every 12 hours. These model integrations provide the state

estimate xa,f . At analysis time and at short forecast lead times (while the time evolution of

the ensemble perturbations stays linear), this state estimate provides our best deterministic

tidal wave signal was first pointed out to us by Nedjeljka Zagar of the University of Ljubljana.
4We are currently in the process of developing such an initialization algorithm for the LETKF scheme.
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estimate of the state. At longer lead times xa,f simply represents a forecast for which the

analysis was drawn from a probability distribution that is consistent with our estimate of

the analysis uncertainty.

In addition to the state estimate, the LETKF also generates the ensemble of analyses

that estimate the uncertainty in the state estimate. These analyses serve as initial conditions

for the ensemble of forecasts. Ensemble forecasts are obtained once daily, started from the

ensemble of analyses, at 0000UTC and output every 12 hours. Both the deterministic forecast

and the ensemble forecasts are carried out to a five day lead time. Unlike the experiments

which use realistically placed observations, forecasts for the experiment that assimilates

observations in random locations are run without the use of the digital filter. We note that

turning the digital filter off in this experiment slightly increases the forecast error up to

12-hour lead times, after which the filter has no effect on the forecast errors.

Forecast error statistics are computed by comparing the deterministic forecasts, xa,f , to

the “true” states, z. Forecasts started from analyses generated by assimilating conventional

observations of the real atmosphere are verified using the high (T254L64) resolution oper-

ational NCEP analyses truncated to 2.5◦ x 2.5◦ resolution as proxy for the “true” state.

These operational analyses were obtained by NCEP assimilating a large number of satellite

radiance observations in addition to the conventional observations used in our experiments.

Forecast error statistics are generated for the 36-day period, 0000 UTC 11 January 2004 -

0000 UTC 15 February 2004.

To calculate the E-dimension, we follow the approach of Oczkowski et al. (2005) and

KEA07: we transform the ensemble perturbations such that the square of the Euclidean

norm of the transformed perturbations has dimension of energy. For this calculation, the
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local volume is defined, as in KEA07, by all temperature, wind, and surface pressure grid

point variables in a cube that is defined by 5x5 horizontal grid points (at 2.5◦ x 2.5◦ grid

resolution) and the entire column of the model atmosphere. For this definition of local region,

the dimension of the local state vector, N , is 1975 (Since K=40, K<N, as we assumed in

Section 2.)

4. Numerical experiments

a. Forecast Errors

First, to illustrate the general spatial distribution of the errors in the xa,f
g state estimate

we examine the absolute error in the analysis and forecasts of the meridional wind component

at 500 hPa. We choose the meridional wind instead of the more commonly used geopotential

height, because this way we can use the same quantity to characterize the errors in the Tropics

and the extratropics. Plots of the absolute error are obtained by computing the time average

of ‖ξ‖ at each location (grid point). Figure 3 shows the time mean absolute error at analysis

time and at the 72-hour forecast lead time for all three experiments. The results obtained

by assimilating simulated observations in randomly placed locations show that the largest

analysis errors are in the Tropics and the smallest analysis errors are in mid-latitude storm

track regions, in agreement with Szunyogh et al. (2005). Forecast errors become dominant

in the storm track regions within 48-72 hours. In comparison, when simulated observations

are placed in realistic locations, the results show that the distribution of the magnitude of

the analysis errors is strongly modulated by the observation density: the lowest errors are
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over continents in the Northern Hemisphere and the highest errors are over Antarctica and

in the oceanic region between Cape Horn and the Antarctic Peninsula.

We see strong similarities in the spatial distribution of the errors at analysis time and for

short term forecasts in both experiments that assimilate observations in realistic locations.

This similarity indicates that observation density plays a more dominant role than model

error in determining the spatial variation of the analysis and the short term forecast errors.

Nevertheless, the results obtained by assimilating observations of the real atmosphere show

that the magnitude of the forecast error is almost double the forecast error found in the

experiments which used simulated observations. In all three experiments, we find rapid

growth of forecast errors in the mid-latitude storm track regions, which become the dominant

region of forecast error by the 72-hour lead time.

b. E-Dimension, Explained Variance, and Forecast Error

Szunyogh et al. (2005) showed that for lower values of E-dimension, the ensemble more

certainly captured the structure of the background error. KEA07 extended the E-dimension

diagnostic to study predictability of the performance of ensemble forecasts and found that,

in the extratropics, fast error growth led to low E-dimension and, therefore, to increased

certainty that a greater portion of the forecast error was efficiently captured by the ensemble.

We investigate the relationship between the E-dimension, explained variance, and fore-

cast errors with the help of joint probability distribution functions (JPDFs). The JPDF

shown in Figure 4 is obtained by calculating the number of occurrences in each bin defined

by ∆E × ∆EV , where ∆E denotes the bin increment for E-dimension and ∆EV denotes
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the bin increment for the explained variance. The number of occurrences is then normalized

by ∆E × ∆EV × n, where n is the total sample size, which is equal to the total number of

grid points in a geographic region multiplied by the total number of verification times. This

normalization ensures that the integral of the plotted values over all bins is equal to one. In

good agreement with KEA07, we find that, the lower the E-dimension, the greater the prob-

ability that explained variance is high. We find this relationship independent of experiment,

lead time and geographic region. As forecast lead time increases, lower values of E-dimension

have a greater probability of corresponding to high value of explained variance. At analysis

time, we find lower values of E-dimension corresponding to higher values of explained vari-

ance for the experiments which use realistically placed observations (two lower left panels of

Figure 4) than for the experiment that uses randomly placed simulated observations.

A unique feature of the results for the experiments which use real observations (bottom

two panels of Figure 4) is that the largest value of explained variance is about 0.9 instead

of the theoretical maximum of one. This reduced maximum is most likely due to the ef-

fects of the model errors, as we cannot observe such reduction of the maximum in the two

experiments that use simulated observations. We cannot determine, however, based on the

information provided by our experiments, whether this reduction in the maximum of the

explained variance occurs because some of the forecast errors are orthogonal to the model

attractor, thus an ensemble of model forecasts cannot capture them, or because a flaw in the

generation of ensemble perturbations does not allow the members of the forecast ensemble

to explore that part of the model attractor that includes the true system state.

Figure 5 shows the JPDF for the explained variance and the state estimation error in

the NH extratropics. As in KEA07, the ensemble captures the patterns associated with
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larger forecast errors more efficiently. In addition, both the minimum and the maximum of

explained variance increase with forecast time in all three experiments.

Figure 6 shows the mean E-dimension for the bins in the JPDF for forecast error and

explained variance. The findings of KEA07 extend to the two more realistic settings: larger

forecast errors lead to an on average lower E-dimension, and therefore to higher explained

variance. Interestingly, the distribution of E-dimension with explained variance at analy-

sis time is more similar for the two experiments which assimilate realistically distributed

observations. For these two experiments, we find locations where the explained variance

is high and the E-dimension is low, but the analysis error is relatively large. These are

locations where the ensemble efficiently captures the space of uncertainties, but there are

no observations available to take advantage of this information. Such locations do not exist

for the experiment that assimilates randomly placed observations, as in that experiment the

observational coverage is sufficient to effectively remove the background errors at locations

of high explained variance (low E-dimension).

Figure 7 shows the evolution of the mean of the NH average of the sum of the squared

forecast error, ERV = ‖ξi‖2, the sum of the squared forecast error in S, ERVS =
∑K

i=1 ξ
(‖)2
i ,

and the total variance in the ensemble VS =
∑K

i=1 λi. We also show the curve 2VS since

the initial condition of xa,f is defined by the ensemble mean. For a perfect ensemble, the

initial value of ERV , ERVS, and VS would be equal, and with increasing forecast time ERV

and ERVS would drift toward 2VS. (This is because the asymptotic value of ERV , which is

reached at the forecast time where predictability is completely lost, is twice the variance of the

error in the climatological forecast, while the asymptotic value of VS is equal to the variance

of the error of the climatological forecast [e.g., Leith (1974); Szunyogh and Toth (2002)].) We
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find that the ensemble variance underestimates the total forecast error in all experiments. For

the perfect model experiment that assimilates realistically placed observations, at short lead

times ERVS is in good agreement with VS. In this case, further inflating the variance to make

VS = ERV would not lead to improved analyses and forecasts because part of ERV is due to

errors, ξ(⊥), that lie in directions orthogonal to the space spanned by ensemble perturbations.

The forecast error in the space S better approximates the total forecast error for the two

perfect model experiments. For the experiment that assimilates conventional observations we

find that the variance is grossly underestimated, most likely due to the effects of model errors.

When we fit the curves in Figure 7 to exponential functions, V (t) = eσt we find that the

total variance VS grows more slowly for the experiment that uses conventional observations

σ = 0.0184 than for the experiments that use randomly placed simulated observations σ =

0.0224 or realistically placed simulated observations σ = 0.0283. This slower growth rate

is most likely due to the effects of nonlinearity, which play a more important role in this

experiment than in the others, because the initial magnitude of the errors and the ensemble

perturbations are much larger in this experiment.

For the experiment that uses conventional observations, the initial value of ERV is

largest, but the growth rate is slowest, σ = 0.0204 (σ = 0.0262 for ERVS). The forecast

error growth is fastest for the perfect model experiment with randomly placed observations,

σ = 0.0266 (σ = 0.0337 for ERVS). The perfect model experiment with realistically placed

observations has a forecast error growth rate of σ = 0.0243 (σ = 0.0297 for ERVS).
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c. Spectrum of the d-ratio

So far we have shown that S provides a representation of the space of forecast uncertainty,

which becomes increasingly more efficient with increasing forecast time (Figure 5 and 6.) We

have also shown that S is more certain to capture a larger portion of the forecast error where

the error in the deterministic forecast is larger. Now we turn our attention to investigating

the efficiency of the ensemble in distinguishing between the importance of the error patterns

(eigen directions) in S.

We first compute the spectrum of d-ratio dk using the same definition of the local volume

as in our calculations of E-dimension and explained variance. On average, the ensemble

underestimates the error in the forecast in all directions it captures (Figure 8). The excep-

tions to this underestimation are the first few directions, that explain a larger portion of

ensemble variance, for the perfect model experiment that uses realistic observation coverage

at short lead times (in agreement with figure 7). The underestimation is typically smaller

in directions that explain a larger portion of the ensemble variance. The problem is most

pronounced for the experiment that assimilates observations of the real atmosphere and less

serious for the perfect model experiments.

In order to obtain d-ratio figures whose meteorological (physical) meaning is easier to

interpret, we change the definition of the local volume: we investigate a single variable at

a single level using 5 by 5 horizontal grid points. In these calculations N=25 (N < K),

hence, the upper bound for the dimension of S is 25. The variable and levels we choose for

this analysis are the surface pressure, the temperature at 850 hPa, the two horizontal wind

components at 500 hPa, and the geopotential height at 500 hPa.
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Figure 9 shows the time mean of this ratio in the leading direction, d1, for the temperature

at 850 hPa. This figure shows that initially (at 12 hr lead time) d1 tends to be higher in

regions of high observation density, such as Western Europe and the United States, than

in regions of lower observational density, such as the Southern Hemisphere and the oceanic

regions (panels c and e of Figure 9). The contrast between regions of low and high d1 ratio

is most striking for the experiment that assimilates observations of the real atmosphere:

the ensemble grossly underestimates the forecast uncertainty in regions of high observation

density. This result is an indication that our zonally constant covariance inflation strategy in

the LETKF cannot be optimal when there are zonal changes in the observation density. Thus

we conjecture that implementing a spatially varying adaptive covariance inflation technique,

such as described in Anderson (2007), would lead to an improvement of the analyses and the

short term ensemble forecasts. The time averaged spectrum of the d-ratio for a particular

grid point (Figure 10) over the ocean, at the 12-hour lead time shows that the ensemble, on

average, underestimates the uncertainty in all directions in S, most severely for directions

that explain a smaller portion of the variance. For the same grid point at the 5-day lead

time, the underestimation is less severe, especially for the leading directions. Figure 9 and

Figure 10 together suggest that in the NH extratropics, where the observation density is high

our ensembles underestimate the variance in the space, S, that they capture. The exception

is the experiment that assimilates simulated observations at the location of real observations.

This suggests that the variance inflation coefficients that we obtained by tuning, monitoring

changes in the analysis errors, may be significantly smaller than optimal.
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5. Conclusions

In this paper, we studied the spatio-temporally changing nature of predictability in a

reduced resolution version of the model component of the National Centers for Environmental

Prediction (NCEP) Global Forecast System (GFS), a state-of-the-art numerical weather

prediction model using the LETKF data assimilation scheme. Our conclusions fall into two

categories: conclusion that point to the suboptimality of our current implementation of the

LETKF analysis scheme and conclusions that we believe to identify inherent properties of

the local predictability of the performance of an ensemble forecast system.

• We find that observational density has a greater impact on the structure of analysis

and forecast error than does model error. Including the impact of model error has a

greater influence on the magnitude of error than the structure of error.

• Independent of experiment, lead time, and geographic region, the lower the E-dimension,

the more likely the explained variance is high. Further, as forecast lead time increases,

smaller values of E-dimension more certainly predict high explained variance.

• In the extratropics, the ensemble does a better job of capturing forecast error when

forecast error is high. This behavior can be explained by the fact that high forecast

error leads to low E-dimension. We find this result to hold for both perfect model and

the real atmosphere.

• Realistic observation coverage, when only conventional (non-radiance) observations are

considered, is not adequate to remove errors correctly identified by the ensemble at

analysis time in the extratropics, leading to the presence of regions of high explained
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variance and low E-dimension at analysis time.

• Conclusions related to the suboptimality of our implementation of the LETKF:

– At analysis time, we find that the ensemble typically underestimates uncertainty

more severely in regions of high observation density than for regions of low ob-

servation density. This result indicates that implementing a spatially varying

adaptive covariance inflation technique may improve analyses.

– We find that the variance inflation coefficient used in the current implementation

of the LETKF on the NCEP GFS (Szunyogh et al. 2008) may be smaller than

optimal in the NH extratropics. We conjecture that even if a spatially varying

adaptive covariance inflation technique is not implemented, further tuning of the

current coefficients of the variance inflation scheme may lead to major improve-

ments of the analysis in the NH extratropics.
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(a)

(b)

Fig. 1. The time mean absolute error of the surface pressure for simulated observations at random

locations for analyses generated with digital filter initialization (top) and without digital filter

initialization (bottom). The average is taken over all analyses between 01 January 2004 0000UTC

and 29 February 2004 1800UTC
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Fig. 2. The Fourier analysis at the location 0◦S, 160◦W between 14 January 2004 0600UTC and

15 February 2004 0000UTC shown for simulated observations at random locations without digital

filter initialization, with digital filter initialization, and for the nature run
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Time-mean absolute analysis/forecast error of the meridional wind component at the 500

hPa pressure level. Results are shown for the analysis (left) and the 72-hour forecast (right) for

experiments that assimilate randomly distributed simulated observations (top panel), simulated

observations at the locations of conventional observations (middle panel), and conventional ob-

servations of the real atmosphere (bottom panel). The average is taken over all forecasts started

between 11 January 2004 0000UTC and 15 February 2004 0000UTC. Note the different scale for

the forecast errors in the bottom panels.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Joint probability distribution of the E-dimension and the explained variance in the NH

extratropics. The bin increments are 0.005 for the explained variance and 0.2 for the E-dimension.

Shown are the distributions for the analysis (left) and the 5-day forecast lead time (right) for

experiments that assimilate randomly distributed simulated observations (top panel), simulated

observations at the locations of conventional observations (middle panel), and conventional obser-

vations of the real atmosphere (bottom panel).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Joint probability distribution of the analysis/forecast errors and the explained variance.

The bin increments are 0.005 for the explained variance and 0.4 for the forecast error. Shown are

the distributions for experiments that assimilate randomly distributed simulated observations (top

panel), simulated observations at the locations of conventional observations (middle panel), and

conventional observations of the real atmosphere (bottom panel). Note the different scale for the

forecast errors in the bottom panel.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Color shades indicate the mean E-dimension for each nonempty bin in Figure 5. Shown

are the distributions for experiments that assimilate randomly distributed simulated observations

(top panel), simulated observations at the locations of conventional observations (middle panel),

and conventional observations of the real atmosphere (bottom panel). Note the different scale for

the forecast errors in the bottom panel.
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(a)

(b)

(c)

Fig. 7. The mean of the Northern Hemisphere average of ERV (red), ERVS (green), VS (blue),

and 2VS (black) calculated for all assimilated variables in the local regions with energy rescaling.

Results are shown for each forecast lead time the for experiments that assimilate randomly dis-

tributed simulated observations (top panel), simulated observations at the locations of conventional

observations (middle panel), and conventional observations of the real atmosphere (bottom panel).

The average is taken over all forecasts started between 11 January 2004 0000UTC and 15 February

2004 0000UTC. Note the different scale for the forecast errors in the bottom panel.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. The time mean of the Northern Hemisphere average spectrum of the ratio di, calculated

for all assimilated variables in the local regions with energy rescaling. Results are shown for 12-

hour lead time (right) and the 5-day lead time (left) for experiments that assimilate randomly

distributed simulated observations (top panels), simulated observations at the locations of conven-

tional observations (middle panels), and conventional observations of the real atmosphere (bottom

panels). The average is taken over all forecasts started between 11 January 2004 0000UTC and 15

February 2004 0000UTC.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. The time average of the ratio di in the leading direction for the temperature at 850 hPa.

Results are shown for the 12-hour forecast (left) and the 5-day forecast (right) for experiments that

assimilate randomly distributed simulated observations (top panel), simulated observations at the

locations of conventional observations (middle panel), and conventional observations of the real

atmosphere (bottom panel). The average is taken over all forecasts started between 11 January

2004 0000UTC and 15 February 2004 0000UTC. Note the different scale for the d-ratio for the

5-day lead time.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. The spectrum of the ratio di at the point 60◦N 120◦W for the temperature at 850 hPa.

Results are shown for the 12-hour forecast (left) and the 5-day forecast (right) for experiments that

assimilate randomly distributed simulated observations (top panel), simulated observations at the

locations of conventional observations (middle panel), and conventional observations of the real

atmosphere (bottom panel). The average is taken over all forecasts started between 11 January

2004 0000UTC and 15 February 2004 0000UTC. Note the different scale for the d-ratio in the

bottom panel.
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