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Abstract 
 

Bias and uncertainty are key contributors of prediction errors in numerical weather and 

climate prediction. Biases can arise from various sources, including noise in the data, 

approximations in the observation operators used to simulate the data, or limitations of the 

assimilating algorithm. Although ensemble prediction systems can be computationally 

expensive as they require running multiple simulations in parallel, statistical post-

processing techniques are often used to estimate bias and often used to inexpensively 

improve the prediction quality of the ensemble system. Many methodologies has been 

proposed in the literature to estimate bias and most of them are based on a mathematical 

formula for that quantification either processing the analysis increments, using the 

background residuals or by injecting the bias term in the cost function (Bias-Aware) 

techniques. On the other hand, the evolution of Machine Learning and more specifically 

Convolutional Neural Networks (CNNs) provide an intelligent way of detecting artifacts 

on images, classifying images, recognize patterns, perform texture segmentation etc. 

Certain work has been proposed using CNNs to detect bias/uncertainty but there is more 

that need to be done in the CNN architecture implementation to improve bias estimation in 

post processing. The approach of this work is focused on reviewing the literature on current 

methods for estimating bias in on Data Assimilation systems using conventional methods 

and Convolutional Neural Networks.  
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Chapter 1  Introduction 
  

 
Ensemble prediction systems are a common method for quantifying uncertainty in weather 

forecasts, especially for predicting extreme weather events. These systems consist of 

running multiple simulations, or trajectories, of a numerical weather model with perturbed 

initial conditions and/or model parameters. The resulting ensemble of simulations provides 

a range of possible outcomes, allowing forecasters to estimate the likelihood and range of 

possible weather conditions. 

 

However, ensemble prediction systems can be computationally expensive, as they require 

running multiple simulations in parallel. To improve the efficiency of these systems, 

statistical post-processing techniques are often used to inexpensively improve the raw 

prediction quality of the ensemble. These techniques can include methods such as bias 

correction, calibration, and downscaling. 

 

Bias correction involves adjusting the raw ensemble predictions to correct for any 

systematic biases in the model. This can be done by comparing the ensemble predictions 

to observations and making appropriate adjustments to the ensemble members. 

 

Calibration involves transforming the raw ensemble predictions to improve their statistical 

properties, such as their mean and variance. This can be done using various statistical 

methods, such as linear regression or Bayesian methods. 
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Downscaling involves using statistical techniques to extract more detailed information 

from the raw ensemble predictions, such as local weather conditions or extreme events. 

This can be done using methods such as spatial interpolation or statistical modeling of the 

relationships between different variables. 

 

By using ensemble prediction systems and statistical post-processing techniques, 

forecasters can better quantify the uncertainty associated with weather forecasts and 

provide more accurate and reliable predictions, especially for extreme weather events. 

 

Many bias estimation methods have been proposed in the literature and most of them were 

thoroughly summarized in (Dee, 2005). All of these proposed methods use a mathematical 

formula in quantifying Bias. On the other hand, recent advances in Artificial Intelligence 

(AI) and Machine Learning (ML) and more specifically the use of Convolutional Neural 

Networks (CNNs) have been used to a variety of tasks including scene classification, object 

detection, segmentation and last but not least Image Processing. In more detail a U-Net 

Convolutional Neural Network (CNN) Architecture was proposed in (Ronneberger, 

Fischer and Brox, 2015) which was effectively used to perform image segmentation on 

Biomedical images. This work was then evolved in post-processing ensemble weather 

forecasts for temperature at 850hPa (T850) and geopotential at 500hPa (Z500) using 

ECMWF data (Grönquist et al., 2021). 
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Chapter 2.  Conventional Bias Estimation Techniques 
 

Traditional or conventional bias estimation techniques typically use a mathematical 

formula to estimate bias in the data. These techniques can be broadly categorized into two 

types: bias-blind and bias-aware methods. 

Bias-blind methods do not explicitly account for bias in the data and assume that the data 

are unbiased. These methods typically involve simple statistical techniques, such as mean 

or median value estimation, or linear regression analysis. 

In contrast, bias-aware methods explicitly account for bias in the data and attempt to correct 

for it. These methods can involve more complex statistical techniques, such as data 

assimilation or Bayesian inference, and may require a priori knowledge of the sources of 

bias in the data. 

The choice of bias estimation technique depends on the application and the available data. 

In some cases, bias-blind methods may be sufficient if the data are known to be relatively 

unbiased. However, in many cases, bias-aware methods may be necessary to accurately 

estimate bias and improve the quality of the data as described in (Dee, 2005).  

2.1 Bias – Blind Data Assimilation 
 
In data assimilation we are mostlyc interested in minimizing the following cost function 

J(x): 

 
(1) 

Where: 
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x: model state 

y: observations 

𝒉(⋅): Is the function that relates the state with the observations 

B: Is the Background error Matrix 

R: Is the observation error Matrix 

As we can see from the above there is not account for bias and so we can describe this 

data assimilation as Bias-Blind data assimilation 

In order to minimize the cost function above, we can take the gradient of J(x) and set it 

to zero. The solution xα also called the analysis and based on that analysis we define the 

analysis increment as dx = xα - xb   and also dy = yα - h(xb) as the vector of the observed-

minus the background residuals. Also by minimizing the cost function we can obtain the 

Kalman Gain and the relate dx and dy with the Kalman Gain with the following 

equations: 

𝑲 = 𝑩𝑯𝑻(𝑯𝑩𝑯𝑻 + 𝑹)"𝟏 (2) 

𝒅𝒙 = 𝑲𝒅𝒚    (3) 

𝑯 = $𝒉
$𝒙
1
'('!

   (4) 

The errors from the above equations can be defined as: 
 

𝒆) = 𝒙) − 𝒙  (5) 
 
𝒆* = 𝒙* − 𝒙  (6) 

 
𝒆+ = 𝒚 − ℎ(𝒙) (7) 

 
By combining equation (3) above with equations (5) – (6) we have: 
 

𝒆) ≈ 𝑲𝒆+ + [𝑰 − 𝑲𝑯]𝒆* (8) 
 
And if we apply linear average (i.e <∙>) on (8) we have: 
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< 𝒆) >≈< 𝑲𝒆+ > +< [𝑰 − 𝑲𝑯]𝒆* > (9) 
 
 
2.1.1 Analysis increments Bias Estimation 

 
Bias detection using analysis increments is a common technique used in data 

assimilation to diagnose the presence of biases in the input data. The technique 

involves comparing the difference between the observed data and the assimilated 

model output, known as the analysis increment, with the expected uncertainty in the 

observations. 

 

In a perfect assimilation system, the analysis increment should be consistent with the 

expected observation uncertainty, and any deviations from this consistency can be 

attributed to biases in the data. For example, if the analysis increment consistently 

underestimates the expected observation uncertainty, this may indicate a bias in the 

input data that is not being fully accounted for in the assimilation process. 

 

The analysis increment can be calculated using a variety of statistical techniques, 

such as the Kalman filter or variational assimilation, and can be applied to a wide 

range of input data, including atmospheric and oceanic observations, as well as other 

types of geophysical data. 

 

Bias detection using analysis increments can be a powerful tool for improving the 

accuracy of data assimilation systems, as it can help to identify and correct for biases 

in the input data. However, the technique can also be sensitive to errors in the model 
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and the assimilation methodology, and must be used with caution to ensure that any 

detected biases are not simply artifacts of the assimilation process itself. 

 

In quantitative terms the bias from the analysis increments is defined as: 

< 𝒅𝒙 >≈< 𝑲𝒆+ > −< 𝑲𝑯𝒆* >  (10) 

 In a bias-free situation equation (10) is close to zero. 

 
 

2.1.2 Background Residuals Bias Estimation 
 
 
Another common technique used in data assimilation to detect biases is bias 

detection using background residuals. This technique involves comparing the 

difference between the model background prediction and the observed data with the 

expected uncertainty in the observations. 

 

The model background prediction is the model output generated from the previous 

time step or forecast, and is used as the initial condition for the assimilation of new 

observations. The difference between the model background prediction and the 

observed data is known as the background residual, and any deviation from the 

expected uncertainty in the observations can be attributed to biases in the input data. 

 

Similar to bias detection using analysis increments, the bias detection using 

background residuals technique requires knowledge of the expected observation 

uncertainty, which can be estimated from the observation error statistics. 
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The bias detection using background residuals technique can be applied to a wide 

range of input data, including atmospheric and oceanic observations, and can be used 

in conjunction with a variety of assimilation methodologies, such as the Kalman 

filter or variational assimilation. 

 

While bias detection using background residuals can be a powerful tool for 

improving the accuracy of data assimilation systems, it can also be sensitive to errors 

in the model and assimilation methodology, and must be used with caution to ensure 

that any detected biases are not simply artifacts of the assimilation process itself. 

 

In quantitative terms the bias using background residuals is defined as follow: 

< 𝒅𝒚 >≈< 𝒆+ > −< 𝑯𝒆* >  (11) 

The term above in a Bias-Free situation is supposed to be zero. 

 
2.2 Bias – Aware Data Assimilation 

 

Bias aware data assimilation is an approach that explicitly accounts for biases in the 

input data during the assimilation process. This approach recognizes that biases in the 

input data can significantly impact the accuracy of the assimilated data and can lead 

to incorrect model predictions. 

There are several methods for implementing bias aware data assimilation. One 

common approach is to use bias correction methods to adjust the input data prior to 
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assimilation. Bias correction involves applying a correction factor to the input data to 

account for known biases, and can be done either before or after assimilation. 

Another approach is to include bias estimation and correction as part of the 

assimilation process itself. This involves estimating the bias in the input data during 

the assimilation process and adjusting the assimilated data accordingly. This approach 

can be computationally expensive but has the advantage of being able to account for 

time-varying biases. 

In addition, there are methods for estimating and correcting biases in the model itself. 

These methods involve comparing the model predictions with independent 

observations to identify and correct biases in the model output. 

Bias aware data assimilation has been shown to significantly improve the accuracy of 

model predictions, particularly for extreme events and in regions where biases are 

known to be large. However, implementing bias aware data assimilation requires 

accurate knowledge of the biases in the input data, which can be challenging to obtain, 

and may also require significant computational resources. 

In order to convert the cost function above to a bias aware version, it is possible to 

represent the state vector with the following format: 

𝒛, = [𝒙,β,] (12) 

𝐽(𝒛) = (𝒛* − 𝒛)-𝒁".(𝒛* − 𝒛) + [𝒚 − 𝒉=(𝒛)]-𝑹".[𝒚 − 𝒉=(𝒛)]  (13) 

In a such way the cost function becomes a bias aware function because of equation 12. 
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2.3 Bias Correction Methods with Data Assimilation 

 

One of the direct ways of properly accounting for bias in a statistical analysis is by 

estimating the forecast bias and then correcting the forecast prior to analysis. Several 

algorithms have been proposed in the literature for estimating forecast bias by means of 

data assimilation based on an unbiased subset of the observing system (Dee and Da Silva, 

1998). These algorithms can be categorized as off-line when the forecast biases are based 

on previously produced assimilated datasets or on-line which are based on approximating 

information about forecast and observation error covariances. These 3 algorithms 

proposed by (Dee and Da Silva, 1998) follow: 

 

2.3.1 Off–line forecast-bias Estimation 

In Off-line forecast bias estimation we have estimation of forecast bias on existing 

assimilated data sets. The bias estimation is performed in two stages on the first state we 

have the bias prediction while on the second stage we have the  bias update which is used 

on the next iteration for the bias prediction: 
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  A concise description of the notation above is in paragraph 2.3.4 

2.3.2 On–line forecast-bias Estimation and correction 

In the case of On-line forecast bias estimation and correction we basically 

have the implementation of the Off-line forecast bias estimation in on-line 

format which is basically in parallel with the bias-blind state estimator which 

is used as input in this algorithm. The description of the algorithm is ass 

follow: 

 

 

 

 
  The same as in paragraph 2.3.1 the description of the notation is in paragraph 
  2.3.4. 
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2.3.3 On-line Forecast-bias estimation and correction with 
Feedback 
 

In the case of On-line Forecast-bias estimation and correction with feedback 

we have a more efficient on-line algorithm which is utilizing the most recent 

forecast-bias estimates as soon as they become available to produce bias-

corrected forecasts and analyses. A step by step  
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2.3.4 Notation explanation 
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2.4 Bias Correction in model Prediction 
 

Bias correction methods aim to remove or reduce the biases in the observations or 

model predictions, allowing for more accurate and reliable estimates of the true state 

of the system. These methods can be applied to different types of data, such as satellite 

measurements, weather station observations, or oceanographic measurements. 

There are several approaches to bias correction in the data assimilation community. 

Some commonly used methods include: 

1. Additive Bias Correction: This method involves estimating and subtracting a 

constant bias term from the observations or model predictions. The bias term is 

typically determined using historical data or independent calibration data. This 

method has been adopted/adapted in a variety of studies (Vila et al., 2009), 

(Kornelsen and Coulibaly, 2015), (Balmaseda et al., 2007), (Su et al., 2014) 

2. Multiplicative Bias Correction: In this approach, a multiplicative bias factor is 

applied to the observations or model predictions to account for the systematic 

errors. The bias factor is usually derived from historical or calibration data. A 

detailed discussion of both Additive and Multiplicative Bias Correction techniques 

was done in (Su et al., 2014)  

3. Empirical Bias Correction: This method involves developing empirical 

relationships between observations and model predictions based on historical data. 

These relationships are then used to correct the biases in the current observations 

or model predictions. Several studies have been proposed in the literature empirical 

bias correction techniques. More specifically (Guldberg et al., 2005) initially 
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proposed a two step empirical method using as a first step a nudged simulation 

followed by a climatological seasonal cycle of the correction term calculation. This 

method was later applied (Kharin and Scinocca, 2012) on GCM experiments. 

4. Model Output Statistics (MOS): MOS is a statistical technique that combines 

observational data and model output to improve the accuracy of model predictions. 

It involves developing statistical relationships between the model output and 

observations, including bias correction terms. Post processing statistics in general 

have shown great potential in removing defects in Numerical Weather Prediction 

(NWP) by statistically processing their output (Wilks, Daniel S, 2011). A 

combination of Perfect Prog and MOS ((Klein, Lewis and Enger, 1959; Glahn and 

Lowry, 1972) was proposed by (Marzban, Sandgathe and Kalnay, 2006) 

5. Ensemble-based Bias Correction: Ensemble methods, such as ensemble Kalman 

filtering, can be used to estimate and correct biases in the observations or model 

predictions. The ensemble members are perturbed to represent the bias, and the 

filtering process helps estimate and correct these biases. 

The choice of bias correction method depends on various factors, including the nature 

of the biases, the availability of historical data, and the specific requirements of the 

application. It is important to carefully assess the impact of bias correction on the 

assimilation results and to validate the effectiveness of the chosen method through 

rigorous evaluation and verification techniques. 
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Chapter 3. Convolutional Neural Networks in Bias Estimation 

 

Convolutional Neural Networks (CNNs) have recently been used for bias estimation in 

data assimilation systems. CNNs are a type of deep neural network that are particularly 

well-suited for image processing tasks, but have also been shown to be effective in other 

domains. 

In the context of bias estimation, CNNs can be trained on input data that includes both the 

original data and known biases, and then used to estimate the biases in new data. The input 

data can be in the form of model output or observational data, and the CNN can learn to 

identify patterns that are associated with biases in the data. 

One advantage of using CNNs for bias estimation is that they can capture complex, 

nonlinear relationships between the input data and biases. This is particularly important in 

cases where biases are not well-understood or have a complicated relationship with the 

input data. 

In addition, CNNs can be trained on large datasets, which can improve the accuracy of bias 

estimates. This is important for data assimilation systems, which often have to process 

large volumes of data. 

Overall, the use of CNNs for bias estimation shows promise for improving the accuracy of 

data assimilation systems, particularly in cases where biases are difficult to identify using 

conventional methods. However, further research is needed to fully understand the 
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strengths and limitations of this approach, and to develop methods for integrating CNN-

based bias estimation into existing data assimilation frameworks. 

 

3.1 Features of Convolutional Neural Networks 
 
3.1.1 Local Receptive Fields 

 
One of the main differences between Normal Neural Networks and Convolutional 

Neural Networks is that every region in the input is connected with the every region 

in the hidden layer (Figure 1). On the other hand on a Convolutional Neural Network 

only a small region in the input layer is connects to the neurons in the hidden layer 

(Figure 2). 

 

Figure 1 – Typical Neural Network Architecture – Every region in the input is 

connected to every region in the hidden layer (‘Matlab’, 2023). 
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Figure 2 – Convolutional Neural Network – Only a small region in the input is 

connected to a small region in the hidden layer (‘Matlab’, 2023). 

 
 

3.1.2 Shared Weights and Biases 
 

In convolutional neural networks (CNNs), the same set of weights and biases are 

shared across all units of a given layer. This means that each unit in the layer 

applies the same set of weights to its input, and adds the same bias term before 

applying a non-linear activation function. 

Sharing weights and biases in this way allows the CNN to learn spatially invariant 

features in the input data. For example, if a CNN is trained to recognize faces, the 

same set of weights and biases can be applied to different parts of an image to 

identify facial features regardless of their location. 

In addition to spatial invariance, weight sharing also reduces the number of 

parameters in the network, making it more computationally efficient and easier to 
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train. This is particularly important in CNNs, which can have many layers and 

require large amounts of training data. 

Overall, weight sharing is a key feature of CNNs that allows them to effectively 

process high-dimensional inputs such as images and video, and has been a major 

factor in the success of deep learning for a wide range of applications. 

A comparison between conventional Neural Network and Convolutional Neural 

network in regard to the shared weights and biases feature can be seen in Figures 3, 

4.  

 

Figure 3 – Weights and Biases on a Typical Neural Network. Every connection of the 

input on a node in the hidden layer has different weights and biases (‘Matlab’, 2023). 
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Figure 4 – Shared Weights and Biases on a Convolutional Neural Network. Weights 

and Biases values are the same for all hidden neurons in a given layer (‘Matlab’, 2023). 

 
This feature is exclusively CNNs are very promising in estimating bias in data 

assimilation.  

 
3.2 Operations in Convolutional Neural Networks 

 
3.2.1 Convolution 

 

One of the major task that CNNs perform is convolution. Convolution is a 

mathematical operation that involves taking the dot product of a small "filter" or 

"kernel" matrix with a larger input matrix or image, and sliding the filter over the 

input matrix in a specified pattern. 

In a CNN, convolution is typically used to extract spatially-local features from an 

input image or other high-dimensional data. The filters applied in convolutional 
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layers of a CNN are learned during training, and can be thought of as feature 

detectors that identify patterns in the input data that are relevant to the task at hand. 

The outputs of convolutional layers are typically passed through non-linear 

activation functions, and may be pooled or downsampled to reduce their spatial 

dimensionality and extract more abstract features. This process of convolution, 

activation, and pooling is repeated in multiple layers of the CNN, with the output 

of each layer serving as input to the next. 

Overall, convolution is a fundamental operation in CNNs that allows them to 

effectively extract features from complex input data such as images and video, and 

has been a key factor in the success of deep learning for a wide range of 

applications. This operation is demonstrated in Figure 5. 

 
 

 
Figure 5 – Basic Demonstration of Convolution operation in Convolutional Neural 

Networks (‘Matlab’, 2023). 
 
 

3.2.2 Activation and Pulling 
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Activation and pooling are two important operations that are commonly performed after 

convolution in convolutional neural networks (CNNs). 

 

Activation functions are used to introduce non-linearity into the output of a convolutional 

layer. Without an activation function, the output of a convolutional layer would be a 

linear combination of the input pixels or features, which may not be sufficient for 

capturing complex patterns in the data. Common activation functions used in CNNs 

include ReLU (rectified linear unit), sigmoid, and hyperbolic tangent. 

 

Pooling is a down-sampling operation that reduces the spatial dimensionality of the 

feature maps output by the convolutional layers. This is typically done by dividing the 

feature maps into non-overlapping regions, and computing a summary statistic such as 

the maximum or average value within each region. The result is a smaller set of feature 

maps that summarize the most important information in the original feature maps, while 

reducing the computational requirements for subsequent layers. 

 

Pooling can also introduce a degree of translational invariance into the output of the 

CNN, which means that small shifts in the input image or data will not result in large 

changes to the output. This is achieved by summarizing the output of nearby pixels or 

features into a single value, which helps to reduce the sensitivity of the CNN to small 

variations in the input. 
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Overall, activation and pooling are important operations in CNNs that help to introduce 

non-linearity and reduce the spatial dimensionality of the feature maps, respectively. 

They play a key role in allowing CNNs to effectively extract features from complex input 

data and achieve state-of-the-art performance on a wide range of tasks. 

A schematic demonstration of an activation and pulling operation is shown in Figure 6. 

Initially an activation function is applied to screen out the negative values and then 

pooling is applied to pull max values from predefined sections of the image.  

 

 
Figure 6 – Activation and Pulling operation in CNNs – First an activation function is 
applied to screen out negative values and then a pooling operation is applied to pull 

max values (‘Matlab’, 2023) 
 
 
 
3.3 The U-Net architecture for Biomedical Imaging 

 
 
The U-Net architecture is a popular CNN architecture for biomedical imaging 

applications, particularly for image segmentation tasks (Ronneberger, Fischer and 

Brox, 2015). 

 

The U-Net architecture consists of an encoder and a decoder network, which are 

connected through skip connections. The encoder network consists of a series of 
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convolutional and pooling layers that progressively reduce the spatial resolution of 

the input image while increasing the number of feature maps. The decoder network 

is a mirror image of the encoder network, consisting of a series of upsampling and 

convolutional layers that gradually increase the spatial resolution of the feature 

maps while decreasing the number of feature maps. 

 

The skip connections between the encoder and decoder networks are used to 

preserve the high-resolution features from the encoder network, which are 

important for accurate segmentation. Specifically, the feature maps from the 

encoder network are concatenated with the corresponding feature maps in the 

decoder network at the same spatial resolution. This allows the decoder network to 

access both the high-resolution features from the encoder network and the low-

resolution features that it has generated itself. 

 

The U-Net architecture has been shown to achieve state-of-the-art performance on 

a wide range of biomedical image segmentation tasks, including cell segmentation, 

nuclei segmentation, and brain tumor segmentation. Its success is attributed to the 

combination of the encoder and decoder networks with skip connections, which 

allows for the efficient extraction of both high- and low-level features from the 

input image. 

 

The original U-Net implementation (Ronneberger, Fischer and Brox, 2015),  shown 

in Figure 7, consists of 5 levels. On first level, 64 variations of a 3x3 filter is applied 
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producing 64 image channels (blue arrow) and a step function operation is applied. 

The original image from 572x572 pixels is reduced to 570x570 pixels. Then another 

3x3 kernel is applied on the output producing another 64 channels of 568x568 pixel 

image. After that a 2x2 max pool operation is applied reducing the 568x568 to a 

half image 284x284 image and then the same convolution scheme was applied until 

the image is reduced to a 28x28 image before starting the upscaling process. 

  

 

Figure 7 – U-Net Original Implementation (Ronneberger, Fischer and Brox, 2015) 

 
 
On Level 0 after the last convolution (64 image 568x568pixel channels) the copy 

and crop operation is applied which is basically crops the images from 

568x568pixels to 392x392pixels which is the upscale resolution.  
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The results of applying a U-Net on segmenting a Biomedical Image are shown in 

Figure 8.  

 

Figure 8 – U-Net Original Implementation Results (a) the raw Biomedical 

Image is Shown, (b) overlay with ground truth (i.e truth result), (c) the 

generated segmented image, (d) the differences between the truth and 

segmented images (Ronneberger, Fischer and Brox, 2015) 

 

In our case we are not interested in the segmented image but rather than extracting 

the bias parameter b as shown in Figure 4.  

 
3.4 Bias and Uncertainty Estimation in Post Processing 

Ensemble Weather Forecasts 
 

Based on the previous U-Net implementation, a recent work (Ronneberger, Fischer 

and Brox, 2015) has been proposed in the literature estimating Bias in Ensemble 

Weather Forecasts (Grönquist et al., 2021). In this approach the U-Net was 

restructured and reduced to a 3-level U-Net, because the 5-level original structure 

was causing overfitting. The fully redesigned U-Net architecture is shown in Figure 

9.  
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Figure 9 – U-Net for Post-Processing Weather Forecasts – The redesigned U-Net 

architecture used for Estimating Bias in Post Processing Ensemble Weather 

Forecasts (Grönquist et al., 2021) 

 

For inputs ECMWF Reanalysis ERA5 was used as ground truth at T=0 and mean 

of 10 Ensemble Forecasts at T=48. All 7 Fields for Temperature (T), Geopotential 

(Z), U Component of wind (U), V component of wind (V), Divergence (D), Vertical 

Velocity (W), Specific Humidity (Q) were used in the training process for the 

appropriate pressure level we are aiming to predict (Temperature, Geopotential). 

Temperature at 850mb (T850), and geopotential at 500mb (Z850) were used as the 

prediction parameters. On a separate experiment only predicted fields were used 

for training but when all fields were used there were better results. Certain pre-

processing, such as standardization of the input to zero mean and unit variance, was 

implemented to prepare the data for processing. This U-Net implementation have 

shown some very promising results for the prediction of T850 to the order of 7.59% 

improvement when all fields were used and 6.90% improvement only when T850 

was used. For the geopotential at 500mb (Z500), there was a 2.37% improvement 
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when all fields were used and 2.06% when only the geopotential at 500mb was 

used. In the same paper, uncertainty quantification was evaluated using a different 

Deep Learning architecture. There was a 16.4% and 12.3% improvement for T850 

prediction when all Fields and Predicted fields were used respectively for the 

Uncertainty quantification architecture scheme. Also, there was a 12.9% and 12.8% 

improvement for Z500 prediction when all Fields and Predicted fields were used 

respectively for the same Uncertainty Quantification scheme. 

 

3.5 Why U–Net? 

U–Net architecture offers several advantages over other CNN architectures when it 

comes to image segmentation in cases with extreme weather phenomena (i.e ability 

to detect and segment features in that phenomenon). A summary of the key 

advantages of a U-Net vs other CNNs is the following: 

1. U-Net Architecture: The U-Net architecture has a unique and intuitive structure that 

enables effective information flow. It consists of a contracting path, which captures 

context and reduces spatial dimensions, and an expansive path, which recovers 

spatial resolution for precise segmentation. This U-shaped architecture allows for 

the integration of high-resolution features from the contracting path with localized 

information in the expansive path, aiding in accurate segmentation. 

2. Skip Connections: U-Net incorporates skip connections that directly connect 

corresponding layers in the contracting and expansive paths. These skip 

connections help to preserve fine-grained details and contextual information, 

facilitating precise localization and segmentation. They also address the problem 
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of information loss during downsampling and upsampling, promoting better feature 

propagation. 

3. Dense Feature Extraction: U-Net is effective at capturing and representing intricate 

features in images due to its deep architecture and successive convolutional layers. 

This dense feature extraction capability enables the network to learn complex 

patterns and capture both local and global context, leading to improved 

segmentation accuracy. 

4. Data Efficiency: U-Net can achieve good segmentation performance with relatively 

small training datasets. The combination of skip connections and dense feature 

extraction allows the network to make effective use of available training samples 

and generalize well to unseen data. This data efficiency is particularly beneficial 

when working with limited annotated data. 

5. Versatility: While U-Net is widely recognized for image segmentation tasks, its 

architecture can be adapted for other tasks such as image-to-image translation, 

image denoising, or image super-resolution. The inherent flexibility of U-Net 

makes it a versatile choice for various computer vision tasks, allowing for easy 

modifications and extensions. 

6. Real-Time Inference: U-Net's architecture, skip connections, and dense feature 

extraction enable efficient and parallelizable computations, making it feasible to 

achieve real-time inference on modern hardware. This advantage is particularly 

valuable in applications where low-latency segmentation results are required, such 

as real-time medical image analysis or autonomous driving systems. 

 
3.6 Cross Validation of U-Net vs Conventional methods 
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Initially cross validation against the Lorenz 63 model should be implemented using 

a 3-DAR, 4-DVAR and other data assimilation algorithms. From equations (10), (11) 

we can obtain the bias. If bias from (10), (11) is very close to 0 we can inject bias by 

adding noise with certain mean and standard deviation. The bias estimate (a scalar) 

from this conventional approach should be the mean of the injected noise is added or 

defined by the difference in equations (10), (11).  

On the Convolutional Neural Network approach using U-Net we could feed the 

background and the observation vectors in the architecture, a separate U-Net 

architecture can be used for each of those. If bias is zero as in the conventional 

approach some noise could be added. After the model is trained we can extract the 

bias vectors and produce the zonal averages as it was done in equations (10), (11). 

Certain comparison of the estimates should be conducted in both the conventional 

and U-Net implementations should be conducted.  

After experimenting with the Lorenz 63 and the results are promising the study 

should be extended using real data 2D data. 

 

3.7 Bias Correction using Deep Learning 
 
 

Bias correction using deep learning involves leveraging deep neural networks to 

estimate and correct systematic biases in data or model predictions. Here are some 

approaches commonly used in the deep learning community for bias correction: 
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1. Generative Adversarial Networks (GANs): GANs consist of a generator and a 

discriminator network. The generator network learns to generate synthetic data 

samples, while the discriminator network learns to distinguish between real and 

synthetic samples. By training GANs on biased data or model outputs, the generator 

can learn to generate unbiased samples, effectively correcting the bias in the 

generated data. 

2. Conditional Variational Autoencoders (CVAEs): CVAEs are deep generative models 

that learn the underlying distribution of the data and can generate new samples based 

on conditional information. By training CVAEs on biased data or model predictions, 

the model can learn to generate unbiased samples conditioned on the provided 

information, thus correcting the bias. 

3. Domain Adaptation: Deep learning models can be trained to adapt from a biased 

source domain to an unbiased target domain. By using techniques such as adversarial 

learning or domain adaptation algorithms, the model can learn to minimize the 

discrepancy between the source and target domains, effectively reducing the bias in 

the predictions. 

4. Residual Learning: Residual learning involves training deep neural networks to learn 

residual mappings, focusing on the difference between predicted outputs and ground 

truth. By training models to directly predict the bias or the bias-corrected output, deep 

learning models can effectively estimate and correct biases in the predictions. 

5. Meta-Learning: Meta-learning techniques aim to learn the ability to adapt quickly to 

new tasks or domains. By training deep learning models on diverse datasets with 
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known biases, the model can learn to generalize and correct biases in new datasets or 

domains with similar biases. 

6. Adversarial Training: Adversarial training involves training deep learning models in 

the presence of adversarial examples or biases. By incorporating an adversarial 

component into the learning process, the model can learn to be robust to biases and 

make more accurate predictions in the presence of systematic errors. 

 
3.8 Future work and Research 

 
 

Deep learning techniques have shown great potential in estimating bias in post-

processing Ensemble Weather Forecasts. There is further experimentation starting 

from a Toy model needs to be done to restructure/redesign the U-Net Convolutional 

Neural Network (CNN) and be able to improve results. As a comparison the 

conventional methods for bias estimation for the implemented toy model need to be 

implemented. In addition, since ARMA models used in predicting the analysis 

increment very well a better ARMA model need to be identified for predicting the 

analysis increments. There are certain statistical tests such as the Akaike’s 

Information Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion 

(BIC) that can be used to identify the appropriate ARMA model. Comparison 

between the conventional methods and the Deep Learning Methods need to be 

implemented in the Toy Model implementation. Extend the study in other variables 

other than T850 and Z500 and have as a goal to apply this on Ice Products for the 

Great Lakes. Apply shallow neural networks and compare results.  
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Chapter 4.  Summary and conclusions 

 

In this scholarly paper we investigated conventional Bias Estimation Techniques on 

postprocessing model outputs. As an alternative Convolutional Neural Networks were 

presented that basically can be used to estimate bias. The initially proposed work by 

(Ronneberger, Fischer and Brox, 2015) implementing a U-Net CNN architecture for 

biomedical image segmentation. In continuation of this work a modified U-Net for Bias 

estimation was presented (Grönquist et al., 2021).  

A general review on how Data Assimilation has used bias correction conventional 

approaches were discussed. At the same time how machine learning techniques were used 

in bias estimation were discussed. A methodology for comparing bias estimation using 

conventional methods vs U-Net was also presented. Further enhancements were proposed 

starting from experimenting with toy models and restructuring the U–Net architecture to 

improve results to extend the study with real data hopefully on detecting bias on ice 

products for the Great lakes.  

 
 

 



 39 

References 

Akaike, H. (1974) ‘A new look at the statistical model identification’, IEEE Transactions 
on Automatic Control, 19(6), pp. 716–723. Available at: 
https://doi.org/10.1109/TAC.1974.1100705. 

Balmaseda, M.A. et al. (2007) ‘A multivariate treatment of bias for sequential data 
assimilation: Application to the tropical oceans’, Quarterly Journal of the Royal 
Meteorological Society, 133(622), pp. 167–179. Available at: 
https://doi.org/10.1002/qj.12. 

Dee, D.P. (2005) ‘Bias and data assimilation’, Quarterly Journal of the Royal 
Meteorological Society, 131(613), pp. 3323–3343. Available at: 
https://doi.org/10.1256/qj.05.137. 

Dee, D.P. and Da Silva, A.M. (1998) ‘Data assimilation in the presence of forecast bias’, 
Quarterly Journal of the Royal Meteorological Society, 124(545), pp. 269–295. Available 
at: https://doi.org/10.1002/qj.49712454512. 

Glahn, H.R. and Lowry, D.A. (1972) ‘The Use of Model Output Statistics (MOS) in 
Objective Weather Forecasting’, Journal of Applied Meteorology, 11(8), pp. 1203–1211. 
Available at: https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2. 

Grönquist, P. et al. (2021) ‘Deep Learning for Post-Processing Ensemble Weather 
Forecasts’, Philosophical Transactions of the Royal Society A: Mathematical, Physical 
and Engineering Sciences, 379(2194), p. 20200092. Available at: 
https://doi.org/10.1098/rsta.2020.0092. 

Guldberg, A. et al. (2005) ‘Reduction of systematic errors by empirical model correction: 
impact on seasonal prediction skill’, Tellus A: Dynamic Meteorology and Oceanography, 
57(4), p. 575. Available at: https://doi.org/10.3402/tellusa.v57i4.14707. 

Kharin, V.V. and Scinocca, J.F. (2012) ‘The impact of model fidelity on seasonal 
predictive skill: IMPACT OF FIDELITY ON SKILL’, Geophysical Research Letters, 
39(18). Available at: https://doi.org/10.1029/2012GL052815. 

Klein, W.H., Lewis, B.M. and Enger, I. (1959) ‘OBJECTIVE PREDICTION OF FIVE-
DAY MEAN TEMPERATURES DURING WINTER’, Journal of Meteorology, 16(6), 
pp. 672–682. Available at: https://doi.org/10.1175/1520-
0469(1959)016<0672:OPOFDM>2.0.CO;2. 

Kornelsen, K.C. and Coulibaly, P. (2015) ‘Reducing multiplicative bias of satellite soil 
moisture retrievals’, Remote Sensing of Environment, 165, pp. 109–122. Available at: 
https://doi.org/10.1016/j.rse.2015.04.031. 



 40 

Marzban, C., Sandgathe, S. and Kalnay, E. (2006) ‘MOS, Perfect Prog, and Reanalysis’, 
Monthly Weather Review, 134(2), pp. 657–663. Available at: 
https://doi.org/10.1175/MWR3088.1. 

‘Matlab’ (2023). Natick, Massachusetts, United States: The MathWorks Inc. (Deep 
Learning Toolbox). Available at: https://www.mathworks.com. 

Ronneberger, O., Fischer, P. and Brox, T. (2015) ‘U-Net: Convolutional Networks for 
Biomedical Image Segmentation’, in N. Navab et al. (eds) Medical Image Computing and 
Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International 
Publishing (Lecture Notes in Computer Science), pp. 234–241. Available at: 
https://doi.org/10.1007/978-3-319-24574-4_28. 

Su, C.-H. et al. (2014) ‘Beyond triple collocation: Applications to soil moisture 
monitoring: Beyond triple collocation’, Journal of Geophysical Research: Atmospheres, 
119(11), pp. 6419–6439. Available at: https://doi.org/10.1002/2013JD021043. 

Vila, D.A. et al. (2009) ‘Statistical Evaluation of Combined Daily Gauge Observations 
and Rainfall Satellite Estimates over Continental South America’, Journal of 
Hydrometeorology, 10(2), pp. 533–543. Available at: 
https://doi.org/10.1175/2008JHM1048.1. 

Wilks, Daniel S (2011) Statistical methods in the atmospheric sciences. Academic press. 

 
MATHWORKS online webinars. What are the Convolutional Neural 
Networks? Introduction to Deep Learning:  

 
 
 
 


