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The current episode of global warming is one of, if not the, biggest challenge to modern 

society as the world moves into the 21st century. Rising global temperatures due to 

anthropogenic emissions of greenhouse gases are causing sea level rise, extreme heat 

waves, droughts and floods, and other major social and economic disruptions. To prepare 

for and potentially reverse this warming trend, the causes of climate change must not 

only be understood, but thoroughly quantified so that we can attempt to make reasonable 

predictions of the future rise in global temperature and its associated consequences. The 

project described in this dissertation seeks to use a simple model of global climate, 

utilizing an energy balance and multiple linear regression approach, to provide a 

quantification of historical temperature trends and use that knowledge to provide 

probabilistic projections of future temperature. By considering many different greenhouse 

gas and aerosol emissions scenarios along with multiple possibilities for the role of the 



ocean in the climate system and the extent of climate feedbacks, I have determined that 

there is a 50% probability of keeping global warming beneath 2 °C if society can keep 

future emissions on the pathway suggested by the RCP 4.5 scenario, which includes 

moderately ambitious emissions reductions policies, and a 67% probability of keeping 

global warming beneath 1.5 °C if society can keep emissions in line with the very 

ambitious RCP 2.6 scenario. These probabilities are higher, e.g. more optimistic, than 

similar probabilities for the same scenarios given by the most recent IPCC assessment 

report. Similarly, we find larger carbon budgets than those from GCM analyses for any 

warming limitation target and confidence level, e.g. the EM-GC predicts a total carbon 

budget of 710 GtC for limiting global warming to 1.5 °C with 95% confidence. The 

results from our simple climate model suggest that the difference in future temperatures 

is related to an overestimation of recent warming by the IPCC global climate models. We 

postulate that this difference is partially due to an overestimation of cloud feedback 

processes in the global climate models. Importantly, though, I also reaffirm the consensus 

that anthropogenic emissions are driving current warming trends, and discuss both the 

effects of shifting the energy sector toward increase methane emissions and the timeline 

we have for emitting the remainder of our carbon budget – less than a decade if we wish 

to prevent global warming from exceeding the 1.5 °C threshold with 95% certainty. 
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Chapter 1: Introduction 

Understanding Earth’s climate, particularly the warming of atmospheric 

temperature at Earth’s surface, is not only an important and highly active field of study, 

but an important social and political issue in modern society. It is a complex issue in all 

three of these areas, (academia, society, and policy,) even if the scientific community has 

reached a general consensus on the cause and general trend of recent global warming and 

is now to the point of refining our understanding of the climate system. Earth’s climate is 

dynamic and complex because it integrates many factors – continental geography, the 

biologic and geologic carbon cycle, atmospheric and oceanic flow patterns, cloud cover 

and microphysics, aerosol and ozone chemistry, and even the color and texture of Earth’s 

surface. This complexity has allowed many different methods of analyzing the climate 

system to arise. 

At the most fundamental level, Earth’s climate system works to correct energy 

imbalances at multiple scales: between hot and cold air masses, between the equator and 

the poles, or between incoming and outgoing radiation. Earth’s overall energy balance, at 

zeroth order, concerns this third balance between the amount of incoming solar 

shortwave radiation and the amount of outgoing thermal and reflected radiation. 

Incoming radiation is a function of Earth’s orbit around the Sun, (dominated by the sun’s 

output and by orbital patterns known as the Milankovitch cycles,) and outgoing thermal 

radiation is a function of Earth’s effective temperature as seen from space.  Then, at first 

order, Earth’s Global Mean Surface Temperature (GMST) has risen and fallen over 

geologic history in parallel with changes in the strength of the greenhouse effect and of 

surface albedo. These changes both alter the relationship between Earth’s effective 
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temperature as seen from space and the temperature that life on Earth experiences at 

Earth’s surface. Second and third order effects such as regional geography, the large-

scale atmospheric circulation cells, and smaller-scale atmospheric waves and eddies then 

dictate weather patterns and local climate, which also affect variations in surface 

temperature at human-scale locations and time [Wolff et al., 2020]. 

Multiple aspects of modern society respond to changes in surface temperatures at 

various spatial and temporal scales. While hour-by-hour local temperatures (and 

precipitation chances) affect how we dress and what we do on any given day, seasonal 

regional temperature and precipitation patterns affect crucial societal needs like 

agricultural production and water supply. These seasonal and regional patterns also affect 

critical natural phenomena like arctic sea ice cover [Richter-Menge et al., 2019] and 

extreme weather events [Herring et al., 2020]. Long-term GMST trends affect these 

seasonal, regional temperature and precipitation patterns enough to confidently and 

accurately predict these mid-scale patterns based on those large-scale trends. As such, it 

is reasonable and expected that we as a society have invested heavily in meteorology and 

climatology in order to understand and plan for any changes we might see in the future, 

whether it be a few days or a few decades in advance. 

As surface temperatures affect human activity, so too can human activity affect 

surface temperatures. Agriculture, mining, and urban sprawl are significant ways in 

which humans have left obvious marks on Earth’s surface. Multiple changes in Earth’s 

atmospheric composition have also been observed, the most noticeable of which being a 

rapid rise in carbon dioxide (CO2). The rise in CO2 can be attributed to the rise of energy 

production driven by fossil fuel combustion, a consequence of worldwide 
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industrialization.  Expected continued industrialization into the future would thus imply a 

continued rapid rise in CO2 and other greenhouse gases (GHGs), leading to a large 

expected rise in GMST, unless the world can make a rapid switch to renewable forms of 

energy. While the link between GHGs and rising temperature has been well-established, 

the extent of future warming remains an open question. 

Meteorological models have seen great advances in becoming fairly accurate and 

precise for the upcoming few days out to a week, but climate models have arguably been 

less well-constrained in their predictions. As stated in the IPCC Fifth Assessment Report 

[Stocker et al., 2013] (hereafter AR5), the Global Climate Models (GCMs) used in Phase 

5 of the Climate Model Intercomparison Project (CMIP5) [K Taylor et al., 2012] show a 

wide range of predicted end-of-century transient temperatures even when using the same 

emissions scenario; this range becomes much wider when sampling across multiple 

different emission scenarios. The four Representative Concentration Pathway (RCP) 

scenarios, a subset of the scenarios ran in CMIP5, produce temperatures above the 

preindustrial baseline ranging from 0.3 to 1.7 °C (mean of roughly 1.0 °C) for the least-

warming scenario and 2.8 to 5.0 °C (mean of roughly 4.1 °C) for the most-warming 

scenario. Equilibrium Climate Sensitivity (ECS), another metric of future climate defined 

as the temperature Earth reaches to equalize the energy imbalanced caused by CO2 

reaching levels twice their preindustrial value, shows a similar wide range of uncertainty: 

AR5’s “likely” range for ECS is 1.5 to 4.5 °C. A widely publicized recent paper suggests 

a more constrained likely range of 2.6 to 3.9 °C [Sherwood et al., 2020]. 

There are other models and analytical methods that can be used to examine past 

and future climate. Reconstructions of atmospheric temperature and composition in 
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prehistoric and geologic time come from physical and chemical analyses of long-term 

proxies such as tree rings, ice and sediment cores, and coral reefs. Some scientists use 

these reconstructions to estimate ECS [Köhler et al., 2010; Rohling et al., 2012; 

Schmittner et al., 2011], though the validity of using paleoclimate data to predict the 

future has been questioned [Friedrich et al., 2016; Hopcroft and Valdes, 2015; Köhler et 

al., 2015]. ECS and other estimates of future GMST can also come from models of low- 

and moderate-complexity, in contrast to the computationally intensive GCMs. These 

models can range from essentially single-equation calculations based solely on CO2 [X 

Zeng and Geil, 2016] to multiple linear regression (MLR) models of varying complexity 

[Canty et al., 2013; Chylek et al., 2016; Lean and Rind, 2008] to the Integrated 

Assessment Models [Hartin et al., 2015; Meinshausen et al., 2008] and impulse response 

models [Myhre et al., 2013; C J Smith et al., 2018] that represent a range of physical 

processes. 

The body of work presented here describes the advancement of and results from 

the Empirical Model of Global Climate (EM-GC), an energy balance model with MLR 

first constructed in 2012 at the University of Maryland [Canty et al., 2013]. Research 

completed using the EM-GC is conducted to advance our understanding of the interplay 

between major components of Earth’s climate system as it experiences global warming, 

and to produce a reliable projection of future GMST. These concepts can help to better 

inform global warming policy moving forward as well as provide quantitative evaluations 

of certain aspects of past and future GCM results. The remainder of this first chapter 

consists of a description of the basic physics and chemistry behind climate change (§1.1), 
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followed by a general history of climate modeling efforts (§1.2), and finally a more 

thorough listing of this project’s goals and accomplishments to date (§1.3). 

1.1 Basics of Climate 

1.1.1 Radiative Forcing 

Radiative forcing (RF) is defined by AR5 as “a measure of the net change in the 

energy balance of the Earth system in response to some external perturbation”. It has 

units of W/m2, and is usually discussed in terms of a net change in energy balance acting 

at the tropopause [Gregory et al., 2004]. In this system, positive value for RF signifies an 

energy imbalance across the tropopause, with more energy entering the troposphere (and, 

by extension, the hydrosphere) than going out. Such an imbalance leads to a buildup of 

energy in these components of the Earth system that translates to an increase surface 

temperature. There are many potential “external perturbations” that can produce an RF 

effect on the climate system, either for the troposphere or for the whole Earth system. 

The most external of all potential perturbations would be astronomical changes such as 

varying solar energy output and shifts in Earth’s orbit, but these astronomical changes are 

slow and small enough that the Earth system remains essentially in equilibrium, i.e. the 

RF at the top of the atmosphere remain ~0 at timescales applicable to modern society. As 

such, most climate science focuses on RF at the tropopause due to changes of the Earth’s 

surface and atmosphere. 

In the absence of an atmosphere, GMST would be determined solely by the 

balance between the amount of energy from the sun intercepted by the disc profile of 

Earth: 
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𝐸𝐸𝑖𝑖𝑖𝑖 = (1 − 𝐴𝐴)𝑆𝑆(𝜋𝜋𝑅𝑅𝐸𝐸2) 

Eq 1.1 

and the amount of energy emitted from Earth’s total surface area: 

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜎𝜎𝑇𝑇4(4𝜋𝜋𝑅𝑅𝐸𝐸2) 

Eq 1.2 

In the above equations, Earth is approximated as a perfect sphere with radius RE, total 

albedo A, and mean surface temperature T. The quantity S is the measure of solar 

insolation at the distance of Earth’s orbital radius, roughly 1370 W/m2, some of which 

gets reflected by Earth’s total albedo (a combination of cloud reflectivity and surface 

albedo). Finally, σ is the Stefan-Boltzmann constant (5.67x10-8 W/m2/K4) used in 

calculating the relationship between the effective temperature and energy output of a 

radiating blackbody. Earth’s albedo is roughly 0.3, implying an effective GMST of 

roughly 255 K, which can be reached by equating Ein and Eout in the above two equations. 

 The GMST at present is significantly warmer than 255 K, as most of the planet is 

well above the temperature where water freezes (273 K) instead of well below that 

temperature. This discrepancy is a result of a large positive RF on climate due to our 

atmosphere, relative to a planet whose energy balance is solely determined by its star, 

orbit, and albedo. Applying a positive RF to the climate system increases Ein at the 

surface by re-radiating energy that should be leaving the system, effectively lowering 

Eout. This forces GMST to increase until Earth’s effective T is high enough that Eout once 

again balances Ein. This relationship between an object’s temperature and energy output, 

while officially quartic (T4 in Eq 1.2), can be approximated linearly around its current 

energy state. Relatively small changes in RF imply similarly small changes in T, and vice 
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versa. By assuming that T is relatively constant so that Eout varies roughly linearly as a 

function of T for nearby values of T, we can differentiate Eq 1.2 to give 

Δ �
𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜
𝑎𝑎𝐸𝐸

� = (4σT3)Δ𝑇𝑇 

Eq 1.3a 

Δ𝑅𝑅𝑅𝑅 ≈ 𝑐𝑐Δ𝑇𝑇 

Eq 1.3b 

Here, both sides of Eq 1.2 were divided by the surface area of Earth (aE = πRE2) before 

taking the derivative, which was done to demonstrate the physical description of RF as 

being Watts (energy) per square meter (area). 

This approximation of direct proportionality in Eq1.3b works well in comparing 

RF against T for Earth’s recent history. Figure 1.3b of Salawitch et al. [2017], reproduced 

here as figure 1.1, demonstrates the parallel rises in the change in RF since preindustrial 

times due to the total of anthropogenic influences and in the change in GMST over the 

same century and a half. Equation 1.3b is, of course, a simplification of the Earth climate 

system. Specifically, taking the final values of the ΔRF and ΔT lines from figure 1.1 – 

roughly 2.3 W/m2 and 0.9 °C, respectively – would give a value for c of roughly 2.56 

W/m2/K. In comparison, Bony et al. [2006] and Salawitch et al. [2017] would suggest a 

value of 3.23 W/m2/K. Directly calculating 4σT3 with a temperature of either 255 K (the 

albedo-only equilibrium GMST mentioned above) or 245 K (an approximation for the 

actual effective temperature of Earth’s atmosphere as seen from space 1) would suggest   

 
1 We can create a simple model of effective temperature a surface and an atmospheric layer, and assume 
that the atmosphere absorbs ~ 10% of the incoming solar energy that would otherwise reach the surface and 
~80% of the outgoing thermal energy leaving the surface that would otherwise go to space. This two-
equation, two-unknowns system with known S and A allows us to solve for the energy emitted by the 
surface and by the atmosphere itself, in turn determining TATM=245 K and TSFC=277 K. 
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Figure 1.1 – GMST vs ΔRF; Anthropocene 
 

 
 
Reproduction of Salawitch et al. [2017] Figure 1.3b comparing the change in Earth’s 
global mean surface temperature (ΔT, two different records) to the change in radiative 
forcing (ΔRF) over the past century and a half, commonly referred to as the 
Anthropocene.  
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values of 3.76 W/m2/K or 3.36 W/m2/K, respectively. This variance though is typical of 

the kinds of uncertainty seen in GMST warming projections and is proof that the Earth 

climate system is much more complex than Eq 1.3b alone suggests. (For example, AR5 

states that the expected equilibrium rise in GMST due to a doubling of atmospheric CO2 

is anywhere from 2 °C to 4.5 °C.) Still, this zeroth-order energy balance basis is a core 

feature of many climate models, which seek to quantify the complexity and nonlinearity 

of Earth’s climate. 

1.1.2 The Greenhouse Effect 

The “greenhouse effect” is the term for the warming caused by the increase in RF 

from Earth’s atmosphere. Many gases in our planet’s atmosphere absorb thermal 

radiation from the Earth’s surface and re-radiate that energy in all directions, including 

back down to the surface. This back-radiation provides the increase in RF that allows our 

planet to be significantly warmer, on average, than the 255K expected without an 

atmosphere.2 The gases that provide this back-radiation are collectively known as 

greenhouse gases (GHGs). 

A general schematic of how the greenhouse effect works can be seen in figure 7 

of Kiehl & Trenberth [1997], reproduced here as figure 1.2. At the top of the atmosphere, 

Earth receives roughly 342 W/m2 for each square meter of its surface (one-fourth of the 

1370 W/m2 received from the sun at Earth’s orbital radius, accounting for spherical 

geometry). This incoming 342 W/m2 is balanced by the total reflected solar radiation 

(107 W/m2) and outgoing longwave radiation (235 W/m2). Due to the back radiation of  

  
 

2 “Without an atmosphere” is of course a simplification itself, as an atmosphere-less Earth would also be 
missing the clouds and greenery that greatly affect albedo. For simplicity, the various components of the 
Earth system are treated as independent factors in this section. 
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Figure 1.2 – Schematic of Earth’s Energy Balance 
 

 
 
Reproduction of Kiehl & Trenberth [1997] Figure 7 depicting a general summary of the 
flow & balance of energy in Earth’s atmosphere; color version retrieved from 
https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/faq-1-1.html . 
  

https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/faq-1-1.html
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the atmosphere, though, the Earth’s surface experiences a balance of 492 W/m2 between 

absorbed radiation and the energy released through thermals, evapotranspiration, and 

surface radiation. This difference is why observed GMST (287-8 K)3 is warmer than 

Earth’s effective temperature as seen from space (255 K). 

Global warming occurs when the strength of the greenhouse effect is increased. 

Over the past century and a half, this increase has been driven by anthropogenic 

activities, most notably the continuous and increasing emission of carbon dioxide (CO2) 

due to the burning of fossil fuels, though other anthropogenic GHGs have also 

contributed noticeably to the greenhouse effect. As the atmospheric mixing ratio of 

GHGs increases, the equilibrium between radiation leaving the Earth’s surface and 

energy coming back down is perturbed in favor of having more energy coming down than 

going up. Earth’s surface then warms until the point that the thermal radiation leaving 

Earth’s surface increases enough to re-establish equilibrium. 

Humans are currently emitting CO2 and other GHGs at such a rapid rate that Earth 

is not in radiative equilibrium. Trenberth et al. [2009] provide an update to figure 1.2 for 

the years 2000-2004, in which the Earth system was absorbing a net 0.9 W/m2 instead of 

having a true balance between outgoing and incoming energy. Accounting for 

disequilibrium is one of the first-order changes that can be applied to Eq 1.3b, and is 

usually represented by energy leaving the atmosphere and entering the oceans [Gregory, 

2000; Schwartz et al., 2014]. Water has a much higher heat capacity than air, and there is 

much more mass of water in the oceans than mass of air in the atmosphere. These facts 

 
3 Earth’s current temperature, in a deterministic sense, is commonly cited as being 14-15 °C. This is an 
estimate as quantification of Earth’s immediate temperature is complicated and difficult, and it is warmer 
than the 277 K, or 4 °C, mentioned earlier as the two-component model is highly simplified, likely not 
taking into account the complexities of the climate system that determine the actual current temperature. 



12 
 

considered together mean that the oceans take much longer to warm than the atmosphere 

immediately above. This temperature difference allows for heat to leave the warming 

atmosphere [Raper et al., 2002] until oceans warm enough to also be in equilibrium with 

the atmospheric changes in RF. The exact delay to equilibrium is unknown but is thought 

to take centuries to millennia based on estimates of deep ocean circulation [Li et al., 

2013; Raper et al., 2002], meaning the warming effects of fossil fuel burning will 

continue long after humans manage to stabilize atmospheric CO2. It is important to make 

the distinction that reducing emissions to zero would cause a reduction in atmospheric 

CO2 levels, not just a stabilization, and would neutralize and potentially reverse warming 

trends [MacDougall et al., 2020]. 

The correlation between atmospheric CO2 and GMST is not unique to the recent 

past – it exists deep into Earth’s geologic history, as can be seen in figure 1.1 of 

Salawitch et al. [2017], reproduced here as figure 1.3. The rates of change in CO2 in the 

past were (to current resolution) slow enough that it is assumed that Earth remained close 

to equilibrium for most of its geologic past [Zeebe, 2012], with only a few instances of 

relatively rapid CO2 change – which are often associated with major extinction events 

[Burgess et al., 2014; Jourdan et al., 2014; Penman et al., 2014]. Even these geologically 

rapid changes occurred on the order of tens to hundreds of thousands of years, which is a 

noticeable difference from the current situation where the atmospheric mixing ratio is 

increasing at several parts per million (ppm) per year, expected to double from 

preindustrial levels on a timescale of just centuries. 
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Figure 1.3 – GMST vs CO2; Deep Time 
 

 
 
Reproduction of Salawitch et al. [2017] Figure 1.1 comparing the change in Earth’s 
global mean surface temperature (ΔT) to the mixing ratio of carbon dioxide over geologic 
time, with uncertainty estimates included for CO2 mixing ratio.  
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There is some debate as to whether rising CO2 level caused previous global 

warming or vice versa. Examination of the glacial-interglacial cycle over the past million 

years is complicated due to a natural lag between the age of ice and the age of the air 

trapped in bubbles within the ice cores being studied [Loulergue et al., 2007]. Further, the 

time it takes for air bubbles to become separated from the atmosphere above them is on 

the same order or magnitude as the time resolution available. As such, even when taking 

into account the diffusion of air in the compacting upper snow layers of an ice sheet, 

consensus is difficult to reach on near-synchronous events in the ice core record such as 

observed rises in temperature and CO2. While there is little suggestion that large 

increases CO2 noticeably precedes the onset of warming in major deglaciation events, 

there are some arguments that these rises are synchronous within resolution or at least 

have varied relative to each other over the glacial record [Parrenin et al., 2013; Van Nes 

et al., 2015] and other arguments suggesting that the warming consistently but barely 

begins shortly before a growth in CO2 [Marcott et al., 2014; Shakun et al., 2012; Stips et 

al., 2016; Toggweiler and Lea, 2010]. Even in these latter cases, while CO2 lags the 

initialization of deglaciation, presumably caused by eccentricity in Earth’s orbit, it then 

also amplifies the final extent of the deglaciation warming processes, showing the effect 

of CO2 as a GHG; this process seem to happen with a hemispheric bias in this division of 

effects, as warming primarily in the southern hemisphere leads to CO2 outgassing from 

the oceans, which then leads to advanced warming in the northern hemisphere. Either 

way, Earth’s orbital cycles currently imply a slow return toward glaciation; instead, there 

are multiple lines of evidence linking the current rise in CO2 to human activities (§2.2) 
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thus confidently showing the current episode of global warming to be an effect, not a 

cause, of rising GHGs in the atmosphere. 

1.1.3 Other Considerations 

Other anthropogenic and natural effects (i.e. aside from GHGs) apply direct or 

effective RF to Earth’s climate system on timescales relevant to modern society, in 

addition to the ocean heat sink mentioned in the previous section. The other two major 

sources of anthropogenic RF on climate are the aerosols society emits, which have both 

direct and indirect effects on climate with large uncertainty on both, and alterations to 

Earth’s albedo due to land use change (LUC). Natural sources of RF on climate (at 

human timescales) include the occasional volcanic eruptions that affect stratospheric 

aerosol optical depth (SAOD), slight changes in solar energy output associated with the 

eleven-year sunspot cycle (total solar irradiance, TSI), the global repercussions of the 

Pacific El Niño-Southern Oscillation pattern (ENSO), and middle-term variations in the 

atmosphere-ocean heat exchange in various ocean basins (e.g. the Atlantic Multidecadal 

Variation, AMV, the Pacific Decadal Oscillation, PDO, or the Indian Ocean Dipole, 

IOD). Quick, general qualitative descriptions of these phenomena follow below. 

Anthropogenic aerosols are small particles of solids or liquids released into or 

produced within the atmosphere, which remain suspended in the air until they are 

removed, usually through deposition or precipitation. Aerosols come from various human 

activities, though primarily from fossil fuel combustion and agricultural burning. They 

can also be produced in situ after chemical or physical reactions of other anthropogenic 

pollutants; these other pollutants are thus called aerosol precursors. Anthropogenic 

aerosols provide direct changes to the RF on climate based on the radiative properties of 
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each aerosol type. Many aerosols (sulfates, nitrates, dust, and most organic aerosols) tend 

to reflect incoming solar radiation, causing a negative RF and a cooling effect, while 

others (black carbon and some organic aerosols) predominantly absorb and re-radiate the 

incoming solar energy more efficiently than other components of the atmosphere, 

providing a positive RF and a warming effect. These different aerosol species can also 

indirectly affect the RF of climate due to their influence on cloud formation, growth, and 

lifetime, thus affecting the energy balance, latent heat exchange, and albedo the clouds 

provide. Large-scale aerosol deposition, particularly black carbon on snow, can also alter 

Earth’s surface albedo, making a semi-direct source of RF on climate from anthropogenic 

aerosols. The extent of the RF effect anthropogenic aerosols have on climate is an extant 

problem in the climate community due to the difficulty in quantifying both the direct 

effect [Bond et al., 2013; Kahn, 2012; Myhre, 2009] and the large uncertainties in our 

understanding of the micro-scale of clouds [Carslaw et al., 2013; Morgan et al., 2006]. 

That said, the direct and indirect effects are both thought to generally provide negative 

RF, though the error bars for both approach 0 RF, with high confidence in the values for 

the direct effect but low confidence for the indirect effect [Table 8.5 of AR5]. This 

cooling effect is going away, as human health concerns (due to the small particle size or 

the toxicity of various aerosols) are generally prompting governments to increase 

industrial regulations and decrease the abundance of these particles in the atmosphere [S 

Smith and Bond, 2014]. Thus, while aerosol cooling has offset some GHG warming over 

the past several decades, this “mask” is being removed, allowing previously “hidden” 

warming to be realized. 
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The RF effect of anthropogenic land use change (LUC) is small in comparison to 

GHGs, aerosols, or ocean warming, but is still a key systematic component to how 

humans have changed our climate and ecosystems over the course of human history. 

While some LUC acts to darken the surface of the planet by laying asphalt, the dominant 

pattern of LUC is the removal of darker-colored forest in favor of lighter-colored 

agricultural fields or, recently, concrete. The world is currently losing tens of millions of 

hectares of forest per year, with a total RF from 1750 to 2011 of –0.15 ± 0.10 W/m2 

[AR5]. These material changes to Earth’s surface are long-lasting, so while the cooling 

effect might be seen as beneficial in a minor manner, the damage to the affected 

ecosystems and the associated disruptions to processes such as flooding, soil decay, and 

evapotranspiration must also be considered. The vegetation changes associated with LUC 

also, obviously, alter the carbon cycle, indirectly affecting how much of anthropogenic 

CO2 emissions remains in the atmosphere 

Volcanic aerosols affect the RF of climate when they puncture the tropopause and 

enter the stratosphere. The general stability of the stratosphere (contrasting the highly 

dynamic processes of troposphere) allows for these aerosols – mostly cooling sulfate 

aerosols and dust – to remain airborne for an extended period of time, on the order of 

months to years, and spread over a large area of the planet. These volcanic aerosols thus 

have an extended and noticeable negative RF of climate as they reflect and block 

incoming sunlight, increasing the optical depth of the stratosphere. Only the strongest 

volcanic eruptions have enough explosive force to send a significant quantity of aerosols 

high enough in the atmosphere to increase stratospheric aerosol optical depth (SAOD) 
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and provide a cooling effect on climate. These strong eruptions do not produce any long-

term cooling, with their short-term effect on GMST lasting on the order of a year. 

Total solar irradiance (TSI), while quoted as being the flat value of 1370 W/m2 in 

first-order approximations, varies on short, medium, and long timescales. The long-term 

variations are a function of the sun’s age and Earth’s orbital parameters, but these 

changes generally4 happen too slowly to significantly affect Earth’s climate system on 

decadal to century timescales. The daily and monthly changes in insolation are generally 

noisy and smaller in amplitude but produce a noticeable signal on the yearly-to-decadal 

time scale. This signal corresponds with the 11-year sunspot cycle. Even though sunspots 

are instances of the sun’s surface being cooler than normal, they are associated with 

higher magnetic field activity and thus produce a larger amount of energy leaving the 

sun, resulting in higher TSI when more sunspots are present and lower TSI during 

sunspot minimums. The TSI cycle has an amplitude of slightly under 1 W/m2, giving a 

forcing at any point on the surface of slightly over 0.2 W/m2 [Rind, 2009], and causes 

global temperature variation of 0.2 °C [G Masters, 1998] to 0.5 °C [J Zhou and Tung, 

2013b] at the surface. 

The El Niño-Southern Oscillation (ENSO) is an extensively studied atmospheric 

and oceanic phenomena most associated with the tropical Pacific region, where it is 

strongest5. Technically speaking, it is an internal aspect of the Earth’s climate system, but 

it is often considered a forcing agent due to the causal effects on the rest of the planet 

[Chylek et al., 2016; Lean and Rind, 2008]. During positive (negative) ENSO events, the 

Pacific trade winds weaken (strengthen), causing warm surface water to pool further east 

 
4 The Maunder Minimum and Medieval maximum being possible exceptions. 
5 Other tropical ocean basins experience their own ENSO-like events, but to much lesser degrees. 
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(west) than it would in neutral conditions [Rasmusson and Wallace, 1983]. This shift 

disrupts the biologic carbon sink of the ocean by inhibiting (promoting) ecologic 

production in the cold-water upwelling off the South American coast. ENSO also disrupts 

the global-scale atmospheric circulation by moving the center of precipitation in the 

Pacific, which in turn affects the jet stream. These processes overall have the effect that 

GMST noticeably rises (falls) during a positive (negative) ENSO phase, driven largely by 

the inhibition (promotion) of cold-water upwelling to the ocean surface [Yulaeva and 

Wallace, 1994]. 

Larger ocean circulation and atmosphere-interaction patterns in each ocean basin 

can also affect climate, though causal relationships and the intensity of the effects are less 

certain than those associated with ENSO. In the Indian Ocean, the smallest of the three 

tropic-spanning basins, the most notable pattern appears to be the ENSO-like Indian 

Ocean Dipole (IOD) – which, as stated above, is a minor pattern compared to ENSO 

itself, though it does have some influence on the Indian monsoon [Ashok et al., 2001]. In 

the Atlantic Ocean, there is also an ENSO-like pattern, but more impactful to climate and 

large-scale weather patterns are the Atlantic Meridional Overturning Circulation 

(AMOC) and the surface patterns associated with AMOC. These surface patterns include 

the Gulf Stream (which transports warm water and mild climate/weather to the eastern 

seaboard of North American and western Europe) and the Atlantic Multidecadal 

Variation (AMV, surface temperature patterns in the north Atlantic associated with cold 

water formation). Direct measurements of the flow of the AMOC have only been 

available for a little over a decade [Smeed et al., 2017], so many groups have tried to 

model the overturning circulation [L C Jackson et al., 2016; Rahmstorf et al., 2015] or 
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find proxies for variation in the strength of this circulation [Haustein et al., 2019; 

Rahmstorf et al., 2015]. Here, we will use the AMV as a proxy for the AMOC; there is 

considerable debate in the climate community both for [Boessenkool et al., 2007; Knight 

et al., 2005; Medhaug and Furevik, 2011; Meehl et al., 2011] and against [Booth et al., 

2012; Haustein et al., 2019] this use. Finally, in the Pacific Ocean, two large-scale 

patterns of sea surface temperatures are the Pacific Decadal Oscillation (PDO) and the 

Interdecadal Pacific Oscillation (IPO). Both have been suggested to be the surface signal 

of an ocean-atmosphere interaction with decadal-scale influence on GMST [England et 

al., 2014], while both have also been suggested be primarily associated with long-term 

averages of ENSO [Newman et al., 2003; Verdon and Franks, 2006]. 

1.2 Previous Climate Modeling Efforts 

1.2.1 History of GCMs 

Large-scale climate modeling efforts began as offshoots of numerical weather 

prediction in the late 1950s as some scientists sought theoretical models of the 

atmosphere, in contrast to observationally-forced models. These early General 

Circulation Models, for which the acronym GCM would later be recast as Global Climate 

Models, often relied on just a small set of equations and had a very coarse atmospheric 

“grid” with just a handful of vertical levels and horizontal divisions. As computing power 

grew, models moved from hemispheric and zonal divisions to horizontal grid cells 

several degrees a side, as well as increasing the number of vertical levels [Edwards, 

2000]. This progress, which has continued to modern modeling efforts as computing 

power continues to increase, allows for more nuanced quantification of larger-scale 

processes and for quantification at all of smaller-scale patterns, all of which are necessary 
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for accurately modeling a system which is inherently not discretized – and one where 

long-term trends can be defined in averages of complex events (e.g. hurricane trends) or 

observed in very localized microclimates. 

In addition to increasing resolution from the computation side, GCMs have grown 

significantly from a conceptual standpoint over the years. Early GCMs relied on 

modeling just general atmospheric flow, simple land surface interactions, and large-scale 

ocean processes. As computing power and scientific understanding have grown, modelers 

have added representation of aerosols (starting in the 1990s), dynamic vegetation and 

other key components of the carbon cycle (2000s), and atmospheric chemistry and land 

ice interactions (2010s) [Edwards, 2000; Jakob, 2014]. A schematic of the increase in 

processes included in GCMs from AR5 is reproduced here as figure 1.4. These advances, 

along with the fine resolution allowed by higher computation power, can represent small-

scale but important processes and feedbacks. The newer small-scale details also provide 

information that is influential on a personal level to citizens, constituents, businesses, and 

politicians, such as flooding or drought risk, tendency for severe weather, agricultural 

constraints, and attempts at definitive emissions budgets. Simple GCMs have also been 

paired with/included in Integrated Assessment Models (IAMs) to examine how the 

physical processes of the climate system interact with human demographics, politics, and 

economics (e.g. industry, commerce, and energy production). This coupling in IAMs can 

attempt to emulate human-behavior-based feedbacks that might not be seen when 

separate social and climate models are forced with static scenarios passed from one 

model to the other. 
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Figure 1.4; Component Development of GCMs 
 

 
 
Reproduction of AR5 Figure 1.13 
“The development of climate models over the last 35 years showing how the different 
components were coupled into comprehensive climate models over time. In each aspect 
(e.g., the atmosphere, which comprises a wide range of atmospheric processes) the 
complexity and range of processes has increased over time (illustrated by growing 
cylinders). Note that during the same time the horizontal and vertical resolution has 
increased considerably e.g., for spectral models from T21L9 (roughly 500 km horizontal 
resolution and 9 vertical levels) in the 1970s to T95L95 (roughly 100 km horizontal 
resolution and 95 vertical levels) at present, and that now ensembles with at least three 
independent experiments can be considered as standard.”  
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Problems in representing the climate system still exist even as GCMs have 

included more processes at higher resolution.  Given the complexity of the Earth climate 

system, reducing the myriad of mechanisms to a computer model will necessarily involve 

parameterization of some real-world processes. Parameterization, the natural chaos of the 

system, numerical noise issues, and coding choices all contribute to the large amount of 

model spread seen in coordinated modeling efforts such as the Coupled Model 

Intercomparision Project, phase five (CMIP5) and phase 6 (CMIP6). In particular, 

differences in the quantification of cloud feedbacks (particularly in the tropics) accounts 

for roughly 70% of inter-model spread in future temperatures within CMIP5 [Vial et al., 

2013], and continued uncertainty in cloud feedback drives some of the excessive 

warming in CMIP6 [Zelinka et al., 2020]. On top of cloud feedback spread, over half of 

CMIP5 models do not consider all aspects of the aerosol indirect effect [Chylek et al., 

2016; Wilcox et al., 2013]. 

Coordinated modeling efforts such as CMIP5 are designed to deal with the above 

mentioned model uncertainty. For CMIP5, dozens of modeling centers around the world 

agreed on a specific set of emissions (for aerosols and in some instances GHGs) and 

atmospheric abundance (in other instances for GHGs) and physics scenarios that could be 

used for running their models within the comparison project. The CMIP5 scenarios 

included a handful that every involved modeling group agreed to run. Having multiple 

models running the exact same scenario(s) eliminates scenario uncertainty, allowing for 

CMIP5 to better examine the model uncertainty among member models. Notably, CMIP5 

also aimed to examine uncertainty in the mechanisms for the carbon cycle and cloud 

processes [K Taylor et al., 2012]. While the model spread due to cloud feedbacks is 
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somewhat problematic, seeing such a large signal can allow for modelers to easier 

identify specific mechanisms and best coding and analysis practices for current and future 

projects like CMIP6 – something that would be difficult to identify without controlling 

for scenario uncertainty. Indeed, one of the major projects within CMIP6 is examining 

and improving cloud feedbacks (CFMIP), although the general improvement in cloud 

microphysics seems to have produced a bias in the direction of the cloud feedback 

interaction, leading to excessive warming [Zelinka et al., 2020]. 

1.2.2 The Representative Concentration Pathways 

One class of emissions scenarios used in CMIP5 is the set of Representative 

Concentration Pathways (RCPs). Each RCP scenario was created by a separate integrated 

assessment model (IAM) group [Van Vuuren et al., 2011a], based on the state of 

knowledge from the IPCC Fourth Assessment Report [Solomon, 2007], hereafter AR4, so 

as to inform AR5. The RCPs consist of four scenarios of GHG concentrations and other 

climate forcings out to year 2100, as well as a historical account of those quantities from 

1765 to 2005. Global average and half-degree gridded data are available for most of the 

included quantities. The four RCP scenarios were developed such that sum of all forcings 

at the end of the 21st century totaled one of four values that spanned the literature at the 

time: 2.6 W/m2, 4.5 W/m2, 6.0 W/m2, and 8.5 W/m2 [Van Vuuren et al., 2011a]. 

The RCP 8.5 scenario, at the time of development, represented the “business as 

usual” or “baseline” pathway for global emissions of GHGs, aerosols, and land use 

changes [Riahi et al., 2011]. This scenario assumed continued growth in population, 

economic output, and all associated energy and resource consumption, while also 

assuming no climate change mitigation policies would be enacted. This projection did not 
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mean extreme growth in all areas; the continued trends instead imply moderate growth in 

global GDP and almost no improvements to per capita income or primary energy 

intensity. RCP 8.5 thus descended directly from the A2r scenario [Riahi et al., 2007], a 

modification to the A2 SRES scenario [Nakicenovic et al., 2000], and envisioned a world 

where fossil fuel technologies remain the most attractive options for energy production. 

Coal in particular supports roughly half of all global primary energy supply by 2100 

according to RCP 8.5, the largest difference in energy portfolios between the RCPs 

[Riahi et al., 2011]. The GHG emissions associated with RCP 8.5 were developed using 

the MESSAGE integrated assessment model. 

RCP 6.0 was developed with the Asia-Pacific Integrated Model [Fujino et al., 

2006] using socio-economic assumptions that allow for global emissions of GHGs to 

peak around 2060 [Masui et al., 2011]. Even as emissions decrease in the later part of the 

21st century, global radiative forcing would still increase slightly before stabilizing at 6.0 

W/m2. This outcome is in contrast to RCP 8.5, wherein global radiative forcing would 

still be strongly rising at the end of the century and beyond. The emissions reduction and 

forcing stabilization are achieved by assuming the establishment of a global carbon 

market and decreased growth in primary energy needs from 2060 to 2100. Under this 

global incentive, the change in primary energy production is the main driver for the 

stabilization, as the relative shares of energy sources does not change significantly – e.g. 

renewables account for roughly 13% of primary energy in 2000 and only grow to roughly 

16% by the end of the century; other sectors similarly do no change significantly [Masui 

et al., 2011]. 
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The global energy portfolio begins to shift away from fossil fuels significantly 

when considering RCP 4.5 [Thomson et al., 2011]. The RCP 4.5 scenario arose from use 

of the GCAM integrated assessment model to synthesize multiple studies [Clarke et al., 

2007; S J Smith and Wigley, 2006; Wise et al., 2009] concerning GHG emissions, other 

pollution controls, land use changes, and carbon pricing. In RCP 4.5, atmospheric GHG 

mixing ratios stabilize by 2080, as does global RF. To accomplish this outcome, global 

primary energy from fossil fuels stabilizes by midcentury. More than half of the growth 

after midcentury is attributed to massive increases in nuclear energy production, with 

renewables and biomass accounting for the rest. RCP 4.5 includes adoption of industrial-

scale carbon capture and sequestration (CCS) to help decrease GHG emissions after 

fossil-fuel-produced primary energy stabilizes, and also includes afforestation to offset 

other CO2 emissions [Thomson et al., 2011]. 

Finally, RCP 2.6 was designed to limit global warming to 2°C above 

preindustrial, based on the state of science at the time [Van Vuuren et al., 2011b]. Also 

known as RCP3-PD (Peak and Decline), the RCP 2.6 scenario requires global RF to peak 

at 3 W/m2 by midcentury and then decline to 2.6 W/m2 by 2100. This outcome requires 

GHG emissions to peak and begin declining in the near immediate future so that 

atmospheric mixing ratios peak by midcentury, and then requires negative emissions so 

that mixing ratios fall in the ensuing decades. This can only be accomplished through 

extensive use of CCS technologies (with over two-thirds of fossil-fuel-based primary 

energy production at the end of the century is assumed to have its carbon emission 

sequestered) including bio-energy-based CCS, and use of afforestation. RCP 2.6 also 

necessitates the enactments of extensive additional climate change policy actions from all 
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nations around the world – such as a global carbon market with rapid growth in carbon 

prices – and also assumes increased energy efficiency, decreased energy demand, and 

only moderate population growth [Van Vuuren et al., 2011b]. 

Among the emissions and physics scenarios included for use in CMIP5, RCP 4.5 

and RCP 8.5 were two of the scenarios designated as “core” simulations, intended to be 

run by nearly every participating GCM [K Taylor et al., 2012]. For this reason, the 

research in this dissertation focuses on these two scenarios. Particular emphasis is given 

to RCP 4.5 as research closely associated to this dissertation [Tribett et al., 2017] 

suggests both that RCP 8.5 is no longer the “business as usual” scenario as intended and 

that emissions associated with compliance to commitments to the Paris Climate 

Agreement approximate RCP 4.5 rather well, assuming continued improvements in 

carbon and methane emissions extend beyond the time frame of most commitments. 

1.2.3 Multiple Linear Regression Climate Models 

Multiple linear regression (MLR) is a simple yet elegant mathematical tool that 

attempts to recreate a response term given multiple explanatory variables. While it does 

not prove causation or even correlation by itself, well-educated choices of explanatory 

variables and experimental design can be used to support causation (provided there exists 

an underlying physical mechanism) or strongly rule out otherwise possible explanatory 

variables. While Earth’s climate system is highly complex and nonlinear, it is not 

unreasonable to use zeroth- and first-order physics in an attempt to examine specific 

variables with an MLR model. 

Global warming has a strong enough effect on other aspect of climate change and 

on global society that it has reasonably been a focus of GCMs, MLR models, and other 
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climate analyses. Most MLR approaches to understanding global warming [Chylek et al., 

2020; Chylek et al., 2014; Foster and Rahmstorf, 2011; Lean and Rind, 2008; 2009; Tung 

and Zhou, 2013; J Zhou and Tung, 2013a] use a one- or two-step process to separate the 

natural influences on GMST, e.g. ENSO, from the anthropogenic influences on GMST, 

e.g. GHG forcing. While there has been some criticism that MLRs oversimplify the 

complex mechanisms that affect GMST [Marvel, 2018], many of these criticisms can be 

addressed with proper experiment design (see §2.3.1, §4.2, and §4.3 in this dissertation). 

Any remaining minor criticisms of the MLR method for climate modeling can be 

outweighed by the power – provided by its simplicity – to perform thousands or even 

millions of runs in the time it takes the complex GCMs to complete a single run, allowing 

for sensitivity and scenario testing that is unavailable to GCMs. 

The Empirical Model of Global Climate (EM-GC) originated from a class project 

that itself used the work of Lean & Rind [2008; 2009] as an instructional foundation. 

Their MLR model combines the natural forcings of ENSO, TSI, and SOD with an eight-

component anthropogenic signal [Hansen et al., 2007] to produce a modeled temperature 

record that explains 76% of the observed temperature record (from the Hadley Center) 

that had been examined. In particular, the anthropogenic component provided 0.199 ± 

0.005 °C per decade of warming since the beginning of the satellite era (1979-2005). 

They also show how observed and modeled temperatures map spatially over the globe by 

repeating the MLR temperature analysis on each 5°×5° grid box [Lean and Rind, 2008] 

(hereafter LR08). With the coefficients from their analysis, they project GMST out to 

2030, suggesting that GMST would increase at an average rate of 0.17 ± 0.03°C per 

decade; they also examine the effect of a potential major volcanic eruption (affecting 
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SAOD) and an extreme positive ENSO event. Notable predictions include a strong 

GMST increase from 2009 to 2014 due to the TSI cycle amplifying anthropogenic effects 

and a relative lack of GMST increase from 2014 to 2019 due to a projected downturn in 

the TSI cycle [Lean and Rind, 2009]. 

Foster and Rahmstorf [2011] (hereafter FR11) examine five different temperature 

records with their MLR, three based on surface station data and two based on satellite 

sensing (and thus more representative to lower troposphere temperatures than surface 

temperatures). All five records show general consistency in their warming trends both 

before and after adjustment by the MLR analysis of FR11. This MLR examines the effect 

of the three previously mentioned natural factors – ENSO, TSI, and SOD – and then 

removes those effects from the temperature record to create the adjusted temperature 

records. With these three natural factors (and a seasonal cycle) removed, FR11 name the 

(implicitly anthropogenic) remaining residual as the “global warming signal”, reporting a 

value of 0.17 ± 0.01°C per decade for the surface records (1979-2010). They do not 

directly consider anthropogenic RF as an input to their analysis. 

Zhou & Tung [2013a] (hereafter ZT13) critically examine the work of both LR08 

and FR11, notably adding a LOWESS-filtered version of the Atlantic multidecadal 

oscillation (AMO) to their MLR. This addition produces substantially different estimates 

for the attributable anthropogenic warming rate in their MLR framework. While they 

essentially recreate FR11’s 0.17°C per decade when ignoring AMO, that value drops to 

0.07°C per decade with AMO included. With their choices of AMO filtering and 

effective lags for the other natural inputs, they also argue that the pre-supposing of an 

anthropogenic signal by LR08 caused an overshoot in their estimate of the anthropogenic 
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effect, evidenced by an apparent shift in the trends of the residual between the 

observational and modeled temperatures. As such, the ZT13 MLR uses a linear trend as 

an initial estimate for the anthropogenic signal during the MLR step, then add that linear 

trend back into their residual for their further analysis. 

A simple MLR model from a group based at the Los Alamos National Lab 

[Chylek et al., 2020; Chylek et al., 2016; Chylek et al., 2014] shows many similar results 

to results from the EM-GC [Canty et al., 2013; Hope et al., 2017]. The Los Alamos MLR 

model suggests a significant influence of the AMO on GMST [Chylek et al., 2016; 

Chylek et al., 2014] and an overstatement from GCMs of the influence of  SAOD on 

GMST [Chylek et al., 2020]. As with the EM-GC, the Los Alamos MLR model can test 

multiple versions of input regressors, both natural and anthropogenic, though their model 

does not include terms representing LUC, ocean heat export (OHE), or the influence of 

the Indian Ocean on climate. Chylek et al. [2016] state that the GMST record can be 

suitably reconstructed using just three regressors: anthropogenic total, solar, and AMO. 

Any addition of extra regressors does not provide a significant improvement in GMST 

hindcast accuracy for the increase in complexity. While the EM-GC can run with subsets 

of its available regressors, we prefer using the full set of regressors because slight 

improvements to fitting the GMST record can greatly increase the spread in projections 

of future GMST and the use of ENSO, in particular, helps explain why for instance 2016 

was the warmest year on record [Hope et al., 2017]. We prefer to account for as much 

uncertainty in future GMST as is reasonable. 
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1.3 Goals and Accomplishments 

The body of work encompassed by this dissertation is the result of advancing the 

physics and data inputs of my research group’s MLR climate model – the Empirical 

Model of Global Climate (EM-GC), first described in Canty et al. [2013] and first named 

in Hope et al. [2017]. Specifically, the updates I have made to the EM-GC between the 

Canty et al. [2013] version of the model and the submitted Hope et al. [2020] version of 

the model include: 

• Rewriting the ocean heat export term from a purely mathematical estimate 

to the physics-based calculation from Raper et al. [2002] 

• Adding an ocean surface temperature term into the ocean heat export 

expression to prevent the ocean from functioning as an infinite heat sink 

and later adding options to simulate different possibilities for the ocean 

warming profile as a function of depth 

• Expanding the number of ocean heat content records that the EM-GC can 

use from two (with two modifications each, for a total of four) to eight 

(with depth dependencies and various averages, for a total of sixteen) 

• Alter the treatment of feedback processes in response to ocean heat export 

forcing of climate 

• Apply an area correction for the ocean heat export forcing of climate 

• Updating the EM-GC aerosol scenarios to represent the aerosol RF 

estimates of AR5 instead of those in AR4 

• Reformatting the process of combining aerosol direct RF time series to 

sample the uncertainty in past aerosol total RF 
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• Including the aerosol scenarios of [S Smith and Bond, 2014] as options 

into the EM-GC 

• Examining the evolution of Earth’s albedo over the time period of the 

Clouds and the Earth’s Radiant Energy System (CERES) record 

• Examining the effect of stratospheric water vapor in the EM-GC 

• Creating new methods to examine specific time periods within specific 

EM-GC runs, e.g. to seek the cause(s) of the so-called “global warming 

hiatus” in the early 21st century 

• Testing new data record inputs for SOD, ENSO, AMV, and PDO 

• Rewriting our projection analysis weighting method from a purely 

math/physics perspective to using AR5-directed probabilities based on the 

uncertain in the radiative forcing of climate due to anthropogenic aerosols 

• Restating projected temperatures as a function of total carbon emissions 

instead of as a function of time, such that we can report policy relevant 

quantities such as transient climate response to cumulative carbon 

emissions (TCRE) and total/remaining carbon budget 

• Allowing the model to run with a mix of anthropogenic GHG signals from 

various original scenarios, e.g. using times series for the three main GHGs 

and the class of halocarbons each from a different one of the four RCPs 

• Creating four new CH4 scenarios to bridge the gap between the RCP 8.5 

and RCP 4.5 projections of atmospheric CH4. 

The advancements of the EM-GC to date have all helped to increase the power 

and rigor of the model in the hopes of my group addressing three main pillars of 
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projection uncertainty in climate models: scenario uncertainty, model difference, and 

internal variability. In addition to using the EM-GC to test all four RCPs more quickly 

than GCMs, our ability to mix the RCPs and test other projections of aerosols and CH4 

gives an even more complete picture of scenario uncertainty. Our ability to selectively 

chose the natural and anthropogenic inputs in any given ensemble, as well as selecting 

how much heat goes into the ocean and how the heat is distributed, simulates differences 

in model physics between GCMs. Natural internal variability is included in the EM-GC 

by means of the natural regressors considered; that is, the model does not attempt to 

simulate its own natural variability from physics principles. We can also show the effect 

of predicted natural variability from inputs such as TSI on future projections by 

comparing runs with their inclusion and exclusion. 

Chapter 2 of this dissertation expands on the physics and chemistry of climate 

change by taking a more detailed look at some of the factors considered in the EM-GC. A 

large portion of chapter 2 is a recasting of my contributions to Salawitch et al. [2017]. 

This includes a detailed examination of the RF on climate from the different sources 

referenced in AR5 and how they compare over time, as well as a closer look at methane 

emissions specifically. Chapter 2 also includes discussion of several influences on 

climate that were considered in the growth of the EM-GC but not directly addressed in 

either Chapter 3 [Hope et al., 2017] or Chapter 4 [Hope et al., 2020] – specifically, an 

analysis of how Earth’s albedo has changed over the recent past, the effect of the ocean 

warming profile as a function of depth, and the effect (or lack thereof) of stratospheric 

water vapor on modern climate change. Finally, Chapter 2 discusses some of the 
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considerations made in constructing a linear model of the nonlinear climate system, and 

how I address some of these concerns. 

Chapter 3 of this dissertation, published as Hope et al. [2017], outlines the basic 

structure of the EM-GC and several of our core results. It discusses the inspiration behind 

the EM-GC before describing all of the inputs (as of summer 2016) in detail. Our group’s 

central message, that the CMIP5 warming projections likely overpredict future warming, 

follows from use of the EM-GC in both of its main modes. We use the “best-fit mode” of 

the model to examine the Attributable Anthropogenic Warming Rate (AAWR) from our 

results and from CMIP, and we use the “spanning mode” of the model to create a large 

ensemble of future temperature projections. Chapter 3 also includes comments about the 

so-called “global warming hiatus” from 1998 to 2012. 

Chapter 4 of this dissertation accounts for the important physics updates made 

between the publishing of the Chapter 3 material and present. This material was 

submitted to the AGU journal Earth’s Future on 30 August 2020 and can be viewed 

online at https://www.essoar.org/doi/10.1002/essoar.10504179.1 [Hope et al., 2020]. 

While there are significant parallels between the two chapters in terms of structure and 

content, the updates are significant enough that one of our core messages has changed. 

These updates also shifted our group’s focus solely to an ensemble-driven view of our 

modeling efforts, stemming from the “spanning mode” of Chapter 3. Chapter 4 here also 

includes updates to my contributions to Bennett et al. [2017], which are not otherwise 

present in this dissertation – namely, describing the implications that result from 

considering future temperature as a function of total emissions, and describing the effect 

of uncertainty in future methane emissions on our GMST projections. 

https://www.essoar.org/doi/10.1002/essoar.10504179.1
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Finally, Chapter 5 of this dissertation provides concluding remarks, including how 

the predictions made by the EM-GC have been validated to date and how our results fit 

into the goals of providing a comparison/check to GCMs and can inform policy, such as 

any agreements intended to follow-up the Paris Agreement [Tribett et al., 2017]. This 

chapter concludes with future directions for the advancement and use of the EM-GC, for 

myself as well as future graduate students who further develop the EM-GC. 

  



36 
 

Chapter 2: Advanced Physics & Chemistry of Climate 

 While Chapter 1 introduced the concepts of radiative forcing (RF) and greenhouse 

gases (GHGs), Chapter 2 seeks to provide a more thorough exploration and explanation 

of these concepts, all of which underlie various components of the Empirical Model of 

Global Climate (EM-GC). In §2.1, I discuss further background information on the 

physics and history of the relationship between GHGs and RF. The specific physical 

properties and sources of three GHGs (CO2, CH4, and N2O) and a fourth class of GHGs 

(halogenated gases) are discussed. The next section (§2.2) then focuses on the many links 

that show the anthropogenic signature of these GHGs in the atmosphere – that is, how we 

know the sources mentioned earlier have a noticeable effect on the atmosphere, and that 

the changes in RF are thus caused by humans – and what that means for future GHG 

concentrations. 

 The final section of this chapter (§2.3) deviates from the observationally-based 

background information, instead addressing more of the history and theory behind the 

structure of the EM-GC. Some climate scientists view multiple linear regression (MLR) 

as an insufficient method for analyzing the climate system, due to how the system is 

inherently nonlinear. I present justifications for some of the simplifications and 

assumptions that help build the EM-GC and address some of these concerns. In addition, 

I include the results of all of the background research that I did in support of the EM-GC 

that are not thoroughly described in either Hope et al. [2017] or Hope et al. [2020]. These 

include, but are not limited to, examinations of recent minor volcanoes and their effect on 

stratospheric aerosol optical depth (SAOD), the importance (or lack thereof) of 
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stratospheric water vapor (SWV), and an exploration of the albedo feedback process 

using data from the CERES satellite. 

2.1 Radiative Forcing by Species 

 The thermal radiation involved in the greenhouse effect discussed above in §1.1.2 

consists of photons in the infrared (IR) section of the electromagnetic spectrum. 

Molecules of different gas or aerosol species in the atmosphere will absorb, transmit, and 

reflect photons of different wavelengths, depending on the atoms in each molecule and 

their physical arrangement. From a radiation standpoint, Earth’s atmosphere is 

transparent to visible light (roughly 400-700nm wavelengths) but mostly opaque to 

thermal IR radiation (roughly 3-15μm). This property of the atmosphere allows for 

sunlight to pass through the atmosphere and be absorbed by Earth’s surface. That surface 

energy is re-radiated in the IR spectrum and thus is mostly absorbed by the atmosphere. 

This “greenhouse effect”, as mentioned before, is what keeps our atmosphere at a 

habitable temperature. 

 Any gas in the atmosphere that absorbs radiation in the thermal IR region of the 

electromagnetic spectrum is a greenhouse gas (GHG). A molecule with three or more 

atoms can bend and stretch in various ways when it is in higher energy states. If this 

bending and stretching causes the molecule’s dipole moment – its internal distribution of 

electric charge – to change, then the associated change in the molecule’s energy state 

matches the energy levels of IR photons that the molecule absorbs or emits. Other types 

of energy state transitions correspond to other electromagnetic waves: the higher-energy 

photons from X-rays and ultraviolet radiation can strip electrons from molecules, while 

the lower-energy photons of microwaves cause full-molecule rotation as opposed to 
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vibration and stretching. The presence of dipole-moment-changing vibrational modes are 

thus what allows a molecule to function as a GHG. 

The most abundant GHG is water vapor. The abundance of water ranges from 0-

5% of tropospheric air at any given location depending on thermodynamic conditions, 

such as evaporation from bodies of water and local weather (cloud formation and air 

parcel transport). In total, water vapor averages roughly 2.75% of the atmosphere, 

specifically with an estimated 37.5×1015 gallons of water vapor out of the 5.148×1018 kg 

of atmosphere. Water vapor also accounts for 66-85% of the greenhouse effect 

[Hausfather, 2008] because it absorbs a dominant portion of the IR radiation from Earth’s 

surface. Specifically, water vapor absorbs almost all IR radiation near 3μm (i.e. 

3±0.5μm), between 5μm and 8μm, and in the vast majority of the “far IR” (far IR 

includes wavelengths greater than 15μm, though water vapor starts absorbing well at 

18μm), as shown in Figure 2.1. 

While water vapor accounts for so much of the existing greenhouse effect, it is 

not a driver of current global warming. The amount of water that a parcel of air can hold 

is directly limited by the air parcel’s temperature; past that maximum amount of water, 

the air is saturated or oversaturated, promoting precipitation. The water cycle thus 

strongly limits the lifetime of water vapor molecules in the atmosphere. The water cycle 

also thus provides a cap to the amount of water the atmosphere overall can hold, loosely 

being a function of global mean surface temperature (GMST). In this sense, water vapor 

can and does provide a positive atmospheric feedback but should not be considered a 

global warming forcing despite being the strongest GHG. That is, warmer (or cooler) 

atmospheric temperatures mean more (less) water can be held in air parcels, and more  
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Figure 2.1; Radiation Transmitted by the Atmosphere 

 
Reproduction of figure created by Robert A. Rhode for the Global Warming Art project; 
figure accessed from Wikipedia. 
Top panel shows relative amount of radiation that passes through the atmosphere from 
the sun downward (red) and from Earth’s surface upward (shades of blue) as a function 
of wavelength, where the peak of each smooth spectra is dependent on each object’s 
surface temperature. Departure downward from these smooth spectra thus represent the 
percent of radiation at those wavelengths that is absorbed by the atmosphere. 
Middle panel explicitly quantifies the percent of radiation at each wavelength that is 
absorbed by the atmosphere, in grey. 
Bottom panel breaks the grey absorption profile from the middle panel into its major 
components based on the atmospheric species & physics responsible for the absorption at 
each wavelength.  



40 
 

(less) water vapor means a stronger (weaker) greenhouse effect, further warming 

(cooling) atmospheric temperatures until a new equilibrium with the water cycle is 

reached. Unlike most other GHGs, water vapor has no significant direct anthropogenic 

source and is naturally kept near its equilibrium by weather processes. 

After water vapor, CO2 is the next largest constituent of Earth’s atmosphere and 

second most abundant GHG, making it most abundant anthropogenic GHG. Carbon 

dioxide currently accounts for slightly over 0.04% of the atmosphere, or 400 parts per 

million by volume (ppmv) [https://www.esrl.noaa.gov/gmd/ccgg/trends/]. This 

abundance is much higher than the 270-280 ppmv commonly cited as the atmospheric 

mixing ratio of CO2 before the Industrial Revolution began in the mid-1700s, which is 

also the approximate mixing ratio that the Earth system had upon exiting each of the past 

Ice Ages (figure 1.3). The effectiveness of CO2 as a GHG can largely be attributed to the 

fact that it absorbs IR radiation in the “windows” left in water vapor’s absorption 

spectrum, specifically the gaps from 3.5 to 5 μm and from 8 to 18 μm.  That is, IR 

radiation that would normally be able to escape the Earth system due to not getting 

absorbed by CO2 by excitation of vibrational modes. CO2 has strong absorption peaks at 

roughly 4 μm and from 13 to 18μm. This molecule also has two small absorption peaks 

between 9 and 11 μm. As the concentration of CO2 (or any GHG) increases in the 

atmosphere, weak absorption peaks become stronger as more molecules are available to 

absorb at those wavelengths. Strong absorption peaks (i.e. those at wavelengths where 

~100% of radiation is already absorbed) can even broaden slightly in wavelength-space. 

Both of these effects thus serve to close the atmospheric windows left by water vapor as 
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CO2 mixing ratio (or that from any GHG) increases, strengthening the greenhouse effect 

and global warming. 

The most abundant GHGs after CO2 are CH4 and N2O, two species whose current 

atmospheric mixing ratios are roughly 1.84 ppmv and 0.329 ppmv respectively. Like with 

CO2, CH4 and N2O have their strongest absorption peaks in the windows of water vapor’s 

absorption spectrum. Both have a strong peak between 7 μm and 9 μm, and both also 

have a strong peak at the shoulder of other strong absorption bands. The second strong 

peak of CH4 sits between 3 μm and 4 μm on the high shoulder of water vapor’s first 

absorption band, while the second strong peak of N2O at 5μm borders CO2’s first peak. 

Compared to CO2, CH4 and N2O are much better at absorbing IR radiation on a per 

molecule basis. In addition, CH4 is even better still at absorbing on a per mass basis; CO2 

and N2O have roughly the same molecular mass but are both roughly 3× more massive 

than a molecule of CH4. The main reason for the greater strength of CH4 and N2O with 

respect to CO2 is the difference in the saturation of each GHG’s respective absorption 

regions of the spectrum. 

As the concentration of a GHG increases in the atmosphere, or the concentration 

of another species that absorbs at the same wavelength(s) as that GHG similarly increases 

the likelihood of an IR photon from Earth’s surface being absorbed by a particular 

molecule of that GHG does not rise in direct proportion. In the case of CO2, there is 

already enough CO2 (and water) in the atmosphere that all of CO2’s absorption bands 

from 1μm to 20μm are saturated, either from CO2 alone or from competition with 

absorption from water vapor. That is, the atmosphere is essentially opaque to all IR 

radiation at CO2’s IR-active wavelengths. Quantitatively, this results in the radiative 



42 
 

forcing (RF) equation for CO2 being dependent on the logarithm of CO2’s mixing ratio – 

a lot of CO2 is needed to produce a little bit more RF due to broadening of the existing 

absorption peaks. Conversely, each peak of the absorption spectra for CH4 and N2O are 

not fully saturated and exist on the weaker shoulders of absorption bands due to water 

vapor and CO2; thus any added molecules of CH4 or N2O are a bit more likely to absorb 

any IR photons from Earth’s surface than occurs for CO2. As a result, the RF equations 

for CH4 and N2O vary as a function of the square root of mixing ratio of each molecule, 

as opposed to the logarithm of mixing ratio of CO2. 

These effects can be summarized in a metric called global warming potential 

(GWP). This metric is calculated by integrating the RF over time of an atmospheric 

release of an instantaneous pulse of a given GHG and dividing that quantity by the same 

integral for instantaneous pulse release of the same mass of CO2 [AR5, Ch8]. By 

definition, CO2 has a GWP of 1 regardless of the time period for integration. On a 

twenty-year time horizon, when the carbon cycle does not have a significant secondary 

effect, the GWPs for CH4 and N2O are roughly 85 and 265, respectively. On a one-

hundred-year time horizon, the short atmospheric lifetime of CH4 causes its GWP to drop 

versus its twenty-year GWP. At the same time, the effect of the carbon cycle becomes 

more prominent and causes slight increases in GWP for all species. Thus, the GWPs for 

CH4 and N2O on the one-hundred-year time horizon are respectively 28 and 265 without 

consideration of carbon cycle feedbacks, or 34 and 298 when considered [AR5 table 8.7]. 

Water vapor, which has several unsaturated absorption peaks and is known to be a 

stronger GHG than CO2, is not generally given a GWP due both to its rapid cycling time  
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Figure 2.2 – Total ΔRF of Climate by Anthropogenic Species 
 

 
 
Reproduction of Salawitch et al. 2017 figure 1.4, detailing the total change in RF of 
climate from preindustrial to 2011, as stated in tables 8.2 and 8.6 of AR5.  
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Figure 2.3 – ΔRF of Climate by Anthropogenic Species; Anthropocene 
 

 
 

 
Reproduction of Salawitch et al. 2017 Figure 1.3a. The bold red line here is the same as 
the bold red line in Figure 1.1.  
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and also because this compound is not emitted in appreciable amounts by human 

activities. 

The large differences in GWP due to the saturation effects partially offset the 

larger differences in the concentrations of CO2 (400ppmv), CH4 (1.8ppmv), and N2O 

(0.33ppmv). As such, the change in RF of these “big three anthropogenic GHGs” over 

the past few centuries ultimately are within one order of magnitude. This result is 

visualized in figure 1.4 of Salawitch et al. [2017], reproduced here as figure 2.2. The 

change in RF since 1750 due to CO2, the most abundant GHG, is slightly over 1.8 W/m2, 

while increases in CH4 and N2O have caused rises in their respective RF values of 0.48 

and 0.17 W/m2. Figure 2.2 places the “big three” in the class of Well-Mixed GHGs along 

with ozone depleting substances (ODSs) and other fluorinated gases (F-gases). Multiple 

different species make up the classes ODSs and other F-gases; all are rare in the 

atmosphere but also have incredibly high GWPs. Among these gases, no individual 

compound exerts a tremendous influence on the climate system, but as a group they have 

similar RF to CH4 in their effect on Earth’s energy balance. Still, the historic change in 

RF due to all GHGs only outstrips the change from the “big three” by a small amount. 

This difference is also a recent development, which can be seen in figure 1.3a of 

[Salawitch et al., 2017], reproduced here as figure 2.3. (Take note that the solid red line 

in figure 2.3, representing the total RF due to humans, is the same as the solid red line in 

figure 1.1.) In figure 2.3, the dashed red line (all GHGs) and the dotted red line (“big 

three”) do not visually diverge until roughly 1970 (and then return to being parallel by 

roughly 1990). This recent divergence, combined with the fact that most ODSs and F-
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gases are not produced in the natural environment, is part of the evidence supporting the 

notion that current global warming is caused almost entirely by humans. 

2.2 Human Fingerprints on Global Warming 

Humans have only existed on Earth for a short time in the geological sense, and 

human society was not industrialized until a few hundred years ago. The Earth system 

has experienced larger temperatures swings in its past than observed over the past few 

hundred years. As such, it might at first seem like the thought that humans are greatly 

influencing the climate system is an extraordinary claim that requires extraordinary 

evidence. Figure 1.3 shows an incredibly strong correlation between atmospheric CO2 

and GMST – but correlation does not imply causation. It is already known how the 

physical properties of GHGs (§2.1) can lead to the Greenhouse Effect (§1.1.2) – but 

linking the rise in GHGs to human activity has not yet been thoroughly examined in this 

document. To properly establish this link, the next section provide multiple lines of 

evidence for the anthropogenic argument of global warming and evidence against any 

possible natural explanations for the current observed warming temperature trend. 

2.2.1 The “Hockey Sticks”: Multiple Strong Recent Correlations 

The assumption that humans have indeed had a strong influence on the climate 

system during a geologically short time on Earth begs the question of whether there is a 

macroscopic uniquely human quantity whose imprint is clearly seen in the climate. An 

obvious candidate for such a quantity would be total human population, which has 

remained relatively low for much of human history but has shown nearly exponential 

growth over the past two or three centuries. It thus remains to show a causal link between 

human population and increased forcing on the climate system. 
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Figure 2.4 – GMST, GHGs, and Population; Common Era 
 

 
 
Reproduction of Salawitch et al. 2017 Figure 1.2, showing the comparison between 
temperature change since preindustrial time, the atmospheric concentrations of the big 
three GHG species, and total human population over the past 2000 years.  
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Figure 1.2 of [Salawitch et al., 2017], reproduced here as figure 2.4, shows how 

human population, the “big three” GHGs, and GMST have changed over the Common 

Era. The changes over time for all five quantities, from the roughly exponential recent 

growth in human population to the “hockey stick” of recent GMST, famously so-coined 

by Michael Mann, exhibit startlingly strong visual similarity to each other. As with the 

discussion of Figure 1.3, correlation does not inherently imply causation. Indeed, each of 

the “big three” GHGs has some natural sources of variability, so they are not entirely 

anthropogenic in their production. However, since there are causal mechanisms linking 

all five quantities, the similarity across these many different quantities is unlikely to be 

coincidental natural variations. Importantly, the arguments for mechanisms that lead from 

the other quantities toward higher temperatures are stronger than the arguments 

suggesting that the changes in temperature force the changes in the other quantities. 

Each of the big three GHGs has a link to anthropogenic production, i.e. some 

aspect of either fossil fuel combustion (for electricity or for transportation) or agriculture 

(for both plants and animals), which will be explored in detail in the following sections. 

Food is a human necessity, and energy production is a key pillar of modern society – 

certainly for the past half-century, but also extending back to the beginnings of the 

Industrial Revolution and the invention of the steam engine by James Watt [Steffen et al., 

2015]. As such, it follows that the more people there are, the more there is a demand for 

food and energy. In our current society, this demand for food and energy necessitates 

large amounts of GHG emissions. These emissions then lead to higher GHG 

concentrations in the atmosphere, leading to higher RF through IR interaction and thus 

higher temperatures as described earlier. 



49 
 

2.2.2 Carbon Dioxide (CO2) 

Qualitatively, the “hockey stick” and associated mechanisms described in the 

preceding section already suggest the anthropogenic influence on the concentration and 

RF of atmospheric CO2 (and other GHGs). In the modern instrument era, 1959 to present, 

direct measurements of atmospheric composition and temperature have become much 

more common, allowing for closer comparisons to justify the human fingerprints on 

climate. For CO2, comparisons can be drawn between bottom-up annual estimates of 

anthropogenic CO2 emissions from fossil fuel burning [Boden et al., 2009] and land use 

changes [R A Houghton et al., 2012] against top-down estimates of annual atmospheric 

CO2 growth based on worldwide measurements of its concentration. Fairly consistently, 

the annual ratio between atmospheric growth and anthropogenic emissions is 40% to 50% 

[Salawitch et al., 2017]. The ratio does fall outside this range on some years, usually on 

years with large positive or negative ENSO excursions, but the relatively consistency of 

the ratio provides a first level of quantitative reasoning to say the recent atmospheric 

growth of CO2 follows directly from anthropogenic emissions. With this constant link, 

another explanation will be needed to explain why the atmospheric retention of CO2 

emissions is only roughly 50%. That is, while the correlation between CO2 emission and 

CO2 mixing ratio is quite high, suggesting a strong link between the two, further 

examination of the balance between CO2 sources and sinks is necessary. 

A second level of human fingerprinting on atmospheric CO2 relies on the 

observed differences between hemispheres. CO2 is considered a well-mixed GHG due to 

its long lifetime, hundreds of years for a majority of emitted CO2 but several thousand 

years for the remaining fraction [Archer, 2005]. Atmospheric mixing across the equator 
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Figure 2.5 – CO2 Yearly Emissions Rate vs Hemispheric Gradient 
 

 
 
Reproduction of Salawitch et al. 2017 Figure 1.8. Horizontal axis is the annual 
anthropogenic emissions of CO2; vertical axis is the difference in atmospheric CO2 
concentrations between Mauna Loa Observatory (representative of the Northern 
Hemisphere) and the South Pole Observatory (representative of the Southern 
Hemisphere). Data span 1959 to 2015.  
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Figure 2.6 – Atmospheric Chemistry Fingerprints of Anthropogenic Activity 
 

 
 
Reproduction of Salawitch et al. 2017 Figure 1.7, showing three separate atmospheric 
chemistry trends than can be attributed to human activity, specifically the burning of 
fossil fuels.  
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takes much longer than latitudinal mixing within each hemisphere, which is a function of 

the strong separation of atmospheric circulation cells at the equator. Figure 1.8 of 

[Salawitch et al., 2017], reproduced here as figure 2.5, shows the difference between 

northern and southern hemisphere annual CO2 concentrations as a function of total annual 

emissions of CO2. This comparison shows a strongly linear relationship. The vast 

majority of the world’s population, and thus the majority of the world’s CO2 emissions, is 

based in the northern hemisphere [Fan et al., 1999; Tans et al., 1990]. As such, the 

positive linear relationship in figure 2.5 follows logically from the fact that more 

emissions come from the northern hemisphere, forcing higher concentrations in the north, 

and the lack of mixing across the equator prevents the smoothing of this excess. 

The third and perhaps strongest line of evidence linking the observed rise in 

atmospheric CO2 to anthropogenic emissions, particularly from fossil fuel combustion, 

comes from precise measurements of atmospheric composition and isotopic analysis. 

Figure 1.7 of [Salawitch et al., 2017], reproduced here as figure 2.6, shows three panels, 

the first of which shows an alternate view of the hemispheric gradient in CO2 by 

comparing observations over time from Hawaii (black dots) and Antarctica (red line). 

The second panel of figure 2.6 examines the ratio of molecular oxygen to nitrogen 

in the atmosphere, which has been decreasing over the past 25 years. A strong decrease in 

atmospheric O2 would suggest one of two things: the balance between respiration and 

photosynthesis has been shifting toward the former, or that there has been an excess of 

combustion globally. In either case, the net reaction is that O2 is consumed to produce 

CO2 at a rate of roughly 1 ppm of CO2 increase for every 10 per meg decrease in the 

O2/N2 ratio [Antweiler, 2015]. Both cases are anthropogenic in nature, as a shift in 
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respiration versus photosynthesis means removal of green area and excess combustion 

means fires being set for agriculture or industry, thus suggesting that the associated rise 

in CO2 is anthropogenic. Over the time period of figure 2.6b, the O2/N2 ratio falls 

between 400 and 500 per meg while the CO2 mixing ratio grows by roughly 45 ppm, 

validating the ratio of Antweiler [2015]. It is important to note that, stoichiometrically, a 

10 per meg decrease in the O2/N2 ratio should correspond to a 2 to 3 ppm increase in CO2 

mixing ratio, not a 1 ppm increase. However, less than half of CO2 emissions remain in 

the atmosphere [Antweiler, 2015; Canadell et al., 2007; Salawitch et al., 2017]; the rest 

are taken up by land or ocean reservoirs, decreasing the expected 2 or 3 ppm of CO2 to 

the 1ppm of CO2 that remains in the atmosphere. As such, the anthropogenic production 

of CO2 as evidenced by the decreasing O2/N2 ratio is entirely sufficient to explain the 

observed rise in atmospheric CO2. 

The third panel of figure 2.6 shows the decrease of heavier 13C in atmospheric 

CO2 relative to the more common, lighter 12C [Keeling et al., 2005]. Fossil fuels are 

widely accepted to have biologic origin, resulting in a lighter isotopic signature than the 

current atmospheric reservoir [Whiticar, 1996]. Some generally discounted theories 

suggest a geologic origin for the lighter signature [Glasby, 2006], implying “fossil” as a 

signifier of biology is a misnomer, but this does not change the fact that fossil fuels are 

easily measured to be isotopically light. While the isotopic composition of carbon in the 

atmosphere does change over geologic time scales, it theoretically should remain fairly 

constant over the time period of modern instrument observations if only natural factors 

dictated changes over time. As such, the lightening of the atmospheric reservoir suggests 

a perturbation from an isotopically light source such as fossil fuel combustion. If one 
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assumes the increase in CO2 over the time period of figure 2.6c is entirely from fossil fuel 

combustion, (a change in δ13C of roughly –28‰,) then the growth from roughly 340 ppm 

to roughly 400 ppm would cause the atmospheric isotope signature to fall from roughly –

7.5‰ to –10.5‰. This endpoint is noticeably lower than the –8.5‰ observed; however, 

we know that plants preferentially absorb 13CO2, meaning that the lightening of the 

atmosphere could be lessened through increased biologic production, and we do have 

observations of increased biologic activity over the past five decades [N Zeng et al., 

2014]. Importantly at least, human activity is more than enough to explain the change in 

δ13C; any natural activity affecting this ratio must have been to counteract the 

anthropogenic changes occurring. 

Both the oxygen ratio and the carbon isotope arguments also prove that the rise in 

atmospheric CO2 is not from natural outgassing. If CO2 were to come from the ocean, 

from volcanoes, or other natural sources, natural outgassing would not consume 

atmospheric oxygen. The only possible natural source of CO2 would be from massive 

amounts of decomposition, well above and beyond the existing balanced carbon cycle, 

which has not been observed, nor would be considered outgassing. Volcanoes can be 

ruled out as well, as a lack of any active large igneous province means that human 

emissions of CO2 during the industrial era simply far outstrip volcanic emissions; only on 

the day that Pinatubo erupted has volcanic CO2 output has matched human output on the 

same day [Gerlach, 2011]. As such, the O2/N2 ratio would not be expected to fall, or 

change in any direction significantly, if the changing CO2 mixing ratio was only from 

outgassing. Similarly, the isotopic signature of atmospheric CO2 should not be falling 

significantly as observed if outgassing explained most or all of the rise in CO2 mixing 
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ratio. This is because oceanic CO2 is barely lighter than atmospheric CO2, and geologic 

CO2 is much heavier [Rizzo et al., 2014]. Therefore, unless there is another natural source 

of CO2 yet to be documented, the conclusion must be that the observed rise in 

atmospheric CO2 is mostly, if not entirely, caused by various human activities that 

involve combustion along with a slight contribution from the manufacturing of cement.  

2.2.3 Other GHGs 

2.2.3.1 Methane (CH4) 

The most abundant GHG after CO2 is methane, CH4, with a current mixing ratio 

of roughly 1.86 ppm. As with other major GHGs, this value is significantly higher than in 

even the moderately recent past, e.g. roughly 0.65 ppm over the Common Era (Figure 

2.4), with the increase following the “hockey stick” that mirrors human population 

growth. Anthropogenic CH4 emissions come from a wide variety of sources in roughly 

equal amounts, and out-emit the natural sources. Both of these facts make CH4 a 

noticeably different GHG than CO2, making the study of CH4 a varied and complex issue 

(see Kirschke et al. [2013] and the references therein). Both the sources and sinks of CH4, 

taken from 2000 to 2009, are summarized in figure 1.9 of [Salawitch et al., 2017], 

reproduced here as figure 2.7. 

The sinks for CH4 are dominated by tropospheric chemistry. The hydroxyl radical 

(OH), commonly called the “detergent” of the atmosphere, scavenges many species out 

of the air (including CH4) as the most common oxidizer in the troposphere. It has an 

incredibly short lifetime (less than one second) but is produced with enough abundance 

that the increase in CH4 emissions due to humans has been nearly (but not completely) 

matched by an increase in the CH4-OH reaction. 
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Figure 2.7 – Global Methane Budget, 2000 to 2009 
 

 
 
Reproduction of Salawitch et al. 2017 Figure 1.9.  



57 
 

Understanding the balance between sources – particularly the wide variety of 

anthropogenic sources – and sinks is key to projecting CH4 mixing ratio (and thus RF) 

into the future. The growth in atmospheric CH4 seen over the past ten years, 

unfortunately, is not well understood yet [Nisbet et al., 2019]. It is uncertain whether the 

recent increase in CH4 is from growth of isotopically negative emissions from wetlands, 

ruminants, and waste, from a large increase in emissions associated with natural gas and 

oil production, or from a weakening in the oxidative capacity of the atmosphere – or 

whether the observed increase is due to something else altogether. The sheer variety of 

possible sources also makes the task of curbing CH4 growth difficult, as any plan to 

significantly reduce CH4 emissions would require a comprehensive strategy that covers 

many aspects of modern society, in contrast to the relatively simple plan for reducing 

CO2 emissions by replacing fossil fuels with renewables. Complicating such a plan even 

further is the release of CH4 from natural sources (such as the permafrost of undersea 

methyl clathrates) in response to anthropogenic warming – a feedback that was mostly 

theoretical until recent evidence of significant permafrost loss [Richter-Menge et al., 

2019; Voigt et al., 2017]. This feedback process is particularly important as proper 

quantification of these extra emissions can noticeably affect the carbon budget [Comyn-

Platt et al., 2018], the amount of carbon that humanity can emit before crossing a specific 

warming threshold, i.e. there are different carbon budget amounts if global warming is to 

be limited to just 1.5°C versus being allowed to grow to 2°C. 

One straightforward way to show the human fingerprint on atmospheric CH4 is to 

compare the mass balance of CH4 between the current atmosphere and the atmosphere 

before significant human influence, e.g. the preindustrial atmosphere. Initially, assume 
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that the lifetime of CH4 has remained roughly equivalent between the two atmospheres; 

while the atmospheric lifetime of CH4 is affected by the abundance of species such as 

OH, it is likely that the lifetime of CH4 has not changed significantly. Atmospheric 

lifetime for a species is defined here as the ratio of atmospheric mass of the species (i.e. 

its mixing ratio m times the total atmospheric mass) divided by its removal rate. Another 

assumption for this calculation is that the total mass of the atmosphere (Matmos) has not 

changed significantly since preindustrial times, as it is highly unlikely that loss of 

atmosphere to space has been significant over the past few centuries compared to the 

atmosphere’s total mass. Finally, assume that removal rate (R) for each time frame is the 

same as emission rate (E). The last of assumptions is not explicitly true for the modern 

atmosphere because CH4 is currently increasing, but the difference is small enough 

(Figure 2.7) that this is a good approximation. Those definitions and assumption then 

lead to the following algebra: 

𝜏𝜏𝐶𝐶𝐻𝐻4 =
𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝
=
𝑀𝑀𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜

𝑅𝑅𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜
 

→
𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑀𝑀𝑝𝑝𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝
=
𝑚𝑚𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜𝑀𝑀𝑝𝑝𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝

𝐸𝐸𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜
 

→
𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝

𝑚𝑚𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜
=
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝
𝐸𝐸𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜

 

Eq 2.1 

If humans have been entirely responsible for the rise in atmospheric CH4, that would 

mean the emission rate from natural sources has remained constant over time, and thus 

the last ratio in Eq 2.1 can be rewritten as 𝐸𝐸𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜−𝑖𝑖𝑝𝑝𝑜𝑜 (𝐸𝐸𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜−𝑖𝑖𝑝𝑝𝑜𝑜 + 𝐸𝐸𝑐𝑐𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜−ℎ𝑜𝑜𝑎𝑎)⁄ . 

The ratio of mixing ratios is 0.722ppm / 1.86ppm = 0.388; the ratio of emissions is 

218Tg/yr / 553Tg/yr = 0.394. These two numbers agree within 2%, providing a strong 
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quantitative argument that the rise in atmospheric CH4 between preindustrial times and 

now is entirely due to the addition of human emission sources to a world that previously 

only had natural sources. A more thorough argument along these lines would parse apart 

some of the stated assumptions, as well as account for the fact that anthropogenic CH4 

emissions in preindustrial times were actually nonzero due to the agriculture of the time, 

but these corrections should be minor, not significantly affecting the message of humans’ 

influence on atmospheric CH4. 

The atmospheric lifetime of CH4, which we leveraged above, is on the order of 10 

years. The actual value is uncertain, as estimates can range from 9.1 years [Prather et al., 

2012] to 12.4 years [AR5], and the basic definition used above (mass divided by removal 

rate) gives a value of 9.7 years [Salawitch et al., 2017]. Importantly, this lifetime is much 

shorter than the lifetime of CO2. It could even be said that the lifetime of CH4 in the 

atmosphere is on the order of a typical government term, e.g. ranging from a single two-

year House of Representatives term to a typical eight-year presidential term to multiple 

six-year Senate terms. As such, CH4 is an ideal target for policy aimed at short-term 

global warming reductions. Cuts to CH4 emissions (along with related cuts to black 

carbon aerosols and the resulting drops in ozone RF) can cause a reduction in global 

warming of roughly 0.5°C, a reduction that is realized within ten to twenty year [Shindell 

et al., 2012] due to CH4’s relatively short lifetime. That is, if CH4 emissions were 

drastically cut, it would only take roughly ten years for the CH4 currently in the 

atmosphere to cycle out, thus greatly dropping CH4’s RF and thus quickly backtracking 

its contribution to global warming. The wide variety of anthropogenic CH4 sources make 

coordinating such cuts somewhat difficult, but it also potentially makes garnering support 
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and implementing each individual cutting effort easier, as no single entity would have to 

worry about a large portion of the CH4 budget. 

2.2.3.2 Nitrous Oxide (N2O) 

N2O is often said to be the third strongest anthropogenically emitted GHG after 

CO2 and CH4, but the actual anthropogenic component to the growth in N2O since 

preindustrial times is somewhat uncertain. The AR5 best estimates for current natural and 

anthropogenic emission of N2O are of similar magnitude at 34.6 Tg/yr and 21.7 Tg/yr 

respectively. (These values are in Tg/yr of N2O, while Table 6.9 of AR5 reports 

emissions in Tg/yr of N alone.) Using a quantitative argument similar to the one 

described in the previous section for CH4 would suggest that an observed increase in 

atmospheric N2O of roughly 63% could be entirely attributed to human activity. 

However, properly accounting for the fact that N2O has a much longer lifetime than CH4 

(i.e. the anthropogenic emission rate of N2O has changed noticeably during a lifetime) 

would somewhat reduce this fraction. Also, both estimates for current emissions are 

highly uncertain, with a natural emission uncertainty range from 17.0 to 61.6 Tg/yr and 

an anthropogenic emission range from 8.5 to 34.9 Tg/yr. These ranges could cause the 

attributable increase to fall as low as 14% (even before accounting for lifetime) or grow 

to 205% around the best estimate of 63%. 

The observed growth in atmospheric N2O from preindustrial times to the present 

is from 273ppb to 329ppb – an increase of 21%. If the lifetime-accounting reduction 

factor mentioned above is roughly a factor of two, we are comparing that observed 21% 

increase to calculated ratios of 7% (low end), 32% (best estimate), or 102% (high end) – 

suggesting that the AR5 best estimates for current natural and anthropogenic N2O 
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emission are reasonable based on observations, and thus that humans are indeed 

responsible for the majority of the observed increase in N2O. 

In addition, station observations of atmospheric N2O show a hemispheric gradient 

with more in the northern hemisphere, as would be expected with an anthropogenic 

signature on global N2O. There are also a multitude of studies (e.g. §6.3.4 of AR5 and the 

references therein) documenting field measurements of strong anthropogenic sources of 

N2O. These are enough to justify the notion that much of the increase in N2O is human-

driven, especially from agricultural sources, which make up roughly 60% of 

anthropogenic N2O emissions. 

2.2.3.3 Halogenated gases 

Figure 2.2 includes anthropogenic forcing from Ozone Depleting Substances 

(ODS) and other F-gases in the category of well-mixed GHGs. These gases all include 

atoms of halogens – specifically Fluorine, Chlorine, and/or Bromine. This group of gases 

includes the chemical families of Chlorofluorocarbons (CFCs), haloalkanes (Halons), 

Hydrochlorofluorocarbons (HCFCs), Hydrofluorocarbons (HFCs), and Perfluorocarbons 

(PFCs), among other individual compounds. With a few rare exceptions, all these 

halogenated gases are entirely manmade with no natural sources. (While chloro- and 

bromomethane, CH3Cl and CH3Br, are two such halogenated gases with natural sources, 

they are among a handful of uncommon halogenated gases that are not included in the 

AR5 data used to make figure 2.2.) As such, it is fair to consider the effect of halogenated 

gases on the climate system to be essentially entirely anthropogenic in origin. 

Halogenated gases are incredibly rare in the atmosphere, even with the many 

different species of gases emitted. However, they are highly influential compounds in the 
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atmosphere, both chemically and radiatively. Almost all these compounds have 

dangerously high GWP values, starting at around 100 and going up to two orders of 

magnitude higher. Many ODSs and F-gases also have long lifetimes, similar to or longer 

than CO2 and N2O. The high GWP values result from the strong dipole moments formed 

by the halogen-carbon bonds in each molecule, as these bonds react strongly to radiation 

in the IR portion of the spectrum [Ramanathan, 1975; Salawitch et al., 2017]. 

Halogenated compounds, as a family, account for over 12% of all anthropogenic GHG 

forcing (0.36 W/m2 out of 2.83 W/m2 total) despite their rarity in the atmosphere – only 

three species register at more than 100 ppt (AR5). 

2.2.4 Anthropogenic Aerosols 

The effect of anthropogenic aerosols on the climate is simultaneously relatively 

easy to identify and rather hard to quantify. Aerosols are particles of liquid or solid 

suspended in the atmosphere, so their atmospheric lifetime is much shorter than that of 

GHGs. These particles either settle out of the atmosphere (dry deposition) or act as 

condensation nuclei to form cloud and rain droplets, leading to them being removed by 

precipitation (wet deposition, which can also include removal by being caught in falling 

rain). For any aerosols in the troposphere, both deposition processes usually occur within 

the time frame of a week. With such a short lifetime, aerosols generally do not become 

well-mixed in the atmosphere, and this heterogeneity makes it relatively easy to identify 

major sources of aerosols – both natural and anthropogenic. For example, persistent 

plumes dominated by sulfur-containing aerosols consistently rise and spread from 

industrialized centers of the world, while similar plumes of black, brown, and white 

(organic) carbon cover areas downwind of major wildfires, and large-scale wind patterns 



63 
 

often pick up dirt & mineral aerosols or sea salt aerosols respectively from arid regions 

and oceans. This means that it is easy to see where on the planet specific aerosol sources 

are and attribute those sources to natural or anthropogenic causes. 

In practice, quantitatively meaningful attribution takes more attention to detail. 

While industrial fossil fuels sources that produce sulfate and nitrate aerosols (and some 

organic carbon) clearly are anthropogenic, some sources that outwardly appear to be 

natural in origin can also have human causes. Agricultural burning produces the same 

aerosols as wildfires, making it sometimes hard to distinguish the two. Evidence also 

suggests that current global warming is causing an increase in wildfire patterns above the 

natural baseline [Pechony and Shindell, 2010; Running, 2006; Walker et al., 2019] due to 

areas such as the US southwest and Australia becoming both drier and warmer as a result 

of anthropogenic climate change. That is, average conditions in those areas are becoming 

more prone to ignition. Similarly, discernable changes in surface patterns due to global 

warming can cause more mineral and sea salt to be lofted into the atmosphere, 

particularly in the polar regions [McConnell et al., 2007; Struthers et al., 2011]. 

Emissions/forcing scenarios intended to represent anthropogenic effects only (such as the 

RCP scenarios) thus include time series for all of these aerosol species [Lamarque et al., 

2011] to represent the anthropogenic change in aerosol species that would otherwise be 

considered natural in origin. 

Quantifying the radiative anthropogenic effect of aerosols on climate is one of the 

least certain areas of climate science. Excepting black carbon, most aerosols produce a 

neutral or negative direct effective RF (ERF) on climate with increasing concentrations. 

Even this is a simplification, as the difficulty in quantifying aerosol ERF causes the best 
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estimate for each species to change over time and sometimes depend on region. 

Unsurprisingly then, the exact values for these direct ERFs are uncertain with an error on 

all species of at least 50% in both directions (AR5). For direct ERF, much of this 

uncertainty comes from the difficulty in measuring aerosol ERF in situ or in lab; many 

estimates of aerosol forcing are produced in aerosol models [Myhre et al., 2013]. While 

the forcing due to sulfate aerosols dominates the direct aerosol effect and is 

comparatively certain, (with an AR5 estimate of –0.4 ± 0.2 W/m2,) the warming effect 

due to black carbon continues to be studied and updated [Bond et al., 2013]. While AR5 

used research from the Bond et al. [2013] group to increase black carbon forcing versus 

AR4, the increase was smaller than Bond et al. [2013] would suggest, and a following 

analysis from Smith and Bond [2014] suggest the total (primary direct and secondary 

indirect) RF of aerosols in 2011 is –0.75 W/m2, not the –0.9 W/m2 suggested by AR5. 

Other uncertainties come from dust aerosols, which generally reflect sunlight but can also 

cause warming [Tian et al., 2018; Xia et al., 2016], and from biomass burning, which 

recent analyses suggests should include less influence of cooling organic aerosols in 

favor of neutral-to-warming brown carbon aerosols [Feng et al., 2013; Giles et al., 2012; 

Jo et al., 2016]. The exact balance between warming aerosols (i.e. black and brown 

carbon, plus some dust) and cooling aerosols thus can produce a wide range of values for 

the direct effect of anthropogenic aerosols. These values are generally negative, but the 

upper end of AR5’s aerosol-radiation interaction estimate does give the possibility of 

weakly positive values, and other analyses outside of AR5 further encourage these 

weakly positive values. 
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Aerosols also affect radiative balance through several secondary effects, mostly 

through interactions with clouds. Clouds can both absorb outgoing longwave terrestrial 

radiation to be re-radiated back toward the ground (acting in a similar manner to GHGs) 

and reflect incoming shortwave radiation back to space (acting in a similar manner to 

reflective sulfate aerosols themselves). The balance between these effects depends on 

cloud abundance, height, and lifetime – all of which change depending on the number of 

available cloud condensation nuclei, i.e. the aerosol particles in the atmosphere. The 

aerosol semi-direct effect describes when clouds “burn off” due to tropospheric heating 

from warming aerosols [Ackerman et al., 2000]; in AR5, it is included in the family of 

rapid adjustments to the aerosol direct effect (aerosol-radiation interactions). The cloud 

lifetime or Albrecht effect describes how cloud lifetime increases with increasing aerosol 

concentration because more condensation nuclei means smaller droplets, causing clouds 

to rain less frequently [Albrecht, 1989]; in AR5, this effect is included in the family of 

rapid adjustments to the aerosol indirect effect (aerosol-cloud interactions). The cloud 

albedo or Twomey effect describes the increase in cloud albedo that also follows from the 

increasing number and decreasing size of cloud droplets due to an increased number of 

condensation nuclei [Twomey, 1974]. 

Cloud microphysics are notoriously difficult to simulate in climate models due to 

the difference in scale, and the variety of parameterization methods between models 

means that different models can disagree widely on cloud properties, including the value 

of forcing due to aerosol-cloud interactions. While the average estimate of the aerosol 

indirect effect is roughly the same as the estimate of the aerosol direct effect, both stated 

as –0.45 W/m2 in AR5, the lower end of the uncertainty estimate for the aerosol indirect 
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effect goes much further negative. This leads to the total effect that anthropogenic 

aerosols have on climate as –0.9 W/m2 with a 5 to 95% confidence interval of –0.1 to      

–1.9 W/m2, making aerosol RF the dominant contributor to the uncertainty in the total 

anthropogenic RF on climate. 

2.2.5 Final Comments on Anthropogenic Fingerprints and the 

Evolution of RF Over Time 

The fact that anthropogenic emissions of GHGs and aerosols have altered the 

composition of the atmosphere and caused an overall increase in RF is hopefully clear by 

now. The best estimates for these quantities are pictured in figures 2.2 and 2.3. The exact 

relationship between concentrations and RF is dependent on species, as mentioned during 

the discussion about GWP earlier in §2.1. A closer look at the evolution of RF in figure 

2.3 shows some of the major changes in human activity and thus further proves the 

connection between humans and the current period of global warming. 

The RF effect of ODSs and other F-gases shows a clear signal related to industrial 

production in figure 2.3. This effect does not visually appear until around 1960, and 

grows until around 1990, after which the rise in RF for “All GHGs” is driven entirely by 

the rise in the RF of the “big three”. Among ODSs and F-gases, one of the largest 

components is CFCs. While the first CFCs were invented in 1928, their production and 

use skyrocketed in the 1960s. This process did not slow (and eventually halt) until the 

mechanism for CFC-catalyzed O3 depletion was discovered in 1974 and the Montreal 

Protocol was ratified in 1984 (and further amended multiple times between 1990 and 

1999). As such, the RF pattern of CFCs and many related gases directly mirrors the 

industrial and political realities of the times in dealing with those substances. Even 
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though the gases were comparatively rare in the atmosphere, the growth from 1960 to 

1990 was particularly strong because the GWP of these chemicals scales linearly with 

their concentration, as opposed to the logarithmic or square-root scaling rate for CO2, 

CH4, and N2O. Their RF effect has not gone away since 1990, despite the lack of 

production, due to how long-lived many of these gases (and their byproducts) are in the 

atmosphere. 

Social and economic changes in human history can also be seen in the rise of aerosol RF 

and its delay compared to the rise in GHG RF. While anthropogenic GHG RF rises above 

0 W/m2 almost immediately when data begins in figure 2.3, the overall cooling effect of 

aerosols does not clearly appear until the early 1800s and does not become comparable to 

GHG RF magnitude until several decades later. This perfectly mirrors a shift from a 

largely agricultural society to one that includes small-scale coal burning to the industrial-

scale usage of fossil fuels. This does not imply that humans were not producing a large 

amount of aerosols before the industrial revolution; it does, though, show a paradigm 

shift from a society dominated by biomass burning (which has an RF that is weakly 

positive or negative, in any case near zero) to one ultimately dominated by sulfates and 

nitrates (which have strongly negative RF). This shift from agriculture to industry can 

also be seen by breaking down total CO2 emissions over time into different time series by 

source, such as done in figure 4.1 from Bennett et al. [2017], reproduced here as figure 

2.8. As such, the growth of aerosol RF, especially when compared to RF from co-emitted 

GHGs, is yet another line of evidence showing the human influence on climate. 
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Figure 2.8 – CO2 Emissions by Source; Anthropocene 
 

 
 
Reproduction of Bennett et al. 2017 Figure 4.1, showing how the relative importance of 
various anthropogenic CO2 sources has changed over time. Note that the shift from 
agricultural burning (land use change emissions) to fossil fuel combustion (solid coal and 
liquid petroleum) comes with an associated shift from black and organic carbon aerosols 
(neutral to warming effect) to sulfate and nitrate aerosols (cooling effect).  
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2.3 Nonlinearity & Uncertainty of the Climate System 

The overall evolution of aerosol RF can be clearly tied to human activity, but 

exact quantification of the historical growth in aerosol RF is much less certain, as shown 

in figure 2.2. The uncertainty in aerosol RF limits our ability to quantify a key aspect of 

the climate system: the ratio between a change in RF and the associated change in 

GMST, i.e. the constant c in Eqn. 1.3b. A basic blackbody interaction provides a zeroth-

order estimate of that ratio, but Earth’s climate system in complicated by many feedback 

processes that alter this ratio. Some climate feedback processes, such as the water vapor 

feedback (§2.1) and ice-albedo feedback (§2.3.1), amplify the temperature response to a 

change in RF, while others (such as the lapse rate feedback) reduce the response, and still 

others are highly uncertain, e.g. the net effect of cloud feedbacks (§1.2.1). If the net ΔRF 

is unknown due to uncertainty in aerosol RF, constant c from Eq. 1.3b cannot be 

confidently quantified, which also makes it difficult to determine the strength of each 

individual feedback process, even if a handful of them are well-quantified. 

Uncertainty in the net climate feedback value presents another problem when 

attempting to project future GMST. The evolution of temperature over the next century 

will be driven by humans in two important ways: we continue to emit GHGs, increasing 

warming from GHG RF, and we are eliminating aerosol emissions, reducing cooling 

from aerosol RF. That is, no matter what the uncertainty in total RF has been to date, RF 

in the future will be relatively well-defined, based almost solely on GHG RF, which can 

be seen in figure 1.10 from Salawitch et al. [2017], updated here as figure 2.9. This 

means any uncertainty in future GMST will be driven by the current uncertainty in the 

total amount of climate feedback amplification, which is in turn tied to the uncertainty in 
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aerosol RF. If aerosol RF has been low, then total RF has been high, requiring a lower net 

feedback to match current historical GMST and thus leading to lower future GMST; the 

converse situation, high aerosol RF historically, similarly leads to extreme future 

warming. 

A further complication is that feedback processes are not static over time. The 

amount of amplification or reduction they provide can change slowly over millennia 

(§12.5.3 of AR5) and can also change rapidly over short times if the climate system 

passes a tipping point, or nonlinearity of the system. As an example of the latter case, the 

ice-albedo feedback will theoretically speed up the warmer the planet because since ice 

melts faster under higher temperatures, but will also cease almost entirely if the polar ice 

caps were to melt completely because there would be no further reflective surfaces to 

lose. Clouds could also behave differently at higher or lower temperatures, or under 

alternate atmospheric aerosol loading conditions, changing the net effect of cloud 

feedback. Another potential tipping points could be a sudden release of GHGs from 

permafrost, though this is a different class of “feedbacks” because such a release is a 

direct change of a forcing agent itself, as opposed to a physical or chemical amplification 

of the forcing’s effect on temperature. All taken together, it is important to remember that 

Earth’s climate is a nonlinear system, which is why thorough simulations of the climate 

system require highly complex climate models that attempt to recreate all physical and 

chemical processes from small-scale to global scale. This is obviously very 

computationally intensive, so it is also worthwhile to attempt to reconstruct the climate 

system using simple, even linear, models of climate that can successfully capture the 

basic behavior of the climate system. 
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Figure 2.9 – Comparison of GHG RF vs Aerosol RF Uncertainty 
 

 
 
Corrected version of figure 1.10 of Salawitch et al. 2017 with proper GHG RF, taken 
from RCP 4.5. Aerosol RF scenarios (blue-to-red time series below 0 W/m2) are 
constructed from Smith & Bond 2014; black line is the Smith & Bond best estimate of 
aerosol RF, which has a value of -0.75 W/m2 in 2011, which is less extreme than the RCP 
best estimate of -0.9 W/m2 in 2011. Black dot represents GHG RF in 2011, which we use 
as a comparison point to aerosol RF, whose value in 2011 is the reference point used in 
the EM-GC for sampling aerosol RF uncertainty.  
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2.3.1 Considerations for a Linear Model of a Nonlinear Climate 

A simple linear model of climate can capture both first- and second-order changes 

in climate, even while making many assumptions and simplifications about the complex, 

nonlinear climate system. However, there are four key considerations that a simple model 

should be able to address to account for any differences between first- and higher-order 

temperature simulations [Marvel, 2018]. The four points are the different efficacies of 

forcing agents [Hansen et al., 2005; Solomon, 2007], the fact that feedback strength 

changes over time (§12.5.3 of AR5), the signal-to-noise interplay between internal 

variability and forced warming, and consideration of the energy imbalance going into the 

ocean and what effect that ocean heat export has on the atmosphere. While many 

empirical climate models do not consider some combination of these four points, the EM-

GC incorporates them all aside from the changing climate feedback. These will be either 

implicitly or explicitly addressed to varying degrees in the next two chapters, but short 

explicit summaries are provided below as a group. 

As the many different feedback processes work through multiple physical 

mechanisms, there is large consensus [Hansen et al., 2005; Solomon, 2007] that the 

climate system will respond differently to the same ΔRF when that ΔRF comes from 

various forcing agents. The EM-GC uses multiple linear regression (MLR) when 

examining the effect of natural forcing factors (e.g. solar input, stratospheric aerosol 

optical depth (SAOD) from volcanic eruptions, etc.), so any concerns about efficacy are 

folded into the regression coefficients for these model inputs. The EM-GC is not as 

flexible for the efficacy of different anthropogenic species since they are all grouped 

together before applying the climate feedback parameter, but this is not a major 
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drawback. The anthropogenic RF of climate is dominated by the well-mixed, long-lived 

GHGs (LLGHGs), which are themselves dominated by CO2 forcing. Since efficacy is 

defined in relation to CO2 RF, similar to how GWP is defined in relation to a pulse of 

CO2 emissions, this means that a first-order estimate of efficacy for net anthropogenic RF 

is close to one. Efficacy for total anthropogenic RF would remain close to one at second 

order as well, as the generally greater-than-one efficacies from non-CO2 LLGHGs and 

the indirect aerosol effects would be largely balanced out by generally less-than-one 

efficacies from ozone and direct aerosol effects respectively (see figure 2.19 of AR4). 

Also, when EM-GC’s aerosol construction was updated from the Canty et al. [2013] 

formulation to the Hope et al. [2017] formulation, it was based on AR5’s use of ERF 

instead of RF for aerosols, so the differences in aerosol forcing efficacies are already 

built into the current EM-GC aerosol inputs. In an effort to be thorough, future work 

could include adding multiplicative constants to the individual GHG species and to the 

land use change (LUC) and ocean heat export (QOCEAN) terms in the EM-GC’s core 

equation so as to test the uncertainty in the efficacy of each anthropogenic forcing. It is 

expected that these changes will likely have little effect on the overall future warming 

from the EM-GC. 

The value associated with the amplification of warming due to the sum of all 

feedback processes generally changes slowly over the course of thousands of years 

[§12.5.3 of AR5], not considering any possible significant nonlinearities in the climate 

system. Many simple climate models, including the EM-GC, do not directly include a 

mechanism to let this feedback parameter vary over time. The EM-GC and many other 

MLR-based models only consider a few centuries of data at most, so the slow rate of 
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change in the total feedback parameter would not significantly alter warming results. To 

thoroughly test the assumption of constant climate feedback, it is possible to modify EM-

GC output to simulate a changing feedback parameter (§4.4.1). Data from the Clouds and 

the Earth’s Radiant Energy System (CERES) project has also been examined to see how 

the albedo feedback process is changing over time, if at all. While feedback processes 

such as the water vapor feedback and the lapse rate feedback are relatively well-

quantified, the CERES data shows that the albedo feedback is more uncertain. Figure 

2.10 shows that the albedo of Earth has certainly changed over time for two different 

versions of CERES data, edition 2.8 and edition 4.1. In the former, brightening over the 

equator and Southern Ocean (likely due to clouds) has offset darkening in much of the 

northern hemisphere (likely due to loss of ice), meaning little total change in overall 

albedo and a near-zero value for the sum of ice-albedo and cloud-albedo feedbacks. In 

the latter edition of CERES data, the brightening feature in the Southern Ocean is still 

clearly present, but an overall trend of darkening dominates most latitudes, meaning an 

overall darkening trend realizes in the whole-Earth time series for total albedo. While 

some of this change clearly derives from uncertainty in cloud albedo, e.g. near the 

equator, we can also see more ice-albedo darkening at the South Pole and less ice-albedo 

darkening at the North Pole in the newer edition of CERES data. Finally, in either case, 

the slope of the total albedo is roughly linear, meaning that even if the value of the albedo 

feedback parameter is uncertain, it is roughly constant over the time period of CERES 

observations. That is, over the time period of observations, linearity in the change in 

albedo implies a constant feedback because total anthropogenic RF has changed roughly 
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Figure 2.10 – The Ice-Albedo Feedback in CERES Data 
 

  
 

 
 
Left column: CERES Edition 2.8 
Right column: CERES Edition 4.1 
First row: Earth total albedo anomaly as a function of time 
Second row: Change in albedo by latitude over the stated time period 
 
Earth total albedo anomaly is defined with an average of zero over the stated time period, 
and is weighted by latitude, i.e. the strongly negative values at the north pole in the 
“change by latitude” panels are reduced to roughly zero due to area weighting.  
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linearly over the same time period; if we had CERES-like observations since the 

beginning of the industrial revolution, a high correlation between anthropogenic ΔRF and 

change in albedo would imply a constant feedback instead. 

Any MLR-based model must account for internal variability so as not to 

misattribute natural forcing to anthropogenic effects. In cases when natural forcings act in 

the same direction as anthropogenic forcing, not accounting for the internal variability 

causes an overestimate of human warming, e.g. see analysis of [Foster and Rahmstorf, 

2011] in §3.3 and §4.3.2. Conversely, the global warming hiatus that occurred from 

1998-2012 was a result of natural variability counteracting anthropogenic forcing, and 

any analysis that does not account for this variability (or does not have a sufficient 

number of years after 2012 included) would underestimate the human contribution to 

climate. This is a common criticism raised against simple climate models when they do 

not provide as much future warming as more complex models do [Marvel et al., 2018]; 

however, most MLR-based simple climate models (including the EM-GC) do account for 

multiple types of natural variability [Chylek et al., 2016; Lean and Rind, 2008; Mascioli 

et al., 2012]. 

I have tested multiple factors that had been proposed to explain the global 

warming hiatus, including the effect of minor volcanoes on SAOD [Huber and Knutti, 

2014; Santer et al., 2014; Schmidt et al., 2014], possible changes due to SWV [Solomon 

et al., 2011; Solomon et al., 2010], undersampling of Arctic temperatures [Cowtan and 

Way, 2014], and GCM temperature data blending [Cowtan et al., 2015]. I discuss the 

latter two points in §3.4 and §4.4.1 respectively; I investigated the former two ahead of 

publishing Hope et al. [2017]. For the SAOD of minor volcanoes, their stratospheric 
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aerosol loading was an order of magnitude less than that associated with major volcanoes 

such as Pinatubo and Krakatau. Since the effect of volcanic SAOD on climate is already 

small – notably smaller than many GCMs suggest [Canty et al., 2013; Chylek et al., 

2020] – the effect of minor volcanoes is not large enough to noticeably affect GMST in 

the way seen during the global warming hiatus. If the relationship between SAOD and its 

effect on GMST was nonlinear, that could provide the difference and would not be 

captured by models like the EM-GC; however, the physical relationship between SAOD 

and GMST is well-known, making a nonlinear response highly unlikely. For SWV, I ran 

the EM-GC with two SWV time series to examine their realization in the climate record. 

In both cases, the regression coefficients were near-zero. While these two independent 

constructions of SWV had no effect on climate, a third treatment of SWV – namely 

viewing it as a product of tropospheric CH4 and thus being directly proportional to CH4 

RF – is included in the CMIP6 recommended RF time series known as the Shared 

Socioeconomic Pathways (SSPs). This third treatment of SWV does not provide 

explanation for the global warming hiatus as it enforces rather than counteracts 

anthropogenic RF of climate from GHGs. A combination of other natural factors already 

included in the EM-GC is sufficient to explain the global warming hiatus. Other 

suggested explanations for the hiatus include: energy transfer in the Pacific due to 

changing trade winds [England et al., 2014], which is covered in the EM-GC by 

inclusion of the PDO; a recent change in ocean heat export [Meehl et al., 2014a; Meehl et 

al., 2014b], which is partially considered in the EM-GC ocean module; and a general 

trend toward a more La-Niña-like state [Kosaka and Xie, 2013], which is covered in the 

EM-GC by inclusion of ENSO with several indexing options. As such, even though it is 
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impossible to include all potential natural variations in any climate model, the EM-GC 

accounts for all major sources of natural variability when determining the anthropogenic 

effect on climate. 

Lastly, simple models that do not account for the current energy imbalance in the 

climate system – i.e. the underlying reason for rapid warming – will not accurately 

represent the full anthropogenic effect on GMST. On a first-order basis, this means either 

directly representing the top-of-atmosphere imbalance or representing the equivalent 

energy sink provided by the ocean [Gregory, 2000; Schwartz et al., 2014]. On a second-

order basis, this means recognizing that the efficacy of ocean heat export depends on 

location and other factors [Rose et al., 2014]. The EM-GC does include an ocean module 

to account for the rise in ocean heat content and its interaction with the atmosphere, 

addressing the first point. The model does not directly include any spatial differentiation 

but may still show some of the efficacy effect nonetheless, as four of the six commonly 

used natural regressors have associated locations driving them. Specifically, the EM-GC 

includes three major ocean patters and ENSO, with the Atlantic pattern driven by deep 

water formation in high latitudes and the Pacific pattern and ENSO driven by ocean-

atmosphere interactions in the tropics. The EM-GC generally favors the Atlantic pattern 

over the Pacific pattern [Canty et al., 2013], implying a larger influence from high-

latitude forcing, which matches the ocean heat export efficacy argument in the literature 

[Rose et al., 2014]. 

2.3.2 Uncertainty in Future Projections 

The underlying truth behind all projections of future GMST from various climate 

models is that the anthropogenic rise in GHGs traps more heat closer to Earth’s surface. 
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At first order, all models taken together do ultimately agree on roughly how much global 

warming there will be. This first-order underlying truth is one of the few components that 

drove early GCMs, and their projections of future GMST have proven to be fairly 

accurate [Hausfather et al., 2020]. At second order and higher, though, uncertainties in 

climate modeling – aerosol forcing, cloud feedbacks, and many other model physics 

questions – cause noticeable spread in temperature projections (and, if left unchecked, 

can introduce biases in warming amount). Even when running the same RCP scenarios, 

the ensemble of CMIP5 GCMs often produced roughly a factor of two difference (as 

mentioned in §1.1.1) for end-of-century temperatures. Specifically, table SPM.2 of AR5 

states that GMST at 2100 could be 1.6 ± 0.7 °C for the low-end RCP 2.6 scenario, 2.4 ± 

0.8 °C for the middle RCP 4.5 scenario, up to 4.3 ± 1.1 °C for the high-end RCP 8.5 

scenario – each of those ranges spanning roughly a factor of two. 

Large uncertainties present a large problem when translating the science to 

actionable policy measures, even if the underlying scientific message is uncompromised. 

Politicians (and the public) want deliverables and certainty, knowing that an action taken 

will achieve a given result (even if, in practice, this is rarely the case). With climate 

change in particular, uncertainty in the science makes some factions feel empowered to 

state that the message is meaningless and thus inactionable, even if this is far from the 

case. All models predict that continued GHG emissions result in noticeable warming, 

often enough warming to cause significant disruptions in how society currently functions. 

Nearly all climate scientists agree that swift action is necessary to prevent or at least 

counteract some of these warming consequences – the uncertainty in warming predictions 

simply affects exactly how swift and how extensive this action needs to be. 



80 
 

Another issue with GCM predictions of GMST is how well their predictions are 

realized. As mentioned before, most predictions from older GCMs have become true. 

However, starting with the CMIP3 models in AR4, the skill at predicting warming to 

present fell suddenly [Hausfather et al., 2020]. This trend continued to the CMIP5 

models in AR5, which particularly missed the global warming hiatus despite the hiatus 

beginning many years before the models were ran. It is also present in the CMIP6 models 

currently in use, as cloud feedback biases have pushed some models to very high 

equilibrium sensitivity values [Zelinka et al., 2020; Zhu et al., 2020] which, in turn, has 

led those models to overestimate observed warming [Tokarska et al., 2020; Voosen, 

2019]. Obviously, if models cannot simulate observed warming well, it makes sense that 

people might not trust their predictions of future warming. 

The authors of chapter 11 of AR5 recognized the discrepancy between CMIP5 

GMST and observed GMST and adjusted their predictions to better reflect the 

observations. They made this change by selecting a more recent time period to function 

as the baseline for the GMST time series. While this had the effect of making short-term 

GMST predictions relatively certain – and cooler than the unadjusted CMIP5 prediction, 

which the EM-GC validates – the process of changing baselines also obfuscates several 

aspects of temperature comparisons. Obviously, the closer a chosen baseline is to the 

time period of interest, the closer any comparisons are likely to be. For global warming 

and the Paris Agreement in particular, temperature goals are often stated based on a 

preindustrial baseline; using more recent baselines to argue for the accuracy of GCMs 

thus also causes preindustrial temperatures to diverge, making the accuracy arguments 

less applicable for those policy decisions.  
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Figure 2.11 – Rate of Temperature Change on Different Timescales 
 
A comparison of CMIP5 
ensemble trends in GMST to 
observed & empirical trends in 
GMST for historical (a), RCP 
4.5 (b), and RCP 8.5 (c) 
experiments. For CMIP5 and 
EM-GC ensembles, the lines 
shown are for the ensemble 
median, interquartile range, and 
extrema trend values. For each 
point in time, the trend value 
shown represents the trend in 
the GMST from that data set for 
the 20 years surrounding that 
time point, e.g. the CMIP5 
median trend value of roughly 
0.30 °C/decade at year 2000 
means that the median GMST 
time series from the CMIP5 
ensemble warmed roughly 0.6 
°C from 1990-2010.  
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One way to circumvent baseline concerns is to instead focus on the rate of 

temperature change over a given time period instead of the net change in GMST over that 

time. Figure 2.11 shows 20-year temperature change rates for observed GMST, CMIP5 

GMST, and EM-GC GMST. There are several times when CMIP5 temperature warmed 

more than observations, including the time period of the global warming hiatus. Even as 

the RCP 4.5 simulation approaches equilibrium at the end of the century, CMIP5 is 

consistently warming more than the EM-GC is, and the difference between CMIP5 and 

the EM-GC is even more noticeable in the RCP 8.5 scenario which does not approach 

equilibrium by the end of the century. There is overlap in their warming rate uncertainty 

ranges, but it shows that even the adjustment done in chapter 11 of AR5 to correct a 

single temperature offset cannot explain and overall warming bias from the GCMs.  
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Chapter 3 

3.1 Introduction 

The objective of the Paris Agreement negotiated at the twenty-first session of the 

Conference of the Parties of the United Nations Framework Convention on Climate 

Change (UNFCCC) is to hold the increase in global mean surface temperature (GMST) 

to well below 2 °C above preindustrial levels and to pursue efforts to limit the increase to 

1.5 °C above preindustrial levels. The rise in GMST relative to the preindustrial baseline, 

termed ΔT, is the primary focus throughout this book. We consider measurements of 

GMST from three data centers: CRU [Jones et al., 2012] 6, GISS [Hansen et al., 2010] 7, 

and NCEI [Karl et al., 2015] 8, and use the latest version of each data record available at 

the start of summer 2016. The values of ΔT for from these data centers are 0.828 °C, 

0.890 °C, and 0.848 °C respectively 9. The rise in GMST during the past decade is more 

than half way to the Paris goal to limit warming to 1.5 °C. Carbon dioxide (CO2) is the 

greatest waste product of modern society and global warming caused by anthropogenic 

 
6 The CRU temperature record is version HadCRUT4.4.0.0 from the Climatic Research Unit (CRU) of the 
University of East Anglia, in conjunction with the Hadley Centre of the U. K. Met Office: 
http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/time_series/HadCRUT.4.4.0.0.annual_ns_a
vg.txt. This data record extends back to 1850. 
7 The GISS temperature record is version 3 of the Global Land-Ocean Temperature Index pro-vided by the 
Goddard Institute for Space Studies (GISS) of the U.S. National Aeronautics and Space Administration 
(NASA): http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt. This data record extends back 
to 1880. 
8 The NCEI temperature record is version 3.3 of the Global Historical Climatology Network-Monthly 
(GHCN-M) data set provided by the National Centers for Environmental Information (NCEI) of the U.S. 
National Oceanographic and Atmospheric Administration (NOAA) http://www.ncdc.noaa.gov/monitoring-
references/faq/anomalies.php. This data record extends back to 1880. 
9 ΔT for CRU was found relative to the 1850 to 1900 baseline using data entirely from this data record; ΔT 
for NCEI and GISS are also for a baseline for 1850 to 1900, computed using a blended procedure described 
in the Methods (§3.6) note for Figure 3.3. A decade long time period of 2006 to 2015 is used for this 
estimate of ΔT to remove the effect of year-to-year variability. A higher value of ΔT results if GMST from 
2015 is used, but as explained later in this chapter, excess warmth in 2015 was due to a major El Niño 
Southern Oscillation event. 
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release of CO2 is on course to break through both the Paris goal and upper limit (2.0 °C) 

unless the world’s voracious appetite for energy from the combustion of fossil fuels is 

soon abated. 

Forecasts of ΔT are generally based on calculations conducted by general 

circulation models (GCMs) that have explicit representation of many processes in Earth’s 

atmosphere and oceans. For several decades, most models have also included a treatment 

of the land surface and sea-ice. More recently, models have become more sophisticated 

by adding treatments of tropospheric aerosols, dynamic vegetation, atmospheric 

chemistry, and land ice. Chapter 5 of J. Houghton [2009] provides a good description of 

how GCMs operate and the evolution of these models over time. 

The calculations of ΔT by GCMs considered here all use specified abundances of 

greenhouse gases (GHGs) and precursors of tropospheric aerosols. These specifications 

originate from the Representative Concentration Pathway (RCP) process that resulted in 

4 scenarios used throughout the fifth IPCC assessment report [Stocker et al., 2013]: RCP 

8.5, RCP 6.0, RCP 4.5, and RCP 2.6 [Van Vuuren et al., 2011a]. The number following 

each scenario indicates the increase in RF of climate, in units of W/m2, at the end of this 

century relative to 1750, due to the prescribed abundance of all anthropogenic GHGs. 

The GCMs use as input time series for the atmospheric abundance of GHGs as well as 

the industrial release of pollutants that are converted to aerosols. Each GCM projection of 

ΔT is guided by the calculation, internal to each model, of how atmospheric humidity, 

clouds, surface reflectivity, and ocean circulation responds to the change in RF of climate 

induced by GHGs and aerosols [J Houghton, 2009]. If the response to a specific process 

further increases RF of climate, it is called a positive feedback because it enhances the 
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initial perturbation. If a process decreases RF of climate, is it called a negative feedback. 

The total effect of all responses to the prescribed perturbation to RF of climate by GHGs 

and aerosols is called climate feedback, which can vary quite a bit between GCMs, 

mainly due to the treatment of clouds [Bony et al., 2006; Vial et al., 2013]. GCMs also 

provide estimates of the future evolution of precipitation, drought indices, sea-level rise, 

as well as variations in oceanic and atmospheric temperature and circulation [Stocker et 

al., 2013]. 

Our focus is on analysis of projections of ΔT for the RCP 4.5 [Thomson et al., 

2011] and RCP 8.5 scenarios [Riahi et al., 2011]. Atmospheric abundances of the three 

most important anthropogenic GHGs given by the RCP 4.5 and RCP 8.5 scenarios are 

shown in Fig. 3.1. Under RCP 8.5, the abundances of these GHGs rise to alarmingly high 

levels by end of century. On the other hand, for RCP 4.5, CO2 stabilizes at 540 parts per 

million by volume (ppm) (~35% higher than contemporary level) and methane (CH4) 

reaches 1.6 ppm (~10% lower than to-day) in 2100. The atmospheric abundance of 

nitrous oxide (N2O) continues to rise under RCP 4.5, reaching 0.37 ppm by end of 

century (~15% higher than today). 

The ΔRF of climate associated with RCP 4.5 and RCP 8.5 are shown in Fig. 3.2, 

using the grouping of GHGs defined in Chapter 1. The contrast between these two 

scenarios is dramatic. For RCP 4.5, ΔRF of climate levels off at mid-century, reaching 

4.5 W/m2 at end-century. For RCP 8.5, ΔRF rises throughout the century, hitting 8.5 

W/m2 near 2100. Both behaviors are by design [Riahi et al., 2011; Thomson et al., 2011]. 

While CO2 remains the most important anthropogenic GHG for both projections, other 

GHGs exert considerable influence. 
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Figure 3.1 – GHG abundance, 1950 to 2100 
 

 
 
Time series of the atmospheric CO2, CH4, and N2O from RCP 2.6 [van Vuuren et al. 
2011b], RCP 4.5 [Thomson et al. 2011], RCP 6.0 [Masui et al. 2011], RCP 8.5 [Riahi et 
al. 2011], and observations (black) [Ballantyne et al. 2012; Dlugokencky et al. 2009; 
Montzka et al. 2011]. Values of GHG mixing ratios from RCP extend back to 1860, but 
this figure starts in 1950 since most of the rise in these GHGs has occurred since that 
time. See §3.6 Methods for further information.  
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Figure 3.2 – RF of Climate Due to GHGs, 1950 to 2100 
 

 
 
Time series of ΔRF of climate, RCP 4.5 (top) and RCP 8.5 (bottom), due to the three 
dominant anthropogenic GHGs (CO2, CH4, and N2O) plus contributions from all ozone 
depleting substances (ODS), other fluorine bearing compounds such as HFCs, PFCs, 
SF6, and NF3 (Other F-gases), and tropospheric O3. Shaded regions rep-resent 
contributions from specific gases or groups. See §3.6 Methods for further information.  
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The RCPs are meant to provide a mechanism whereby GCMs are able to simulate 

the response of climate for various prescribed ΔRF scenarios, in a manner that allows 

differences in model behavior to be assessed. Evaluation of GCM output has been greatly 

facilitated by the Climate Model Intercomparison Project Phase 5 (CMIP5) [K Taylor et 

al., 2012], which maintains a computer archive of model output freely available 

following a simple registration procedure10, as well as the prior CMIP phases. 

Two other scenarios, RCP 6.0 [Masui et al., 2011] and RCP 2.6 [Van Vuuren et 

al., 2011b], were considered by IPCC [Stocker et al., 2013]. The mixing ratio of CO2 

peaks at about 670 ppm at end-century for RCP 6.0 (Fig. 3.1); the climate consequences 

for this scenario clearly lie between those of RCP 4.5 and RCP 8.5. For RCP 2.6, CO2 

peaks mid-century and slowly declines to 420 ppm at end-century11. According to the 

authors of RCP 2.6, this scenario “is representative of the literature on mitigation 

scenarios aiming to limit the increase of global mean temperature to 2°C”. While this is 

true for literal interpretation of the output of the GCMs that contributed to the most recent 

IPCC report [Rogelj et al., 2016], below we show these GCMs likely over-estimate the 

actual warming that will occur in the coming decades. 

Figure 3.3 shows projections of ΔT from the CMIP5 GCMs found using RCP 4.5 

and RCP 8.5. Observations of ΔT from CRU, NCEI, and GISS up to year 2012, as well 

as the CRU estimate of the uncertainty on ΔT, are shown. The green hatched trapezoid on 

Fig. 3.3 is the “indicative likely range for annual mean ΔT” provided by Chapter 11 of 

IPCC [Stocker et al., 2013] 12. Section 11.3.6.3 of this report states: 

 
10 CMIP5 GCM output is at http://cmip-pcmdi.llnl.gov/cmip5/data_getting_started.html 
11 Globally averaged CO2 was ~404 ppm during summer 2016. To achieve the RCP 2.6 scenario, CO2 at the 
end of the century must be comparable to the present day value. 
12 The trapezoid also appears in Figure TS.14, page 87, of the IPCC (2013) Technical Summary 
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some CMIP5 models have a higher transient response to GHGs and 
a larger response to other anthropogenic forcings (dominated by the 
effects of aerosols) than the real world (medium confidence). These 
models may warm too rapidly as GHGs increase and aerosols 
decline 

and 
over the last two decades the observed rate of increase in GMST has 
been at the lower end of rates simulated by CMIP5 models. 

In other words, the projections of ΔT by the CMIP5 GCMs tend to be too warm based on 

comparison of observed and modeled ΔT for prior decades [Gillett et al., 2013; Stott et 

al., 2013]. The trapezoid shown on Fig. 3.3 represents an expert judgement of the upper 

and lower limits for the evolution of ΔT over the next 2 decades. The vertical bar is the 

likely mean value of ΔT over the 2016 to 2035 time period. This projection is meant to 

apply to all four RCPs: i.e., it considers the full range of possible future values for CO2, 

CH4, and N2O between present and 2035. 

Our analysis of the Paris Climate Agreement will be based on the CMIP5 GCM 

output as well as calculations conducted using an Empirical Model of Global Climate 

(EM-GC) developed by our group [Canty et al., 2013]. The EM-GC is described in § 2.2. 

While the EM-GC tool only calculates ΔT, this simple approach is computationally 

efficient, allowing the uncertainty on ΔT of climatically important factors such as 

radiative forcing by tropospheric aerosols and ocean heat content to be evaluated in a 

rigorous manner. We then compare estimates of how much global warming over the 1979 

to 2010 time period can truly be attributed to human activity (§ 2.3). Following a brief 

comment on the so-called global warming hiatus (§ 2.4), we turn our attention to 

projections of ΔT (§ 2.5). The green trapezoid in Fig 3.3 is featured prominently in § 2.5: 

projections of ΔT found using the EM-GC approach are in remarkably good agreement 
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Figure 3.3 – Observed and GCM Simulated Global Warming, 1960 to 2060 
 

 
 
Top: Time series of global, annually averaged ΔT relative to preindustrial baseline from 
41 GCMs that submitted output to the CMIP5 archive covering both historical and future 
time periods, using RCP4.5 (light blue). The maximum and minimum values of CMIP5 
ΔT are indicated by the dark blue dashed lines, while the multi-model-mean is denoted by 
the dark blue solid line. Also shown are global, annually averaged observed ΔT from 
CRU, GISS, and NCEI (black) along with error bars (grey) that represent the uncertainty 
on the CRU time series. The green trapezoid represents the indicative likely range for 
annual average ΔT for 2016 to 2035 (i.e., top and bottom of trapezoid are upper and 
lower limits, respectively) and the green bar represents the likely range for the mean 
value of ΔT over 2006 to 2035, both given in Chapter 11of IPCC AR5. 
Bottom: Same as top, expect for 38 GCMs that submitted output to the CMIP5 archive 
covering both historical and future time periods using RCP8.5 (red). After Fig. 11.25a 
and 11.25b of IPCC AR5. 
See §3.6 Methods for further information. 
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with this IPCC [Stocker et al., 2013] expert judgement of ΔT over the next 2 decades, 

lending credence to the accuracy of our empirically-based projections. 

3.2 The Empirical Model of Global Climate 

Earth’s climate is influenced by a variety of anthropogenic and natural factors. 

Rising levels of greenhouse gases (GHGs) cause global warming [Lean and Rind, 2008; 

Santer et al., 2013b] whereas the increased burden of tropospheric aerosols offset a 

portion of the GHG-induced warming [Kiehl, 2007; S Smith and Bond, 2014]. The most 

important natural drivers of climate during the past century have been the El Niño 

Southern Oscillation (ENSO), the 11 year cycle in total solar irradiance (TSI), volcanic 

eruptions strong enough to penetrate the tropopause as recorded by enhanced 

stratospheric optical depth (SOD) [Lean and Rind, 2008; Santer et al., 2013a], and 

variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC) 

[Andronova and Schlesinger, 2000]. Climate change is also driven by feedbacks (changes 

in atmospheric water vapor, lapse rate13, clouds, and the surface albedo in response to 

radiative forcing (RF) induced by GHGs and aerosols [Bony et al., 2006] and transport of 

heat from the atmosphere to the ocean that induces a long term rise in the temperature of 

the world’s oceans [Levitus et al., 2012]. 

Our empirical model of global climate (EM-GC) [Canty et al., 2013] uses an 

approach termed multiple linear regression (MLR) to simulated observed monthly 

variations in the global mean surface temperature anomaly (termed ΔTi, where i is an 

 
13 Lapse rate is a scientific term for the variation of temperature with respect to altitude. Over the past 50 
years the upper troposphere (~10 km altitude) has warmed by a larger amount than the surface. When 
this type of pattern occurs, climate scientists conclude the lapse rate feedback is negative, because 
Earth’s atmosphere is able to radiate heat into space more efficiently. The interested reader is referred to 
the detailed yet accessible text of Randall, D. (2012), Atmosphere, clouds, and climate, Princeton 
University Press. for more information. 
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index representing month) using an equation that represents the various natural and 

anthropogenic factors that influence ΔTi. The EM-GC formulation represents: 

• RF of climate due to anthropogenic GHGs, tropospheric aerosols, and land use change  

• Exchange of heat between the atmosphere and ocean, in the tropical Pacific, regulated by ENSO 

• Variations in TSI reaching Earth due to the 11 year solar cycle 

• Reflection of sunlight by volcanic aerosols in the stratosphere, following major eruptions 

• Exchange of heat with the ocean due to variations in the strength of AMOC 

• Export of heat from the atmosphere to the ocean that causes a steady long-term rise of water 

temperature throughout the world’s oceans 

The effects on ΔT of the Pacific Decadal Oscillation (PDO) [Y Zhang et al., 1997] and 

the Indian Ocean Dipole (IOD) [Saji et al., 1999] are also considered. 

 The hallmark of the MLR approach is that coefficients that represent the impact 

of GHGs, tropospheric aerosols, ENSO, major volcanoes, etc. on ΔTi are found, such that 

the output of the EM-GC equations provide a good fit to the observed climate record. The 

most important model parameters are the total climate feedback parameter (designated λ) 

and a coefficient that represents the efficiency of the long-term export of heat from the 

atmosphere to the world’s oceans (designated κ). Our approach is similar to many prior 

published studies [Chylek et al., 2014; Lean and Rind, 2009; T Masters, 2014; Stern and 

Kaufmann, 2014] except ocean heat export (OHE, the transfer of heat from the 

atmosphere to the ocean) is explicitly considered and results are presented for a wide 

range of model possibilities that provide reasonably good fit to the climate record, rather 

than relying on a single best fit. Most of the prior studies neglect OHE and typically rely 

on a best fit approach. 

A description of the EM-GC approach is provided in the remainder of this section. 

While we have limited the use of equations throughout the book, they are necessary when 
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providing a description of the model. We’ve concentrated the use of equations in the 

section that follows; comparisons of output from the EM-GC with results from the 

CMIP5 GCMs are presented in other sections with use of little or no equations. 

3.2.1 Formulation 

The empirical model of global climate [Canty et al., 2013] provides a 

mathematical description of observed temperature. As noted above, temperature is 

influenced by a variety of human and natural factors. Our approach is to compute, from 

the historical climate record, numerical values of the strength of climate feedback and the 

efficiency of the transfer of heat from the atmosphere to the ocean. We then use these two 

parameters to project global warming. 

Here we delve into the mathematics of the EM-GC framework. Those without an 

appetite for the equations are encouraged to fast forward to §2.3. There will not be a quiz 

at the end of this chapter. 

Our simulation of observed temperature involves finding values of a series of 

coefficients such that the model Cost Function: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝐹𝐹𝐹𝐹𝑐𝑐𝐶𝐶𝐹𝐹𝐶𝐶𝐹𝐹 = �
1

𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖
2

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

(Δ𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖 − Δ𝑇𝑇𝐸𝐸𝐸𝐸−𝐺𝐺𝐶𝐶 𝑖𝑖)2 

Eq3.1 

is minimized. Here, ΔTOBS i and ΔTEM-GC i represent time series of observed and modeled 

monthly, global mean surface temperature anomalies, 𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖 is the 1-sigma uncertainty 

associated with each temperature observation, i is an index for month, and NMONTHS is the 

total number of months. The use of 𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖
2  in the denominator of Eq. 3.1 forces modeled 
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ΔTEM-GC i to lie closest to data with smaller uncertainty, which tends to be the latter half 

of the ΔTOBS i record. 

The expression for ΔTEM-GC i is: 

Δ𝑇𝑇𝐸𝐸𝐸𝐸−𝐺𝐺𝐶𝐶 𝑖𝑖 =
1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

(𝐺𝐺𝐺𝐺𝐺𝐺 Δ𝑅𝑅𝑅𝑅𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 Δ𝑅𝑅𝑅𝑅𝑖𝑖 + 𝐿𝐿𝐿𝐿𝐶𝐶 Δ𝑅𝑅𝑅𝑅𝑖𝑖) + 𝐶𝐶0 + 𝐶𝐶1 × 𝑆𝑆𝑆𝑆𝐷𝐷𝑖𝑖−6

+ 𝐶𝐶2 × 𝑇𝑇𝑆𝑆𝐼𝐼𝑖𝑖−1 + 𝐶𝐶3 × 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑖𝑖−3 + 𝐶𝐶4 × 𝐴𝐴𝑀𝑀𝑉𝑉𝑖𝑖 + 𝐶𝐶5 × 𝑃𝑃𝐷𝐷𝑆𝑆𝑖𝑖 + 𝐶𝐶6 × 𝐼𝐼𝑆𝑆𝐷𝐷𝑖𝑖

−
1
𝜆𝜆𝑝𝑝
𝑄𝑄𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 𝑖𝑖 

Eq3.2 

where model input variables (described immediately below) are used to calculate the 

model output parameters Ci and γ. In Eq. 3.2 GHG ΔRFi, Aerosol ΔRFi, and LUC ΔRFi 

represent monthly time series of the ΔRF of climate due to anthropo-genic GHGs, 

tropospheric aerosol, and land use change; λP = 3.2 W/m2/°C is the response of surface 

temperature to a RF perturbation in the absence of climate feedback (“P” is used as a 

subscript because this term is called the Planck response function by the climate 

modeling community [Bony et al., 2006]); SODi-6, TSIi-1, ENSOi-3 represent indices for 

stratospheric optical depth, total solar irradiance, and El Niño Southern Oscillation 

lagged by 6 months, 1 month, and 3 months, respectively; AMVi, PDOi, and IODi 

represent indices for Atlantic Multidecadal Variability (a proxy for the strength of 

AMOC), the Pacific Decadal Oscillation, and the Indian Ocean Dipole; and QOCEAN i / λP 

is the Ocean Heat Export term. The use of temporal lags for SOD, TSI, and ENSO is 

common for MLR approaches: Lean and Rind [2008] use lags of 6 months, 1 month and 

4 months, respectively, for these terms. These lags represent the delay between forcing of 

the climate system and the response of RF of climate at the tropopause, after stratospheric 
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adjustment. These lags are discussed at length in our model description paper [Canty et 

al., 2013]. Finally, the AMV, PDO, and IOD terms have traditionally not been used in 

MLR models. Below, results are shown with and without consideration of these 3 terms. 

No lag is imposed for these 3 terms since the indices used to describe these processes 

vary slowly with respect to time. 

The coefficients (C1 to C6) that multiply the various model terms, as well as the 

constant term C0 and the variable γ, are found using multiple linear regression, which 

provides numerical values for each of these parameters such that the Cost Function (Eq. 

2.1) has the smallest possible value. The term γ in Eq. 2.2 is the dimensionless climate 

sensitivity parameter. If the net response of changes in humidity, lapse rate, clouds, and 

surface albedo that occur in response to anthropogenic ΔRF of climate is positive, as is 

most often the case, then the value of γ is positive.  

The estimate of QOCEAN is based on finding the value of the final model output 

parameter κ, the ocean heat uptake efficiency coefficient, with units of W/m2/°C [Raper 

et al., 2002], that best fits a time series of ocean heat content (OHC), where: 

𝑄𝑄𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 𝑖𝑖 = 𝜅𝜅
1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

(𝐺𝐺𝐺𝐺𝐺𝐺 Δ𝑅𝑅𝑅𝑅𝑖𝑖−72 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 Δ𝑅𝑅𝑅𝑅𝑖𝑖−72 + 𝐿𝐿𝐿𝐿𝐶𝐶 Δ𝑅𝑅𝑅𝑅𝑖𝑖−72) 

Eq3.3 

The subscripts i–72 in Eq. 2.4 represent a 6-year (or 72-month) lag between the 

anthropogenic ΔRF perturbation and the export of heat to the upper ocean. The numerical 

estimate of this lag is based on the simulations described by Schwartz [2012]; the 

projections of global warming found using the EM-GC framework are insensitive to any 

reasonable choice for the this lag. Since the model is based on matching perturbations in 

RF of climate to variations in temperature, the flow of heat from the atmosphere to the 
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ocean is modeled as a perturbation to the mean state induced by anthropogenic RF of 

climate (i.e., QOCEAN in Eq. 3.2 depends only on “delta” terms that represent human 

influence on climate). Finally, the net effect of human activity on ΔT is the sum of GHG 

warming, aerosol cooling, very slight cooling due to land use change, and ocean heat 

export: 

Δ𝑇𝑇𝑖𝑖𝐻𝐻𝐻𝐻𝐸𝐸𝑂𝑂𝑁𝑁 =
1
𝜆𝜆𝑃𝑃

[(1 + 𝛾𝛾)(𝐺𝐺𝐺𝐺𝐺𝐺 Δ𝑅𝑅𝑅𝑅𝑖𝑖−72 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 Δ𝑅𝑅𝑅𝑅𝑖𝑖−72 + 𝐿𝐿𝐿𝐿𝐶𝐶 Δ𝑅𝑅𝑅𝑅𝑖𝑖−72)

− 𝑄𝑄𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 𝑖𝑖] 

Eq3.4 

Equations 3.1 to 3.4 constitute our empirical model of global climate. Of the 

model inputs, the aerosol ΔRF term is the most uncertain. As shown below, there is a 

strong relation between the value of the climate sensitivity parameter γ and the magnitude 

of aerosol ΔRF. This dependency is well known in the climate community, as discussed 

for example by Kiehl [2007]. Also, there is a wide variation in the value of κ, depending 

on which dataset is used to specify OHC. 

Figures 3.4 and 3.5 provide a graphical illustration of how the model works. The 

simulations in these figures use estimates for GHG and aerosol ΔRF from RCP 4.5, tied 

to the best estimate for aerosol ΔRF in year 2011 (AerRF2011) of –0.9 W/m2 from IPCC 

[Stocker et al., 2013], and a time series for OHC in the upper 700 meters of the global 

oceans that is an average of 6 published studies. In the interest of keeping the attention of 

those reading this far, we describe a few simulations prior to delving into further details 

about the model parameters. 

Figure 3.4 is a so-called “ladder plot” that compares a time series of observed, 

monthly values of ΔT (top rung) from CRU (black) to the output of the model (red). For  
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Figure 3.4 – Observed and EM-GC Simulated Global Warming, 1860 to 2015, Without 
Ocean Oscillations 
 

 
 
Ladder plot showing CRU observed global, monthly mean ΔT from CRU (black) and as 
simulated by the EM-GC (red), both relative to preindustrial baseline (top rung); the 
contribution to ΔT from humans (orange) (2nd rung), and contributions from natural 
sources of climate variability due to fluctuations in the output of the sun and major 
volcanic eruptions (3rd rung). The final rung compares modeled and measured ocean heat 
content (OHC), where the data show the average (used in the model) and standard 
deviation of OHC from six data sets. See §3.6 Methods for further information.  
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Figure 3.5 – Observed and EM-GC Simulated Global Warming, 1860 to 2015, With 
Ocean Oscillations 
 

 
 
Same as Fig 3.4, except the EM-GC equations have been expanded to include the effects 
of the Atlantic Meridional Overturning Circulation (AMOC), the Pacific Decadal 
Variability (PDO), and the Indian Ocean Dipole (IOD). The fifth rung of the ladder plot 
shows contributions to variations in ΔT from fluctuations in the strength of the AMOC; 
the sixth rung shows contributions from PDO and IOD. See §3.6 Methods for further 
information.  
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the simulation in Fig. 3.4, the AMV, PDO, and IOD terms have been neglected. The 

model provides a reasonably good description of the observed global temperature 

anomaly. The red curve on the top panel is the sum of the orange curve on the 2nd panel 

(total effect of human activity), the blue and purple curves on the 3th panel (volcanic and 

solar terms), and the cardinal curve on the 4th panel (ENSO), plus the regression constant 

C0 (not shown). Finally, the bottom panel shows a comparison of a time series of OHC 

(available only from 1950 to 2007) to the modeled QOCEAN term. 

Figure 3.5 is similar to Fig. 3.4, except here the model has been expanded to 

include the AMV, PDO, and IOD terms in Eq. 3.1. The OHC comparison is not shown in 

Fig. 3.5 because it looks identical to the bottom panel of Fig. 3.4. The red curve on the 

top panel of Fig 3.5 is the sum of the curves shown in the rest of the panels, plus the 

constant C0. The top panel of Fig. 3.5 shows remarkably good agreement between 

observed ΔT from CRU (black) and modeled ΔT found using the EM-GC equation (red). 

Consideration of these three additional ocean proxies improves the simulation of ΔT 

around year 1910 and in the mid-1940s (Fig. 3.5) compared to the results shown in Fig 

3.4, which lacked these terms. Most of this improvement is due to the use of AMV as a 

proxy for variations in the strength of the Atlantic Meridional Overturning Circulation, 

which only recently has been recognized as having a considerable effect on global 

climate [Andronova and Schlesinger, 2000; Schlesinger and Ramankutty, 1994]. In our 

approach, the PDO [Y Zhang et al., 1997] and the IOD [Saji et al., 1999] have little 

expression on global climate, which is a common finding using MLR analysis of the 

~150 year long record of ΔT [Chylek et al., 2014; Rypdal, 2015]. Also, upon inclusion of 

the AMV proxy (Fig. 3.5), the cooling after major volcanic eruptions is diminished by 
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nearly a factor of two relative to a MLR analysis that neglects this term (volcanic term in 

Fig 3.5 compared to volcanic term in Fig. 3.4). This finding could have significant 

implications for the use of volcanic cooling as a proxy for the efficacy of geoengineering 

of climate via stratospheric sulfate injection [Canty et al., 2013]. 

Additional detail on inputs to the empirical model of global climate is provided in 

§3.2.1.1. More explanation of the model outputs is given in §3.2.1.2. Both of these 

sections are condensed from our model description paper [Canty et al., 2013], including a 

few updates since the original publication. 

3.2.1.1 Model Inputs 

The ΔRF due to GHGs is based on global, annual mean mixing ratios of CO2, 

CH4, N2O, the class of halogenated compounds known as ozone depleting substances 

(ODS), HFCs, PFCs, SF6, and NF3 (Other F-gases) provided by the RCP 4.5 [Thomson et 

al., 2011] and RCP 8.5 [Riahi et al., 2011] scenarios. Annual abundances are interpolated 

to a monthly time grid, because monthly resolution is needed to resolve short-term 

impacts on ΔT of processes such as ENSO and volcanic eruptions. Values of ΔRF for 

each GHG are computed using formula originally given in Table 6.2 of IPCC (2001) 

except the preindustrial value of CH4 has been adjusted to 0.722 ppm, following Table 

AII.1.1a of IPCC [Stocker et al., 2013]. The ΔRF due to tropospheric O3 is based on the 

work of Meinshausen et al. [2011], obtained from a file posted at the Potsdam Institute 

for Climate Impact Research website. The sum of ΔRF due to CO2, CH4, N2O, ODS, 

Other F-gases, and tropospheric O3 constitutes GHG ΔRFi in Eq. 3.2. 

The ΔRF due to aerosols is the sum of direct and indirect effects of six types of 

aerosols, as described in §3.2.2 of Canty et al. [2013]. The six aerosol types are sulfate,  
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Figure 3.6 – Aerosol ΔRF Versus Time by Species, RCP 4.5, for AER RF2011 = –0.9 
W/m2 
 

 
 
See §3.6 Methods for further information.   
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Figure 3.7 – Aerosol ΔRF Versus Time, RCP 4.5 and 8.5, Various AER ΔRF2011 
Scenarios 
 

 
 
a) Various scenarios for AerRF2011 of –0.1, –0.4, –0.9, –1.5, and –1.9 W/m2 (open 
squares) for RCP 4.5 aerosol precursor emissions. 
b) Same as a), except for RCP 8.5 emission scenarios. 
See §3.6 Methods for further information.  
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mineral dust, ammonium nitrate, fossil fuel organic carbon, fossil fuel black carbon, and 

biomass burning emissions of organic and black carbon. The direct ΔRF for 

all aerosol types other than sulfate is also based on the work of Meinshausen et al. 

[2011], again obtained from files posted at the Potsdam Institute for Climate Impact 

Research website. Different estimates for RCP 4.5 and RCP 8.5 are used, since it is 

assumed that reduction of atmospheric release of aerosol precursors will occur more 

quickly in RCP 4.5, in lock-step with the decreased emission of GHGs in this scenario 

relative to RCP 8.5. The direct RF due to sulfate is based on the work of Smith et al. 

[2011]. Scaling parameters are used to multiply the direct ΔRF of aerosols, to account for 

the aerosol indirect effect, as described in §3.2.2 of Canty et al. [2013]. 

Figure 3.6 shows total ΔRF (black line) due to tropospheric aerosols that was used 

as EM-GC input (i.e., the term Aerosol ΔRFi in Eq. 3.2) for the calculations shown in 

Figs. 3.4 and 3.5, as well as the contribution to aerosol ΔRF from the six classes of 

aerosols. This particular time series, based on RCP 4.5, has been designed to match the 

IPCC [Stocker et al., 2013] best estimate of AerRF2011 (aerosol ΔRF in year 2011) of –0.9 

W/m2. 

As detailed in Canty et al. [2013], a specific value of AerRF2011 can be found 

using a variety of combinations of scaling parameters that account for the aerosol indirect 

effect. Figure 3.7a shows time series of aerosol ΔRF for RCP 4.5 designed to match five 

rather disparate estimates of AerRF2011 from IPCC [Stocker et al., 2013]: 

• –0.9 W/m2 (best estimate) 

• –0.4 W/m2 and –1.5 W/m2 (upper and lower limits of the likely range, denoted by the upper and 

lower edges of rectangle marked “Expert Judgement” in Fig. 7.19b of IPCC (2013), which are the 17th and 

83d percentiles of the estimated distribution) 
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• –0.1 W/m2 and –1.9 W/m2 (upper and lower limits of the possible range, de-noted by the error 

bars on the “Expert Judgement” rectangle in Fig. 7.19b,which are the 5th and 95th percentiles of the 

estimated distribution) 

Figure 3.7b shows aerosol ΔRF designed to match these same five values of 

AerRF2011, except for the RCP 8.5 emission of aerosol precursors. Three estimates of 

Aerosol ΔRF are shown for each value of AerRF2011, found using scaling parameters 

described in Methods (§3.6). 

Variations in the RF of climate due to the land use change (LUC) is the final 

anthropogenic term considered in our EM-GC. Numerical values of LUC ΔRFi in Eq. 3.2 

are based on Table AII.1.2 of IPCC [Stocker et al., 2013]. This term, which has an 

extremely minor effect on computed ΔT and is included for completeness, represents 

changes in the reflectivity of Earth’s surface caused, for example, by conversion of forest 

to concrete. The release of carbon and other GHGs due to LUC is not represented by this 

term, but rather by the GHG ΔRFi term. 

We next describe data used to define EM-GC inputs of stratospheric optical depth 

(SOD), total solar irradiance (TSI), El Niño Southern Oscillation (ENSO), Atlantic 

Multidecadal Variability (AMV), Pacific Decadal Oscillation (PDO), and the Indian 

Ocean Dipole (IOD). These measurements are discussed in considerable detail by Canty 

et al. [2013]; therefore, only brief descriptions are given here. 

The time series for SODi in Eq. 3.2 is based on the global, monthly mean data set 

of Sato et al. [1993], available from 1850 to the end of 2012 (footnote 14). This time 

series makes use of ground-based, balloon-borne, and satellite observations, and 

 
14 The Sato et al. [1993] SOD record is at: 
http://data.giss.nasa.gov/modelforce/strataer/tau.line_2012.12.txt 
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represents perturbations to the stratospheric sulfate aerosol layer induced by volcanic 

eruptions that are energetic enough to penetrate the tropopause. The Sato et al. [1993] 

dataset compares reasonably well with an independent estimate of SOD provided by 

Ammann et al. [2003], which is based on a four-member ensemble simulation of volcanic 

eruptions by a GCM that resolves the troposphere and stratosphere and is available from 

1890 to 2008 (Fig. 2.18 of IPCC AR4 [Solomon, 2007]). The value of SOD is held 

constant at 0.0035 for October 2012 onwards, due to unavailability of data from Sato et 

al. [1993] for more recent periods of time. The Sato et al. [1993] SOD record resolves the 

recent eruptions of Kasatochi, Sarychev and Nabro [Fromm et al., 2014; Rieger et al., 

2015], but stops short of the April 2015 eruption of Calbuco that deposited sulfate into 

the high latitude, summer stratosphere [Solomon et al., 2016]. Since the perturbation to 

global SOD due to volcanic eruptions between the end of 2012 and summer 2016 is 

small, the use of a constant value for SOD since October 2012 has no bearing on any of 

our scientific conclusions. The use of i–6 as the subscript for SOD in Eq. 3.2 represents a 

6 month delay between volcanic forcing and surface temperature response; a delay of ~6 

months was found by the thermodynamic analyses of Douglass and Knox [2005] and 

Thompson et al. [2009] and a 6 month delay is used in the MLR studies of Lean and Rind 

[2008] and Foster and Rahmstorf [2011]. 

The time series of TSIi in Eq. 3.2 is based on two time series. For years prior to 

1978, TSI originates from reconstructions that make use of the number, location, and 

darkening of sunspots as well as various measurements from ground-based solar 

observatories [Lean, 2000; Wang et al., 2005]. Since 1978, TSI is based on various-

spaced based measurements. The magnitude of TSI varies with the well characterized 11-
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year sunspot cycle, due to distortion of magnetic field lines caused by differential rotation 

of the sun15.  A 1 month lag for TSIi is used in Eq. 3.2 because this yields the largest 

value of C2, the common approach for defining slight temporal offset between 

perturbation (solar output) and response (global temperature) in MLR-based models 

[Lean and Rind, 2008]. 

The time series of ENSOi in Eq. 3.2 is based on the Tropical Pacific Index (TPI), 

computed as described by Zhang et al. [1997]. This index represents the anomaly of sea 

surface temperature (SST) in the region bounded by 20°S to 20°N latitude and 160°E to 

80°W longitude, relative to a long-term climatology. The SST record of HadSST3.1.1.0 

[Kennedy et al., 2011a; b] 16 has been used to compute TPI. A 3-month lag has been 

applied to ENSO, because this provides the highest correlation between TPI and a 

simulated response of GMST to ENSO that was computed using a thermodynamic 

approach [Thompson et al., 2009]. 

The time series for AMVi in Eq. 3.2 is based on the time evolution of area 

weighted, monthly mean SST in the Atlantic Ocean, between the equator and 60°N 

[Schlesinger and Ramankutty, 1994]. Here, data from HadSST3.1.1.0 have been used 

(same citations and web address as for ENSO). As shown in the Supplement of Canty et 

al. [2013], nearly identical scientific results are obtained using SST from NOAA. The 

AMV index is a proxy for changes in the strength of the Atlantic Meridional Overturning 

 
15 TSI for start of 2009 to 2015 is from column 3 of: 
ftp://ftp.pmodwrc.ch/pub/data/irradiance/composite/DataPlots/composite_*.dat 
where * is used because the name of this file changes as it is regularly updated. TSI from 1882 to end of 
2008 is from column 3 of : 
https://ftp.geomar.de/users/kmatthes/CMIP5/TSI_WLS_mon_1882_2008.txt 
     TSI prior to 1882 is from column 2 of: 
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate_forcing/solar_variability/lean2000_irradiance.txt 
16 HadSST3.1.1.0 data are at: 
http://hadobs.metoffice.com/hadsst3/data/HadSST.3.1.1.0/netcdf/HadSST.3.1.1.0.median_netcdf.zip 
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Circulation (AMOC) [Knight et al., 2005; Medhaug and Furevik, 2011; Stouffer et al., 

2006; R Zhang et al., 2007]. Others use Atlantic Multidecadal Oscillation (AMO) to 

describe this index, but we prefer AMV because whether or not the strength of the 

AMOC varies in a purely oscillatory manner [Vincze and Jánosi, 2011] is of no 

consequence to the use of this proxy in the EM-GC framework. 

There are two important details regarding AMVi that bear mentioning. This index 

represents the fact that, during times of increased strength of the AMOC, the ocean 

releases more heat to the atmosphere17. There is considerable debate regarding whether 

the strength of AMOC varies over time (e.g., Box 5.1 of IPCC AR4 [Solomon, 2007] and 

Willis [2010]). Our focus is on anomalies of AMOC over time; hence, the AMVi index is 

detrended18. As shown in Fig. 5 of Canty et al. [2013], various choices for how this index 

is detrended have considerable effect on the shape of the resulting time series, which is 

important for the EM-GC approach. Here, total anthropogenic ΔRF of climate is used to 

detrend AMVi, because this method appears to provide a more realistic means to infer 

variations in the strength of AMOC from the North Atlantic SST record than other de-

trending options [Canty et al., 2013]. The second detail involves whether monthly data 

should be used for the AMVi index, since the AMOC is sluggish and variations of North 

Atlantic SST on time scales of a year or less likely do not represent variations in large-

scale, ocean circulation. Throughout this chapter, the AMVi index has been filtered to 

 
17 An illustration of the physics of the interplay between AMOC and release of heat to the atmosphere 
from the ocean is at http://www.whoi.edu/cms/images/oceanus/2006/11/nao-en_33957.jpg 
18 The de-trending of AMV, the proxy for variations in the strength of AMOC, means that when examined 
over the entire 156 year record of the simulation, the slope of the panel marked AMOC in Fig 3.5 is near 
zero. The proxy used to represent AMOC is based on measurements of sea surface temperature, which 
rise over time due to the transfer of heat from the atmosphere to the ocean. Within an MLR model such 
as the EM-GC, the AMOC proxy should be detrended, or else a number of erroneous conclusions 
regarding long-term climate change could result. See §3.2.3 of Canty et al. [2013] for further discussion. 
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remove all components with temporal variations shorter than 9 years; only variations of 

SST on time scales of a decade or longer are preserved. The interested reader is invited to 

examine Figure 7 of Canty et al. [2013] to see the impact of various options for how 

AMVi is filtered. 

A major international research effort has provided new insight into temporal 

variations of the strength of AMOC [Srokosz and Bryden, 2015]. The RAPID-AMOC 

program, led by the Natural Environment Research Council of the United Kingdom, is 

designed to monitor the strength of the AMOC by deployment of an array of instruments 

at 26.5°N latitude, across the Atlantic Ocean, which measure temperature, salinity and 

ocean water velocities from the surface to ocean floor [Duchez et al., 2014]. Analysis of a 

10-year (2004 to 2014) time series of data reveals a decline in the strength of AMOC 

over this decade, similar to that shown by our proxy (AMOC ladder, Fig. 3.5) over this 

same period of time. 

The PDO represents the temporal evolution of specific patterns of sea level 

pressure and temperature of the Pacific Ocean poleward of 20°N [Y Zhang et al., 1997], 

which is caused by the response of the ocean to spatially coherent atmospheric forcing 

[Saravanan and McWilliams, 1998; Wu and Liu, 2003]. The PDO is of considerable 

interest because variations correlate with the productivity of the fishing industry in the 

Pacific [Chavez et al., 2003]. An index based on analysis of the patterns of SST 

conducted by the University of Washington19 is used. 

 
19 The PDO index is at http://research.jisao.washington.edu/pdo/PDO.latest. This record begins in year 
1900. Prior to 1900 we assume PDOi is equal to 0. 
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The IOD index20 represents the temperature gradient between the Western and 

Southeastern portions of the equatorial Indian Ocean [Saji et al., 1999]. The IOD index is 

used so that all three major ocean basins are represented. Variations in the IOD have 

important regional effects, including rainfall in Australia [Cai et al., 2011]. However, 

global effects are small, most likely due to the small size of the Indian Ocean relative to 

the Atlantic and Pacific oceans. 

The increase in the RF of climate due to human activity causes a rise in 

temperature of both the atmosphere or the water column of the world’s oceans [Hansen et 

al., 2011; Raper et al., 2002; Schwartz, 2012]. The oceanographic community has used 

measurements of temperature throughout the water column, obtained by a variety of 

sensor systems and data assimilation techniques, to estimate the time variation of the heat 

content of the world’s oceans (OHC, or Ocean Heat Content) [Carton and Santorelli, 

2008]. Generally the focus has been on the upper 700 meters of the oceans. 

Considerable uncertainty exists in OHC. Figure 3.8 shows estimates of OHC in 

the upper 700 meters of the world’s oceans from six studies [Balmaseda et al., 2013; 

Carton and Giese, 2008; Church et al., 2011; Gouretski and Reseghetti, 2010; Ishii and 

Kimoto, 2009; Levitus et al., 2012] as well as the aver-age of the data from these six 

studies. Ostensibly, all of the studies make use of similar (if not the same) measurements 

from expendable bathythermograph (XBT) devices and the more accurate conductivity 

temperature depth (CTD) probes. Use of CTDs began in the 1980s, and expanded 

considerably in 2001 based on the deployment of thousands of drifting floats under the  

 
20 The index for IOD from 1982 to present is based on this record provided by the Observing System 
Monitoring Center of NOAA http://stateoftheocean.osmc.noaa.gov/sur/data/dmi.nc 
From 1860 to 1981, IOD is based on data provided by the Japan Agency for Marine-Earth Science and 
Technology at http://www.jamstec.go.jp/frcgc/research/d1/iod/kaplan_sst_dmi_new.txt 
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Figure 3.8 – Ocean Heat Content (OHC) Versus Time 
 

 
 
OHC from six sources (colored, as indicated). The black solid line is the average of the 
six measurements used in most of the EM-GC calculations. See §3.6 Methods for further 
information.  
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Argo program [Riser et al., 2016]. Alas, the ocean is vast and much is not sampled. The 

differences in OHC shown in Fig. 3.8 published by various groups represent different 

methods to fill in regions not sampled by CTDs, as well as various assumptions regarding 

the calibration (including fall rate correction) of data returned by XBTs. 

The QOCEAN i term in Eq. 3.3 is the EM-GC representation of OHE in units of 

W/m2, i.e. OHE is heat flux. The quantity OHC represents the energy content of the 

upper 700 meter of the world’s oceans. To relate OHC and OHE, several computational 

steps are necessary. First, the OHC values shown in Fig. 3.8 are multiplied by 1.42 

(which equals 1/0.7) to account for the estimate that 70% of the rise in OHC of the 

world’s oceans occurs in the upper 700 meters (§5.2.2.1 of IPCC AR4 [Solomon, 2007]). 

This multiplication is carried out because ocean heat export in the model must represent 

the entire water column. As stated above, a 6-year lag is assumed between perturbation 

and response [Schwartz, 2012]. Next, OHC is divided by 3.3×1014 m2, the surface area of 

the world’s oceans. Finally, a value for κ is derived so that the change in OHC over the 

period of time covered by a particular data set (i.e., the average time derivative) is 

matched, rather than attempting to model the ups and downs of any particular OHC 

record. Since the ups and downs of the various records are uncorrelated, it is more likely 

these variations reflect measurement noise rather than true signal. 

3.2.1.2 Model Outputs 

In addition to the regression coefficients, two additional parameters are found by 

the EM-GC: the climate sensitivity parameter (γ in Eq. 3.2) and the ocean heat uptake 

efficiency coefficient (κ in Eq. 3.3). As described in §3.5, values of γ and κ inferred from 

the prior climate record are used to obtain projections of ΔT, assuming γ and κ remain 
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constant in time. In this section, some context for the numerical values of γ and κ is 

presented. Two additional model output terms, the climate feedback parameter (λ) and 

Equilibrium Climate Sensitivity (ECS), both of which are found from γ, are described. 

Finally, a metric for model performance, χ2, which plays an important role for the 

projections of ΔT, is defined. 

The value of κ found using the OHC record for the upper 700 meters of the 

world’s oceans, averaged from six studies, is 0.62 W/m2/°C (bottom panel, Fig. 3.4). As 

stated in §3.2.1.1, the calculation of κ considers the increase in temperature for depths 

below 700 meter by scaling observations from the upper part of the ocean. Of the six 

OHC datasets, Ishii & Kimoto [2009] results in the smallest value for κ (0.43 W/m2/°C) 

and Gouretski & Reseghetti [2010] leads to the largest value (1.52 W/m2/°C). All of the 

values of κ found using various time series for OHC fall within the range of empirical 

estimates and coupled ocean-atmosphere model behavior that is shown in Fig. 2 of Raper 

et al. [2002]. As such, the representation of ocean heat export in the EM-GC framework 

is realistic, given the present state of knowledge. If the true value of κ changes over time, 

then our projections of ΔT based on an assumption of constant κ will require 

modification. Past measurements of OHC are too uncertain to infer, from the prior record, 

whether κ has changed. The nearly-factor-of-3 difference in κ inferred from various, 

credible estimates of OHC is certainly much larger than any reasonable change in κ that 

could have occurred during the time of OHC observations. 

The value of γ found for the EM-GC simulation shown in Fig. 3.5 is 0.49. This 

means the increase in RF of climate due to GHGs, tropospheric aerosols, and land use 

change from 1860 to present must be increased by ~50% (i.e., multiplied by 1.49) to 
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obtain best fit to observed ΔT. In other words, the sum of all climate feedbacks must be 

positive. Model parameter γ represents the sensitivity of climate to all of the feedbacks 

that occur in response to the perturbation to RF at the tropopause induced by humans, and 

is related to the climate feedback parameter λ via: 

1 + 𝛾𝛾 =
1

1 − 𝜆𝜆
𝜆𝜆𝑃𝑃

 

where 𝜆𝜆 = Σ All Climate Feedbacks 

i.e. 𝜆𝜆 = 𝜆𝜆𝑊𝑊𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝 𝑉𝑉𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝 + 𝜆𝜆𝐶𝐶𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝 + 𝜆𝜆𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑅𝑅𝑝𝑝𝑜𝑜𝑝𝑝 + 𝜆𝜆𝑂𝑂𝑜𝑜𝑝𝑝𝑆𝑆𝑝𝑝𝑐𝑐𝑝𝑝 𝑅𝑅𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝𝑐𝑐𝑜𝑜𝑖𝑖𝑅𝑅𝑖𝑖𝑜𝑜𝑅𝑅 + 𝐴𝐴𝐶𝐶𝑐𝑐.  

Eq3.5 

This formulation for the relation between γ and λ is commonly used in the climate 

modeling community (see §8.6 of IPCC AR4 [Solomon, 2007]). We record λ rather than 

γ on all of the EM-GC ladder plots (Fig. 3.4 and 3.5) because λ is more directly 

comparable to GCM output, such as that in Table 9.5 of IPCC AR5 [Stocker et al., 2013]. 

Equilibrium climate sensitivity (ECS) is also given on the top rung of the EM-GC 

ladder plots. This metric represents the increase in ΔT of the climate system after it has 

attained equilibrium, in response to a doubling of atmospheric CO2. In the EM-GC 

framework ECS is expressed as21: 

 
21 The derivation is: 

𝐸𝐸𝐶𝐶𝑆𝑆 =
1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

Δ𝑅𝑅𝑅𝑅𝐶𝐶𝑆𝑆2 = 1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

5.35 𝑊𝑊𝑚𝑚−2 ln 𝐶𝐶𝑆𝑆2
𝑅𝑅𝐼𝐼𝐸𝐸𝐴𝐴𝐿𝐿

𝐶𝐶𝑆𝑆2
𝐼𝐼𝐸𝐸𝐼𝐼𝑇𝑇𝐼𝐼𝐴𝐴𝐿𝐿 = 1 + 𝛾𝛾

𝜆𝜆𝑃𝑃
5.35 𝑊𝑊𝑚𝑚−2 ln 2

= 1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

5.35 𝑊𝑊𝑚𝑚−2 × 0.693 = 1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

3.71 𝑊𝑊𝑚𝑚−2 

assuming, for ECS, that 𝐶𝐶𝑆𝑆2𝐹𝐹𝐹𝐹𝑁𝑁𝑂𝑂𝐿𝐿 = 2 × 𝐶𝐶𝑆𝑆2𝐹𝐹𝑁𝑁𝐹𝐹𝐼𝐼𝐹𝐹𝑂𝑂𝐿𝐿  
The expression for Δ𝑅𝑅𝑅𝑅𝐶𝐶𝑂𝑂2  is from Myhre, G., E. Highwood, K. Shine, and F. Stordal (1998), New 
estimates of radiative forcing due to well mixed greenhouse gases, Geophysical research letters, 25(14), 
2715-2718. 
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𝐸𝐸𝐶𝐶𝑆𝑆 =
1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

3.71 𝑊𝑊𝑚𝑚−2 

Eq3.6 

ECS is often used to compare and evaluate climate simulations. The EM-GC run shown 

in Fig. 3.5 has an ECS of 1.73°C, which means that if CO2 were to double (i.e., reach 560 

ppm, twice the pre-industrial value of 280 ppm) and if all other GHGs were to remain 

constant at their pre-industrial level, then ΔT would rise to a level about midway between 

the Paris target (1.5°C) and upper limit (2.0°C). As will soon be shown, ECS is a difficult 

metric to use for evaluating climate models because it depends rather sensitively on both 

aerosol ΔRF and ocean heat content, both of which have considerable uncertainty. 

The top rung of each EM-GC ladder plot also contains a numerical value for 

reduced chi-squared (χ2), a parameter that defines the goodness of fit between a series of 

observed and modeled quantities. In our framework, χ2 is defined as: 

𝜒𝜒2 =
1

(𝐸𝐸𝑌𝑌𝐸𝐸𝑂𝑂𝑅𝑅𝑂𝑂 − 𝐸𝐸𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼𝐹𝐹𝑁𝑁𝐺𝐺 𝑃𝑃𝑂𝑂𝑅𝑅𝑂𝑂𝐸𝐸𝐸𝐸𝐼𝐼𝐸𝐸𝑅𝑅𝑂𝑂 − 1)

× �
1

〈𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂 𝑗𝑗〉2
�〈Δ𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 𝑗𝑗〉 − 〈Δ𝑇𝑇𝐸𝐸𝐸𝐸−𝐺𝐺𝐶𝐶 𝑗𝑗〉�

2
𝑁𝑁𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑀𝑀

𝑗𝑗=1

  

Eq3.7 

where 〈Δ𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 𝑗𝑗〉, 〈Δ𝑇𝑇𝐸𝐸𝐸𝐸−𝐺𝐺𝐶𝐶 𝑗𝑗〉, and 〈𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂 𝑗𝑗〉, represent the annually averaged observed 

temperature anomaly, the annually averaged modeled temperature anomaly, and the 

uncertainty of the annually averaged observed temperature anomaly, respectively, and 

NFITTING PAREMETERS equals 6 for the simulation shown in Fig 3.4 (4 regression 

coefficients plus the 2 parameters γ and κ) and equals 9 for Fig. 3.5 (3 additional 

regression coefficients). The formula for χ2 is expressed in terms of annual averages, 
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rather than monthly values, due to the statistical behavior of the two time series that 

appear in the formula22. 

The EM-GC simulation in Fig. 3.4 has χ2 = 1.52. In the world of physics, this 

would be termed a reasonably good model simulation. Such an impression is also 

apparent based on visual inspection of the red and black curves on the top rung of Fig. 

3.4. The EM-GC simulation in Fig. 3.5 has χ2 = 0.81, which is an exceptionally good 

simulation both in the literal interpretation of χ2, as well as visual inspection of Fig. 3.5. 

For the quantitative assessments of the amount of global warming that can be attributed 

to humans, as well as the projections of future global warming, EM-GC simulations are 

weighted by 1/χ2, such that the better the goodness of fit (i.e., the smaller the value of χ2) 

the larger the weight. See Chapter 7 of Taylor [1997] for a description of this weighting 

approach. 

3.2.2 The Degeneracy of Earth’s Climate 

Figure 3.9 shows simulations of Earth’s climate that differ only due to choice of 

ΔRF due to tropospheric aerosols. Figure 3.9a shows results for AerRF2011 of –0.4 W/m2 

(upper limit of IPCC [Stocker et al., 2013] likely range), –0.9 W/m2 (IPCC best estimate), 

and –1.5 W/m2 (lower limit of IPCC likely range). For each simulation, the upper rung of 

a typical EM-GC ladder plot is shown, but with ΔT projected into the future. Projections 

use values of λ and κ associated with each simulation, together with RCP 4.5 for GHG 

  
 

22 For those familiar with statistics, the auto-correlation function of modeled ΔT is compared to the auto-
correlation function of the measured ΔT. As shown in the supplement to Canty et al. [2013], these 
functions differ considerably for comparison of measured and modeled monthly anomalies, indicating 
either the presence of a forcing in the system not resolved by the model or else considerable noise in the 
measurement. These auto-correlation functions are quite similar for comparison of measured and 
modeled annual anomalies, indicating proper physical structure of the modeled quantity and appropriate 
use of χ2, is applied to annual averages of both modeled and measured anomalies. 
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Figure 3.9 – Observed and EM-GC Simulated Global Warming, 1860 to 2060, for 
Various AER ΔRF2011 Scenarios 

 
 
a) Top rung of a typical ladder 
plot, comparing EM-GC modeled 
(red) and CRU observed (black) 
ΔT, as well as three of the terms 
that drive ΔTHUMAN (Eq. 3.4) 
computed for the AerRF2011 =  –
0.4 W/m2, the IPCC AR5 upper 
limit of the likely range for ΔRF 
due to anthropogenic, 
tropospheric aerosols. The 
projection of ΔT to 2060 uses the 
indicated value of λ. The gold 
circles at 2060 are placed at the 
Paris target (1.5 °C) and upper 
limit (2.0 °C). 
b) Same as a), except 
calculations conducted for 
AerRF2011 = –0.9 W/m2, the 
IPCC AR5 best estimate of ΔRF 
due to aerosols. Here, the 
contribution to ΔT from ENSO is 
also shown, so that the 
connection of anomalous warm 
conditions in 2015 to projected 
ΔT can be better visualized. The 
contribution of ENSO to ΔT is 
only shown once, since it is 
similar for all three simulations. 
c) Same as a), except for 
AerRF2011 =  –1.5 W/m2, the 
IPCC AR5 lower limit of the 
likely range for ΔRF due to 
anthropogenic, tropospheric 
aerosols. 
 
 

 
All calculations used the mean value of OHC computed from the six datasets shown in 
Fig. 3.8  
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abundances and aerosol precursor emissions. Each simulation uses the OHC record based 

on the average of the six studies shown in Figure 3.8. When projecting ΔT, the only term 

considered is ΔTHUMAN (Eq. 3.4): i.e., that the future change in temperature will be based 

on GHG warming and aerosol cooling from RCP 4.5, climate feedback, and ocean heat 

export. It is also assumed that natural factors such as ENSO, solar, and volcanoes will 

have no influence on future temperature. The second rung of Fig. 3.9 shows ΔTHUMAN as 

well as the contributions from individual terms (here the OHE term is not shown for 

clarity because it is small and nearly the same for each simulation23). The GMST 

experienced in 2015 was unusually large due to the effect of ENSO, which is illustrated 

by inclusion of the ENSO rung for Fig. 3.9b (footnote 24).  

Figure 3.9 shows that the climate record can be fit nearly equally well using the 

EM-GC approach for two contrasting scenarios: 

1) tropospheric aerosols have had little overall effect on prior 
climate due to a near balance of cooling (primarily sulfate aerosols) 
and heating (primarily black carbon aerosols) and the climate 
feedback (numerical value of λ) needed to fit observed ΔTi is small 
(Fig. 3.9a) 
2) tropospheric aerosols have offset a considerable portion of the 
GHG warming over the prior decades because cooling (sulfate) has 
dominated heating (black carbon) and the climate feedback needed 
to fit observed ΔTi is large (Fig 3.9c). 
 

If whatever value of climate feedback (model parameter λ) needed to fit the past climate 

record is assumed to be unchanged into the future, then projections of global warming 

under scenario 2 (Fig. 3.9c) far exceed those of scenario 1 (Fig 3.9a). The fundamental 

reason for this dichotomy is that RF of climate due to all types of tropospheric aerosols 

 
23 Time series of ocean heat export (OHE) appear on the next figure, which illustrates the sensitivity of the 
EM-GC model to choice of data set for ocean heat content (OHC). 
24 The ENSO rungs for Fig 3.9a and 3.9c are nearly identical to Fig 3.9b and is only shown once 
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will be much lower in the future than it has been in the past, due to public health 

legislation designed to improve air quality (Fig. 2.9). Future warming thus depends on 

ΔRF due to GHGs (same for both scenarios) and climate feedback (larger for scenario 2). 

When two different models can produce similarly good fits to a data record under 

contrasting assumptions, such as scenarios 1 and 2 above, physicists term the problem as 

being degenerate. Simply put, the degeneracy of Earth’s climate introduces a 

fundamental uncertainty to projections of global warming. 

The degeneracy of our present understanding of Earth’s climate has important 

implications for policy. Figure 3.9 also contains markers, placed at year 2060, of the goal 

(1.5 °C warming) and upper limit (2.0 °C) of the Paris Climate Agreement. Again, all of 

the projections in Fig. 3.9 are based on RCP 4.5; the three simulations represent the 

present “likely” range of uncertainty in ΔRF of climate associated with the RCP 4.5 

aerosol precursor specification. The projection of ΔT in Fig. 3.9a lies below the Paris 

goal for the entire time period; the projection of ΔT in Fig 3.9b hits the Paris goal right at 

2060, whereas the projection of ΔT in Fig 3.9c falls between the Paris goal and upper 

limit in 2060. Later in this chapter we show projections out to year 2100, which is 

especially important since simulated temperatures are all rising at the end of the time 

period used for Fig. 3.9. 

The calculations shown in Fig. 3.9 suggest that if the present uncertainty in ΔRF 

due to tropospheric aerosols could be reduced, then global warming could be projected 

more accurately. There is considerable effort in the climate community to reduce the 

uncertainty in this term. It is beyond the scope of this book to review the widespread 

efforts in this area; such reviews are the domain of large, community wide efforts such as 
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the decadal surveys of measurement needs con-ducted by the U.S. National Academy of 

Sciences (NAS)25. Bond et al. [2013] published a detailed evaluation of the radiative 

effect due to black carbon (BC) aerosols and concluded the most likely value was 0.71 

W/m2 warming, from 1750 to 2005, which far exceeds the IPCC AR4 [Solomon, 2007] 

estimate of 0.2 W/m2 warming over this same period of time. The IPCC AR5 [Stocker et 

al., 2013] best estimate of ΔRF for BC aerosols is 0.4 W/m2 warming, from 1750 to 

2011. If the Bond et al. [2013] estimate is correct, then all else being equal, the absolute 

value of the best estimate for AerRF2011 would drop, relative to the –0.9 W/m2 value 

given by IPCC AR5 [Stocker et al., 2013]. Given the cantilevering between climate 

feedback and AerRF2011 (Fig. 3.9) and the sensitivity of future ΔT to climate feedback, 

this modification would induce a corresponding decline in the associated projection of 

ΔT. Much more work is needed to better quantify ΔRF due to aerosols, because of the 

complexity of aerosol types that affect the direct RF term [Kahn, 2012] as well as 

difficulties in assessing the effect of aerosols on clouds [Morgan et al., 2006; Storelvmo 

et al., 2009]. 

3.2.3 Equilibrium Climate Sensitivity 

The degeneracy of the climate record also limits our ability to precisely define 

equilibrium climate sensitivity (ECS), the warming that occurs after climate has 

equilibrated with 2×preindustrial CO2 [Kiehl, 2007; Otto et al., 2013; Schwartz, 2012; 

Schwartz et al., 2014]. The values of ECS associated with the three simulations shown in 

Figure 3.9 are 1.4, 1.7, and 2.4 °C, for AerRF2011 values of –0.4 W/m2, –0.9 W/m2, and 

  

 
25 At time of writing, the 2017 NAS Decadal Survey is underway and progress can be viewed at: 
http://sites.nationalacademies.org/DEPS/ESAS2017/index.htm 
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Figure 3.10 – Observed and EM-GC Simulated Global Warming, 1860 to 2060, for 
Various OHC Records 

 
 
Top rung of a typical ladder plot, 
comparing EM-GC modeled (red) and 
CRU observed (black) ΔT, as well as 
three of the terms that drive ΔTHUMAN 
(Eq. 3.4) computed for the AerRF2011 = –
0.9 W/m2, the IPCC AR5 best estimate 
for ΔRF due to aerosols, and comparison 
of modeled and measured OHC, for a 
simulation that derives a value for κ that 
provides best fit to the OHC dataset of 
Ishii & Kimoto [2009]. 
 
 
 
 
 
 
Same as a), expect for a simulation that 
derives a value for κ that provides best fit 
to the OHC dataset of Levitus et al. 
[2012]. 
 
 
 
 
 
 
Same as a), expect for a simulation that 
derives a value for κ that provides best fit 
to the OHC dataset of Gouretski & 
Reseghetti [2010]. Note how the values 
of Equilibrium Climate Sensitivity (ECS) 
given in the three panels respond to 
changes in OHC, whereas the transient 
climate responses (red curve, upper rung 
of each ladder plot) are nearly identical. 
Also, smaller values of Attributable 
Anthropogenic Warming Rate (AAWR) 
are found as OHC rises, due to interplay 
of the OHE and aerosol terms within 
ΔTHUMAN.  



121 
 

–1.5 W/m2, respectively. We conclude from Fig. 3.9 that if ocean heat export occurs in a 

manner similar to that described by the OHC determined by averaging six data records, 

then ECS lies between 1.4 and 2.4°C. 

Alas, if only the climate system were this simple. As shown in Fig. 3.8, the OHC 

record is also quite uncertain. Figure 3.10 shows three additional simulations of Earth’s 

climate, similar except for choice of OHC. All three simulations shown in Fig 3.10 use 

the IPCC AR5 [Stocker et al., 2013] best estimate of –0.9 W/m2 for AerRF2011. Fig. 3.10a 

utilizes the OHC record of Ishii and Kimoto [2009], which yields the smallest value of κ 

among all available datasets, 0.43 W/m2/°C. Fig 3.10c makes use of the OHC record of 

Gouretski and Reseghetti [2010] that yields the largest value of κ, 1.52 W/m2/°C. The 

OHC record of Levitus et al. [2012], which lies closest to the average of the six OHC 

determinations (Fig. 3.8), results in an intermediate value of κ equal to 0.68 W/m2/°C 

(Fig 3.10b). The second rung of each ladder plot of Fig. 3.10 shows the contributions to 

ΔTHUMAN from GHGs, tropospheric aerosols, and OHE26. The value of ECS ranges from 

1.6°C to 2.5°C, depending on which dataset for OHC is used. These simulations reveal a 

second degeneracy of the climate record, which further impacts our ability to define 

ECS. If the export of heat from the atmosphere to the oceans is truly as large as suggested 

by the OHC record of Gouretski and Reseghetti [2010], then Earth’s climate exhibits 

considerably larger sensitivity to the doubling of atmospheric CO2 than if the OHC 

record of Ishii and Kimoto [2009] is correct. 

Despite these complexities, an important pattern emerges upon comparison of 

ECS inferred from observations to ECS from GCMs. Figure 3.11 shows ECS from 

  
 

26 The LUC term, which is always close to zero, is not shown in Fig. 2.10 for clarity 
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Figure 3.11 – Equilibrium Climate Sensitivity (ECS) from the Literature and EM-GC 
Simulations 
 

 
 
Estimates of ECS from six previously published studies (left most points, black) and from 
six runs of our empirical model of global climate (right most points, colors). For the six 
points to the left, words below the axis are the citation for the ECS value. For the six 
colored points to the right, the words below the axis denote the origin of the OHC record 
used in the particular EM-GC simulation. See §3.6 Methods for further information.  
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GCMs that had been used in IPCC AR4 [Solomon, 2007], the more recent IPCC AR5 

[Stocker et al., 2013]  GCMs, and a subset of the IPCC AR5 GCMs that participated in an 

evaluation process known as the Atmospheric Chemistry and Climate Model 

Intercomparison Project (ACCMIP). The ACCMIP GCMs tend to have more 

sophisticated treatment of tropospheric aerosols than the rest of the CMIP5 GCMs 

[Shindell et al., 2013]. Figure 3.11 also shows three recent, independent estimates of ECS 

from the actual climate record: two based on analyses conceptually similar to our EM-GC 

approach, albeit quite different in design and implementation [T Masters, 2014; Schwartz, 

2012] and a third that examined Earth’s energy budget in detail over various decadal 

periods [Otto et al., 2013]. The righthand side of Fig. 3.11 shows ECS found using our 

EM-GC framework, for the six estimates of OHC that appear in Fig 3.8.  

Figure 3.11 shows that published values of ECS from GCMs (average of the three 

best estimates is 3.5 °C) are considerably larger than estimates of ECS from the actual 

climate record. This pattern holds upon comparison of GCM-based ECS to values found 

using empirically-based estimates of ECS found by other research groups (mean value 

2.1 °C) and using our EM-GC framework (mean value 1.6 °C). 

These three estimates of ECS are important for policy. The mean value of ECS 

from GCMs (3.5 °C), taken literally and ignoring changes in other GHGs, indicates CO2 

must be kept far short of the 2×pre-industrial level to achieve the Paris upper limit of 2°C 

warming. The mean of the three empirically based estimates of ECS from other groups 

(2.1 °C) suggests the Paris upper limit can per-haps be achieved if the rise of CO2 can be 

arrested before reaching the 2×pre-industrial level, whereas the mean value ECS from our 

EM-GC framework (1.6 °C) suggests that if society manages to keep CO2 from reaching 
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2×pre-industrial level, the Paris goal might be achieved. Of course, these statements are 

all contingent on minimal future growth of other GHGs. Also, we stress that all of the 

estimates of ECS, even those from our EM-GC framework, are associated with 

considerable uncertainty. Nonetheless, the various ECS estimates in Fig. 3.11 suggest 

climate feedback within GCMs is larger than in the actual climate system27, which would 

explain the tendency for so many CMIP5 GCM projections of ΔT to lie above the green 

trapezoid in Fig. 3.3. 

The tendency of CMIP5 GCMs to warm too quickly, with respect to the actual 

human influence on ΔT, is probed further in §3.3. This shortcoming of the CMIP5 GCMs 

is crucial to the thesis of this book: that the Paris Climate Agreement, as presently 

formulated, could actually limit the growth of GMST to less than 2 °C above 

preindustrial. 

3.3 Attributable Anthropogenic Warming Rate 

The most important metric for a climate model is how well the prior rise in global 

mean surface temperature can be simulated. The green trapezoid used in various figures 

throughout this chapter is based on the recognition, by Chapter 11 of IPCC [Stocker et 

al., 2013], that CMIP5 GCMs have warmed too aggressively compared to observations 

over the prior several decades. In this section, the empirical model of global climate is 

used to quantify the amount of global warming that can be attributed to humans, over the 

time period 1979 to 2010 (footnote 28). These years are chosen because the rise in ΔT is 

nearly linear over this interval and this period has been the basis of similar examination 

 
27 Most estimates of ECS, such as Eq. 3.6, show ECS to be solely a function of climate feedback 
28 Specifically all analyses in this section span the start of 1979 to the end of 2010 
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by several other studies [Foster and Rahmstorf, 2011; J Zhou and Tung, 2013a]. Our 

analysis of ΔT is compared to simulations of this quantity provided by CMIP5 GCMs, 

and to other analyses of ΔT over this period of time. 

First, some terminology must be defined. Chapter 10 of IPCC AR5 [Stocker et al., 

2013] examined the amount of warming over specific time periods that can be attributed 

to humans, which we term Attributable Anthropogenic Warming (AAW). Figure 10.3 of 

IPCC AR5 shows plots of the latitudinal distribution of AAW, for time periods of 32, 50, 

60, and 110 years. We prefer to divide AAW (units of °C) by the length of the time 

period in question, to arrive at a term called Attributable An-thropogenic Warming Rate 

(AAWR) (units of °C/decade). Consideration of AAWR, rather than AAW, provides a 

means to compare observed and modeled ΔT for studies that happen to examine time 

intervals with various lengths. 

Next, the method for quantifying AAWR is described. Equation 3.4 provides a 

mathematical definition for ΔTHUMAN i in the EM-GC framework. This equation 

represents the contribution to the changes in GMST due to human release of GHGs, 

industrial aerosols, and land use change. Central to our estimate of AAWR is quantitative 

representation of the climate feedback needed to match observed ΔT (parameter γ in Eq. 

3.4) and transfer of heat from the atmosphere to the ocean (term QOCEAN). The slope of 

ΔTHUMAN i, found using Eq. 3.4, with respect to time, is used to define AAWR. Below, 

slopes are found by fitting values of ΔTHUMAN i for time periods that span the start of 

1979 to the end of 2010, for various runs of the EM-GC that cover the entire 1860 to 

2015 period of time. 
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Numerical values of AAWR, from 1979 to 2010, are recorded on Figures 3.4, 3.5, 

3.9, and 3.10. The uncertainty associated with each value of AAWR given on Fig. 3.4 

and 3.5 is the standard error of the slope, found using linear regression29. The values of 

AAWR on these figures span a range of 0.086 °C/decade (Fig. 3.10c) to 0.122 °C/decade 

(Fig 3.9c). Differences in AAWR reflect changes in the slope of ΔTHUMAN i over this 32-

year interval, driven by various assumptions for ΔRF due to tropospheric aerosols as well 

as ocean heat export. 

Figure 3.12 illustrates the dependence of AAWR on how radiative forcing due to 

tropospheric aerosols is specified. Panel b shows estimates of AAWR as a function of 

AerRF2011, for simulations that all utilize the average value of ocean heat content from 

the six datasets shown in Fig. 3.8. The uncertainty of each data point represents the range 

of AAWR found for various assumptions regarding the shape of ΔRF of aerosols (i.e., the 

three curves for a specific value of AerRF2011 shown in Fig. 3.7, all of which are tied to 

aerosol precursor emission files from RCP 4.5). Figure 3.12a shows the mean value of 

1/χ2 associated with the three simulations conducted for a specific value of AerRF2011. 

The higher the value of 1/χ2, the better the climate record is simulated. The best estimate 

for AAWR of 0.107 °C/decade is based on a weighted average of the five circles in Fig 

3.12b, where 1/χ2 is used as the weight for each data point. The largest and smallest 

values of the five error bars on Fig. 3.12b are used to determine the upper and lower 

limits of AAWR, respectively. We conclude that if OHC has risen in a manner described 

by the average of the six datasets shown in Fig. 3.8, then the best estimate of AAWR over   

 
29 Uncertainties for AAWR are omitted from Figs. 3.9 and 3.10, for clarity, but are of the same magnitude 
as the uncertainties given on Figs. 3.4 and 3.5. 
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Figure 3.12 – Sensitivity of Attributable Anthropogenic Warming Rate (AAWR) due to 
ΔRF of Aerosols 
 

 
 
a) 1/χ2 from the EM-GC simulations in the lower panel; the larger the value, the better 
the fit. 
b) Values of AAWR for 1979 to 2010, computed as the slope of ΔTHUMAN, for EM-GC 
simulations that use the 15 time series of aerosol ΔRF shown in Fig. 3.7a. AAWR is 
displayed as a function of aerosol ΔRF in year 2011 (AerRF2011). All calculations used 
the mean value of OHC computed from the six datasets shown in Fig. 3.8. The best 
estimate for AAWR, found using five estimates weighted by 1/χ2, as well as the lower 
and upper estimates for AAWR, are indicated. 
See §3.6 Methods for further information.  
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Figure 3.13 – Comparison of AAWR from the EM-GC and CMIP5 GCMs 
 

 
 
Diamonds, triangles, and squares show the best estimate of AAWR, 1979 to 2010, found 
using ΔT from the CRU [Jones et al. 2012], GISS [Hansen et al. 2010], and NCEI [Karl 
et al. 2015] data centers, for various data records of OHC denoted by color. Error bars on 
these points represent the upper and lower limits of AAWR computed based on 
consideration of 15 possible time series for ΔRF of aerosols shown in Fig. 3.7a. Values of 
AAWR over 1979 to 2010 from the 41 GCMs that submitted RCP 4.5 simulations to the 
CMIP5 archive are shown by the box and whisker (BW) symbol. The middle line of the 
BW symbol shows the median value of AAWR from the 41 GCMs; the boxes denote the 
25th and 75th percentile of the distribution, and the whiskers show maximum and 
minimum values of AAWR. See §3.6 Methods for further information.  
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1979 to 2010 is 0.107 °C/decade, with 0.008 to 0.143 °C/decade bounding the likely 

range. 

The specific data record chosen for OHC has a modest effect on AAWR. This 

sensitivity is apparent from numerical values for AAWR recorded on Figs. 3.10a, b, and 

c. This dependence of AAWR on OHC is illustrated by the colored symbols on Fig. 3.13, 

which show the best estimate (symbols) and range of AAWR (error bars) that is found for 

each of the six OHC records. The three groupings of data points show AAWR found 

using ΔT from CRU [Jones et al., 2012], GISS [Hansen et al., 2010], and NCEI [Karl et 

al., 2015]. Nearly identical values of AAWR are found, regardless of which data center 

record is used to define ΔT. The mean value of the 18 empirical determinations of 

AAWR in Fig. 2.13 is 0.109 °C/decade, with a low and high of 0.028 and 0.170 

°C/decade, respectively. The notation 0.109 (0.028, 0.170) °C/decade is used to denote 

the mean and range of this determination of AAWR. 

Figure 2.13 also contains a graphical representation of AAWR extracted from the 

41 GCMs that submitted results for RCP 4.5 to the CMIP5 archive (see  §3.6 Methods for 

details on how AAWR from GCMs is found). The GCM values of AAWR are displayed 

using a box and whisker symbol. The middle line represents the median value of AAWR 

from the GCMs; the box is bounded by the 25th and 75th percentiles, whereas the 

whisker (vertical line) connects the maximum and minimum values. The median value of 

AAWR from the CMIP5 GCMs is 0.218 °C/decade, about twice the observed rate of 

warming. The 25th percentile lies at 0.183 °C/decade, which exceeds the empirically 

determined upper limit for AAWR of 0.170 °C/decade over the time period 1979 to 2010. 

In other words, the CMIP5 GCMs on average simulate an anthropogenically induced rate 
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of warming that is twice as fast as the actual climate system has warmed and three 

quarters of the CMIP5 GCMs exhibit warming that exceeds the highest plausible value 

for AAWR that we infer from the climate record. This is rather disconcerting, given the 

prominence of the CMIP5 GCMs in the discussion of climate policy (e.g., Rogelj et al. 

[2016] and references therein). 

The most likely reason for the shortcoming of CMIP5 GCMs illustrated in Fig. 

2.13 is that climate feedback within these models is too large. Although tabulations of λ 

from CMIP5 GCMs exist (i.e., Table 9.5 of IPCC AR5), comparison to values of λ found 

using the EM-GC framework is complicated by the sensitivity of λ to the ΔRF of climate 

due to aerosols as well as ocean heat export. Most studies of GCM output [Andrews et 

al., 2012; Shindell et al., 2012; Vial et al., 2013] do not examine all three of these 

parameters. For meaningful comparison of GCMs to climate feedback from our 

simulations, it would be particularly helpful if future GCM tabulations of λ provided ΔRF 

due to aerosols and the ocean heat uptake efficiency coefficient [Raper et al., 2002] that 

best describes the rise ocean heat content within each GCM simulation. While the 

discussion of Fig. 9.17 of AR5 emphasizes good agreement between the observed rise in 

ocean heat content (OHC) and the CMIP5 multi-model mean rise in OHC since the early 

1960s, there is an enormous range in the actual increase of OHC among the 27 CMIP5 

GCMs used in this analysis. 

Cloud feedback tends to be positive in nearly all GCMs i.e., simulated changes in 

the properties and distribution of clouds tends to amplify ΔRF of climate due to rising 

GHGs [Vial et al., 2013; Zelinka et al., 2013; C Zhou et al., 2015] 30. Furthermore, 

 
30 Fig 7.10 of AR5 provides a concise summary of the representation of cloud feedback within GCMs 
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GCMs that represent clouds in such a way that they act as a strong positive feedback tend 

to have larger values of ECS [Vial et al., 2013]. It is quite challenging to define cloud 

feedback from observations because the effect of clouds on ΔRF of climate depends on 

cloud height, cloud thickness, and radiative effects in two distinct spectral regions31. To 

truly discern cloud feedback, the effect of anthropogenic tropospheric aerosols on clouds 

should be quantified and removed [Peng et al., 2016]. The ephemeral nature of clouds 

requires either a long observing time to discern a signal from an inherently noisy process 

or the use of seasonal changes to deduce a relation between forcing and response 

[Dessler, 2010]. Nonetheless, evidence has emerged that cloud feedback in the actual 

atmosphere is indeed positive [Norris et al., 2016; C Weaver et al., 2015; C Zhou et al., 

2015]. However, the uncertainty in the empirical determination of cloud feedback is quite 

large [Dessler, 2010; C Zhou et al., 2015]. Furthermore, the vast majority of satellite-

based studies of cloud feedback that compare to GCM output make no attempt to 

quantify the effect of aerosols on clouds, which is problematic given the change in the 

release of aerosol precursors that has occurred in the past three decades [S Smith and 

Bond, 2014] combined with varied representation of the effect of aerosols on clouds 

within GCMs [Schmidt et al., 2014]. There are major efforts underway to evaluate and 

improve the representation of clouds within GCMs [Webb et al., 2017]. Based on the 

considerable existing uncertainty in the empirical determination of cloud feedback and 

the wide range of GCM representations of this process, cloud feedback within GCMs is 

 
31 Proper determination of ΔRF due to clouds requires analysis of the impact of clouds on reflectivity and 
absorption of solar radiation, commonly called the cloud short wavelength (SW) effect in the literature, as 
well as the impact of clouds on the trapping of infrared radiation (or heat) emitted by Earth’s surface, 
commonly called the long wavelength (LW) effect. 
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the leading candidate for explaining why most of the GCM-based values of AAWR 

exceed the empirical determination of AAWR. 

Next, our determination of AAWR is compared to estimates published by other 

groups. All studies considered here examined the time period 1979 to 2010. Our best 

estimate (and range) for AAWR found using the CRU ΔT dataset is 0.107 (0.080, 0.143) 

°C/decade. Foster & Rahmstorf [2011] (hereafter, FR2011) reported a value for AAWR 

of 0.170 °C/decade based on analysis of an earlier version of the CRU ΔT record32. They 

used multiple linear regression to remove the influence of ENSO, volcanoes, and total 

solar irradiance on observed ΔT and then examined the difference between observed ΔT 

and the contribution from these three exogenous factors, termed the residual, to quantify 

ΔT. The FR2011 estimate of AAWR exceeds our upper limit and lies closer to median 

GCM-based value of 0.218 °C/decade found upon our analysis of the CMIP5 archive. 

The difference between our best estimate for AAWR (0.107 °C/decade) and the 

value reported by FR2011 (0.170 °C/decade), both for ΔT from CRU, is due to the two 

approaches used to quantify the human influence on global warming. We have applied 

the approach of FR2011 to the derivation of AAWR using both the older version of the 

CRU ΔT used in their study and the more recent version used in our analysis, and arrive 

at 0.166 °C/decade for the older version and 0.183 for the latest version. 

The difficulty in the approach used by FR2011 is that their value of AAWR is 

based upon analysis of a residual found upon removal of all of the natural processes 

thought to influence ΔT. If an unaccounted for natural processes happens to influence ΔT 

over the period of time upon consideration, such as the Atlantic Meridional Overturning 

 
32 FR2011 also reported slightly higher values of AAWR, 0.171 and 0.175 °C/decade, upon use of ΔT from 
GISS and NCEI, respectively. 
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Circulation, then the value of AAWR found by examination of the residual will be biased 

by the magnitude of the variation in ΔT due to this process over the period of time under 

consideration. 

Quantitative analysis of the CRU data record reveals the cause of the difference of 

these two apparently disparate estimates of AAWR for the 1979 to 2010 time period. The 

5th rung of the Fig. 3.5 ladder plot indicates AMOC may have contributed 0.043 

°C/decade to the rise of ΔT, over the time period 1979 to 2010. Upon use in our EM-GC 

framework of the same version of CRU ΔT that was analyzed by FR2011, we compute 

AAWR = 0.109 °C/decade and a slope of 0.058 °C/decade for the contribution of AMOC 

to ΔT over 1979 to 2010. Thus, natural variation of climate due to variations in the 

strength of the Atlantic Meridional Overturning Circulation accounts, nearly exactly, for 

the difference between the FR2011 estimate of AAWR (0.170 °C/decade) and our value 

(0.109 °C/decade) 33.  

There is considerable debate about whether North Atlantic SST truly provides a 

proxy for variations in the strength of AMOC. An independent analysis conducted using 

different methodology [DelSole et al., 2011] supports our view that internal climate 

variability contributed significantly to the relative warmth of latter part of the time series 

examined by FR2011. Analysis of a residual to quantify a process, rather than 

construction and application of a model that physically represents the process, violates 

fundamental principles of separation of signal from noise [Silver, 2012]. The estimates of 

AAWR shown in Figs. 3.4 and 3.5 yield similar values, 0.111 °C/decade versus 0.109 

 
33 That is, 0.109 + 0.058 °/decade is nearly equal to 0.170 °/decade. Upon use of the same ver-sion of the 
CRU dataset as FR2011, we find a slope of 0.058 °/decade for 1979 to 2010, for the rung of the resulting 
ladder plot labeled AMOC (not shown). 
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°C/decade, whether or not AMOC is considered, because our determination of AAWR is 

built upon a physical model for the human influence on climate (Eq. 3.4) and does not 

rely on analysis of a residual. 

If there is one word that best summarizes the present state of climate science in 

the published literature, it might be confusion. Alas, the argument put forth in the prior 

paragraphs, that a value for AAWR from 1979 to 2010 of ~0.10 °C/decade is inferred 

from the climate record whether or not variations in the strength of AMOC are 

considered in the model framework, is in direct contradiction to Zhou & Tung [2013] 

(hereafter ZT2013). ZT2013 examined version 4 of the CRU ΔT data record, using a 

modified residual method34, and concluded AAWR is 0.169 °C/decade if temporal 

variation of AMOC are ignored, but drops to 0.07 °C/decade if variations in the strength 

of AMOC are considered. The ZT13 estimate of AAWR without consideration of AMOC 

is in close agreement with the value published by FR2011, and disagrees with our value 

for the reasons described above.  

The importance of the ZT13 study is that if their value of AAWR found upon 

consideration of AMOC (0.07 °C/decade) is correct, one would conclude that the CMIP5 

GCMs warm a factor of three more quickly than the actual climate system has responded 

to human influence. We are also able to reproduce the results of ZT13, but we argue their 

estimate of AAWR is biased low because they used a single linear function to describe 

ΔTHUMAN over the entire 1860 to 2010 time period. As illustrated on the second rung of 

 
34 The method used by ZT13 is similar to that of FR2011, except ZT13 include a model for ΔTHUMAN in 
their calculation of regression coefficients that are used to remove the influence of ENSO, volcanic, and 
solar variations from ΔT (their case 1) or remove the influence of ENSO, volcanic, solar variations ,and 
AMOC from ΔT (their case 2). For both cases, their model of ΔTHUMAN is a linear function from 1860 to 
2010. 
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the Fig. 3.4 and 3.5 ladder plots, ΔTHUMAN varied in a non-linear manner from 1860 to 

present. The time variation of ΔTHUMAN bears a striking resemblance to the rise in 

population over this period of time. For the determination of AAWR, not only should a 

model for ΔTHUMAN be used, but this model must correspond to the actual shape of the 

time variation of radiative forcing of climate caused by humans. 

3.4 Global Warming Hiatus 

The evolution of ΔT over the time period 1998 to 2012 has received enormous 

attention in the popular press, blogs, and scientific literature because some estimates of 

ΔT over this period of time had indicated little change [Trenberth and Fasullo, 2013]. 

Various suggestions had been put forth to explain this apparent leveling off of ΔT, 

including climate influence of minor volcanoes [Santer et al., 2014; Schmidt et al., 2014; 

Solomon et al., 2011], changes in ocean heat uptake [Balmaseda et al., 2013; Meehl et 

al., 2011], and strengthening of trade winds in the Pacific [England et al., 2014]. The 

major ENSO event of 1998, which led to a brief, rapid rise in ΔT due to suppression of 

the upwelling of cold water in the east-ern Pacific, must be factored into any analysis of 

the hiatus35. 

Karl et al. [2015] have questioned the existence of a hiatus. They showed an 

update to the NCEI record of GMST, used to define ΔT, which exhibits a steady rise 

from 1998 to 2012, despite the ENSO event in 1998. The main improvement was 

extension to present time of a method to account for biases in SST, introduced by varying 

techniques to record water temperature from ship-borne instruments. 

  

 
35 The effect of ENSO on ΔT in 1998 is readily apparent on the 4th rung of the Fig. 3.4 and 3.5 ladder plots. 
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Figure 3.14 – Observed and EM-GC Simulated Global Warming, 1995 to 2016 
 

 
 

Top rung of a typical ladder plot, comparing EM-GC modeled (red) and observed 
(grey) ΔT. Also shown are linear fits to the modeled (red dashed) and measured (black) 
time series of ΔT, considering monthly values from the start of 1998 to the end of 2012. 
The slope and standard error of each slope are also recorded. a) ΔT from CRU was used 
[Jones et al. 2012] b) ΔT from GISS [Hansen et al. 2010] c) ΔT from NCEI [Karl et al. 
2015] d) ΔT from the CRU Hybrid adjustment of Cowtan & Way [2014]. The linear fits 
to modeled ΔT for GISS, NCEI, and CRU-H lie right on top of the respective fits to 
measured ΔT.  
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Figure 3.14 compares measured ΔT over 1998 to 2012 to simulations of ΔT from 

the EM-GC. The EM-GC simulations were conducted for the entire 1860 to 2015 time 

period: the figure zooms in on the time period of interest. Fig. 3.14a, b, and c show 

results using the latest version of ΔT from CRU, GISS, and NCEI (footnotes 1 to 3 

provide URLs, data versions, etc.). Each panel also includes the slopes of a linear fit to 

the data (black) and to modeled ΔT (red), over 1998 to 2012. 

For the first time in our extensive analysis, the choice of a data center for ΔT 

actually matters. The observed time series of ΔT from CRU in Fig 3.14 exhibits a slope 

of 0.054 ± 0.05 °C/decade over this 15-year period, about a factor of two less than the 

modeled slope of 0.108 ± 0.03 °C/decade. These two slopes do agree within their 

respective uncertainties and, as is visually apparent, the ~155-year long simulation does 

capture the essence of the observed variations reported by CRU over the time period of 

the so-called hiatus. Nonetheless, the slopes disagree by a factor of 2, lending credence to 

the idea that some change in the climate system not picked up by the EM-GC approach 

could be responsible for a gap be-tween the modeled and measured ΔT between 1998 and 

2012. 

Analysis of the GISS and NCEI data sets leads to a different conclusion. As 

shown in Fig. 3.14b and c, the observed and modeled slope of ΔT, for 1998 to 2012, 

agree extremely well. The GISS record of GMST is based on the same SST record used 

by NCEI. Earlier versions of the GISS record (not shown), released prior to the update in 

SST described by Karl et al. [2015], did support the notion that some unknown factor 

was suppressing the rise in ΔT from 1998 to 2012. 
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Cowtan and Way [2014] (hereafter, CW2014) suggest the existence of a recent, 

cool bias in the CRU estimate of ΔT, due to closure of observing stations in the Arctic 

and Africa that they contend has not been handled properly in the official CRU data 

release. CW2014 published two alternate versions of the CRU data set, termed “kriging” 

and “hybrid”, to account for the impact of these station closures on ΔT. Fig 3.14d shows 

that, upon use of the CRU-Hybrid data set of CW2014, the observed and modeled slope 

of ΔT are in excellent agreement. Similarly good agreement between measured and 

modeled ΔT is obtained for CRU-Kriging (not shown). It remains to be seen whether 

CW2014 will impact future versions of ΔT from CRU. In the interim, the CW2014 

analysis supports the finding, from the GISS and NCEI data sets, that there was no hiatus 

in the gradual, long-term rise of ΔT. 

The EM-GC allows us to extract AAWR for any period of time. For the 

simulations shown in four panels of Fig 2.14, the values of AAWR for 1998 to 2012 are 

0.1075 ± 0.0041, 0.1186 ± 0.004, 0.1089 ± 0.0046, and 0.1039 ± 0.004, respectively, all 

in units of °C/decade. The primary factors responsible for the slightly smaller rise in ΔT 

(black numbers, Fig. 3.14) compared to AAWR over 1998 to 2012 is the tendency of the 

climate system to be in a more La Niña like state during the latter half of this period of 

time36 [Kosaka and Xie, 2013] and a relatively small value of total solar irradiance during 

the most recent solar max cycle [Coddington et al., 2016]. Our simulations, which 

include Kasatochi, Sarychev and Nabro, suggest these recent minor volcanic eruptions 

 
36 This is not particularly surprising given the strong ENSO of 1998. Hindsight is 20:20, but it is nonetheless 
remarkable how much attention has been devoted to discussion of ΔT over the 1998 to 2012 time period, 
including within IPCC AR5, given the unusual climatic conditions known to have occurred at the start of 
this time period. Apparently the global warming deniers took the lead in promulgating the notion that 
more than a decade had passed without a discern-able rise in ΔT, and the scientific community took that 
bait and devoted enormous resources to examination of GMST over this particular 15-year interval. 
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played only a miniscule role (~0.0018 °C/decade cooling) over this period. We conclude 

human activity exerted about 0.11 °C/decade warming over 1998 to 2012, and 

observations show a rise of ΔT that is slightly smaller in magnitude, due to natural factors 

that are well characterized by the empirical model of global climate. 

3.5 Future Temperature Projections 

Accurate projections of the rise of GMST are central for the successful 

implementation of the Paris Climate Agreement. As shown in §3.2.2, the degeneracy of 

the climate system coupled with uncertainty in ΔRF due to tropospheric aero-sols leads to 

considerable spread in projections of ΔT (the anomaly of GMST relative to preindustrial 

background). Complicating matters further, CMIP5 GCMs on average overestimate the 

observed rate of increase of ΔT during the past three decades by about a factor of two 

(§3.3). Recognition of the tendency of CMIP5 GCMs to overestimate observed ΔT led 

Chapter 11 of IPCC AR5 to issue a revised forecast for the rise in GMST over the next 

two decades, which is featured prominently below. Below, these issues are briefly 

reviewed in the context of the projections of ΔT relevant for evaluation of the Paris 

Climate Agreement. Finally, a route forward is described, based on forecasts of ΔT from 

the empirical model of global climate (EM-GC) [Canty et al., 2013]. 

Figure 3.15 provides dramatic illustration of the impact on global warming 

forecasts of the degeneracy of Earth’s climate system. This so-called ellipse plot shows 

calculations of ΔT in year 2060 (ΔT2060) (various colors) computed using the EM-GC, as 

a function of model parameters λ (climate feedback) and AerRF2011 (ΔRF due to 

tropospheric aerosols in year 2011). Values of ΔT2060 are shown only if a value of χ2 ≤ 2 

can be achieved for a particular combination of λ and AerRF2011. In other words, the  
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Figure 3.15 – Projected Rise in GMST, year 2060 
 

 
 
Values of ΔT relative to the pre-industrial baseline found using the EM-GC framework, 
for all combinations of model parameters λ and AerRF2011 that provide an acceptable fit 
to the climate record, defined here as yielding a value of χ2 ≤ 2. Projections of ΔT are 
shown only for AerRF2011 between the IPCC AR5 limits of –1.9 W/m2 and –0.1 W/m2. 
The color bar denotes ΔT2060 found by considering only the ΔTHUMAN term in Eq. 3.2 for 
the future. All simulations used OHC from the average of six data records shown in Fig 
3.8 and the aerosol ΔRF time series are based on scaling parameters along the middle 
road of Fig 3.21. The minimum and maximum values of ΔT2060 are recorded on each 
panel.  
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Figure 3.16 – Projected Rise in GMST, year 2100 
 

 
 
Same as Fig 3.15, except for EM-GC projections out to year 2100. The same color bar is 
used for both panels to accentuate the end of century difference between RCP 4.5 and 
RCP 8.5. The minimum and maximum values of ΔT2100 are recorded on each panel.  
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ellipse-like shape of ΔT2060 defines the range of these model parameters for which an 

acceptable fit to the climate record can be achieved. The EM-GC simulations in Fig 3.15a 

utilize forecasts of GHGs and aerosols from RCP 4.5 [Thomson et al., 2011], whereas Fig 

3.15b is based on RCP 8.5 [Riahi et al., 2011]. As noted above, projections of ΔT 

consider only human influences. We limit ΔRF due to aerosols to the possible range of 

IPCC AR5: i.e., AerRF2011 must lie between –0.1 W/m2 and –1.9 W/m2. Even though 

values of χ2 ≤ 2 can be achieved for values of λ and AerRF2011 outside of this range, the 

corresponding portion of the ellipse is shaded grey and values of ΔT associated with this 

regime of parameter space are not considered. Projections of ΔT are insensitive to which 

OHC data record is chosen (Fig 3.10), but the location of the ellipse on analogs to Fig 

3.15 varies, quite strongly in some cases, depending on which OHC data set is used. The 

χ2 ≤ 2 ellipse-like feature upon use of OHC from Gouretski & Reseghetti [2010] is 

associated with larger values of λ than the ellipses that appear on Fig. 3.14; conversely, 

the ellipse-like feature found using OHC from Ishii & Kimoto [2009] is aligned with 

smaller values of λ. In both cases, the numerical values of ΔT2060 within the resulting 

ellipses are similar to those shown in Fig 3.14. 

Figure 3.16 is similar to Fig. 3.15, except projections of ΔT for year 2100 (ΔT2100) 

are shown. The range of ΔT associated with the acceptable fits is recorded on all four 

panels of Fig. 3.15 and 3.16. For RCP 4.5, projected ΔT lies between 0.91 to 2.28 °C in 

2060 and falls within 0.91 to 2.40 °C in 2100. This large range for projections of ΔT is 

quite important for policy, given the Paris goal and upper limit of restricting ΔT to 1.5 °C 

and 2.0 °C above the preindustrial level, respectively. The large spread in ΔT is due to 
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the degeneracy of our present understanding of climate. In other words, the climate 

record can be fit nearly equally well assuming either: 

1) small aerosol cooling (values of AerRF2011 close to –0.4 W/m2) 
and weak climate feedback, which is associated with lower values of 
ΔT2060. 
2) large aerosol cooling (values of AerRF2011 close to –1.5 W/m2) 
and strong climate feedback, which is associated with higher values 
of ΔT2060. 
 

Studies of tropospheric aerosol ΔRF are unable, at present time, to definitely rule out any 

of these possibilities. 

One clear message that emerges from Fig. 3.15 and 3.16 is that to achieve the goal 

of the Paris Climate Agreement, emissions of GHGs must fall significantly below those 

used to drive RCP 8.5. The range of ΔT2100 shown in Fig. 3.16b is 1.6 to 4.7 °C. Climate 

catastrophe (rapid rise of sea level, large shifts in patterns of drought and flooding, loss of 

habitat, etc.) will almost certainly occur by end of this century if the emissions of GHGs, 

particularly CO2, follow those used to drive RCP 8.5 (footnote 37). The book Six 

Degrees: Our Future on a Hotter Planet [Lynas, 2008] provides an accessible discourse 

of the consequences of global warming, organized into 1 °C increments of future ΔT. 

In the rest of this chapter, policy relevant projections of ΔT are shown, both from 

the EM-GC framework and CMIP5 GCMs. Figure 3.17 shows the statistical distribution 

of ΔT2060 from our EM-GC calculations. The EM-GC based projections are weighted by 

1/χ2 (i.e., the better the fit to the climate record, the more heavily a particular projection is 

weighted). The height of each histogram represents the probability that a particular range 

of ΔT2060, defined by the width of each line segment, will occur. In other words, the most 

probable value of ΔT in year 2060, for the EM-GC projection that uses RCP 4.5, is 1.0 to  

 
37 As shown in Fig 3.1, CO2 and CH4 reach alarmingly high levels at end of century in the RCP 8.5 scenario. 



144 
 

Figure 3.17 – Probability Distribution Functions of Rise in GMST, year 2060 
 

 
 
The line segments represent a series of histograms (narrow, vertical rectangles) for 
projections of ΔT in year 2060 relative to the pre-industrial baseline found using our EM-
GC (blue) and CMIP5 GCMs (red). The height of each histogram represents the 
probability the rise of ΔT will fall within the range of ΔT that corresponds to the ends of 
each line segment (see main text). The Paris Climate Agreement target and upper limit of 
1.5 °C and 2.0 °C warming are denoted. Projections of ΔT2060 found using the EM-GC 
consider only combinations of model parameters λ and AerRF2011 that fall within the 
respective ellipse of Fig 3.17 (i.e., projections consider only acceptable fits to the climate 
record) and the EM-GC values of ΔT2060 are weighted by 1/χ2, so that simulations that 
provide a better fit to the climate record are given more credence. Finally, the EM-GC 
simulations used OHC from the average of six data records shown in Fig 3.8 and the 
aerosol ΔRF time series based on scaling parameters along the middle road of Fig 3.21. 
a) EM-GC and CMIP5 GCM projections based on RCP 4.5; the GCM projections 
consider the 41 models represented in Fig 3.3a. b) EM-GC and CMIP5 GCM projections 
based on RCP 8.5; the GCM projections consider the 38 models represented in Fig 3.3b.  
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Figure 3.18 – Probability Distribution Functions of Rise in GMST, year 2100 
 

 
 
Same as Fig. 3.17, except all of the projections are for year 2100.  
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Table 3.1 – Cumulative probability the rise in ΔT remains below a specific value, 2060 
and 2100. 
 

  

 2060 2100 

 1.5 °C 2.0 °C 1.5 °C 2.0 °C 
CMIP5 GCMs RCP 4.5 0.027 0.270 0.0 0.206 
CMIP5 GCMs RCP 8.5 0.0 0.026 0.0 0.0 

EM-GC, RCP 4.5 0.787 0.995 0.751 0.989 
EM-GC, RCP 8.5 0.215 0.816 0.0 0.098 
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1.1 °C above pre-industrial, and there is slightly less than 20% probability ΔT will 

actually fall within this range. In contrast, the CMIP5 GCMs project ΔT in 2060 will 

most probably be 2.0 to 2.2 °C warmer than preindustrial, with a ~12% probability ΔT 

will actually fall within this range. A finer spacing for ΔT is used for the EM-GC 

projection, since we are able to conduct many simulations in this model framework. 

Figure 3.18 is similar to Fig. 3.17, except the projection is for year 2100. The collection 

of histograms shown for any particular model (i.e., either CMIP5 GCMs or EM-GC) on a 

specific figure is termed the probability distribution function (PDF) for the projection of 

the rise in GMST (i.e., ΔT). 

The PDFs shown on Figures 3.17 and 3.18 reveal stark differences in projections 

of ΔT based on the EM-GC framework and the CMIP5 GCMs. In all cases, ΔT from the 

GCMs far exceed projections using our relatively simple approach that is tightly coupled 

to observed ΔT, OHC, and various natural factors that in-fluence climate. These 

differences are quantified in Table 3.1, which summarizes the cumulative probability that 

a specific Paris goal can be achieved. The cumulative probabilities shown in Table 3.1 

are based on summing the height of each histogram that lies to the left of a specific 

temperature, on Figs. 3.17 and 3.18. 

Time series of ΔT found using the CMIP5 GCM and EM-GC approaches are 

illustrated in Fig. 3.19 and 3.20, which show projections based on RCP 4.5 and RCP 8.5. 

The colors represent the probability of a particular future value of ΔT being achieved, for 

projections computed in the EM-GC framework weighted by 1/χ2. Essentially, the red 

(warm), white (mid-point), and blue (cool) colors repre-sent the visualization of a 

succession of histograms like those shown in Fig. 3.17 and 3.18. The GCM CMIP5  



148 
 

Figure 3.19 – Global Warming Projections, RCP 4.5 
 

 
 
Global warming projections, RCP 4.5. Simulations of the GMST anomaly relative to 
preindustrial baseline (ΔT), found using the EM-GC (red, white, and blue colors) and 
from the CMIP5 GCMs (grey lines). Observed ΔT from CRU is also shown (orange). All 
simulations extend back to 1860; the figure shows ΔT from 1945 to 2100 so that the 
projections can be better visualized. The green trapezoid shows the indicative likely 
range of annual average ΔT for 2016 to 2035 (roof and base of trapezoid are upper and 
lower limits) and the green bar indicates the likely range of the mean value of ΔT over 
2006 to 2035, both given in Chapter 11of IPCC AR5. The Paris Climate Agreement 
target and upper limit of 1.5 and 2.0 °C warming are denoted at the end of the century. 
The three CMIP5 lines represent the minimum, maximum, and multi-model mean of ΔT 
from the 41 GCMs that submitted projections for RCP 4.5 to the CMIP5 archive. The 
EM-GC projections represent the probability that future value of ΔT will rise to the 
indicated level. As for Fig 3.17, EM-GC projections consider only acceptable fits to the 
climate record, are based on the average of OHC from six data records, and have been 
weighted by 1/χ2 prior to calculation of the probabilities. The white patch of the red, 
white, and blue projection is the most probable future value of ΔT found using this 
approach.  
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Figure 3.20 – Global Warming Projections, RCP 8.5 
 

 
 
Same as Fig 2.19, except for the 38 GCMs that submitted projections using RCP 8.5 to 
the CMIP5 archive. Note how the most probable evolution of ΔT found using the EM-GC 
framework passes through the middle of the IPCC AR5 trapezoid, and is matched only by 
the lowest projection warmings of the CMIP5 GCMs.  
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projections of ΔT (minimum, maximum, and multi-model mean) for RCP 4.5 and RCP 

8.5 are shown by the three grey lines. These lines, identical to those shown in Fig. 3.3a 

(RCP 4.5) and Fig 3.3b (RCP 8.5), are based on our analysis of GCM output preserved on 

the CMIP5 archive. The green trapezoid, which originates from Fig 11.25b of IPCC AR5, 

makes a final and rather important appearance on these figures. Also, the Paris target (1.5 

°C) and upper limit (2 °C) are marked on the right vertical axis of both figures. 

There are resounding policy implications inherent in Figs. 3.17 to 3.20. First, 

most importantly, and beyond debate of any reasonable quantitative analysis of climate, if 

GHG emissions follow anything close to RCP 8.5, there is no chance of achieving either 

the goal or upper limit of the Paris climate agreement (Fig 3.20). Even though there is a 

small amount of overlap between the Paris targets and our EM-GC projections for year 

2100 on Fig. 3.20, this is a false hope. In the highly unlikely event this realization were to 

actually happen, it would just be a matter of time before ΔT broke through the 2 °C 

barrier, with all of the attendant negative consequences [Lynas, 2008]. Plus, of course, 

1.5 to 2.0 °C warming (i.e., the lead up to breaking the 2 °C barrier) could have rather 

severe consequences. This outcome is all but guaranteed if GHG abundances follow that 

of RCP 8.5. 

The second policy implication is that projections of ΔT found using the EM-GC 

framework indicate that, if emissions of GHGs can be limited to those of RCP 4.5, then 

by end-century there is: 

a) a 75% probability the Paris target of 1.5°C warming above pre-
industrial will be achieved 
b) a greater than 95% probability the Paris upper limit of 2°C 
warming will be achieved 
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The cumulative effect of the commitments from nations to restrict future emissions of 

GHGs, upon which the Paris Climate Agreement is based, have the world on course to 

achieve GHG emissions that fall just below those of RCP 4.5, provided: 1) both 

conditional and unconditional commitments are followed; 2) reductions in GHG 

emissions needed to achieve the Paris agreement, which generally terminate in 2030, are 

continually improved out to at least 2060. 

The policy implication articulated above differs considerably from the consensus 

in the climate modeling community that emission of GHGs must follow RCP 2.6 to 

achieve even the 2°C upper limit of Paris [Rogelj et al., 2016]. We caution those quick to 

dismiss the simplicity of our approach to consider the emerging view, discussed in 

Chapter 11 of IPCC AR5 and quantified in their Figs. 11.25 and TS.14, as well as our 

Fig. 3.3 and 3.13, that the CMIP5 GCMs warm much quicker than has been observed 

during the past three decades. In support of our approach, we emphasize that our 

projections of ΔT are bounded nearly exactly by the green trapezoid of IPCC AR5, which 

reflects the judgement of at least one group of experts as to how ΔT will evolve over the 

next two decades. Given our present understanding of Earth’s climate system, we contend 

the Paris Climate Agreement is a beacon of hope because it places the world on a course 

of having a reasonable probability of avoiding climate catastrophe. 

We conclude by cautioning against over-interpretation of the numbers in Table 

3.1 or the projections in Figs. 3.19 and 3.20. Perhaps the largest source of uncertainty in 

the EM-GC estimates of ΔT is the assumption that whatever values of λ (climate 

feedback) and κ (ocean heat export coefficient) have occurred in the past will continue 

into the future. Should climate feedback rise, or ocean heat export fall, the future increase 
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of ΔT will exceed that found using our approach. On the other hand, the past climate 

record can be fit exceedingly well for time invariant values of λ and κ. The great 

difficulty is that the specific values of these two parameters are not able to be ascertained 

from the climate record, due to large current uncertainties in ΔRF due to aerosols and the 

ocean heat content rec-ord. Community-wide efforts to reduce the uncertainties in ΔRF of 

aerosols and ocean heat storage are vital. We urge that judgement of the veracity of the 

results of our EM-GC projections be based on whether other research groups are able to 

reproduce these projections of ΔT, based on similar types of analyses. Given these 

caveats, our forecasts of global warming suggest that GHG emissions of RCP 4.5 

constitute a reasonable guideline for attempting to achieve the both the Paris tar-get (1.5 

°C) and upper limit (2.0 °C) for global warming, relative to the pre-industrial era. 

3.6 Methods 

Many of the figures use data or archives of model output from publically 

available sources. Here, webpage addresses of these archives, citations, and details 

regarding how data and model output have been processed are provided. Only those 

figures with “see methods for further information” in the caption are ad-dressed below. 

Electronic copies of the figures are available on-line at http://www.atmos.umd.edu/paris-

beacon-of-hope. 

Figure 3.1 shows mixing ratios of CO2, CH4, and N2O from RCP 2.6, RCP 4.5, 

RCP 6.0, and RCP 8.5, which were obtained from files: 

RCP*MIDYEAR_CONCENTRATIONS.DAT 

provided by the Potsdam Institute for Climate Research (PICR) at: 

http://www.pik-potsdam.de/~mmalte/rcps/data 
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The figures also contain observed global, annually averaged mixing ratios for each GHG. 

Observed CO2 is from data provided by NOAA Earth Science Re-search Laboratory 

(ESRL) [Ballantyne et al., 2012] at: 

ftp://ftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_gl.txt 

The CO2 record given at the above URL starts in 1980. This record has been extended 

back to 1959 using annual, global average CO2 growth rates at: 

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html#global_growth 

The CH4 record for 1984 to present [Dlugokencky et al., 2009] is from: 

ftp://aftp.cmdl.noaa.gov/products/trends/ch4/ch4_annmean_gl.txt 

For years prior to 1984, CH4 is from a global average computed based on measurements 

at the Law Dome (Antarctica) and Summit (Greenland) ice cores [Etheridge et al., 1998]: 

http://cdiac.ornl.gov/ftp/trends/atm_meth/EthCH498B.txt 

The N2O record for 1979 to present [Montzka et al., 2011] is from: 

ftp://ftp.cmdl.noaa.gov/hats/n2o/combined/HATS_global_N2O.txt 

Figure 3.2 shows ΔRF of climate due to GHGs, for RCP 4.5 and RCP 8.5. The 

GHG abundances all originate from the files provided by PICR given for Fig. 2.1. The 

estimates of ΔRF for each GHG other than tropospheric O3 were found using formulae in 

Table 8.SM.1 of IPCC AR5, which are identical to formulae given in Table 6.2 of IPCC 

AR3 except the value for pre-industrial CH4 has risen from 0.700 ppm to 0.722 ppm. 

These formulae use 1750 as the pre-industrial initial condition, as has been the case in all 

IPCC reports since 2001. Hence, ΔRF represents the increase in radiative forcing of 

climate since 1750. Throughout this book, we relate ΔRF computed in this manner to ΔT 

relative to a pre-industrial baseline of 1850 to 1900. This mismatch of baseline values for 
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ΔRF and ΔT is a consequence of the IPCC precedent of initializing ΔRF in 1750 

combined with 1850 marking the first thermometer based estimate of GMST provided by 

the Climate Research Unit of East Anglia, UK [Jones et al., 2012]. The rise in RF of 

climate between 1750 and 1900 was small, so the mismatch of baselines has no 

significant influence on our analysis. The ΔRF due to tropospheric O3 is based on the 

work of Meinshausen et al. [2011], obtained from the PICR files. The grouping of GHGs 

into various categories on Fig 3.2 is the same as used for Fig 2.2. 

Figure 2.3 shows time series of ΔT, relative to the preindustrial baseline, from 

CRU [Jones et al., 2012], GISS [Hansen et al., 2010], and NCEI [Karl et al., 2015] as 

well as GCMs that submitted model results to the CMIP5 archive [K Taylor et al., 2012] 

for RCP 4.5 (Fig. 3.3a) and RCP 8.5 (Fig. 3.3b). The URLs of observed ΔT are given in 

footnotes 3, 4, and 5. The CMIP5 URL is given in footnote 7.  

All of the observed ΔT time series are normalized to a baseline for 1850 to 1900 

in the following manner. The raw CRU dataset is provided for a baseline of 1961 to 

1990; the raw GISS dataset is provided for a baseline of 1951 to 1980, and the raw NCEI 

time series for ΔT is given relative to baseline of 1901 to 2000. The CRU dataset starts in 

1850; the other two time series start in 1880. To transform each time series so that ΔT is 

relative to 1850 to 1900, the following steps are taken: 

a) for CRU, 0.3134°C is added to each value of ΔT; 0.3134°C is the 
difference between the mean of CRU ΔT during 1961 to 1990 
relative to 1850 to 1900; 
b) for GISS, 0.1002°C is first added to each value of ΔT; 0.1002°C 
is the difference between the mean value of GISS ΔT during 1961 to 
1990 relative to 1951 to 1980. After this initial addition, the GISS 
data represent ΔT relative to 1961 to 1990. A second addition of 
0.3134°C then occurs, to place the data on the 1850 to 1900 
baseline; 
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c) for NCEI, 0.1202°C is first subtracted from each value of ΔT; 
0.1202°C is the difference between the mean value of NCEI ΔT 
during 1961 to 1990 relative to 1901 to 2000. After this initial 
addition, the NCEI data represent ΔT relative to 1961 to 1990. A 
second addition of 0.3134°C then occurs, to place the data on the 
1850 to 1900 baseline. 
 

The GCM lines in the figure are based on analysis of all of the r*i1p1 files present 

on the CMIP5 archive as of early summer 2016. The 42 GCMs considered are given in 

Table 3.2. According to the CMIP5 nomenclature, “r” refers to realization, “i” refers to 

initialization method, and “p” refers to physics version, and “*” is notation for any 

integer. The integer that appears after the “r” in the GCM output file name is used to 

distinguish members of an ensemble, or realization, generated by initializing a set of 

GCM runs with different but equally realistic initial conditions; the “i” in the file name 

refers to a different method of initializing the GCM simulation; and, the “p” denotes 

perturbed GCM model physics. The string i1p1 appears in the vast majority of the 

archived files. 

For a GCM to have been used, a historical file had to have been submitted to the 

CMIP5 archive. The historical files contain output of gridded surface temperatures, 

generally for the 1850 to 2005 time period. Global mean surface temperature is 

computed, using cosine latitude weighting. Next, an offset such that GMST from the 

historical run of each GCM can be placed onto a 1961 to 1990 baseline is found and 

recorded. This offset is applied to all of the r*i1p1 files from the future runs of the 

specific GCM, which generally cover the 2006 to 2100 time period. All GCM time series 

are then placed onto the 1850 to 1900 baseline by adding 0.3134°C to each value of ΔT. 

All of the GCMs except CCM-CESM listed in Table 3.2 submitted future runs for RCP 

4.5 to the CMIP5 archive; a single line for each of the other 41 models appears in Figure 
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Table 3.2 – Names of the 42 CMIP5 GCMs used in Fig. 3.3. 

  

1. ACCESS1.0 22. GFDL-ESM2M 
2. ACCESS3.0 23. GISS-E2-H 
3. BCC-CSM1.1 24. GISS-E2-H-CC 
4. BCC-CSM1.1(m) 25. GISS-E2-R 
5. BNU-CSM 26. GISS-E2-R-CC 
6. CCSM4 27. HadCM3 
7. CESM1(BGC) 28. HadGEM2-CC 
8. CESM1(CAM5) 29. HadGEM2-ES 
9. CMCC-CESM 30. INM-CM4 
10. CMCC-CM 31. IPSL-CM5A-LR 
11. CMCC-CMS 32. IPSL-CM5A-MR 
12. CNRM-CM5 33. IPSL-CM5B-LR 
13. CSIRO-Mk3.6.0 34. MIROC-ESM 
14. CanCM4 35. MIROC-ESM-CHEM 
15. CanESM2 36. MIROC4h 
16. EC-EARTH 37. MIROC5 
17. FGOALS-g2 38. MPI-EMS-LR 
18. FIO-ESM 39. MPI-ESM-MR 
19. GFDL-CM2.1 40. MRI-CGCM3 
20. GFDL-CM3 41. NorESM1-M 
21. GFDL-ESM2G 42. NorESM1-ME 
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Table 3.3 – AAWR from GCM RCP 4.5 Simulations in the CMIP5 Archive. 

 

CMIP5 GCM Modeling Center 
Ensemble 

run 
GCM-AAWR (oC/dec) 

LIN REG 
ACCESS1.0 

Bureau of Meteorology, 
Australia 

r1i1p1 0.248 0.230 
ACCESS1.3 r1i1p1 0.234 0.206 

 Ctr Avg 0.241 0.218 
BCC-CSM1.1 

Beijing Climate Center, China 
Meteorological Administration 

r1i1p1 0.259 0.253 
BCC-CSM1.1(m) r1i1p1 0.286 0.278 

 Ctr Avg 0.273 0.265 

BNU-ESM 
College of Global Change and 
Earth System Science, Beijing 

Normal University, China 
r1i1p1 0.320 0.301 

CCSM4 
National Center for 

Atmospheric Research 
(NCAR), United States 

r1i1p1 0.284 0.280 
r2i1p1 0.255 0.247 
r3i1p1 0.226 0.225 
r4i1p1 0.214 0.204 
r5i1p1 0.283 0.252 
r6i1p1 0.234 0.223 

Mod Avg 0.249 0.238 
CESM1(BGC) 

Community Earth System 
Model Contributors, NCAR, 

United States 

r1i1p1 0.249 0.223 

CESM1(CAM5) 

r1i1p1 0.198 0.179 
r2i1p1 0.193 0.184 
r3i1p1 0.243 0.230 

Mod Avg 0.211 0.198 
 Ctr Avg 0.232 0.204 

CMCC-CM 
Centro Euro–Mediterraneo 

per I Cambiamenti Climatici, 
France 

r1i1p1 0.228 0.235 
CMCC-CMS r1i1p1 0.227 0.250 
CNRM-CM5 r1i1p1 0.242 0.221 

 Ctr Avg 0.232 0.236 

CSIRO-Mk3.6.0 
Commonwealth Scientific and 

Industrial Research 
Organization, Australia 

r1i1p1 0.172 0.170 

CanCM4 
Canadian Centre for Climate 

Modelling and Analysis 

r1i1p1 0.243 0.226 
r2i1p1 0.267 0.260 
r3i1p1 0.230 0.219 
r4i1p1 0.289 0.279 
r5i1p1 0.226 0.220 
r6i1p1 0.228 0.220 
r7i1p1 0.278 0.249 
r8i1p1 0.265 0.252 
r9i1p1 0.214 0.204 
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CMIP5 GCM Modeling Center 
Ensemble 

run 
GCM-AAWR (oC/dec) 

LIN REG 

CanCM4 (cont.) 

Canadian Centre for Climate 
Modelling and Analysis (cont.) 

 

r10i1p1 0.195 0.191 
Mod Avg 0.244 0.232 

CanESM2 

r1i1p1 0.321 0.286 
r2i1p1 0.334 0.315 
r3i1p1 0.307 0.295 
r4i1p1 0.331 0.302 
r5i1p1 0.326 0.308 

Mod Avg 0.324 0.301 
 Ctr Avg 0.270 0.255 

EC-EARTH 

EC-EARTH consortium 
(numerous national weather 

services and universities, from 
11 countries in Europe, 
participate in this effort) 

r1i1p1 0.220 0.209 
r2i1p1 0.187 0.178 
r5i1p1 0.210 0.197 
r6i1p1 0.157 0.146 
r8i1p1 0.204 0.203 
r9i1p1 0.186 0.181 

r12i1p1 0.155 0.149 
r13i1p1 0.233 0.233 
r14i1p1 0.188 0.160 

Mod Avg 0.193 0.184 

FGOALS-g2 
Institute of Atmos. Physics, 
Chinese Academy of Sciences 

r1i1p1 0.179 0.185 

FIO-ESM 
First Institute of Oceanography, 
State Oceanic Administration, 

China 

r1i1p1 0.188 0.192 
r2i1p1 0.184 0.187 
r3i1p1 0.203 0.207 

Mod Avg 0.191 0.195 

GFDL-CM2.1 
NOAA Geophysical Fluid 

Dynamics Laboratory, 
United States 

r1i1p1 0.261 0.250 
r2i1p1 0.319 0.319 
r3i1p1 0.297 0.266 
r4i1p1 0.294 0.262 
r5i1p1 0.301 0.287 
r6i1p1 0.197 0.203 
r7i1p1 0.253 0.226 
r8i1p1 0.274 0.278 
r9i1p1 0.202 0.194 

r10i1p1 0.263 0.245 
Mod Avg 0.266 0.253 

GFDL-CM3 r1i1p1 0.270 0.257 
GFDL-ESM2G r1i1p1 0.275 0.253 
GFDL-ESM2M r1i1p1 0.204 0.183 

 Ctr Avg 0.262 0.248 
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CMIP5 GCM Modeling Center 
Ensemble 

run 
GCM-AAWR (oC/dec) 

LIN REG 

GISS-E2-H 

NASA Goddard Institute for 
Space Studies, United States 

r1i1p1 0.192 0.174 
r2i1p1 0.216 0.194 
r3i1p1 0.192 0.186 
r4i1p1 0.207 0.192 
r5i1p1 0.178 0.171 

Mod Avg 0.197 0.183 
GISS-E2-H-CC r1i1p1 0.222 0.214 

GISS-E2-R 

r1i1p1 0.185 0.169 
r2i1p1 0.189 0.177 
r3i1p1 0.193 0.181 
r4i1p1 0.169 0.171 
r5i1p1 0.141 0.136 
r6i1p1 0.229 0.204 

Mod Avg 0.184 0.173 
GISS-E2-R-CC r1i1p1 0.200 0.191 
 Ctr Avg 0.193 0.182 

HadCM3 
Met Office Hadley Centre, 

United Kingdom. 
 

Additional HadGEM2-ES 
realizations were contributed by 
Instituto Nacional de Pesquisas 

Espaciais, Brazil. 

r1i1p1 0.235 0.236 
r2i1p1 0.200 0.171 
r3i1p1 0.250 0.230 
r4i1p1 0.208 0.192 
r5i1p1 0.297 0.271 
r6i1p1 0.192 0.195 
r7i1p1 0.258 0.236 
r8i1p1 0.257 0.214 
r9i1p1 0.23 0.217 
r10i1p1 0.233 0.215 

Mod Avg 0.236 0.218 
HadGEM2-CC r1i1p1 0.184 0.183 

HadGEM2-ES 

r1i1p1 0.289 0.277 
r2i1p1 0.204 0.195 
r3i1p1 0.185 0.177 
r4i1p1 0.274 0.233 

Mod Avg 0.238 0.221 
 Ctr Avg 0.233 0.216 

INM-CM4 
Institute for Numerical 

Mathematics, Russian Academy 
ofSciences 

r1i1p1 0.100 0.098 

IPSL-CM5A-
LR 

Institut Pierre-Simon Laplace, 
France 

r1i1p1 0.323 0.317 
r2i1p1 0.297 0.294 
r3i1p1 0.216 0.220 
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CMIP5 GCM Modeling Center 
Ensemble 

run 
GCM-AAWR (oC/dec) 

LIN REG 
IPSL-CM5A-LR, 

cont. 
Institut Pierre-Simon Laplace, 

France cont. 

r4i1p1 0.256 0.248 
Mod Avg 0.273 0.270 

IPSL-CM5A-MR r1i1p1 0.253 0.235 
IPSL-CM5B-LR r1i1p1 0.122 0.122 

 Ctr Avg 0.244 0.239 
MIROC-ESM Japan Agency for Marine-Earth 

Science and Technology, 
Atmosphere and Ocean Research 
Institute (Univ. of Tokyo), and 

National Institute for 
Environmental Studies 

r1i1p1 0.177 0.172 
MIROC-ESM-

CHEM 
r1i1p1 0.170 0.156 

 Ctr Avg 0.174 0.164 

MIROC4h Atmosphere and Ocean Research 
Institute (Univ. of Tokyo), 

National Institute for 
Environmental Studies, and 

Japan Agency for Marine-Earth 
Science and Technology 

r1i1p1 0.252 0.251 
r2i1p1 0.300 0.282 
r3i1p1 0.317 0.299 

Mod Avg 0.290 0.277 

MIROC5 

r1i1p1 0.278 0.273 
r2i1p1 0.187 0.154 
r3i1p1 0.287 0.256 

Mod Avg 0.251 0.228 
 Ctr Avg 0.270 0.252 

MPI-ESM-LR 
Max-Planck-Institut für 

Meteorologie 
(Max Planck Institute for 
Meteorology), Germany 

r1i1p1 0.161 0.144 
r2i1p1 0.248 0.224 
r3i1p1 0.212 0.205 

Mod Avg 0.207 0.191 

MPI-ESM-MR 

r1i1p1 0.272 0.256 
r2i1p1 0.199 0.184 
r3i1p1 0.239 0.225 

Mod Avg 0.237 0.222 
 Ctr Avg 0.222 0.206 

MRI-CGCM3 
Meteorological Research 

Institute, Japan 
r1i1p1 0.089 0.075 

NorEMS1-M 
Norwegian Climate Centre 

r1i1p1 0.156 0.157 
NorEMS1-ME r1i1p1 0.180 0.172 

 Ctr Avg 0.168 0.164 
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3.3a. For RCP 8.5, all of the GCMs except CanCM4, GFDL-CM2.1, HadCM3, and 

MIROC4h submitted output for RCP 8.5 to the CMIP5 archive; a single line for each of 

the other 38 models appears in Figure 3.3b. Information about the Modeling Center and 

Institution for these models is provided in our Table 3.3 above, for models that submit-

ted results for RCP 4.5, and on the web at http://cmip-

pcmdi.llnl.gov/cmip5/docs/CMIP5_modeling_groups.pdf. 

Figure 3.3 also contains a green trapezoid and vertical bar. The coordinates of the 

trapezoid are (2016, 0.722 °C), (2016, 1.092 °C), (2035, 0.877 °C) and (2035, 1.710 °C) 

and the coordinates of the vertical bar are (2026, 0.89 °C) and (2026, 1.29 °C). Anyone 

concerned about the veracity of Fig. 3.3 is urged to have a look at Fig 11.25 of IPCC 

AR5. The right-hand side of Fig. 11.25b includes an axis labeled “Relative to 1850–

1900”. Our Fig. 3.3 visually matches Fig. 11.25 of IPCC AR5 to a very high level of 

quantitative detail. 

Figures 3.4 and 3.5 compare ΔT relative to the 1850 to 1900 baseline from CRU 

to values of ΔT found using the empirical model of global climate. Values of model 

output parameters λ, κ, ECS, and AAWR are all recorded on Figure 3.4. The simulation 

in Fig. 3.4 was found upon setting the regression coefficients C4, C5, and C6 in Eq. 3.2 to 

zero. The simulation in Fig 3.5 made full use of all regression coefficients. The 

comparison of modeled and measured OHC that corresponds to the simulation shown in 

Fig 3.5 is nearly identical to the bottom panel of Fig 3.4, and hence has been omitted. The 

same value of κ was found for both of these simulations. The bottom two rungs of Fig. 

3.5 show the contribution to modeled ΔT from AMOC, PDO, and IO; the slope of the 

AMOC contribution over 1979 to 2010 is also recorded. The top rung of each ladder plot 
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also records the goodness of fit parameter χ2 (Eq. 3.7) for the two simulations. Finally, 

the top two rungs of each ladder plot are labeled “ΔT from preindustrial” whereas the 

other rungs have labels of ΔT. The label ΔT is used for the lower rungs for compactness 

of notation. 

Figure 3.6 shows time series for ΔRF of six classes of anthropogenic, 

tropospheric aerosols: four that tend to cool climate (sulfate, organic carbon from 

combustion of fossil fuels, dust, and nitrate) and two that warm (black carbon from 

combustion of fossil fuels and biomass burning, and organic carbon from biomass 

burning). Estimates of direct ΔRF from all but sulfate originate from values of direct 

radiative forcing of climate obtained from file: 

RCP45_MIDYEAR_RADFORCING.DAT 

provided by PICR at: 

http://www.pik-potsdam.de/~mmalte/rcps/data 

We have modified the PICR value for direct radiative forcing of sulfate, using data from 

[S Smith et al., 2011; Stern, 2006a; b], as described in our methods paper [Canty et al., 

2013], because the modified time series is deemed to be more accurate than the RCP 

value, which was based on projections of sulfate emission reductions conducted prior to 

the publication of S Smith et al. [2011]. 

The estimates of direct ΔRF from the various aerosol types are then combined 

into two time series: one for the aerosols that cool, the other for the aerosols that heat. 

Next, these two time series are multiplied by scaling parameters that represent the aerosol 

indirect effect38 for aerosols that cool and for aerosols that warm. These are the six curves 

 
38 The aerosol indirect effect is scientific nomenclature for changes in the radiative forcing of climate due 
to modifications to clouds caused by anthropogenic aerosols. 
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shown using colors that correspond to aerosol type. The total direct ΔRF of aerosols that 

warm, and aerosols that cool, are shown by the red and blue lines, respectively. The line 

labeled Net is the sum of the total warming and total cooling term, and reflects the time 

series of Aerosol ΔRF i input to the EM-GC (Eq. 3.2). Finally, the black open square 

marks AerRF2011 = –0.9 W/m2 along the Net time series, which is the best estimate of 

total ΔRF due to anthropogenic tropospheric aerosols given by IPCC AR5. 

Canty et al. [2013] relied on scaling parameters that were tied to numerical 

estimates of upper and lower limits of the aerosol indirect effect given by IPCC AR4 

(their Fig. 4). Figure 3.21 is our new scaling parameter “road map”, updated to reflect 

estimates of the aerosol indirect effect by IPCC AR5. The set of scaling parameters used 

in Fig 3.6 are given by the intersection of “Middle Road” with the AerRF2011 = –0.9 

W/m2 line in Fig. 3.22: i.e., αHEAT = 2.19 and αCOOL = 2.43. Further details of our 

approach for assessing a wide range of AER RF scenarios in a manner consistent with 

both CMIP5 and IPCC is given in Canty et al. [2013]. 

Figure 3.7 shows time series of Aerosol ΔRF i found using scaling parameters 

αHEAT and αCOOL, combined with estimates of direct ΔRF of climate found as described 

above, for five values of AerRF2011: –0.1. –0.4, –0.9, –1.5, and –1.9 W/m2 (open squares). 

The highest and lowest values of AerRF2011 are the upper and lower limits of the possible 

range, the second highest and second lowest values are the limits of the likely range, and 

the middle value is the best estimate, all from IPCC AR5. Three curves are shown for 

each value of AerRF2011: the solid curve uses values for scaling parameters αHEAT and 

αCOOL along the Middle Road of Fig. 3.21, whereas the other lines use parameters along 

the High and Low Roads.  
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Figure 3.21 – Aerosol Indirect Effect Scaling Parameters 
 

 
 
The black lines show values of total ΔRF of climate in year 2011 (AerRF2011), relative to 
preindustrial baseline, due to anthropogenic aerosols, as a function of the parameter used 
to multiply the total direct ΔRF of climate from all aerosols that cool (αCOOL) and the 
parameter used to multiply the total direct ΔRF of climate from all aerosols that heat 
(αHEAT). Parameters αCOOL and αHEAT represent the effect of aerosols on the occurrence, 
distribution, and properties of clouds: the so-called aerosol indirect effects. The red line 
shows the most likely value of AerRF2011, –0.9 W/m2, from IPCC AR5. The black lines 
represent the IPCC AR5 upper and lower limits of the likely range (–0.4 W/m2 and –1.5 
W/m2) and the upper and lower limits of the possible range for AerRF2011 (–0.1 W/m2 and 
–1.9 W/m2). This figure is included to indicate that various combinations of αCOOL and 
αHEAT can be used to find a particular value of AerRF2011. The combination of parameters 
along the line marked Middle Road is the most likely combination of parameters, based 
on detailed examination of various tables given in Chapter 7 of IPCC AR5. The high road 
and low road represent the ranges of plausible values of scaling parameters, again based 
on our analysis of IPCC AR5. Further details about this approach for representing the 
aerosol indirect effect in the EM-GC are given in our methods paper [Canty et al. 2013].  
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Figure 3.8 shows time series of ocean heat content for the upper 700 meters of 

earth’s oceans from six sources, as indicated. The data have all been normalized to a 

common value of zero, at the start of 1993. This normalization is done for visual 

convenience; the EM-GC model simulates OHE, which is the time rate of change of 

OHC. The time rate of change is the slope of each dataset, which is unaltered upon 

application of an offset. The data sources are: 

[Balmaseda et al., 2013]: 
http://www.cgd.ucar.edu/cas/catalog/ocean/OHC700m.tar.gz 
[Church et al., 2011]: 
http://www.cmar.csiro.au/sealevel/TSL_OHC_20110926.html 
[Giese et al., 2011]: 
http://dsrs.atmos.umd.edu/DATA/soda_hc2_700.nc 
[Gouretski and Reseghetti, 2010]: 
http://www1.ncdc.noaa.gov/pub/data/cmb/bams-sotc/2009/global-
data-sets/OHC_viktor.txt  
[Ishii and Kimoto, 2009]: 
http://www1.ncdc.noaa.gov/pub/data/cmb/bams-sotc/2009/global-
data-sets/OHC_ishii.txt 
[Levitus et al., 2012]: 
http://data.nodc.noaa.gov/woa/DATA_ANALYSIS/3M_HEAT_CO
NTENT/DATA/basin/yearly/h22-w0-700m.dat 
 

As explained in the text, values of OHC shown in Figure 1.8 are multiplied by 1/0.7 = 

1.42 prior to being used in the EM-GC, to represent the estimate that 70% of the rise in 

OHC occurs in the upper 700 meters of the world’s oceans (§5.2.2.1 of IPCC AR4). 

Figure 3.11 shows twelve estimates of ECS. The six to the left are previously 

published values and the six to the right are values found using our EM-GC. Here, 

numerical estimates of the circle (best estimate), range, and brief description are given. 

The ECS value from IPCC AR4 of 3.3 (2.1, 4.4) °C, given in Box 10.2, is based 

on GCMs that contributed to this report. Here, 2.1 and 4.4 °C are the lower and upper 

limits of ECS, based on < 5% and > 95% probabilities (i.e., 95% confidence interval), 
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respectively, as explained in Box TS.1 of IPCC AR4. The entry from Shindell et al. 

[2013] of 4.0 (2.4, 4.7) °C represents the mean and ranges (lower and upper limit) of the 

value of ECS from eight GCMs given in Fig. 22 of that paper. The value from IPCC AR5 

of 3.2 (1.9, 4.5) °C is from Table 9.5 that provides ECS for 23 GCMs; here, the limits 

represents 90% confidence intervals.  

The ECS value from Schwartz [2012] of 2.23 (1.06, 3.40) °C represents the mean 

and standard deviation of the nine determinations given in Table 2 of this paper. The 

value from Otto et al. [2013] of 2.0 (1.2, 3.9) °C is the most likely value and 95% 

confidence interval uncertainty for the first decade of this century. Finally, the ECS from 

T Masters [2014] of 1.98 (1.19, 5.15) °C is the most likely value and 90% confidence 

interval from an analysis that covered the past 50 years. 

For the EM-GC based estimates of ECS, the error bars represent the range of 

uncertainty for consideration of the IPCC AR5 expert judgement of the upper limits of 

the full possible range of AerRF2011 (i.e., –0.1 W/m2 and –1.9 W/m2) and each circle 

show the value of ECS found for AerRF2011 equal to –0.9 W/m2, the IPCC best estimate. 

Figure 3.12 shows Attributable Anthropogenic Warming Rate (AAWR) as a 

function of ΔRF due to aerosols. As for many of our analyses, results are shown for the 

five values of AerRF2011 (–0.1. –0.4, –0.9, –1.5, and –1.9 W/m2) which define the 

possible range, the likely range, and best estimate of AERRF2011 according to IPCC AR5. 

For each value of AerRF2011, model runs are conducted for the three determinations of 

Aerosol ΔRF shown in Fig. 3.7a. The circle represents the mean of these three runs; the 

error bars represent the maximum and minimum values. Precise determination of AAWR 

does depend on knowledge of how aerosol ΔRF has varied over the time period of 
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interest; uncertainty in the shape of aerosol ΔRF over 1979 to 2010 exerts considerable 

influence on AAWR. 

Figure 3.13 shows AAWR from numerous EM-GC simulations, as detailed in the 

caption, and AAWR found from the 41 GCMs that submitted RCP 4.5 future runs to the 

CMIP5 archive. Here, a detailed explanation is provided for the determination of GCM-

based AAWR. 

The estimate of AAWR from GCMs is based on analysis of 112 runs of 41 

GCMs, from 21 modeling centers, submitted to the CMIP5 archive. AAWR has been 

computed for each run using two methods: regression (REG) and linear fit (LIN). Table 

3.3 details the 112 determinations of AAWR, from each method, organized first by the 

name of each GCM, then by modeling center. As noted earlier, we use all of the r*i1p1 

runs in the CMIP5 archive that cover both the historical time period (these runs generally 

stop at year 2005) and the future for RCP 4.5 forcing (these runs generally start at 2006). 

According to CMIP5 nomenclature, “r” refers to different realizations of an ensemble 

simulation, all of which are initialized with different but equality realistic initial 

conditions; “i” refers to a completely different method for initializing a particular GCM 

simulation; and, “p” de-notes some perturbation to GCM model physics. The string 

r*i1p1 appears in the vast majority of CMIP5 files; examination of the 112 r*i1p1 runs 

provides a robust examination of GCM output. 

The first method used to extract AAWR from each GCM run, REG, involves 

examination of deseasonalized, globally averaged, monthly mean values of ΔT from each 

run, from 1950 to 2010. Archived model output from the historical and the future run 

files has been combined. Both the historical and future runs were designed to use realistic 
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variations of total solar irradiance (TSI) and stratospheric optical depth (SOD), the 

climate relevant proxy for major volcanic eruptions. First, regression coefficients for TSI, 

SOD, and ΔTHUMAN are found. For this first step, observations of TSI and SOD are used 

in the analysis, and ΔTHUMAN is approximated as a linear function. The regression 

coefficient for TSI is saved. A second regression is conducted using ΔT from the GCM, 

for the 1979 to 2010 time period. For the second regression, the saved value for the TSI 

coefficient is imposed, leading to new values for the coefficients that modify SOD and 

ΔTHUMAN. A two-step method is needed to properly determine the TSI and SOD 

coefficients, because the two major volcanic eruptions that took place over the period of 

interest, El Chichón and Mount Pinatubo, occurred at similar phases of the 11 year solar 

cycle. The initial regression starts in 1950 to allow coverage of enough solar cycles for 

extraction of the influence of solar variability on GCM-based ΔT to be found, and also 

because ΔTHUMAN over 1950 to 2010 found using EM-GC (i.e., Human Rung on the Fig. 

3.4, 3.5, 3.9, and 3.10 ladder plots) is nearly linear over this 60 year time frame. The 

value of AAWR using REG is the slope of ΔTHUMAN, recorded for each of the 112 GCM 

runs in Table 3.3. 

The second method used to extract AAWR from each GCM run, LIN, involves 

analysis of global, annual average values of ΔT from the various GCM runs. As noted 

above, these GCM runs were designed to simulate the short-term cooling caused by 

volcanic eruptions, such as El Chichón and Mount Pinatubo. The volcanic imprint from 

most of the GCM runs is obvious upon visual inspection: archived ΔT tends to be smaller 

than neighboring years in 1982, 1983, 1991, and 1992. For LIN, we find the slope of 

global annual average ΔT from each GCM run using linear regression, excluding 
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archived output for the four years not-ed in the prior sentence. Values of AAWR found 

using LIN are also recorded for each of the 112 GCM runs in Table 3.3. 

We are confident AAWR has been properly extracted from the archived GCM 

output. Neither of our determinations attempt to discern the influence on GCM-based ΔT 

of natural variations such as ENSO, PDO, or AMOC. While the CMIP5 GCMs represent 

ENSO with some fidelity [Bellenger et al., 2014], and changes in heat storage within the 

Pacific ocean simulated by GCMs has been linked to variability in ΔT on decadal time 

scales [Meehl et al., 2011], these effects should appear as noise that is averaged out of the 

resulting signal, since our estimates of AAWR are based on analysis of 112 archived 

GCM runs. While GCMs might indeed have internally generated ENSO events or 

fluctuations in ocean heat storage that affect ΔT, the years in which these modeled events 

occur will bear no relation to the years these events occur in the real world (or in other 

models). A detailed examination of model output from four leading research centers finds 

little impact on ΔT of variations in the strength of AMOC within GCMs [Kavvada et al., 

2013]. Conversely, accurate timing of natural variations of ΔT due to solar irradiance and 

volcanoes is imposed on GCMs, via request that the GCMs use actual variations in TSI 

and SOD derived from data. 

Statistical analysis supports the contention that the representation of GCM-based 

AAWR on Fig. 3.3 is accurate. The 112 values of AAWR in Table 3.3 found using REG 

compared to the 112 values found using LIN result in a correlation coefficient (r2) of 

0.953 and a ratio of 1.057 ± 0.106, with AAWR LIN tending to exceed AAWR REG by 

5.7%. Consideration of the values of AAWR associated with the 41 GCMs yields r2 = 

0.964 and ratio of 1.051 ± 0.101; again AAWR LIN is slightly larger than AAWR REG. 
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Finally, analysis of AAWR from the 21 modeling centers yields r2 = 0.977 and ratio 

=1.052 ± 0.103. Values of AAWR found using REG and LIN agree to within 5% with a 

variance of 10%. We conclude our determination of GCM-based AAWR is accurate to 

±10%, which is much smaller than the difference between the GCM-based value of 

AAWR and that found using the EM-GC framework shown in Fig 3.13. 

The box and whisker (BW) symbol on Fig 3.13 is based on AAWR found using 

the regression method (REG), for all 41 GCMs that submitted RCP 4.5 out-put to the 

CMIP5 archive. If a model submitted multiple runs, the resulting AAWR values are 

averaged, leading to a single value of AAWR for each GCM39. The 41 values of AAWR 

upon which the BW plot is based are bold-faced on Table 3.3. The resulting BW symbol 

for the values of AAWR found using the linear fit (LIN) method, for the 41 GCMs in 

Table 3.3, is quite similar to the BW symbol shown in Fig 3.13. The primary difference is 

a higher median value for the LIN determination: the 25th, 75th, minimum, and 

maximum values are quite similar to those of the REG method. Finally, BW symbols for 

AAWR based on either the 112 runs or the 21 modeling centers, found using either LIN 

or REG, look quite similar to the GCM representation on Fig 3.13. 

 

 

  

 
39 Nearly identical values of AAWR are found if, rather than averaging the multiple determinations, the 
time series of ΔT from each GCM are averaged, and a single value of AAWR is found from the resulting, 
averaged time series. 



171 
 

Chapter 4: Examining the human influence on global climate 

using an empirical model 

4.1 Introduction 

Changes in Earth’s climate on the decadal to century timescales are influenced by 

both anthropogenic and natural factors. Anthropogenic factors include rising 

concentrations of greenhouse gases (GHGs) that cause global warming [Lean and Rind, 

2008; Santer et al., 2013a] and increased burdens of tropospheric aerosols (hereafter, 

aerosols) that offset a portion of the GHG-induced warming [Bond et al., 2013; Kiehl, 

2007; S Smith and Bond, 2014; Stocker et al., 2013]. Natural factors often cited as having 

a significant influence on global climate include the El Niño-Southern Oscillation 

(ENSO), the approximately 11-year solar cycle (total solar irradiance, TSI), and increases 

in the stratospheric aerosol optical depth (SAOD) that are the result of powerful volcanic 

eruptions [Chylek et al., 2016; Foster and Rahmstorf, 2011; Lean and Rind, 2008; 

Robock, 2000; Santer et al., 2013a]. Variations in total ocean heat content (OHC), the 

strength of the Atlantic Meridional Overturning Circulation (AMOC), and regional 

oceanic patterns like the Pacific Decadal Oscillation (PDO) and the Indian Ocean Dipole 

(IOD) also can influence global climate, though the extent each of these effects has on 

climate lacks consensus [Andronova and Schlesinger, 2000; Chylek et al., 2014; England 

et al., 2014; Rahmstorf et al., 2015; Rose et al., 2014; Saji et al., 1999; Steinman et al., 

2015; Tokarska et al., 2019; Tung and Zhou, 2013]. Feedbacks within the climate system 

driven by changes in atmospheric water vapor, lapse rate, clouds, and the surface albedo 

in response to radiative forcing (RF) induced by GHGs and aerosols also play a large role 
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in the climate system [Andrews et al., 2012; Bony et al., 2006; Lin et al., 2019; Sherwood 

et al., 2020; Zelinka et al., 2013; C Zhou et al., 2015]. 

Our focus is on quantification of the human influence on global climate. We 

examine the global monthly mean near surface air temperature anomaly relative to 

preindustrial (ΔT) from four data centers, collected over the past century and a half; for 

the purposes of this paper, we use a baseline of 1850-1900 as “preindustrial”. We 

quantify the human influence on ΔT, termed the Attributable Anthropogenic Warming 

Rate (AAWR), using an Empirical Model of Global Climate (EM-GC) [Canty et al., 

2013; Hope et al., 2017] that represents all of the factors described above. Our 

determination of AAWR is motivated by Box 10.1 of IPCC’s Fifth Assessment Report, 

Working Group I [Stocker et al., 2013] except we divide their Attributable 

Anthropogenic Warming (AAW, units of °C) by time to arrive at warming rate (units of 

°C/decade). We primarily examine AAWR from the start of 1979 to the end of 2010 

(hereafter 1979 to 2010) because AAW is nearly linear over this 32-year interval and this 

time period has also been studied by several other papers [Foster and Rahmstorf, 2011; 

Stocker et al., 2013; J Zhou and Tung, 2013a]. We also quantify AAWR from archived 

output of the General Circulation Models (GCMs) used throughout Stocker et al. [2013] – 

hereafter, AR5 – as part of Phase 5 of the Climate Model Intercomparison Project 

(CMIP5) [K Taylor et al., 2012]. 

Another key aspect of this study is projection of the rise in ΔT to year 2100 

(ΔT2100). Here, we use values of key model parameters (i.e. ocean heat export efficiency 

and the sum of climate feedback mechanisms, defined in section 2) obtained from fitting 

the historical climate record to forecast how ΔT and total ocean heat content will rise 
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based on prescribed anthropogenic GHGs and aerosols. The projections focus solely on 

the anthropogenic component of ΔT so that our model results can be related to the Paris 

Agreement [UNFCCC, 2015]. The agreement seeks to reduce future emissions of GHGs 

such that the increase in ΔT is “well below 2°C” and to “pursue efforts to limit the 

temperature increase to 1.5°C above preindustrial” [UNFCCC, 2015]. Of course, future 

ΔT will also be influenced by natural variability, including TSI, ENSO, AMOC, and 

major volcanic eruptions [Chylek et al., 2016; Kavvada et al., 2013; Lean and Rind, 

2009]. Although variations in TSI have been forecast and could therefore be used in our 

projections, TSI exerts a relatively minor influence on ΔT [Lean and Rind, 2009; 

Zharkova et al., 2015]. Since the other natural factors cannot be reliably predicted over 

the coming decades, we limit our projections of ΔT to the policy-relevant human 

component. Finally, the projections of ΔT are also framed in terms of the cumulative 

amount of carbon that can be emitted to achieve either the goal (1.5°C) or upper limit 

(2°C) of the Paris Agreement. 

4.1.1 Previous Estimates of AAWR 

Multiple previous studies have examined AAWR, often focusing on 1979 to 2010 

and using multiple linear regression (MLR) to quantify natural and anthropogenic 

influences on ΔT. Foster & Rahmstorf [2011] (hereafter FR11) suggested an AAWR of 

0.170 ± 0.012 °C/decade based on analysis of version 3 of the ΔT record provided by the 

Climate Research Unit (HadCRUT3, hereafter CRU3) of East Anglia [Jones et al., 2012]. 

They used MLR to remove the influence of ENSO, SAOD, and TSI on observed ΔT, and 

then fit the residual to quantify AAWR. Similar numerical values were reported for 

AAWR using ΔT from the Goddard Institute of Space Sciences (GISS, version 4) 
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[Hansen et al., 2010] and the National Centers for Environmental Information (NCEI, 

blend of the Global Historical Climate Network-Monthly version 4 and the International 

Comprehensive Ocean-Atmosphere Data Set release 3) [T Smith et al., 2008]. Zhou & 

Tung [2013a] (hereafter ZT13) examined version 4 of the CRU record (HadCRUT4, 

hereafter CRU4) and also used an MLR/residual method and concluded AAWR was 

0.169 ± 0.019 °C/decade if temporal variations in the strength of the Atlantic 

Multidecadal Oscillation (AMO) are ignored. Most importantly, ZT13 stated that AAWR 

was 0.070 ± 0.019 °C/decade upon consideration of variations in the strength of the 

AMO. We highlight what we believe are shortcomings in the approaches of the FR11 and 

ZT13 studies in section §3.2. 

Recently, Christy & McNider [2017], hereafter CM17, examined lower-

tropospheric temperatures measured from satellite and radiosondes collected from the 

start of 1979 to the end of 2017. They concluded AAWR is 0.096 ± 0.023 °C/decade over 

this time period. This estimate covers a range of AAWR that includes the lower value of 

ZT13 but also suggests the value could be much higher, between the two possibilities for 

AAWR given by ZT13. Similar to CM17, we suggest the actual value of AAWR over 

1979 to 2010 lies between the various estimates of FR11 and ZT13, though our value lies 

closer to the upper end of the range spanned between FR11 and ZT13. 

4.1.2 Prior Projections of Future Temperature 

While it is certain that continued emissions of GHGs will cause a rise in ΔT, 

future warming is also subject to a wide range of uncertainties. One class of uncertainty, 

termed scenario uncertainty, is dependent on future atmospheric abundances of GHGs 

and aerosols. The CMIP5 community and AR5 adopted the Representative Concentration 
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Pathways (RCPs) [Van Vuuren et al., 2011a] of GHGs and aerosols as part of an effort to 

address scenario uncertainty. Table SPM.2 of AR5 [IPCC, 2013] states that RCP 2.6 

[Van Vuuren et al., 2011b] would result in 1.6 ± 0.7 °C warming (5-95% of model range 

of projections) relative to preindustrial temperature by the end of the 21st century, while 

RCP 8.5 [Riahi et al., 2011] would result in a warming of 4.3 ± 1.1 °C. 

In addition to the two extreme RCP scenarios of RCP 2.6 and RCP 8.5, our study 

also focuses on the RCP 4.5 scenario [Thomson et al., 2011]. While we have also 

examined RCP 6.0 [Masui et al., 2011] we choose to not focus on RCP 6.0 for several 

reasons. First, there is significant overlap between the projections for RCP 4.5 and RCP 

6.0 among the CMIP5 GCMs used by AR5: ΔT2100 values of 2.4 °C warming (1.7 °C to 

3.2 °C, 5-95% of model range of projections) for RCP 4.5 compared to 2.8 °C warming 

(2.0 °C to 3.7 °C) for RCP 6.0. Second, the CMIP5 GCMs collectively ran many more 

simulations for RCP 4.5 than for RCP 6.0. Third, there is much more literature 

concerning RCP 4.5 for comparison to our results. The time evolution of atmospheric 

CO2, CH4, and N2O for the three RCPs we consider, together with recent observed 

globally averaged mixing ratios, are shown in figure 4.1. 

For a specific GHG scenario, such as RCP 4.5, there is a considerable range in 

end-of-century warming among various CMIP5 GCMs (e.g., figure SPM.7 of AR5 

[IPCC, 2013]), i.e. model uncertainty. Primary drivers of these differences are 

uncertainties in climate feedback, the radiative forcing of climate due to aerosols, and the 

uptake of heat by the oceans [Forster et al., 2013; Kiehl, 2007; Knutti and Hegerl, 2008]. 

Such model uncertainty can cause a large range of ΔT2100 found by different GCMs even 

if they use the same prescribed evolution of GHGs. Policy decisions geared towards 
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Figure 4.1 – Greenhouse gas abundances, 1950 to 2100, from the RCP scenarios 
 

 
 
Each scenario’s GHG abundances are portrayed in a different color: red for RCP 8.5, 
light blue for RCP 4.5, and dark blue for RCP 2.6 [Meinshausen et al., 2011]. These 
mixing ratio time series are combined with those of other minor GHGs to create the GHG 
RF times series used in this study. With the exception of CH4, the RCP scenarios are 
visually hard to distinguish from each other between their divergence in 2005 and 
present, though their divergence becomes clear within the next ten years. Also shown for 
comparison are observations (black) for each GHG (data from 
https://www.esrl.noaa.gov/gmd/ccgg/trends/).  

https://www.esrl.noaa.gov/gmd/ccgg/trends/
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meeting the Paris Climate Agreement must be made considering scenario and model 

uncertainty. 

Several other approaches have been developed to forecast ΔT. Some approaches 

use similar regression analyses of historical records of ΔT [Chylek et al., 2016; Folland et 

al., 2018; Lean and Rind, 2009; Suckling et al., 2017]. Other simple models use a small 

number of boxes to represent the atmosphere, ocean, and/or global carbon cycle 

[Meinshausen et al., 2009; Schwartz, 2012]. Projections of future ΔT have also been 

constructed from simple calculations using emissions or mixing ratios of carbon dioxide 

that are from prescribed scenarios such as the RCPs or are based on forecasts of 

population, economic growth, and other factors [Raftery et al., 2017; X Zeng and Geil, 

2016]. 

Many of these studies reach conclusions concerning future global warming 

generally in agreement with the CMIP5 GCMs. Often this consensus is due to their 

models or analyses being driven by CMIP5 inputs and/or results. Fawcett et al. [2015] 

used a reduced complexity climate model constrained by the climate sensitivities from 

CMIP5 GCMs to conclude GHG emissions reductions based on the Paris Climate 

Agreement fall well short of the reductions needed to limit global warming to 2 °C, and 

suggest emissions scenarios similar to that associated with RCP 2.6 are needed. 

Similarly, Raftery et al. [2017] examined projections of population, global economic 

output, and the carbon intensity of the world’s economies to conclude that median 

warming in 2100 would be 3.2 °C (likely range 2 °C to 4.9 °C) with only a 5% chance of 

remaining beneath 2 °C. Raftery et al. [2017] relied on the relationship between carbon 

emissions and global warming from the CMIP5 GCMs. 
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In slight contrast, Chylek et al. [2016] used a standalone regression model to 

project a rise in future ΔT of slightly less than 2 °C by end-of-century for RCP 4.5. This 

warming is somewhat less than the projected 2.5 °C multi-model mean of 42 CMIP5 

GCMs. Another empirical analysis of ΔT using an energy balance model [Mauritsen and 

Pincus, 2017] examines the relationship between transient, equilibrium, and committed 

warming for scenarios that either omit or include the uptake of CO2 by the world’s 

oceans. They determined that there is a 50% chance of global warming remaining below 

1.5 °C if additional future radiative forcing of climate (RF) does not exceed 1.2 W/m2. 

This limit would be realized in year 2053 if the current rate of RF increase (+0.033 

W/m2/yr) was kept constant. We reach a broadly similar conclusion based on our 

modeling effort with the EM-GC. 

Chapter 11 of AR5 [Kirtman et al., 2013] showed that the CMIP5 GCMs tend to 

overestimate ΔT for the early part of the 21st century, as shown in figure 4.2. This figure 

compares time series of ΔT from 41 CMIP5 GCMs (light blue) with the observed 

temperature record from the four data centers shown in figure 11.25 of AR5. Due to the 

tendency for observed ΔT to be overestimated by the climate models, the authors of 

Chapter 11 of AR5 prepared an expert judgement of the expected rise in ΔT over the next 

few decades (green trapezoid in Figure 4.2). Notably, these likely ranges of global 

warming lie below the GCM ensemble mean. This expert judgement of global warming 

covers a time period for which all four RCPs have similar values of RF. As will be shown 

in section §3, global warming forecasts by the EM-GC are in close quantitative 

agreement with this green trapezoid. 
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Figure 4.2 – Observed and GCM-Simulated Global Warming, 1970 to 2060 
 

 
 
The observed ΔT time series are taken from four data centers (CRU4, GISS, NCEI, and a 
fourth option from the Berkeley Earth group notated as BEG) and are shown in black, 
with grey error bars representing the uncertainty from the CRU4 record every ten years. 
The modeled ΔT time series are taken from the output of 41 GCMs that participated in 
CMIP5 over the RCP historical and RCP 4.5 future experiment time periods and are 
shown individually in light blue. The maximum, mean, and minimum from the GCM 
ensemble are shown in dark blue. The green trapezoid represents the indicative likely 
range for annual average ΔT for the years 2016 to 2035, and the green bar represents the 
likely range for the mean value of ΔT for this two-decade time period, both given in 
Chapter 11 of AR5.  
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Crafting environmental policy based on such a wide range of possible futures is 

difficult, even if the physical link between rising GHGs and increasing temperature is 

well established. The Transient Climate Response to cumulative carbon Emissions 

(TCRE) is a metric that was developed to link global warming to future anthropogenic 

emissions of CO2 [Gregory et al., 2009]. As such, TCRE provides a means for policy 

makers to exert direct control of global warming through regulation of CO2 emissions. 

Chapter 12 of AR5 [M Collins et al., 2013] defines TCRE as the modeled transient 

increase in ΔT per 1000 GtC of CO2 released to the atmosphere. Most climate models 

show that future ΔT increases in a nearly linear fashion with respect to cumulative 

emissions of CO2, but this relationship is dependent on the physics and structure of the 

climate model, as well as assumptions regarding emissions of other GHGs and the time 

rate of change of emitted CO2 (Figure 12.45 of AR5). For example, model experiments 

that have CO2 concentrations increasing at the rapid rate of 1% per year find a relatively 

low value for TCRE compared to simulations with a slower rate of CO2 increase (e.g. 

Figure SPM.10 [IPCC, 2013]) because the inertia of the climate system limits the 

transient temperature response relative to faster emissions. It is commonly accepted that 

the transient response of ΔT to rising GHGs is less than the equilibrium response because 

certain aspects of the climate system such as the cryosphere and the transfer of heat into 

the ocean occur on multi-year timescales. Chapter 12 of AR5 [M Collins et al., 2013] 

states that TCRE likely lies between 0.8°C to 2.5°C per 1000 GtC. The CMIP5 GCMs 

tend to lie toward the high end of this range for TCRE, whereas projections of global 

warming found using our approach (§4.3) lie toward the lower end. 
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4.1.3 Overview of This Work 

The Empirical Model of Global Climate (EM-GC) used in this study builds upon 

the framework first described by Canty et al. [2013]. This work also builds on Hope et al. 

[2017], who used an earlier version of the model to conduct similar analysis. The EM-GC 

uses MLR combined with a two-module ocean-atmosphere approach to simulate 

observed monthly variations in ΔT. The MLR component uses an equation that represents 

numerous anthropogenic and natural factors that drive variations in global climate. The 

version of the EM-GC used here considers several factors not present in most other 

MLR-based analyses, and includes several important updates since Hope et al. [2017], 

especially in the ocean module, as described in section §4.2. 

Section 4.3 presents results from the EM-GC concerning AAWR and projection 

of ΔT out to year 2100. Differences in these quantities between the EM-GC and other 

works are also described in §4.3, as are analyses of these differences and how the EM-

GC works. We present our conclusions and how the EM-GC results fit into the climate 

modeling community’s knowledge of the climate system in §4.4. 

4.2 Model Construction 

The EM-GC provides a mathematical representation of the factors that govern the 

global mean surface temperature anomaly (ΔT). We compute numerical values of climate 

amplification (γ) and the efficiency of heat transfer from the atmosphere to the ocean (κ) 

based on the observed climate record. We then use these values of γ and κ to project 

future ΔT. While MLRs have been used to conduct similar calculations by other groups, 

our EM-GC includes several components not included in these other models. These 

differences include the long-term export of heat from the atmosphere to the ocean, a 
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comprehensive treatment of tropospheric aerosols, and the influence on global climate 

from variations in the strength of Atlantic Multidecadal Variability (AMV, which we use 

as a proxy for AMOC), and a new probability weighting method for the large ensemble 

of ΔT projections that incorporates the expert judgement of aerosol RF given in Chapter 

8 of AR5 [Myhre et al., 2013]. 

The EM-GC is an ensemble-based model whose parameter space spans a large 

range of possible values for both the strength of the climate feedback and the historical 

strength of anthropogenic aerosol forcing. The overall ensemble is filtered based on a set 

of model parameters that quantify a statistically acceptable fit (χ2 ≤ 2, described below) 

between observed and modeled historical ΔT and ocean heat content (OHC). These 

simulations of historical ΔT and OHC are then used to create a corresponding ensemble 

forecasts of ΔT, which allows for a detailed statistical analysis of the impact of 

uncertainty in aerosol RF and climate feedback on future global warming. 

In the four following sections, we describe the model equations and input data, 

representation of the ocean component, climate sensitivity and feedbacks, and the 

different modes of the EM-GC. 

4.2.1 EM-GC Core Equations 

The EM-GC simulation of observed ΔT uses a MLR-based analysis of the flow of 

energy between major components of Earth’s climate system. The main equations of the 

EM-GC are: 
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Δ𝑇𝑇𝐸𝐸𝑀𝑀𝐿𝐿 𝑖𝑖 =
1 + 𝛾𝛾
𝜆𝜆𝑝𝑝

{𝐺𝐺𝐺𝐺𝐺𝐺 𝑅𝑅𝑅𝑅𝑖𝑖 + 𝐴𝐴𝐸𝐸𝑅𝑅 𝑅𝑅𝑅𝑅𝑖𝑖 + 𝐿𝐿𝐿𝐿𝐶𝐶 𝑅𝑅𝑅𝑅𝑖𝑖 − 0.671𝑄𝑄𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 𝑖𝑖} + 𝐶𝐶0

+ 𝐶𝐶1 × 𝑆𝑆𝐴𝐴𝑆𝑆𝐷𝐷𝑖𝑖−6 + 𝐶𝐶2 × 𝑇𝑇𝑆𝑆𝐼𝐼𝑖𝑖−1 + 𝐶𝐶3 × 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑖𝑖−2 + 𝐶𝐶4 × 𝐴𝐴𝑀𝑀𝑉𝑉𝑖𝑖

+ 𝐶𝐶5 × 𝑃𝑃𝐷𝐷𝑆𝑆𝑖𝑖 + 𝐶𝐶6 × 𝐼𝐼𝑆𝑆𝐷𝐷𝑖𝑖 

Eq4.1a 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝐹𝐹𝐹𝐹𝑐𝑐𝐶𝐶𝐹𝐹𝐶𝐶𝐹𝐹 = �
(Δ𝑇𝑇𝐸𝐸𝑀𝑀𝐿𝐿 𝑖𝑖 − Δ𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖)2

𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖
2

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
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Eq4.1b 
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Eq4.1c 

where λP =3.2 W m−2 °C−1 (Planck response), γ is the dimensionless climate amplification 

term, C0 to C6 are regression coefficients, and i is an index for month. This model 

representation of ΔTMDL i considers four anthropogenic factors (GHGs, net anthropogenic 

tropospheric aerosols [AER], land use change [LUC], and ocean heat export [QOCEAN]) as 

well as six natural factors (SAOD, TSI, ENSO, AMV, PDO, and IOD). The data inputs 

for all factors aside from QOCEAN are either taken directly or modified slightly from 

outside sources, while QOCEAN is calculated within the EM-GC. (Section 4.2.2 below 

defines QOCEAN and its governing equations; the multiplication of QOCEAN by 0.671 in 

Equation 1a represents an area correction between QOCEAN as computed in the ocean 

module and its effect on the atmosphere.) The sources for all of our input data and the 

small changes we apply to them are fully documented in §4.2.1.1 and §4.2.1.2 below. 

Each member of an EM-GC ensemble uses the same natural factors, ΔTOBS 

record, OHC record, GHG forcing time series, and LUC forcing time series. The 
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ensemble members vary as each is constrained to different assumed values for AER 

radiative forcing and γ. The anthropogenic components for each run are fed into the OHC 

submodule of the EM-GC to calculate QOCEAN. The submodule produces estimates for 

global average sea surface temperatures (SSTs) and the human component of ΔTMDL. 

These two temperature time series are used to recalculate QOCEAN, and the submodule 

iterates this process until those three quantities (i.e. SSTs, TMDL-HUMAN, and QOCEAN) 

remains stable between iterations. 

We then solve for the seven regression coefficients (Ci) by minimizing the cost 

function (Equation 4.1b), accounting for the 1σ uncertainty in each value of monthly 

global mean observed temperature (ΔTOBS i). The temperature records used to prescribe 

ΔTOBS i are based on one of the previously mentioned CRU4, GISS, and NCEI data sets, 

as well as a fourth option from the Berkeley Earth group (BEG) [Rohde et al., 2013]. The 

terms in the cost function are indexed over the total number of months (NMONTHS) for 

which ΔTOBS i are available, either 2040 months (Jan.1850 to Dec.2019) for CRU4 and 

BEG or 1680 months (Jan.1880 to Dec.2019) for GISS and NCEI. 

Our modeling approach also makes use of reduced chi-squared (χ2) that defines 

the goodness-of-fit between observed and modeled ΔT (Equation 4.1c). In equation 4.1c, 

NYRS represents the total number of years for which ΔTOBS i are available (170 years for 

CRU4 and BEG; 140 years for GISS and NCEI) and < > denotes annual average. Unless 

otherwise stated, the number of degrees of freedom (NDOF) in this study is nine: the 

climate amplification term, an ocean heat surface diffusivity parameter, and the seven 

regression coefficients. The EM-GC can run with any selection of our natural and 

anthropogenic variables included or excluded, potentially reducing NDOF. The equation 
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for χ2 is based on annual averages of observed and modeled ΔT because the 

autocorrelations of ΔTOBS and ΔTMDL exhibit similar shapes when examined as annual 

averages, but do not match on the monthly time grid [Canty et al., 2013]. Therefore, the 

use of annual averages reduces the effect of high-frequency variations of ΔTOBS that are 

not captured by the model. Nonetheless, the model framework is expressed in terms of 

monthly time series for all quantities to properly quantify the effect of factors such as 

major volcanic eruptions and ENSO on global climate. 

We compute two other versions of χ2 as well. While equation 1c as described 

above is defined for ΔT over the full time period of available observations, we 

additionally compute reduced chi-squared using the same framework both for OHC over 

the full time period of OHC and for ΔT over the most recent 80 years. As the EM-GC is 

designed to fit both atmospheric and oceanic observations, we do not consider 

simulations with acceptable fits to ΔTOBS if they do not also provide an acceptable fit 

between OHCMDL and OHCOBS. We then consider χ2 for ΔT over the past 80 years 

because a combination of factors makes it possible to achieve an acceptable fit (i.e., χ2 ≤ 

2) for the full time series of ΔTOBS while significantly over- or under-estimating warming 

during the last 30 to 50 years. Since the most recent several decades are a focus of our 

study, a lack of fit of ∆TOBS over this period would confound meaningful analysis. We 

choose a length of 80 years to assure that all semi-oscillatory natural forcing factors 

experience at least one full cycle within the years of consideration (PDO and AMV vary 

on time scales of up to 60 or 70 years). 

Figure 4.3 provides a visual representation of our model (i.e. Equations 4.1a-c) by 

showing a single run from an EM-GC ensemble with the best fits to ΔTOBS when using a 
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Figure 4.3 – Observed and EM-GC-Modeled ΔT, 1850 to 2019 
 

 
 
Ladder plots showing observed ΔT from CRU4 (top rung of Figure 3a, black line), the 
EM-GC simulation of ΔT from CRU4 (top rung, red line), ΔTHUMAN (third rung of Figure 
3a, gold line) and its components (second rung of 3a), AAWR (third rung of 3a, dashed 
black line), and contributions to ΔT from various natural factors (TSI, second rung of 3c, 
purple line; SAOD, first rung of 3c, light blue line; ENSO as measured by the 
Multivariate ENSO Index version 2, third rung of 3c, crimson line; AMV with 9-year 
Fourier filtering as our AMOC proxy, fourth rung on 3c, green line; PDO with 10-year 
smoothing, fifth rung of 3c, indigo line; IOD, sixth rung of 3c, pink line). Figure 3b 
shows the model-simulated rise in OHC (red line) from the top 700 m compared to the 
average of five OHC data sets (black line; blue error bars show the 1σ standard deviation 
of these data about mean OHC).  
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Figure 4.4 – Ocean Heat Content (OHC) Records 
 

 
 
The five OHCOBS are shown in color and are normalized to 0 in 1986. The average of the 
five OHCOBS records is shown with a thick black line. The average is calculated for any 
year when at least three of the five OHCOBS records are present. 1986 was chosen as the 
normalization year as the midpoint year of the time period for which the calculated 
average exists.  
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time series for aerosol radiative forcing (AER RF) that matches the IPCC most-likely 

value of AER RF in 2011. We refer to this depiction of the EM-GC’s components as a 

“ladder plot”. The top rung of figure 4.3a shows model input (ΔTOBS i, black) and output 

(ΔTMDL i, red). The second and third rungs of Figure 4.3a show the anthropogenic 

components of ΔTMDL, both separated (second rung) and combined (third rung). GHG RF 

in this run is based on the RCP 4.5 time series for CO2, CH4, N2O, and other GHGs 

[Meinshausen et al., 2011; Thomson et al., 2011]. Nearly identical results are found upon 

use of RCP 8.5 or RCP 2.6, because the RCP scenarios use the same historical data for all 

species until 2005 (Figure 1). The time series for AER RF used in figure 4.3a is based 

upon our analysis of direct RF due to six aerosol types provided by RCP [Lamarque et 

al., 2011], combined and expanded to include the indirect aerosol effect as well, as 

described in §4.2.1.2. LUC RF is taken from Table AII.1.2 of AR5. Our QOCEAN, the 

export of heat from the atmosphere to the ocean, is found by simulating the long-term 

observed rise in OHC, as described in §4.2.2.  The net human time series in the third rung 

(gold line) serves as the basis for calculating AAWR and is further discussed in §4.2.3. 

The lower-left rung of the ladder plot (Figure 3b) depicts the modeled increase in 

OHC (red curve, proportional to the summation of QOCEAN via equation 2) and the 

observed rise in OHC (black line). In figure 3b, the observed OHC is based upon the 

average of five data sets [Balmaseda et al., 2013; Carton et al., 2018; Cheng et al., 2016; 

Ishii et al., 2017; Levitus et al., 2012] such that the average is taken for each year when at 

least three of the five data sets provide an annual value (see figure 4.4). The modeled 

increase in OHC is related to QOCEAN as follows: 
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𝑆𝑆𝐺𝐺𝐶𝐶𝐸𝐸𝑀𝑀𝐿𝐿 𝑖𝑖 = 𝐴𝐴𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 × 0.7 � [𝑄𝑄𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 𝑎𝑎 × 𝐶𝐶𝑎𝑎]
𝑖𝑖

𝑎𝑎=0

 

Eq4.2 

In equation 4.2, AOCEAN is 3.3×1014 m2 [Domingues et al., 2008], and tm is the time 

length for month m in seconds, with m=0 representing the first month of a model run (e.g. 

January 1850 for runs using CRU4). The factor of 0.7 is used to account for the fact that 

the OHC data sets we use represent only the top 700 m of the oceans, which hold roughly 

70% of the total heat content of the ocean (Sect. 5.2.2.1 of AR4). We verified this value 

of roughly 70% by comparing the OHC time series for the upper 700 m to the time series 

for the upper 2000 m or full ocean for the three data sources that provided time series for 

multiple depths [Balmaseda et al., 2013; Carton et al., 2018; Levitus et al., 2012]. 

The influences on ΔT of solar irradiance, volcanoes, ENSO, AMOC, PDO, and 

IOD are shown on the six rungs on figure 4.3c. The sum of the variations in ΔT due to the 

six natural factors (figure 4.3c) and the four anthropogenic factors (third rung of figure 

4.3a) plus the regression constant (C0) equal ΔTMDL. The overall agreement between the 

black and red lines in figure 4.3a demonstrates the ability of the EM-GC to capture much 

of the variability and rise in global mean surface temperature over the past century and a 

half. 

4.2.1.1 Model Input, Natural Factors 

In this section, we describe the data used to define model inputs for stratospheric 

optical depth (SAOD), total solar irradiance (TSI), the El Niño-Southern Oscillation 

(ENSO), the Atlantic Multidecadal Variability (AMV), Pacific Decadal Oscillation 

(PDO), and the Indian Ocean Dipole (IOD). Table 4.1 provides URLs of the websites that 

host these data records. 
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Table 4.1 – Natural Factor Input Sources 
 

Variable 
Data 
Name Years Location 

SAOD 
CMIP6 1850-2014 https://esgf-node.llnl.gov/search/input4mips/ 
GloSSACv2 1979-2018 https://opendap.larc.nasa.gov/opendap/GloSSAC/contents.html 
CALIPSO 2019 https://opendap.larc.nasa.gov/opendap/CALIPSO/contents.html 

TSI 
CMIP6 1850-2014 https://esgf-node.llnl.gov/search/input4mips/ 
SORCE 2003-2019 https://lasp.colorado.edu/home/sorce/data/tsi-data/ 

ENSOa 
MEIv2 1979-2019 https://psl.noaa.gov/enso/mei/data/meiv2.data 
MEI-ext 1871-2005 https://psl.noaa.gov/enso/mei.ext/table.ext.html 

AMOCb AMV 1850-2019 https://crudata.uea.ac.uk/cru/data/temperature/HadSST.3.1.1.0.median.nc 

PDO 1900-2018 http://research.jisao.washington.edu/pdo/PDO.latest.txt 

IOD  
1870-2019 http://www.jamstec.go.jp/frcgc/research/d1/iod/iod/dipole_mode_index.html 
1850-1870 http://www.jamstec.go.jp/frcgc/research/d1/iod/kaplan_sst_dmi_new.txt 

    
a1850-1870 ENSO constructed as an area SST average over the Nino3.4 region using 

https://crudata.uea.ac.uk/cru/data/temperature/HadSST.3.1.1.0.median.nc 
bAMV calculated as an area average of Atlantic SSTs; multiple detrending and Fourier filtering options can be applied 
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The time series for SAOD is a combination of two data sources. The first source 

is the recommended input for Phase 6 of the Climate Model Intercomparison Project 

(CMIP6). This CMIP6 SAOD time series is a combination of the Volcanic Model 

Intercomparison Project [Zanchettin et al., 2016] for enhanced values of SAOD before 

the satellite era, Arfeuille et al. [2014] for background values before the satellite era, and 

the GloSSAC data set [Thomason et al., 2016] for all values during the satellite era. 

GloSSAC has since been extended past the last year of CMIP6 [Thomason et al., 2018]. 

We then use the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

(CALIPSO) data [Vaughan et al., 2004] for year 2019 as our second source since the 

GloSSAC record available at time of paper submission ends in Dec 2018. The GloSSAC 

and CALIPSO data are available as SAOD values by latitude; we create SAOD values by 

latitude for years before 1979 by taking extinction coefficients and integrating them from 

the tropopause to the top of the atmosphere. We then weight each latitude band by area to 

reach a near-global SAOD time series (80°S to 80°N). The three data sets, as presently 

available, match very closely during their respective time periods of overlap, though we 

do apply a small adjustment to bring CALIPSO in line with GloSSAC. We treat SAOD 

after 2019 in the same way that we treat all of our natural factors from 2020 onward: we 

flatline the data at a value near zero representative of the current, non-volcanic 

background. As SAOD has a small background value, it is the only natural time series in 

the EM-GC that uses a nonzero value into the future (specifically, the December 2019 

value of SAOD from CALIPSO). The final SAOD time series is then lagged by six 

months in equation 4.1a to match the delay between surface forcing and the 

thermodynamic response to major volcanic eruptions found by Thompson et al. [2009] 
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which is the same time lag that has been used in other MLR studies [Foster and 

Rahmstorf, 2011; Lean and Rind, 2008]. 

The time series of TSI used in the EM-GC is constructed from two data sets. TSI 

data up to 2014 are an average of two solar models, one empirical and one semi-empirical 

[Matthes et al., 2017]; TSI data after 2014 are from satellite-based solar radiance 

measurements [Dudok de Wit et al., 2017]. These two data sets agree well at the point of 

merging. The EM-GC can propagate the underlying 11-year solar cycle past 2019, but in 

this analysis we flatline TSI in the future. We make this choice so that future projections 

of ΔT are based solely on anthropogenic forcing. A one-month lag for TSI is used in 

equation 1a, because this lag yields the largest value of C2. Lagging TSI is a common 

approach for quantifying the slight temporal offset of ΔT in response to variations in total 

solar output [Lean and Rind, 2008]. 

The proxy for variations in the strength of the El Niño-Southern Oscillation used 

here is built around the Multivariate ENSO Index version 2 (MEIv2) [Wolter and Timlin, 

1993; H Zhang et al., 2019]. The MEI time series, regularly updated, consists of a 

principle component analysis of five physical quantities (sea level pressure, sea surface 

temperature, surface zonal winds, surface meridional winds, and outgoing longwave 

radiation) that represent the state of the tropical ocean-atmosphere system. The MEIv2 

record begins in 1979. To provide data back to 1870, we prepend the MEI-extended 

record [Wolter and Timlin, 2011], which uses a weighted combination of two components 

(SSTs and the Southern Oscillation time series); the MEI-extended was created as an 

extension of the original MEI record [Wolter and Timlin, 1993] that uses six physical 

quantities instead of five. To extend the MEI-based data record from 1869 back to 1850, 
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we manually compute the SST average over the ocean surface area considered in the MEI 

records. To prevent data shock, we increase the MEIv2 values by a constant offset so that 

its average from 1979 to 2005 matches the average of the MEI-extended over the same 

time period (which is the extent of their overlap). A two-month lag has been applied to 

the ENSO index in equation 1a, because this lag provides the highest correlation with the 

simulated response of ΔT to ENSO found using a thermodynamic approach [Thompson et 

al., 2009]. The process used to determine this lag from ENSO is described in Canty et al. 

[2013]; this two-month lag is the same as used in other MLR studies (e.g. Lean & Rind 

[2008] and FR11). The EM-GC is capable of using five other ENSO data sets: the 

original MEI-based record (i.e. not MEIv2-based) as used in previous iterations of the 

EM-GC [Canty et al., 2013; Hope et al., 2017], the Tropical Pacific Index [Y Zhang et 

al., 1997], the Niño 3.4 index [Trenberth, 1997], the Cold Tongue Index [Deser and 

Wallace, 1990], and the thermodynamic index of Thompson et al. [2009]. Our scientific 

conclusions are entirely insensitive to which ENSO index is used. Here we choose to 

focus on the MEIv2 as its multiple-component construction leads to a robust time series 

with less noise than other ENSO time series, particularly those that are based only on 

SST averages. 

Our AMV index is based on the area weighted, monthly mean SST in the Atlantic 

Ocean, between the equator and 60°N [Schlesinger and Ramankutty, 1994]. We detrend 

the AMV index using the RF anomaly due to human activity over the century-and-a-half 

time period of analysis, as described in section §3.2.3 of Canty et al. [2013]. This 

detrending process removes the influence of long-term global warming on the AMV time 

series; without this external influence, the detrended index can serve as a proxy for 
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variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC) 

[Knight et al., 2005; Medhaug and Furevik, 2011; Stouffer et al., 2006]. Since AMOC is 

slowly varying, if it affects the climate with AMV as a proxy, then high-frequency 

components of the AMV would be indicative of influence from non-AMOC factors (such 

as ENSO) or noise. As such, our AMV index is also Fourier-filtered to remove all 

components with temporal variations shorter than nine years, as described in Canty et al. 

[2013]. The resulting index represents anomalies in the north Atlantic SST that vary on 

time scales of a decade or longer and are decoupled from human influence. 

For the Atlantic signal, we have also tested the LOWESS filtering of ZT13, the 

“Atlantic Water Variability index” of Pausata et al. [2015], and the “Atlantic gyre index” 

of Rahmstorf et al. [2015], and two other levels of Fourier filtering of the AMV. Our 

main results concerning AAWR are insensitive to the proxy used for AMOC, though the 

water variability index and gyre index both have little to no expression in the climate 

record (i.e. the EM-GC returns near-zero values for regression coefficient C4). As such, 

we favor using the AMV with nine-year filtering and anthropogenic detrending as the 

AMOC proxy in our regressions. Including AMV produces relatively low values for χ2, 

allowing our ensembles to include more members without biasing either AAWR or γ 

(which determines the trend of future temperatures). We have not yet tested the North 

Atlantic Variability Index (NAVI), an alternative to AMV [Haustein et al., 2019]. 

However, near-zero values for C4 are found for several other proxies for AMOC and the 

resulting values of AAWR and ΔT2100 are similar to those shown when AMV is used in 

the regression. We expect the NAVI [Haustein et al., 2019] to be inconsequential for our 

general scientific conclusions (§4.3.1) because values of AAWR and ΔT2100 found in our 
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model framework are insensitive to various other proposed proxies for AMOC, as well as 

the omission of a proxy for AMOC from our regression. 

Directly measuring the AMOC, namely its overall rate and volume of flow, is 

inherently difficult and has not been done over a long enough time period to be used in 

the EM-GC. However, observations of AMOC have been made in recent years. An 

analysis of a 14 year (April 2004 to September 2018) time series of data from the 

RAPID-AMOC program [Duchez et al., 2014] reveals a decline in the strength of AMOC 

over this time period [Smeed et al., 2017; Srokosz and Bryden, 2015], similar to that 

shown by the AMV over these same years (Figure 4.3c). 

The PDO represents the temporal evolution of temperature and sea level pressure 

of the Pacific Ocean poleward of 20°N [Y Zhang et al., 1997]. The PDO index, which 

begins in 1900 and extends to present, represents the response of circulation in the Pacific 

Ocean to atmospheric forcing [Saravanan and McWilliams, 1998; Wu and Liu, 2003]. 

This index is regularly updated by the University of Washington. The EM-GC also has 

the capability to use the Interdecadal Pacific Oscillation (IPO) index to represent the 

influence of the Pacific Ocean on global climate, rather than the PDO. For comparison to 

our decadal-filtered Atlantic signal, we use a 10-year running mean of PDO (or IPO) in 

our analysis, a method reflected in other studies that attempt to link the Pacific signal to 

global temperature patterns [England et al., 2014]. In this paper, we use the 10-year 

average of the PDO; using the IPO or using different smoothing times does not change 

our results. We have also attempted to take the integral of the PDO to address the idea 

that the sign of PDO affects the trend of ΔT, but taking the integral of PDO produces a 

time series with an uncharacteristically large peak in the middle of the time series and 



196 
 

few other features relating to ΔTOBS, leading to very small values for C5. As detailed in 

Canty et al. [2013], variations in ΔT are more strongly influenced by the Atlantic Ocean 

than the Pacific, regardless of the treatment of PDO. That said, the Pacific signal is 

stronger than the Atlantic signal in some select ensemble members with strong aerosol 

forcing or with Atlantic proxies that exhibit inherently weak fits to the ΔTOBS record. 

A proxy for variations in the circulation of the Indian Ocean is also used, so that 

all three major ocean basins are represented. We use the Indian Ocean Dipole (IOD) 

index as defined Saji et al. [1999], which represents the temperature gradient between the 

Western and Southeastern portions of the equatorial Indian Ocean. The IOD time series 

we use is made with SSTs from the Centennial in situ Observation-Based Estimate record 

[Ishii et al., 2005]. We find that influence of the Indian Ocean on ΔT is small, likely due 

to the size of this ocean basin relative to those of the Atlantic and Pacific. 

4.2.1.2 Model Inputs, Anthropogenic Factors 

The anthropogenic inputs included in the EM-GC are greenhouse gases, 

tropospheric aerosols, land use change, and the long-term export of heat into the ocean in 

response to anthropogenic atmospheric warming. All data mentioned below can be found 

online, with source websites and other comments listed in table 4.2. 

Atmospheric abundances of the main drivers of the anthropogenic RF of climate – 

the well-mixed greenhouse gases CO2, CH4, and N2O – are taken directly from the RCP 

scenarios [Meinshausen et al., 2011]. For these and other GHGs referenced to 

Meinshausen et al. [2011], we specifically use data from files provided by the Potsdam 

Institute for Climate Research (PICR, URL in Table 4.2). Annual mixing ratios for each 

gas are converted to radiative forcing, using the equations from Myhre [1998] and initial 



197 
 

Table 4.2 – Anthropogenic Factor Input Sources 
 

Variable 
Data 
Name Years Location 

GHG RF 
RCPs 1850-2099 http://www.pik-potsdam.de/~mmalte/rcps/ 

AER RFc 
Sulfates 1850-2005 http://www.sterndavidi.com/datasite.html 

http://ciera-air.org/sites/default/files/Total SO2.xls 

OHC 

Levitus 1955-2019 http://data.nodc.noaa.gov/woa/DATA_ANALYSIS/3M_HEAT_CONTENT/DATA/basin/yearly/h22-
w0-700m.dat 

Balmaseda 1958-2017 http://www.cgd.ucar.edu/cas/catalog/ocean/OHC700m.tar.gz 
Cheng 1955-2019  http://159.226.119.60/cheng/ 
Ishii 1955-2017  http://159.226.119.60/cheng/ 
Carton 1982-2017 https://www.atmos.umd.edu/~ocean/index_files/soda3_readme.htm 

 
cThe six time series of AER RF for each of the six types of aerosol species considered were combined as described in section §4.2.1.2 
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Figure 4.5 – Blended Methane Scenarios 
 

 
 
Same as the middle panel of Figure 1 except replacing RCP 2.6 methane with the four 
linear combinations of methane scenarios between RCP 8.5 and RCP 4.5 used in this 
study.  
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values from table AII.1.1a in AR5. The RF values are interpolated onto the EM-GC’s 

monthly time grid, with annual RF treated as midyear conditions. The projected mixing 

ratio of CH4 in year 2100 is dramatically higher in RCP 8.5 (3.48 ppm) compared to RCP 

4.5 (1.54 ppm) (Figure 4.1). To quantify the sensitivity of global warming to CH4, we 

have defined four new hybrid scenarios for CH4 that are linear combinations of RCP 4.5 

and RCP 8.5 (Figure 4.5). The RF of CH4 for the RCPs used here differs slightly from 

values of RF for CH4 archived at PICR, due to the update for the preindustrial value for 

CH4 given in table AII.1.1a of AR5. 

Other greenhouse gases include tropospheric ozone (O3), stratospheric-ozone-

depleting substances (CFCs, HCFCs, CCl4, CH3Cl, CH3Br, etc.), and other F-gases 

(HFCs, PFCs, and SF6). Prior and future RF of climate due to tropospheric O3 is taken 

directly from Meinshausen et al. [2011] for each RCP scenario. The increase in RF of 

climate due to tropospheric O3 between 1750 and 2011 is nearly equal to that of CH4, 

albeit with much larger uncertainty. The various RCPs project different future RFs due to 

tropospheric O3, with RCP 8.5 being the largest. The RF of climate due to ozone-

depleting substances (ODS), HFCs, PFCs, and SF6 are all also taken directly from the 

RCPs, via PICR. 

We consider numerous anthropogenic aerosol scenarios that represent a wide 

range of total (direct and indirect) RF of climate due to the aerosols. This wide range is 

essential for consideration because the historical effect of aerosols on climate is not well-

known [Myhre et al., 2013], whereas future AER RF is projected to decline due to air 

quality regulations [S Smith and Bond, 2014]. The climate record can be well-simulated 

by an aerosol scenario for which the RF of climate due to GHGs has been considerably 
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offset by aerosol cooling: in this case, large values for the sum of climate feedback 

mechanisms (§4.2.3) are needed to match the observed rise in ΔT. The climate record can 

be fit just as well by a scenario for which RF due to GHGs has barely been offset by 

aerosol cooling, in which case small values for the sum of climate feedback mechanisms 

are required to match ΔT. If we assume that the feedback inferred from the prior climate 

record will persist into the future, the strong aerosol cooling case will lead to much larger 

future warming than the weaker cooling case [Knutti and Hegerl, 2008]. The need to 

consider this relation between AER RF and feedback drives the wide range of scenarios 

for AER RF described below. We will often refer to a given AER RF time series by the 

value in year 2011 (AER RF2011) in order to relate our results to estimates of AER RF2011 

given in chapter 8 of AR5 [Myhre et al., 2013]. 

We construct our AER RF scenarios based on forcing data from the RCP 

database. First, the direct RF for six types of aerosols (sulfate, black carbon, nitrate, dust, 

organic carbon, and biomass burning products) are obtained from PICR for each RCP 

scenario [Lamarque et al., 2011]. These direct RF estimates were tied to the state of 

knowledge that guided the fourth IPCC assessment report [Solomon, 2007]. As was done 

in Canty et al. (2013), we use direct RF as given by PICR for five of the six aerosol 

species; for sulfate, Smith et al. [2011] is used instead because the PICR sulfate data do 

not reflect sulfate emissions well. In our study, the direct RF time series for each 

component has been scaled to match values of direct RF in 2011 given by chapter 8 of 

AR5 [Myhre et al., 2013], as noted in the caption of figure 4.6. This matching process 

includes eliminating the effect of biomass burning on RF of climate, as AR5 chapter 8 

estimated that the RF due to biomass burning in 2011 was zero. Physically, biomass 
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Figure 4.6 – Example Time Series of Total Aerosol ΔRF by Species 
 

 
 
Total aerosol ΔRF for the six species considered by IPCC AR4, as used in this analysis to 
create the “middle road” time series that achieves AER RF2011 of –0.9 W/m2. Black box 
shows the value of –0.9 W/m2 in 2011. Original direct ΔRF time series [Canty et al., 
2013; Lamarque et al., 2011; Thomson et al., 2011] have been slightly altered so their 
ΔRF values in 2011 match those stated in AR5. The six species are grouped into four 
aerosols that cool (sum – thick blue line) and two that warm (sum – thick red line) and 
then are multiplied by scaling factors to account for indirect ΔRF and create the AER RF 
time series (thick black line).  
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burning can conceivably provide no RF impact as a result of cancellation between the 

warming due to black carbon and the cooling due to organic aerosols products (sections 

7.5.2.2 and 8.3.4.2 of AR5). Our scientific conclusions would be unaffected had we used 

the RCP AER RF time series directly, as archived by PICR. Nonetheless, we scale to 

AR5 values of direct RF in 2011 so that our study is consistent with the consensus of the 

scientific community at the time of paper submission. 

We perform a second scaling on the aerosol direct RF time series to 

mathematically simulate the aerosol indirect effect, e.g. cloud-aerosol interactions, with 

the goal of reaching the AR5 best estimate for total aerosol forcing of –0.9 W/m2 in 2011. 

First we separate the direct RF time series into a cooling group – sulfates, mineral dust, 

primary and secondary organic aerosols, and nitrates – and a warming “group” of black 

carbon; as biomass burning products were zeroed earlier, they do not factor into the 

remainder of this analysis. Second, we take the ratio of the sulfate total RF to the sulfate 

direct RF based on Smith et al. [2011] and Stern [2006b] as described in Canty et al. 

[2013], a scaling of 2.432. We apply this ratio to the cooling group overall as the scaling 

factor to change the direct RF time series of the cooling group to the respective total RF 

time series. We term the value used to scale direct-to-total RF for the cooling group as 

αCOOL. Next, we find the respective direct-to-total ratio for the heating group – αHEAT, in 

this case 2.188 – needed to make the total cooling RF times series and total heating RF 

time series add together such that the value in 2011 is –0.9 W/m2, which is AR5’s best 

estimate of effective AER RF2011. 

To simulate the uncertainty in historical AER RF, we create other AER RF time 

series by varying αCOOL and αHEAT. In doing so, we can create a potentially infinite 
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number of AER RF times series of different shapes and strengths. For each ensemble run 

of the EM-GC, we constrain our AER RF times series to those constructed using a finite 

length of a cross-section through this α-space, which we term “roads”, shown visually in 

figure 4.7a. The “middle road” of aerosol scenarios is anchored by the α-space point 

obtained by attaining the best-estimate AER RF2011 (–0.9 W/m2) as described in the 

previous paragraph. The slope of the middle road is found by determining four other 

statistical combinations of the six aerosol direct RF time series that produce values of 

total AER RF2011 corresponding to the AR5 confidence intervals (–0.4 W/m2 to –1.5 

W/m2, likely range, and –0.1 W/m2 to –1.9 W/m2, 5 to 95% confidence range). The “low 

road” and “high road” are then anchored by points in α-space that also have an AER 

RF2011 value of –0.9 W/m2. Figure 4.7b then shows the fifteen resulting AER RF time 

series that correspond to the intersections of the three roads and five forcing isopleths. 

Variations in the composition of Earth’s surface due to deforestation and other 

human activities can also exert a change in the radiative forcing of climate. The ΔRF 

effect of anthropogenic land use change (LUC) is taken directly from table AII.1.2 of 

AR5, with the annual values linearly interpolated to the EM-GC’s monthly time grid. We 

assume the annual values are centered at midyear in the interpolation. The release of 

GHGs from land-use-change activities such as deforestation or concrete laying are 

factored into the GHG term itself, as the LUC term only represents surface reflectivity. 

We consider the rise in OHC as an anthropogenic signal because increases in the 

RF of climate due to human activity cause a rise in temperature of both the atmosphere 

and the oceans [Hansen et al., 2011; Raper et al., 2002; Schwartz, 2012]. The focus of 

many OHC studies has been the top 700 m or top 2 km of the world’s oceans, and our 
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Figure 4.7 – Aerosol “Roads” Scaling Procedure 
 

 
 
a) Aerosol indirect effect scaling parameters. The black and red lines show values of total 
ΔRF of climate in year 2011 (AER RF2011), relative to preindustrial baseline, due to 
anthropogenic aerosols, with the AR5 best estimate highlighted in red. The large and 
small black dots represent the combined scaling factors used to define the three “Roads” 
(gold lines), which were used to create complete AER RF time series from the base 
aerosols. The “High Road” and “Low Road” anchor points are found by changing the 
scaling representing the indirect effect for cooling aerosols by half, with the scaling for 
indirect heating changed accordingly to remain on the –0.9 W/m2 isopleth. That is, the 
best-estimate αCOOL of 2.432 implies in indirect effect that is 1.432× the direct RF 
magnitude, so we increase or decrease that factor of 1.432 by half (0.716 or 2.148) to 
create the new indirect effect estimate, leading αCOOL to be either 1.716 or 3.148. The low 
and high road take a slope parallel to the middle road through their respective anchor 
points. 
b) The resulting time series of the high, middle, and low “road” combinations of adjusted 
RCP 4.5 aerosols [Lamarque et al., 2011]. Solid lines represent the middle road time 
series for each target value of AER RF2011, with the dotted and dashed lines representing 
the low and high roads respectively. The solid black line in figure 4.7b is the same solid 
black line as in figure 4.6.  
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work considers data from five such studies [Balmaseda et al., 2013; Carton et al., 2018; 

Cheng et al., 2016; Ishii et al., 2017; Levitus et al., 2012]; three of these five studies 

consider both depths. For proper comparison, the five data sets are normalized to a 

common value of 0 in 1986 (the midpoint year for the range of time where three or more 

of the five OHC records are provided) before being averaged together. The magnitude of 

an input OHC data set at any given point in time is not important in our model 

framework, because we rely upon change in OHC over time. In this study, we focus on 

EM-GC runs that use 700 m OHC data, in which case we multiply the OHC values by 

1.429 (1/0.7) before the model computes κ, the ocean heat diffusivity term, so as to scale 

the OHC from the upper 700 m to a value that approximates OHC for the full ocean. 

4.2.2 EM-GC Ocean Components 

The formulation for QOCEAN is based on finding the value of κ that best fits 

observed OHC data. Raper, Gregory, & Stouffer [2002] define κ as the ratio between the 

atmosphere-to-ocean temperature difference and the heat lost to the ocean. We assume 

QOCEAN is anthropogenically driven and we define the monthly values of QOCEAN i as: 

𝑄𝑄𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 𝑖𝑖 = 𝜅𝜅�Δ𝑇𝑇𝑂𝑂𝐼𝐼𝐸𝐸,𝐻𝐻𝐻𝐻𝐸𝐸𝑂𝑂𝑁𝑁 𝑖𝑖 − Δ𝑇𝑇𝑂𝑂𝐶𝐶𝑁𝑁,𝐻𝐻𝐻𝐻𝐸𝐸𝑂𝑂𝑁𝑁 𝑖𝑖� 

= 𝜅𝜅 ��
1 + 𝛾𝛾
𝜆𝜆𝑝𝑝

{𝐺𝐺𝐺𝐺𝐺𝐺 𝑅𝑅𝑅𝑅𝑖𝑖 + 𝐴𝐴𝐸𝐸𝑅𝑅 𝑅𝑅𝑅𝑅𝑖𝑖 + 𝐿𝐿𝐿𝐿𝐶𝐶 𝑅𝑅𝑅𝑅𝑖𝑖}� − Δ𝑇𝑇𝑂𝑂𝐶𝐶𝑁𝑁,𝐻𝐻𝐻𝐻𝐸𝐸𝑂𝑂𝑁𝑁 𝑖𝑖� 

Eq4.3 

We calculate k, the diffusivity of heat across the atmosphere-ocean surface, as: 
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𝜅𝜅 =
Δ𝑆𝑆𝐺𝐺𝐶𝐶 ÷ 𝐴𝐴𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁

∫ �Δ𝑇𝑇𝑂𝑂𝐼𝐼𝐸𝐸,𝐻𝐻𝐻𝐻𝐸𝐸𝑂𝑂𝑁𝑁 − Δ𝑇𝑇𝑂𝑂𝐶𝐶𝑁𝑁,𝐻𝐻𝐻𝐻𝐸𝐸𝑂𝑂𝑁𝑁�𝑖𝑖−72𝑑𝑑𝐶𝐶
𝑜𝑜𝑌𝑌𝑀𝑀𝐸𝐸
𝑜𝑜𝑀𝑀𝑀𝑀𝑌𝑌𝑌𝑌𝑀𝑀

 

=
𝑆𝑆𝐺𝐺𝐸𝐸 ×  Δ𝐶𝐶

∫ �
�1 + 𝛾𝛾
𝜆𝜆𝑝𝑝

{𝐺𝐺𝐺𝐺𝐺𝐺 𝑅𝑅𝑅𝑅𝑖𝑖−72 + 𝐴𝐴𝐸𝐸𝑅𝑅 𝑅𝑅𝑅𝑅𝑖𝑖−72 + 𝐿𝐿𝐿𝐿𝐶𝐶 𝑅𝑅𝑅𝑅𝑖𝑖−72}� −

�𝑓𝑓0 ∑ 𝑄𝑄𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 
𝑖𝑖−144
0 + 𝑓𝑓1 ∑ 𝑄𝑄𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 

𝑖𝑖−72
𝑖𝑖−144 �

� 𝑑𝑑𝐶𝐶𝑜𝑜𝑌𝑌𝑀𝑀𝐸𝐸
𝑜𝑜𝑀𝑀𝑀𝑀𝑌𝑌𝑌𝑌𝑀𝑀

 

Eq4.4a 

𝑓𝑓0 = 𝑓𝑓𝑝𝑝
𝐶𝐶𝑎𝑎𝑜𝑜𝑖𝑖𝑜𝑜ℎ

𝑑𝑑𝑐𝑐𝑝𝑝𝜌𝜌
 ; 𝑓𝑓1 = �

1 − 𝑓𝑓𝑝𝑝
2

�
𝐶𝐶𝑎𝑎𝑜𝑜𝑖𝑖𝑜𝑜ℎ

𝑑𝑑𝑐𝑐𝑝𝑝𝜌𝜌
 

Eq4.4b 

The main improvement from Hope et al. [2017] is the inclusion of ΔTOCN,HUMAN, which 

represents the temperature response of the well-mixed upper 100 m of the ocean due to 

the total rise in OHC. In the previous version of the EM-GC, heat exited the atmosphere 

without any modulation from an ocean response (i.e. TOCN,HUMAN i = 0 for all i) allowing 

the ocean to function as an infinite sink. By allowing the model ocean to warm in 

response to the increase in atmospheric temperature, the amount of heat lost to the ocean 

per month is reduced over time due to the smaller difference in temperatures between the 

ocean surface and overlying air, providing a more realistic description of the climate 

system than earlier versions of our model. The new interactive ocean module provides a 

reduction in QOCEAN over time compared to the earlier version of the model, resulting in a 

slight rise in total anthropogenic RF and in computed future global mean surface 

temperature relative to that found using a static ocean. This new model formulation thus 

also introduces a mechanism for the climate system to continue warming even after total 

anthropogenic RF plateaus, as it does in both RCP 4.5 and RCP 2.6. 
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The integral in the denominator and the delta time in the numerator of equation 

4.4 are both taken over the entire time extent of the OHC record being considered, i.e. 

tSTART and tEND are the first and last months corresponding to the years of the OHC record 

being used. Ocean Heat Export (OHE) is an average over area and time of the export of 

heat from the atmosphere to the ocean, obtained by estimating the total rise in OHC over 

time with a linear fit [Canty et al., 2013]. We apply a six-year (72 month) lag to account 

for the time needed for a given amount of heat leaving the atmosphere to penetrate to 

depth [Schwartz, 2012]. Other studies [Lean and Rind, 2008; Suckling et al., 2017] infer 

or apply a ten-year lag; key model outputs such as AAWR are insensitive to choices for 

the time delay between atmospheric perturbation and mean oceanic response (equation 

4.4) for any timescales ranging from annual to multidecadal. The new formulation for 

QOCEAN allows the model parameter κ to be directly compared to literature values derived 

from GCMs [Raper et al., 2002]. 

The terms f0 and f1 in equation 4.4 represents a combination of the heat capacity 

of ocean water (cp), the fraction of ocean volume in the surface layer (d, ρ) of interest, 

and the fraction of total QOCEAN that warms the surface layer (fp) per month (tmonth). To 

calculate fp, decadal ocean warming as a function of depth was extracted from a selection 

of CMIP5 models’ output, smoothed, and then normalized to the warming in the layer 

from 0-100 m. A simplified warming profile was then selected for the remaining depth of 

the ocean down to 4 km, (green segments of Figure 4.8) favoring the group of warming 

profiles from RCP 4.5 and RCP 8.5. This stratified warming profile was used in 

combination with the ocean depth profile to determine the percentage of ocean heat 

export that warmed the 0-100 m layer, producing ΔTOCN,HUMAN. This 100 m top layer is 
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used as the section of ocean that interacts directly with the atmosphere, because it is well-

mixed. We represent the ocean as being 1 km deep for 10% of the ocean area 

(representing the continental shelves) and 4 km deep for the remaining 90%. This 

simplified depth profile approximates the average depth of the real ocean to within 3%, 

3.7 km compared to 3.682-3.814 km [Charette and Smith, 2010]; using the ocean surface 

area estimate of 3.3×108 km2 from [Domingues et al., 2008], our simplified ocean also 

approximates the total volume of the real ocean to within 10%, 1.221×109 km3 compared 

to 1.33-1.37×109 km3. Taken together, this CMIP5-based warming profile with depth 

implies that 13.7% of the rise in total OHC occurs in the well mixed, upper 100 m of the 

ocean, resulting in the ΔTOCN,HUMAN term in equations 4.3 and 4.4. As a result, the value 

of fo in equation 4.4 is 8.76×10–5 °Cm2/W. 

Output from the ocean module, QOCEAN, is area corrected to scale the average 

forcing applied to the atmosphere by the ocean before this quantity is used in the MLR. 

The ocean module is based upon the total surface area of the world’s oceans, but the 

inputs to the atmospheric module are applied to the entire surface area of the Earth. As 

such, we scale QOCEAN in the model atmosphere by the ratio of ocean surface area to 

Earth’s total surface area, (i.e. the multiplier 0.671 in equation 4.1a,) to ensure that the 

total amount of energy leaving the atmosphere is the same as the total amount of energy 

entering the oceans. 

 

  



209 
 

Figure 4.8 – Ocean Warming Profiles, CMIP5 (normalized) vs EM-GC (simplified) 
 

 
 
CMIP5 experiment results (selected models) represent historical (blue), RCP 4.5 
(yellow), and RCP 8.5 (red) model runs with spline smoothing. The EM-GC 
approximation to the overall CMIP5 warming profile is shown in green. The values for 
each warming profile are expressed as a fraction of the warming-per-decade seen in the 
0-100 m layer. The approximate warming profile (green) is then applied to a simple 
ocean depth profile with 90% of the EM-GC ocean being 4 km deep while the remaining 
10% is 1 km deep. With this warming profile and depth profile, the fraction of total 
warming in the upper 100 m is caused by 13.70% of total ocean heating, as follows: (100 
m × 1°C × 100%) / [ (100 m × 1°C × 100%) + (300 m × 0.7°C × 100%) + (300 m × 
0.5°C × 100%) + (300 m × 0.3°C × 100%) + (1000 m × 0.1°C × 90%) + (2000 m × 
0.05°C × 90%)] = 100 m°C / 730 m°C = 13.70%. 
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Table 4.3 – Comparison of Simulated Ocean Warming Profiles 
 

Profile 
name Profile warming description 

% of heating in the upper 
100 m 

“Central” run 
AAWR, λΣ, and T2100 

Upper 

Linear warming profile through upper 1km of ocean 
and no warming deeper than 1km, i.e. 900m-1km 
layer warms 10% as quickly as 0-100m layer 18.18% (1/5.5) 

0.152 
°C/dec 

1.62 
W/m2/°C 

1.95 
°C 

CMIP5 
Stratified approximation of CMIP5 output warming 
profiles 13.70% (1/7.3) 

0.146 
°C/dec 

1.59 
W/m2/°C 

1.79 
°C 

Middle 
Approximate average between CMIP5 profile and 
Linear profile 9.50% (~1/10.5) 

0.142 
°C/dec 

1.54 
W/m2/°C 

1.63 
°C 

Linear 

Linear warming profile through entire 4km of ocean, 
i.e. 400m-500m layer warms 90% as quickly as 0-
100m layer and 3.9km-4km warms 2.5% as quickly 5.17% (1/19.3375) 

0.142 
°C/dec 

1.52 
W/m2/°C 

1.51 
°C 

Constant 
Entire 4km of ocean warms as quickly as 0-100m 
layer 2.70% (1/37) 

0.141 
°C/dec 

1.50 
W/m2/°C 

1.45 
°C 

 
Each profile provides a different value for the percentage of the increase in OHC that 
remains in the top 100m layer, which determines TOCN,HUMAN. Fractions in parentheses 
represent the exact ratio calculated for the profile described in a simple ocean that is 4 km 
deep for 90% of its area and 1 km deep for the remaining 10%. (This is why, for 
example, the ratio for the Constant profile is one part in 37 instead of one part in 40, and 
why the ratio for the Linear profile looks excessively precise.) Key quantities from our 
model are also shown for simulations identical to that shown in figure 4.3 except for 
changing the fraction of heat that remains in the top 100 m ocean surface layer. 
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Four alternate values for the fraction of OHC in the upper 100 m were also 

considered to test the sensitivity of future atmospheric temperatures to the ocean’s 

response to global warming. At one extreme, warming due to the rise in OHC is 

distributed linearly in just the upper 1 km of the ocean with no warming deeper, putting 

18.2% of the rise in OHC into the top 100 m of the global ocean. At the other extreme, a 

warming profile that assumes a constant warming rate throughout the entire ocean has 

only 2.7% of the rise in OHC going into the upper 100 m. Both scenarios are physically 

unrealistic but provide bounds for the range of how much ΔTOCN,HUMAN can change for a 

given OHC record. All five warming profiles with depth and their associated top 100 m 

fractions are summarized in table 4.3. Choice of ocean warming profile does not affect 

our results for AAWR significantly, as the interplay between ΔTOCN,HUMAN and κ means 

that QOCEAN is largely driven by the choice of OHCOBS, but this choice could affect 

ΔT2100 if the true warming profile is significantly different from the CMIP5 simulations. 

4.2.3 Climate Feedback and Sensitivity 

Climate feedback processes and overall climate sensitivity define how changes in 

RF, particularly the rise in anthropogenic RF, drive ΔT. In the EM-GC, the sum of RF 

due to GHGs, aerosols, LUC, and OHE is multiplied by (1+γ)/λP, where λP is the Planck 

response parameter (3.2 W m−2 °C−1) and γ is the dimensionless climate amplification 

term, to determine ΔT (equation 4.1a). If the net response of changes in humidity, lapse 

rate, clouds, and surface albedo that occur in response to anthropogenic RF of climate is 

positive, as is the case for the vast majority of simulations conducted for this study, then 

the numerical value of γ is positive. This model framework is based on that described in 

Bony et al. [2006] and §8.6 of the previous IPCC report [Solomon, 2007]. The EM-GC’s 
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variable for the sum of climate feedback mechanisms, λΣ, has units of W m−2 °C−1 and is 

related to γ and λP via: 

1 + 𝛾𝛾 =
1

1 − 𝜆𝜆Σ
𝜆𝜆𝑃𝑃

=
𝜆𝜆𝑃𝑃

𝜆𝜆𝑝𝑝 − 𝜆𝜆Σ
 

Eq4.5 

This relation between γ and λΣ is commonly used in the climate modeling 

community (§8.6 of AR4). We can also relate λΣ to the traditional climate feedback 

parameter λ [Bony et al., 2006; Gregory, 2000; Schwartz, 2012; Sherwood et al., 2020] 

by reducing equation 4.1a to just the anthropogenic terms to produce the relations: 

Δ𝑇𝑇𝐻𝐻𝑜𝑜𝑎𝑎𝑝𝑝𝑖𝑖 𝑖𝑖 =
1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

{𝐺𝐺𝐺𝐺𝐺𝐺 𝑅𝑅𝑅𝑅𝑖𝑖 + 𝐴𝐴𝐸𝐸𝑅𝑅 𝑅𝑅𝑅𝑅𝑖𝑖 + 𝐿𝐿𝐿𝐿𝐶𝐶 𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑄𝑄𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝑁𝑁 𝑖𝑖} 

Eq4.6a 

 

Δ𝑇𝑇𝐻𝐻𝑜𝑜𝑎𝑎𝑝𝑝𝑖𝑖 =
1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

∆𝑅𝑅𝐻𝐻𝑜𝑜𝑎𝑎𝑝𝑝𝑖𝑖 

Eq4.6b 

𝜆𝜆−1 =
1 + 𝛾𝛾
𝜆𝜆𝑃𝑃

 →  𝜆𝜆 = 𝜆𝜆𝑃𝑃 − 𝜆𝜆Σ 

Eq4.6c 

We choose to focus on λΣ instead of λ for the majority of this paper. This choice 

allows for an intuitive comparison between λΣ, γ, and ΔT – as one quantity rises, so do 

the others. This intuitive relationship highlights how uncertainty in various climate 

feedback mechanisms (i.e. aside from the blackbody response) can be the driving force in 

future ΔT uncertainty. We assume a constant value for λΣ (and λ) for each ensemble 

member in most of the results shown below, as this assumption provides a multitude of 
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simulations of ΔT with χ2 values less than 1, well below our acceptable fitting limit of 2. 

We view this as a reasonable approximation because §12.5.3 of AR5 and references 

therein suggest λ changes slowly over millennia; any changes in λ over a few centuries 

should be unnoticeable unless gradual changes force the climate system past a significant 

tipping point. For completeness, we also examine the effect on EM-GC ΔT of a slowly- 

or moderately-varying λ in section §4.3.4 of this paper. 

4.3 Results and Analysis 

Our results focus mainly on Attributable Anthropogenic Warming Rate (AAWR) 

and projections of the global mean surface temperature anomaly relative to preindustrial 

(ΔT). We first present here a summary of the probabilistic distribution of these two 

quantities for our best representative ensemble of EM-GC simulations, and next describe 

how these distributions compare to CMIP5 and other studies. Then, in each subsection to 

follow, we delve further into our results for AAWR and ΔT2100, providing a detailed 

description of their sensitivities as well as comparisons to other published results. The 

first three subsections present discussion of AAWR, in which we describe our approach, 

possible shortcomings in prior efforts used to evaluate AAWR, and the uncertainties 

involved in proper quantification of AAWR. The last five subsections present results for 

ΔT, including quantification of the sensitivity to uncertainty in future emissions of CH4 

and relating our projections of future warming to cumulative, anthropogenic emissions of 

CO2. 

Overall, our numerical estimates of AAWR for 1979 to 2100 fall between prior 

estimates.  Our best estimate of AAWR is ~0.14°C/decade, which is noticeably lower 

than the value for AAWR from CMIP5 GCMs (~0.22°C/decade). Our value for AAWR 
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falls between estimates of AAWR from FR11 (0.170±0.012) and the AMOC-based 

AAWR from ZT13 (0.070±0.019). Below, we describe the sensitivity of AAWR to 

various estimates of radiative forcing by aerosols, the sum of climate feedback 

mechanisms, and multiple records for ΔTOBS. Notably, AAWR in our model is largely 

insensitive to whether AMOC is included (see §2.1.1 and figure 4.9a,b). 

Our ensemble median value for global warming at the end of this century, ΔT2100, is 

consistently cooler than the CMIP5 ensemble median value for ΔT2100.  Indeed, our 

ensemble median of ΔT2100 often lies close to the CMIP5 ensemble minimum warming.  

The EM-CG framework, with its tendency for cooler results, assigns each RCP scenario a 

higher probability of fulfilling the Paris Agreement warming limitations, compared to the 

CMIP5 GCMs. The near-term warming found by our EM-GC also closely matches the 

expert assessment of CMIP5 results shown in chapter 11 of AR5, represented by the 

green trapezoid in figure 4.2. 

Figure 4.10 shows AAWR and ΔT2100 for the same ensemble run of the EM-GC 

and depicts the weighting function we use to create probabilistic summaries of our 

results. Each simulation in this ensemble has the same set of inputs except for varying λΣ 

and varying the shape and strength of anthropogenic aerosol forcing, pinned to the value 

of AER RF in 2011. Computed values of AAWR are sensitive to AER RF and λΣ because 

of differences in the shape of the aerosol term (blue line, figure 4.3a) that is subtracted 

from the GHG term (red line, figure 4.3a), for various members of the ensemble.  Values 

of ΔT2100 are particularly sensitive to climate feedback, because by end of century the RF 

due to aerosols is expected to be considerably smaller than contemporary values [S Smith 

and Bond, 2014]. The EM-GC ensemble shown in figure 4.10 is based on RCP 4.5 GHGs  
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Figure 4.9 – Measured and modeled global temperature anomaly: fallacy of the residual 
method 
 

 
(a)       (b) 

Ladder plots shown are similar to those in Figure 4, though no model runs in this figure 
include PDO or IOD, and CTI is used in place of MEI for the ENSO signal. In addition, 
the last rung on each ladder shows the difference between the measured and modeled 
temperature time series of the first rung added to ΔTHUMAN from the second rung, as this 
general practice is what was used by both FR11 and ZT13; the first and last rungs are 
shown with a temperature baseline of 1961-1990, as was done by ZT13. Here, we 
specifically show the effect of including an AMOC signal in this practice, as well as 
display the error made by ZT13 in their first guess of ΔTHUMAN. 
 
a) uses the RCP estimate of ΔTHUMAN and no AMOC 
b) same as (a) except for using the Fourier-filtered AMV as the AMOC signal, i.e. same 
model simulation as figure 4.3. 
[cont’d next page]  
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Figure 4.9 cont. 
 

 
(c)       (d) 

c) same as (a) except with a linear guess for ΔTHUMAN over the entire time period of the 
model run, as was done by ZT13 
d) same as c except with the ZT13 LOWESS-filtered AMV as the AMOC signal. 
 
In (c) and (d), we capture essentially the same result of ZT13, with their residual-method 
version of AAWR producing 0.168°C/decade without AMOC (match within 1%) and 
0.081°C/decade with AMOC (close match).  However, we see both visually and through 
chi-squared that the fit to the observed record in (c)+(d) is much poorer than in (a)+(b). 
The residual method differences are highly sensitive to the initial linear guess for 
ΔTHUMAN, as the result in (a)+(b) only causes a drop from 0.180°C/decade to 
0.137°C/decade, despite the fact that in both cases the direct ΔTHUMAN signal changes 
very little whether AMOC is considered or not. ZT13 claim that using the RCP-based 
initial guess for ΔTHUMAN causes the difference between observed and modeled ΔT to 
have noticeable positive, then negative, trends; we do not observe this in (b). 
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Figure 4.10 – AAWR and ΔT2100 as a function of AER RF2011 and λΣ 
 

 
 
AAWR and ΔT2100 as a function of AER RF2011 and λΣ over a single EM-GC ensemble 
(panels b and c) and the AER RF2011-based weighting function used to aggregate our 
ensemble statistics (panel a). Values of AAWR are for 1979 to 2010 and values of ΔT2100 
are relative to the preindustrial baseline. We show all simulations for which χ2 ≤ 2 for all 
three fitting comparisons, (i.e. fitting ΔT for the full time period, fitting ΔT for the most 
recent 80 years, and fitting OHC over its time period,) though any model results that for 
AER RF2011 outside of the range –0.1 to  –1.9 W m–2, the 5% and 95% confidence 
intervals given in AR5, are covered using the color grey. All runs in this ensemble use 
RCP 4.5 GHG RF and RCP 4.5-based AER RF scenarios along the middle road of figure 
4.7 to simulate the CRU4 ΔTOBS record. The black dot in panels b and c represents the 
single run from the ensemble with the lowest χ2 over the full ΔT record among 
simulations forced with the AER RF times series that gives −0.9 W/m2 in 2011, the best 
estimate for AER RF2011 stated in AR5. Results from this single simulation, broken into 
component time series, are shown in figure 4.3.  
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Figure 4.11 – Probability Density Functions of AAWR and ΔT2100, RCP 4.5 
 

 
 
Probability density functions (PDFs) of the EM-GC computations of AAWR and ΔT2100 
for RCP 4.5 shown in figures 4.10b and 4.10c, weighted by the associated value of AER 
RF2011 using the weighting function shown in figure 4.10a (blue lines). PDFs of AAWR 
and ΔT2100 from CMIP5 GCMs, also for RCP 4.5, are also shown (red lines). The height 
for each bin (0.1°C width for ΔT2100, 0.05°C/decade width for AAWR) for the UMD EM-
GC PDFs represents the probability of a run with that value being randomly selected 
from the respective model output shown by non-grey colors in figure 4.10b and 4.10c, 
when each model run is weighted by the AER  RF2011-based weighting function shown in 
figure 4.10a. Similar probabilities can be taken from the CMIP5 ensemble giving results 
from each GCM equal weighting (red). For panel b, the Paris Agreement goal of 1.5°C 
warming and upper limit of 2°C warming are shown by the vertical solid and dotted lines, 
respectively.  
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and constrained by the CRU4 record for ΔTOBS from 1850 to 2019. The values of AAWR 

and ΔT2100 shown in figure 4.10 are for those members of the ensemble for which all 

three χ2 filters yield a value less than or equal to 2: i.e., those sets of model results able to 

provide a “good fit” to ΔTOBS from 1850 to 2019, from 1940 to 2019, and to OHC 

averaged among five data centers from 1955 to 2018. We also eliminate any simulations 

for which AER RF2011 does not lie between –1.9 and –0.1 W m–2, the 5% and 95% 

confidence intervals for RF due to anthropogenic aerosols given in AR5, which is why 

model results shown on the left side of Figure 4.10b and 4.10c are shown in grey. 

Figure 4.11 then aggregates these results into probability density functions (PDFs) 

of AAWR and ΔT2100 from the EM-GC (blue) using a weighting method, described in 

section §3.1, that is based on the AR5 likelihoods for the values of AER RF2011 (figure 

4.10a). Similar PDFs based on results from 41 CMIP5 GCMs (without any weighting, 

red) are also shown in figure 4.11. 

4.3.1 AAWR from the EM-GC 

We base our estimate of AAWR on the slope of ΔTHUMAN over the years 1979 to 

2010. To calculate AAWR, our empirical model is first run over a chosen time period to 

produce the ΔTHUMAN series; then a linear fit is calculated from this series over the years 

1979 to 2010. Except when otherwise stated, the chosen time period for the model run is 

the entire available ΔT record, which for the CRU4 record used in figure 4.3 is January 

1850 to December 2019. To choose which ensemble member from figure 4.10 would be 

shown in figure 4.3, we selected the run with the best estimate of AER RF2011 from AR5 

(−0.9 W/m2) that had the lowest value of χ2 for fitting the full ΔTOBS record. This selected 

run gives a value for AAWR of 0.146 °C/decade. 
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To aggregate the EM-GC ensemble results from Figure 4.10b, we assign 

probabilities to each ~150 long time series for the RF due to aerosols, tied to the value of 

AER RF2011 for each time series. We create an approximate Gaussian distribution of AER 

RF2011 based upon AR5 estimates of this quantity (figure 4.10a). This weighting function 

peaks at –0.9 W/m2 (AR5 best estimate of AER RF2011) and the cumulative probability of 

AER RF2011 values between –0.4 and –1.5 W/m2 is set at 66.7%. Similarly, the 

cumulative probability of the weighting function between –0.1 and –1.9 W/m2 is 90%, 

which corresponds to the AR5 specification of –0.1 and –1.9 W/m2 being the 5% and 

95% confidence intervals for this quantity [Myhre et al., 2013].  We then take all runs 

shown as non-grey colors for AAWR in figure 4.10b (i.e. all runs for which a good fit to 

ΔT for the full time period, ΔT for the most recent 80 years, and OHC from 1955 to 2018 

can be obtained), bin by AER RF2011, and find the probability distribution for AAWR 

within each of these bins. The PDFs for AAWR within each bin are then aggregated 

using the IPCC-based weightings for each value of AER RF2011 (figure 4.10a) to create 

the final PDF shown as a blue line in figure 4.11a. We use this superposition of PDFs 

weighting method to account for the fact that the EM-GC finds many more acceptable fits 

to the climate record (i.e. χ2 ≤ 2) for combinations of λΣ and AER RF2011 associated with 

less-negative values of AER RF2011, whereas AR5 suggests that –1.5 W/m2 is as likely as 

–0.4 W/m2  for the RF of climate in 2011 due to aerosols. This weighting method gives 

model runs with stronger aerosol cooling the same weight as runs with weaker aerosol 

cooling. For the AAWR ensemble shown in figure 4.10b, this weighting process 

produces a median of 0.135 °C/decade, with a full range of 0.089 °C/decade to 0.197 

°C/decade. Through most of the ensemble, the resulting time series for ΔTHUMAN and the 
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resulting values of AAWR agree well with another recent estimate found using a similar 

approach [Chylek et al., 2014]. 

Our estimate of AAWR is sensitive to which aerosol forcing time series is used, 

especially in relation to λΣ, and is partially sensitive to ΔTOBS, but insensitive to the 

inclusion of terms for AMV, the PDO, and the IOD in the model framework. The 

insensitivity of AAWR to AMV extends to all of the other proxies for variations in the 

strength of the AMOC we have considered. The modeled strength of the PDO varies 

noticeably depending on the proxies and filtering methods chosen for both this climate 

signal and as well as AMV and RF due to aerosols. Specifically, the contribution of the 

PDO to ΔTMDL increases in magnitude with stronger-cooling aerosol scenarios – but 

these model results do not show any strong effect on AAWR. We can also run the EM-

GC with specific single records for OHC instead of using the average of five OHC data 

records; varying the input OHC time series does not produce any noticeable variation in 

AAWR. 

One EM-GC simplification that deserves mention is the lack of spatial variability 

in the effect of the oceans. Rose et al. [2014] showed that the climatic effect of ocean 

heat uptake is weaker if heat export from the atmosphere is concentrated in the tropics 

and stronger if heat export is concentrated in high latitudes. While the EM-GC cannot 

directly separate the locality of ocean heat export, it corroborates the Rose et al. [2014] 

result in the sense that almost all runs show a stronger climatic signal from the AMOC 

(driven by high-latitude deep water formation) and a weaker signal from the PDO (an 

expression of comparatively shallow-water heat storage in the tropics [England et al., 

2014]; see §4.2.1.1 for a summary of the various AMOC and PDO proxies tested). While 
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various other MLR studies [Chylek et al., 2016; J Zhou and Tung, 2013a] focus on the 

AMOC as the main oceanic driver of the climate system, other literature suggests the 

PDO has a stronger influence on global temperature, either overall or specifically for the 

last few decades [England et al., 2014; Steinman et al., 2015; Tokarska et al., 2019]. Due 

to the structure of MLR models, finding regression coefficients for time spans less than 

the multidecadal characteristic time of known natural variability is not practical, nor is 

attempting to define climate drivers using fewer total years than this characteristic time 

scale. Some research suggests that the sign of the PDO is what drives trends in ΔT 

[England et al., 2014], meaning an integral of the original PDO time series might be a 

stronger regressor. However, using a time series calculated as such did not produce lower 

values of χ2 or higher values of the PDO regression coefficient than found using the raw 

PDO signal, further suggesting that AMOC is likely the stronger driver of variations in 

ΔT. 

Our method of determining AAWR is also relatively insensitive to the choice of 

beginning and end years (table 4.4). For example, using the EM-GC simulation shown in 

Figure 4.3, AAWR only varies from 0.130 to 0.156 °C/decade when we vary both the 

initial year (1975 to 1985) and final year (2006 to 2016) around the default AAWR time 

range of 1979 to 2010. This insensitivity derives from the fact that ΔTHUMAN follows 

from the known rise in CO2, CH4, and N2O that leads to a RF of climate due to GHGs 

that rises in a roughly linear manner over the past four to five decades. Our calculation of 

AAWR is thus robust and, as detailed in the following section, does a better job of 

isolating the underlying anthropogenic climate trend than methods that rely on analysis of 

ΔT using the residual method. 
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4.3.2 Comparison to previous AAWR estimates 

We assert that the slope of ΔTHUMAN provides a more accurate method for quantifying 

AAWR than the use of a residual method. As described in section §4.3.1, our median 

estimate of AAWR with RCP 4.5 GHGs and “middle road” aerosols is 0.135 °C/decade, 

with range of possible values extending from 0.089 °C/decade to 0.197 °C/decade based 

on uncertainty in RF due to aerosols and climate feedback. The best estimate of AAWR 

given by FR11 for 1979 to 2010, upon analysis of ∆T from CRU3, is 0.170 °C/decade. 

The residual method used by FR11 involves finding the slope of observed ΔT after the 

contributions from solar irradiance, volcanoes, and ENSO have been removed. By not 

including AMV (green curve in figure 4.3c) and by focusing their analysis solely on a 31 

year period of time, FR11 do not account for the significant warming trend that occurred 

from 1979 to 2010 that our analysis suggests is due to natural variability and instead 

attributed this component of the rise in ∆T to anthropogenic warming. Although the 

precise magnitude of the AMV influence is sensitive to how North Atlantic SST is 

detrended [Canty et al., 2013] and smoothed, an independent analysis of SST using 

spectral methods [DelSole et al., 2011] supports our suggestion that internal climate 

variability contributed significantly to the relative warming over our default time period 

for AAWR. 

We note that Haustein et al. [2019] emphatically state “we argue that AMV must 

not be used as a regressor” because “AMV is found to be primarily controlled by external 

forcing”. Booth et al. [2012] implicate tropospheric aerosols due to pollution and 

stratospheric sulfate aerosols due to major volcanic eruptions of the primary driver of 
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Table 4.4 – Variation of AAWR Based on Start and End Year 
 
 AAWR (°C/dec) 1975 1977 1979 1981 1983 1985 

2006 0.156±0.0075 0.153±0.0082 0.148±0.0084 0.144±0.0090 0.138±0.0089 0.130±0.0078 

2008 0.153±0.0069 0.151±0.0074 0.146±0.0075 0.142±0.0078 0.137±0.0076 0.130±0.0065 

2010 0.151±0.0062 0.150±0.0066 0.146±0.0065 0.142±0.0067 0.137±0.0065 0.132±0.0057 

2012 0.152±0.0055 0.150±0.0058 0.146±0.0058 0.143±0.0060 0.139±0.0060 0.135±0.0054 

2014 0.152±0.0050 0.150±0.0052 0.147±0.0052 0.145±0.0054 0.142±0.0054 0.138±0.0053 

2016 0.153±0.0045 0.151±0.0048 0.149±0.0048 0.147±0.0050 0.144±0.0052 0.142±0.0054 

 
Default time period used in the paper is 1979 to 2010 (AAWR value bolded). The 
ΔTHUMAN time series used remains the same for all combinations of start and end year, 
taken from the single EM-GC simulation used in figure 4.3. 
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SST variability in the North Atlantic. There are numerous other studies making similar 

claims [Knight et al., 2005; Medhaug and Furevik, 2011; Meehl et al., 2011; Stouffer et 

al., 2006], including a study of paloecurrent speed that extends over a time period of 230 

years [Boessenkool et al., 2007], that suggests our AMV proxy does represent interval 

variability of the climate record.  Regardless, we find nearly identical values of AAWR 

based on the slope of ∆THUMAN, with or without the use of AMV as a term in the 

regression model (Figure 4.9a vs 4.9b). We are therefore confident FR11 have 

overestimated the true value AAWR, either because there is a component of natural 

variability present in the residual they have computed, or because their analysis is 

restricted to such a short period of time. In contrast, our computation of AAWR for 1979 

to 2010 is found using a physical model that provides consistent treatment of RF due to 

GHGs, aerosols, and natural factors such as ENSO, TSI, and SAOD, over a century and a 

half period, which mitigates a host of potential complications present when one examines 

a residual [Silver, 2012]. 

Other studies suggest the PDO or changes in SAOD from minor volcanic 

eruptions could have also played a role in driving variations of ∆T over this time period 

(e.g. Tokarska [2019] and the references therein). Our estimates of AAWR include all of 

these factors and based on analysis of data collected over a ~150 year time period; in our 

model framework the most important natural drivers of ∆T over the past four to five 

decades are ENSO, major volcanic eruptions, and AMV. If temperature is affected by a 

natural process not represented by the exogenous factors used to compute the residual, 

then quantification of AAWR will be unduly influenced (Figure 4.9). In particular, the 

difference between our best estimate of AAWR and that given by FR11 is nearly 



226 
 

completely explained by the proper attribution of the signal from variations in the 

strength of AMOC40. 

Conversely, the estimate of AAWR over 1979 to 2010 provided by ZT13 upon 

consideration of the variations in the strength of AMOC is likely biased low. They 

suggest AAWR drops from 0.170 °C/decade in a regression without AMV to 0.070 

°C/decade with AMV included. Even though they considered AMV as a proxy for 

variations in the strength of AMOC, they used a linear function to describe ΔTHUMAN over 

the entire 1860 to 2010 time period as an input to their MLR. We are able to closely 

reproduce their estimate of AAWR if we replace our formulation of ΔTHUMAN with a 

linear function spanning 1860 to 2010 (Figure 4.9c,d). However, it is well known that 

anthropogenic RF of climate, which drives ΔTHUMAN, has varied in a non-linear manner 

that generally follows human population over the past century and a half. While ZT13 

state that the use of an RCP-shaped anthropogenic forcing causes trends in their 

computed residual between ΔTOBS and ΔTMDL, we cannot reproduce this result. With our 

use of RCP-based anthropogenic forcing that underlies the CMIP5 GCMs, for the entire 

historical record (1850-present) and our method of calculating AAWR, we find that both 

 
40 FR11 determined that their equivalent of AAWR was 0.170 °C/decade using the CRU3 ΔT record. There 
are several differences between the FR11 regression model and the EM-GC aside from the fact they fit a 
trend to their residual to get their equivalent of AAWR instead of fitting a direct signal. When the EM-GC 
is used to simulate their analysis, (running 1979 to 2010 instead of 1850 to 2019, no ocean signals aside 
from ENSO, and a linear function for ΔTHUMAN,) the resulting AAWR is 0.166 °C/decade – sufficiently similar 
to trust that the EM-GC captures the essence of FR11’s analysis.  When the AAWR is run as in Figure 4.3 
except with CRU3 instead of CRU4, AAWR falls to 0.109 °C/decade while the AMOC signal contributes 
0.058°C/decade (the 1979-2010 trends in PDO and IOD are an order of magnitude smaller than the AMOC 
trend and opposite in sign).  Whether using CRU3 (0.109+0.058=0.167 °C/decade) or CRU4 
(0.146+0.040=0.186 °C/decade), the difference between the EM-GC AAWR (~0.14 °C/decade) and FR11’s 
AAWR (0.170 °C/decade, or 0.166 °C/decade by our simulation) can be largely explained by the proper 
attribution of the signal from AMOC. 
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ΔTHUMAN and AAWR are insensitive to the inclusion or exclusion of a proxy for AMOC 

in the regression analysis. 

The uncertainty in AAWR is likely much higher than the small values suggested 

by FR11 and ZT13. As detailed in section §4.3.3, our estimate of AAWR based on the 

full uncertainty in AER RF and analysis of ΔTOBS from multiple data centers spans the 

range 0.08 °C/decade to 0.20 °C/decade. FR11 state that the computation of AAWR upon 

use of ΔTOBS from various data centers provides a range of 0.158 °C/decade to 0.187 

°C/decade (these values are the 1σ lower and upper uncertainties of the standard error of 

their regression). The final estimate of AAWR given by ZT13 is 0.05 °C/decade to 0.09 

°C/decade based solely on the mathematical uncertainty from calculating a linear fit to 

their ΔTHUMAN. In our model framework, uncertainties in the strength and temporal shape 

of AER RF over the past four decades cause ΔTHUMAN to vary much more than allowed 

by uncertainties from any linear fit to ΔTHUMAN. The variation of AER RF used in our 

study results in a range for AAWR of 0.089 to 0.197 °C/decade for a single ensemble 

(Figure 4.10); this range extends slightly further to 0.084 to 0.202 °C/decade when 

considering all ensembles. Figure 4.10 and figure 4.12 show that EM-GC runs with small 

amounts of aerosol cooling tend to have both lower values of χ2 (i.e good fits to the 

climate record span a wider range of values for λΣ) and lower values of AAWR than 

model runs constrained by larger aerosol cooling. 

Individual runs demonstrating the effect AER RF has on ΔTHUMAN and χ2 are highlighted 

in figure 4.13. As AER RF cooling was largest in the 1970s and decreased in past decade 

[S Smith and Bond, 2014], larger aerosol cooling implies higher values of AAWR due to 

the nature of the definition of ∆THUMAN (equation 4.6a). This relationship explains why 
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figure 4.13a, with a relatively weak AER RF2011 value of –0.4 W/m2, has a relatively low 

AAWR value of 0.128 °C/decade; conversely, the simulation in figure 4.13c with strong 

aerosol cooling (AER RF2011 of –1.4 W/m2) results in a relatively high AAWR value of 

0.169 °C/decade. If the global warming due to black carbon aerosols and co-emitted 

species over the industrial era were as large as the best-estimate of Bond et al. [2013], 

this term would place the actual value of AER RF2011 close to –0.4 W/m2 rather than the 

AR5 best estimate of –0.9 W/m2, rendering AAWR well below the best estimate of 0.170 

°C/decade given by FR11. On the other hand, if the cooling of climate due to 

anthropogenic aerosols was as large as suggested by the recent study of Shen et al. 

[2020], this finding would likely place AER RF2011 close to  –1.4 W/m2, leading to a 

value of AAWR similar to the 0.170 °C/decade estimate of FR11.  FR11 do not address 

the quite large uncertainty in AAWR due to imprecise knowledge of the RF of climate by 

tropospheric aerosols. 

There remains an important distinction to be made when comparing values of 

AAWR based on specific estimates of AER RF2011. While figure 4.13b shows that using 

an AER RF time series with the AR5 best estimate for AER RF2011 (–0.9 W/m2) gives an 

AAWR of 0.146 °C/decade, whereas our weighted ensemble median value of AAWR is 

0.135 °C/decade. The lower value for the ensemble median follows from how our χ2 

strength-of-fit filters eliminate more runs with stronger aerosol cooling than runs with 

weaker aerosol cooling. Runs that use weaker aerosol cooling have lower resulting values 

for AAWR, so even though our ensemble weighting method theoretically assigns equal 
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Figure 4.12 – AAWR as a Function of AER RF2011, λΣ, and AER “Road” 
 

 
 
Same as figure 4.10b except using the “low road” and “high road” AER RF constructions 
instead of the “middle road”.  
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Figure 4.13 – Observed and Modeled ΔT, 1850 to 2100, Varying AER ΔRF2011 
 

 
 
The model runs pictured are identical to the run in figure 4.3, except 4.13a and 4.13c use 
alternate middle road constructions of AER RF. We show a run with AER RF2011 of −1.4 
W m−2 instead of −1.5 W m−2 because the simulation with −1.5 W m−2 exists at the far 
edge of acceptable χ2 values, producing unrealistic individual anthropogenic components 
and OHC2100. (AER RF2011 of −0.4 W m−2 to −1.5 W m−2 would match the upper and 
lower limits respectively of AR5’s likely range of anthropogenic, tropospheric forcing 
values in 2011 relative to preindustrial values). The upper rung of each abbreviated 
ladder plot here is the same format as those in figure 3a. The second rungs show the 
anthropogenic effect on the climate in gold as well as three of its four components: the 
temperature rise from GHG forcing (red), the temperature fall from aerosol cooling (light 
blue), and the temperature fall from OHE (dashed black). For clarity, the LUC 
component is not shown as its value is consistently near-zero compared to the other 
components.  
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weighting to runs with –0.1 W/m2 and –1.9 W/m2, the relative lack of high values of 

AAWR corresponding to stronger aerosol cooling that pass this filter causes the weighted 

median AAWR to be slightly lower than 0.146 °C/decade. 

We state our estimate of AAWR for 1979 to 2010 as 0.14 ± 0.06 °C/decade, 

where the uncertainty covers the full range of model runs that yield a good fit to ∆TOBS 

from CRU4. Our estimate of AAWR is larger than the trend in lower tropospheric 

temperature of 0.096 ± 0.012 °C/decade reported by CM17.  Their estimate is based upon 

analysis of satellite and radiosonde measurements of temperature throughout the global 

lower troposphere (GLT, the atmospheric layer from the surface to approximately 300 

hPa) over the time period Jan. 1979 to June 2017. Similar to FR11, CM17 do not address 

the contribution of imprecise knowledge of AER RF to their estimate of AAWR, which 

leads to their small uncertainty for AAWR compared to our uncertainty. We reach similar 

results, though, when comparing the drop seen between the trend in observed ΔT and the 

trend after removing natural components of ΔT. They report a significant difference 

between the temperature trend for raw data (0.155 °C/decade) and the trend after the data 

have been adjusted to account for natural influences due to major volcanoes and ENSO 

(0.095 °C/decade). Our best estimate of AAWR for the Jan. 1979 to June 2017 time 

period, based on a linear fit to ∆THUMAN shown in figure 3a, remains ~0.14 °C/decade, 

compared to the trend in  ∆TOBS of ~0.18 °C/decade for this time period. As such, we 

compute the drop from the trend in ∆TOBS to trend in ∆THUMAN to be about two-thirds of 

the corresponding drop reported by CM17. Given the presence of two major volcanic 

eruptions in the first half of this time period and a major ENSO event in 2015-16, the 

drop in value from the observed trend to the anthropogenic tread should be expected. We 
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caution that precise determination of the effect of major volcanic eruptions for analysis of 

GLT data collected during the satellite era is affected by whether or not one includes the 

effect of AMV in the analysis (§4.5 of Canty et al. [2013]), which may explain the 

difference between our drop and the drop from CM17.  Finally, and most importantly, 

CM17 emphasize (i.e. their figure 2) that CMIP5 GCM simulations of GLT result in 

considerably more rapid warming than is discerned from their adjusted observations.  We 

reach a similar conclusion based on our analysis of ΔT, as described in the following 

section. 

4.3.3 Comparison to AAWR from GCMs 

In this section, we conduct a comparison of estimates of AAWR found using our 

EM-GC to AAWR inferred from CMIP5 GCMs. First, we further characterize 

uncertainties in AAWR.  

Figure 4.14 shows the sensitivity of AAWR to AER RF and the choice of data 

record for ΔTOBS. The middle of box and whicker (BW) plot under the label CRU4 

summarizes the weighted median (0.135 °C/decade), weighted interquartile range (IQR), 

and extrema of AAWR for the EM-GC determined PDF shown in figure 4.11a. 

The EM-GC ensembles shown thus far relied only on time series of AER RF 

found using scaling factors for aerosol cooling (αCOOL) and heating (αHEAT) along the 

“middle road” of figure 4.7 (section §4.2.1.2). The shape of the AER RF time series 

varies by choosing values for αCOOL and αHEAT along either the “low” or “high” road of 

figure 4.7. The dashed BW plots surrounding the solid BW labeled CRU4 show the 

AAWR ensemble changes by a small amount, upon modification of the shape of the input 

AER RF time series. Scatter plots of AAWR versus AER RF2011 and λΣ as well as ladder 
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plots documenting the computation of ∆THUMAN and AAWR for the AR5 best estimate of 

AER RF2011, for these “high” and “low” road simulations, are shown in Figures 4.12 and 

4.15. The value of AAWR exhibits only a small sensitivity to variation of the shape of 

AER RF. We include this comparison for the CRU4 record of ∆TOBS because the various 

time series for AER RF that underlie the model inputs for these simulations cover a large 

range of possibilities, similar to that shown in figure 4 of Smith & Bond [2014]. 

The choice of data center for the ΔTOBS record contributes another small uncertainty to 

AAWR. Figure 4.14 shows BW plots for ΔTOBS from other data centers.  The median 

values of AAWR for AER RF computed with αCOOL and αHEAT along the “middle road” 

of figure 4.7 are 0.142, 0.151, and 0.156 °C/decade for the use of temperature data from 

NCEI, BEG, and GISS, respectively. The choice of data center exerts a difference of 

0.021 °C/decade between the largest and smallest median values, which is quite a bit 

larger than the value of 0.005 °C/decade difference reported by FR11 for selection of data 

between CRU3, NCDC (this dataset is now termed NCEI), and GISS. We find the largest 

value of AAWR upon use of ΔTOBS from GISS and the smallest value upon use of data 

from CRU4. We have featured data from CRU4 throughout our paper, as well as in our 

earlier studies [Canty et al., 2013; Hope et al., 2017] because so many other published 

papers over the prior decade have used CRU temperature records as their baseline 

dataset. The 0.021 °C/decade difference in AAWR that arises between our use of ΔT 

from CRU4 compared to GISS is much smaller than the difference between any AAWR 

from the EM-GC and the Coupled Model Intercomparison Project (CMIP5) [K Taylor et 

al., 2012] GCM multi-model mean value of AAWR. 
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Figure 4.14 – Comparison of Values of AAWR, EM-GC vs CMIP5 GCMs 
 

 
 
Each black box-and-whisker plot shows the weighted median, weighted IQR, and 
extrema from PDFs for AAWR found using the EM-GC, as shown in figure 4.11. The 
solid black box-and-whisker plots represent EM-GC ensembles fit to records of ΔTOBS 
from various data centers (as indicated), found using RF from RCP 4.5 with the middle 
road construction of AER RF as shown in figure 4.7. The dashed box-and-whisker plots 
show AAWR for ΔTOBS from CRU4, found using the low (left) and high (right) road 
constructions for AER RF (section §4.2.1.2); for simplicity, this comparison is not shown 
for the other temperature records. Among all of the EM-GC results, the maximum value 
of AAWR is 0.202 °C/decade and minimum is 0.084 °C/decade. The red box and whisker 
plot at the right shows AAWR found using the regression method described in section 
§4.2.4, using archived output of ΔT from 112 individual CMIP5 GCM runs, all 
constrained by RCP 4.5.  
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Figure 4.15 – Observed and Modeled ΔT, 1850 to 2100, Varying AER “Road” and ΔTOBS 
 

 
 
Similar to figure 4.13, except instead of varying the value of AER RF2011, here we vary 
the “road” of the aerosol time series (panels a-c) or the ΔTOBS time series (panels d-f). 
For reference, figure 4.15b is identical to figure 4.13b.  
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Figure 4.16 – AAWR from GCMs, Found Using Linear Fit and Regression 
 

 
 
Scatter plots of GCM-AAWR found using a linear fit to ΔT from 1979 to 2010, 
neglecting years with strong volcanic influence (GCM-AAWR, LIN), versus GCM-
AAWR found using regression versus ΔTHUMAN (assumed to be linear over 1979 to 
2010), solar irradiance, and stratospheric optical depth (proxy for volcanic influence) 
(GCM-AAWR, REG). 
 
a) determinations of GCM-AAWR, LIN and GCM-AAWR, REG from 112 CMIP5 GCM 
runs 
b) same as (a) but for the 41 GCMs; each data point represents the mean value of GCM-
AAWR, LIN and GCM-AAWR, REG from the various runs from a specific GCM, if 
more than one run was archived. 
 
Each panel shows the 1 to 1 line, the correlation coefficient, the best fit line and equation 
of this line (blue), and the mean and 2σ standard deviation of the quotient of GCM-
AAWR, LIN divided GCM-AAWR, REG. Each panel also shows our best estimate of 
AAWR from the climate record (orange circle) and the upper limit of AAWR (dashed 
lines). 
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Figure 4.17 – Box-and-Whisker Plots of AAWR from GCMs 
 

 
 
AAWR from GCMs found using regression (left) and linear fit (right), for GCM-AAWR 
grouped according to runs (R), mean per each GCM (“model”, M), and mean for each of 
the 21 modeling centers (C) that participated in the RCP 4.5 CMIP5 experiment. The 
middle line of each box-and-whisker plot shows median GCM-AAWR; the boxes show 
the 25th and 75th percentiles of the distribution of GCM-AAWR and the whiskers show 
the maximum and minimum GCM-AAWR.  
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The far-right red BW plot in figure 4.14 shows AAWR from the CMIP5 GCMs 

used by AR5. Archived output from the CMIP5 [K Taylor et al., 2012] for 112 runs of 41 

GCMs driven by RCP 4.5 [Thomson et al., 2011] has been used to estimate AAWR from 

these GCM results (see §4.3.3.1 for details). We find good agreement between values of 

AAWR from these 112 runs found using two analysis methods, termed linear fit (LIN) 

and regression (REG) (figure 4.16, figure 4.17, and table 3.3). For the AAWR found 

using LIN, we perform a linear least squares regression to archived output of global mean 

two-meter air temperature (TAS) or years 1979 to 2010, ignoring years with obvious of 

major volcanic eruptions (1982, 1983, 1991, and 1992). The rationale behind this method 

is natural variability in TAS due to internally model generated ENSO events will be 

randomly distributed in time; the influence of variations in the strength of AMOC on 

TAS tend to be small within these GCMs [Kavvada et al., 2013].  For AAWR found 

using REG, we perform a multiple linear regression of TAS versus TSI and SAOD in a 

two-step process, as described in §4.3.3.1. Values of AAWR found using both methods 

are also given in table 3.3 for each GCM. Comparing AAWR from LIN versus REG 

shows the two methods result in values of AAWR with a high correlation coefficient (r2 ≥ 

0.95) and a mean ratio close to 1, providing confidence that AAWR has been computed 

accurately from the CMIP5 GCMs. 

All of the CMIP5 GCM output used here are global, two-meter air temperature 

(TAS) data. According to Cowtan et al. [2015], the blending of TAS (over land) with 

GCM output of sea surface temperature (SST, termed TOS in the CMIP5 archive) 

provides a more appropriate manner for sampling GCM output than use of global TAS, 

since datasets such as CRU4-based ΔT are a combination of near surface air temperature 
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over land and SST over water. Cowtan et al. [2015] state the use of blended temperature 

rather than air temperature accounts for 25% of the difference between the GCM-based 

and observed variations in global temperature over 2009–2013 and 38% of this difference 

over 1975-2014. Our own analysis using TAS-TOS blended temperature from CMIP5 

GCMs results in a reduction of AAWR by roughly 2-5%, depending on which GCM is 

considered. This 2-5% reduction in GCM-AAWR translates to explaining 6-14% of the 

difference between median GCM-based and median EMGC-based values of AAWR, as 

well as 11-28% of the difference between GCM-based AAWR and the observed CRU4 

slope of 0.18 °C/decade over the AAWR time period. While our use of blended 

temperature from a handful of CMIP5 GCMs rather than TAS does lead to a reduction in 

GCM-based values of AAWR, we find this effect is small (i.e. 2 to 5 %). A similar 

conclusion was reached by Tokarska et al. [2020]. Therefore, other than this paragraph, 

our paper focuses entirely on TAS from the GCMs because the use of blended 

temperature introduces a modest effect that does not alter any of our major conclusions, 

plus the information needed to produce blended temperature is no longer available on the 

CMIP5 archive for enough GCMs to complete an ensemble similar in size to our initial 

the GCM ensemble shown in figures 4.10 and 4.11. 

The median value of the CMIP5 GCM-based AAWR found with the regression 

method 0.22 °C/decade. This value for AAWR is slightly more than 50% larger than our 

best empirical estimate of 0.14 °C/decade. The IQR for AAWR inferred from CMIP5 

GCMs is 0.184 to 0.250 °C/decade, and the extrema are 0.075 and 0.301 °C/decade. 

More than two-thirds of the 112 archived CMIP5 GCM runs (Table 3.3) exhibit a value 

for AAWR larger than our upper limit of 0.202 °C/decade, and there is no overlap 
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between the CMIP5 IQR and any IQR from the EM-GC – the 25th percentile of the 

CMIP5 ensemble is 0.184 °C/decade, while the highest 75th percentile from an EM-GC 

ensemble is 0.167 °C/decade (figure 4.14, GISS). Also, only 3 of the 41 CMIP5 GCMs 

exhibit a value of AAWR less than 0.14 °C/decade: INM-CM4 [Volodin et al., 2010], 

IPSL-CM5B-LR [Hourdin et al., 2013], and MRI-CGCM3 [Yukimoto et al., 2012] (table 

3.3). We conclude therefore that the large majority of the CMIP5 GCMs exhibit 

anthropogenically induced warming that is considerably more rapid than what has 

actually occurred over the time period 1979 to 2010. This finding is not closely tied to the 

chosen time period for AAWR: whereas AAWR does exhibit some dependence on start 

and end year (table 4.4), the median value of CMIP5 GCM-based AAWR exceeds these 

empirical values by about the same amount for any similar time period. The tendency of 

most GCMs to overestimate empirical AAWR is evident in plots of time series of 

archived ΔT shown in AR5 (i.e. figure 11.25a) and persists whether the GCM output is 

examined in terms of individual runs, various GCMs, or specific modeling centers (figure 

4.17, table 3.3). A similar tendency of GCM-based warming rates to lie considerably 

above empirical estimates has been noted by multiple recent, complementary studies 

[Christy and McNider, 2017; Chylek et al., 2014; Fyfe et al., 2013; Millar et al., 2017; 

Tokarska et al., 2020]. 

A GCM retrospective paper by Hausfather et al. [2020] shows that many past 

GCMs have predicted the observed rise in ΔT quite well. By comparing older GCM 

predictions of ΔT to the rise in ΔTOBS since those predictions were made, Hausfather et 

al. [2020] show that the skill in predicting ΔT/Δt up to 2017 increased through the first 

three IPCC assessment reports. This ability to predictively match ΔT/Δt with the realized 
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ΔTOBS is quantified with unitless skill values, which increase from 0.63 to 0.73 to 0.81 

for the first three assessment reports. However, the predictions of ΔTOBS for GCMs used 

in the fourth IPCC assessment report overestimated observed ΔT/Δt from 2007-2017, 

resulting in an overall skill value of 0.56 despite being a short-term prediction using the 

most advanced GCMs available at the time. While this excess warming in the GCMs that 

underlie the fourth report is argued to be due to overestimated scenario RF, excess 

warming continued into the AR5 GCMs with CMIP5, as documented here and in figure 

11.25b of AR5. Early indications are that the tendency for GCMs to warm more quickly 

than the actual climate system extends into the CMIP6 GCMs being used as the backbone 

of the sixth assessment report [Belcher et al., 2019; Tokarska et al., 2020; Voosen, 2019]. 

While the increase in GCM complexity over the years certainly provides many benefits, it 

appears that such complexity has had the unintended consequence of providing a 

noticeable warming bias compared to older GCMs. 

It is possible that some of the differences between AAWR found using our EM-

GC and that inferred from CMIP5 GCMs are due to unaccounted internal variability in 

the observed temperature record. In particular, common explanations for the inability of 

models to match the lack of warming from 1998-2012 include shifts in the PDO and the 

strength of SAOD from minor volcanic eruptions [England et al., 2014; Tokarska et al., 

2019], as well as variations in transport of heat to the deep ocean [Meehl et al., 2011] that 

we have attempted to simulate using AMV as a proxy for the strength of AMOC. Some 

members of the EM-GC ensemble produce results consistent with a climatically 

important role for the PDO: as mentioned in sections §4.2.1.1 and §4.3.1, simulations 

with high values of AER RF2011 show relatively stronger influence of the PDO and 
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relatively weaker influence of AMOC compared to the results shown in figure 4.3. These 

ensemble members also result in an increase in the climatic importance of SAOD 

following major volcanic eruptions [Canty et al., 2013]. However, consistent with the 

conclusion of Chylek et al. [2020], we find enhancements of SAOD due to recent minor 

eruptions to have a negligible effect on ΔT for all members of our EM-GC ensemble. The 

very low values of globally averaged SAOD following minor eruptions in the past decade 

will not noticeably affect ΔT, unless the climate response to SAOD is highly nonlinear. 

4.3.3.1 Extracting AAWR from GCMs 

AAWR from GCM output was computed using two methods that yield similar 

results. Monthly, global mean values of temperature were obtained for 112 simulations 

from 41 models and 21 modeling centers in the CMIP5 archive. These estimates are 

based on analysis of monthly mean global temperature from historical run files (which 

extend to year 2005) and the RCP 4.5 run files (which start in year 2005). We have used 

RCP 4.5 [Thomson et al., 2011] to cover this latter time period due to its wide use in 

other studies and because, in Hope et al. [2017] the adherence to RCP 4.5 kept ΔT from 

rising past 2°C above preindustrial with high confidence, though in this study the 

probability has dropped to 50%. Similar analyses have been done for the other three RCP 

scenarios as well; the difference in AAWR from CGMs does not strongly depend on the 

RCP scenario used as the RCPs do not different significantly between 2005 and 2010. 

The analysis uses all of the ensemble members that cover both the historical and RCP 4.5 

time periods that were present on the CMIP5 archive as of 24 June 2014; some CMIP5 

data has left the archive since then. 
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The first method we use to find GCM-AAWR, termed REG (regression), involves 

examination of de-seasonalized global, monthly mean values of ΔT from the various 

GCM runs. We determine regression coefficients for the contribution of total solar 

irradiance, stratospheric optical depth, and humans on ΔT by carrying out a regression 

using the proxies for TSI and SAOD given in Canty et al. [2013] and a linear function for 

ΔTHUMAN, saving the coefficient for TSI. The regression analysis is repeated for only the 

1979 to 2010 time period, using the saved value for the TSI coefficient and finding new 

values for the SAOD and human coefficients. A two-step process is needed to properly 

determine the TSI coefficient because the two major volcanic eruptions since 1979, El 

Chichón and Mount Pinatubo, occurred at similar phases of the ~11 year solar cycle. 

The second method of calculating GCM-AAWR, termed LIN (linear fit), involves 

examination of global, annual average values of ΔT from the various GCM runs, 

from1979 to 2010 (figure 4.18). These GCM runs were designed to simulate the climatic 

effect of the eruptions of El Chichón and Mount Pinatubo on climate. This volcanic effect 

is obvious upon visual inspection of time series of annual average ΔT from the GCM 

archive. For LIN, we find the slope of ΔT versus time using a linear fit to the annual 

average GCM output of ΔT for years 1979 to 2010, excluding the years of strong 

volcanic influence (1982, 1983, 1991-94). 
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Figure 4.18 – AAWR from 41 GCMs (RCP 4.5) compared to empirical AAWR 
 

 
 
Time series of the global, annual average ΔT relative to the preindustrial baseline, for the 
GCMs that have archived r*i1p1 runs in the CMIP5 archive using RCP4.5. If a particular 
GCM submitted more than one run, ΔT has been averaged to obtain a single time series 
for that GCM. The 41 grey lines show ΔT from 1945 to 2030 from the 41 GCMs, the 
thick black line shows the multi-model mean of ΔT, and the 41 thin black lines show ΔT 
from 1979 to 2010 excluding years with strong volcanic influence (1982, 1983, and 1991 
to 1994). The figure legend shows the mean and 2σ standard deviation of GCM-AAWR 
found using linear fits to the 41 time series of ΔT from 1979 to 2010 (excluding years 
with strong volcanic influence). The thick crimson line has a slope of 0.22°C/decade, the 
mean of GCM-AAWR, and starts at the multi model mean value of ΔT in 1979; the error 
bar at the end of the thick crimson line represents the 2σ standard deviation of GCM-
AAWR. The crimson error bar is displaced by a year to not overlap with the respective 
orange symbols. The orange depicts the empirical best estimate and range of AAWR, 
overlapping the crimson line in 1979 and rising with a slope of 0.14°C/decade. The 
orange error bars represent the upper and lower limit for AAWR discussed throughout 
the main paper.  
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The values of GCM-AAWR from the 112 RCP 4.5 runs found using REG and 

LIN are presented in table 3.3. Scatter plots of LIN versus REG determinations of GCM-

AAWR for each of these 112 runs are shown in figure 4.16a. The two determinations of 

GCM-AAWR exhibit a strong correlation (r2 = 0.95) and AAWR found using REG is 

~6% less than found using LIN. The box-and-whisker plot in figure 4.14 for GCM-

AAWR is based solely on the REG determination since we view the REG method as 

being more thorough as well as lessening the appearance of the CMIP5 GCMs warming 

too much. This implies a CMIP5 median AAWR of 0.22 °C, with 61% of models 

showing an AAWR outside our empirical upper limit of 0.202 °C/decade. Had we instead 

chosen the values from the LIN method, the median value of GCM-AAWR would rise to 

0.23 °C/decade and we would have concluded 73% of the determinations of GCM-

AAWR from the 112 CMIP5 runs lie outside our empirical upper limit. Figure 4.17 show 

box-and-whisker plots of GCM-AAWR found using both REG and LIN, grouped 

according to all 112 runs, the 41 models, and the 21 modeling centers. These 6 box-and-

whisker plots show that the tendency of the median value of GCM-AAWR to exceed our 

~0.14 °C/decade best estimate by about 50% is a robust result. The tendency for between 

two-thirds and three-quarters of the values of GCM-AAWR to exceed our upper limit of 

0.202 °C/decade is similarly robust. Both results persist regardless of how GCM-AAWR 

is calculated or how the model runs are grouped. 

4.3.4 The effects of aerosols and climate feedback on future ΔT 

We turn our attention to the effects of the radiative forcing due to AER RF and λΣ 

on future projections of ∆T. Figure 4.13, in addition to showing the effect on AAWR of 

varying the input model time series for AER RF, also shows how these three simulations 
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differ in ΔT out to year 2100 (ΔT2100). The projection of ∆T is produced by applying the 

solutions for λΣ and κ that best fit the historical record to the prescribed GHG forcing 

pathways of RCP 4.5 out to the end of this century. Natural variations of all climatically 

important factors are assumed to be zero in the future to highlight only the rise in human 

driven rise in the global mean surface temperature anomaly (ΔTHUMAN). We focus on 

projecting the underlying trend of future warming due to anthropogenic GHGs, as 

opposed to attempting to predict year-to-year variations in temperatures. 

The full historical time series for ΔT can be fit reasonably well (χ2 ≤ 2) for many 

combinations of time series of AER RF (indexed by their value in 2011) and value of λΣ. 

As a result, there exist a wide range of possible future temperature projections assuming 

the value for the sum of climate feedback mechanisms needed to simulate prior warming 

will persist into the future. This ability to fit the historical global temperature record with 

a wide range of possible climate feedback values is the main source of the resulting 

uncertainty in our estimate of ΔT2100. If aerosol cooling to date has been low, then 

aerosols have counteracted only a small amount of the GHG forcing that warms the 

atmosphere, necessitating a low value of λΣ, resulting in modest future warming. By the 

same logic, a high amount of aerosol cooling to date leads to a large amount of future 

warming [Goodwin et al., 2018; Kiehl, 2007; Knutti and Hegerl, 2008]. 

Figure 4.13a shows a value for ΔT2100 of just 1.7°C for weak aerosol cooling 

(AER RF2011 of –0.4 W/m2) offsetting the warming from RCP 4.5 GHGs. Conversely, if 

aerosol cooling has been large (AER RF2011 of –1.4 W/m2), global warming will be much 

more intense: Figure 4.13c shows a ΔT2100 slightly above 3.1°C. Warming can reach over 

4°C by 2100, still with RCP 4.5 GHGs, for the upper range of aerosol cooling scenarios 
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stated in AR5 (i.e. AER RF2011 from –1.6 W/m2 to –1.9 W/m2). However, under these 

strong aerosol cooling scenarios, it is not possible in our modeling framework to obtain 

values of χ2 below 2 for the full historical ΔT fit and particularly for the OHC fit, which 

is why the largest aerosol cooling case shown in figure 4.13c is for AER RF2011 of –1.4 

W/m2. The individual simulations pictured in figure 4.13 were chosen by finding the 

value of λΣ that minimizes χ2 over the entire CRU4 record of ΔT (equation 4.1c), for each 

value of AER RF2011. This difference in ΔT2100 results from the fact that aerosol 

concentrations, and thus aerosol forcings, are set to return to near-zero values in the 

future as an effect of air quality regulations that arise from human health concerns [S 

Smith and Bond, 2014]. As such, all simulations approach the same net human RF by 

2100 but have different values of λΣ based on the amount of GHG RF that was offset by 

anthropogenic aerosols over the historical record. 

Figure 4.10c shows ΔT2100 as a function of λΣ and AER RF2011 for RCP 4.5. 

Figure 4.11b shows a PDF of ΔT2100 for the ensemble members shown in figure 4.10c, 

computed using the weighting method based on the AR5 likelihoods for the values of 

AER RF2011 (figure 4.10a) described in section §4.3.1. Figures 4.10c and 4.11b illustrate 

a vitally important aspect of the climate system: the present uncertainty in the amount of 

GHG warming offset by aerosols causes a large spread in future warming, for a single 

future GHG abundance scenario, in this case RCP 4.5. If warming due to black carbon 

aerosols and co-emitted species were as large as the best-estimate of Bond et al. [2013], 

this term would place the actual value of AER RF2011 close to –0.4 W/m2, resulting in 

values of ΔT2100 in our model framework close to the low end (i.e. 1.20 °C) of this 

forecast. On the other hand, if the climate cooling due to aerosols was as large as 
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suggested by Shen et al. [2020], values of  ΔT2100 would lie towards the high close on end 

(i.e. 3.74 °C) of our forecast. A reduction in the uncertainty of the amount of warming 

offset by tropospheric aerosols for the contemporary atmosphere, which requires 

obtaining consensus on the role of black carbon [Bond et al., 2013] as well as various 

aerosol indirect effects [Chen and Penner, 2005; Gryspeerdt et al., 2020], would enable 

more accurate forecasts of end of century warming. 

A PDF of ΔT2100 for the output from 41 GCMs is also shown in figure 4.11b. For 

GCMs that have submitted multiple runs using RCP 4.5 to the CMIP5 archive, ΔT in year 

2100 is first averaged for these runs, such that the PDF consists of the distribution of 

ΔT2100 for the 41 GCMs shown in table 3.3. The median warming of T2100 from our EM-

GC simulations for RCP 4.5 is 2.00 °C, with lower and upper limits of 1.20 and 3.74 °C, 

respectively. The median ΔT2100 from the 41 GCMs is 2.52 °C, with lower and upper 

limits of 1.69 and 3.64 °C. Only 7 of the 41 CMIP5 GCMs exhibit a value for ΔT2100 less 

than the EM-GC median of 2 °C. 

Figure 4.19 shows a probabilistic forecast of the future rise in ΔT from our EM-

GC for RCP 4.5. Colors denote the probability of reaching at least that temperature by 

each year. The figure also contains the CMIP5 GCM ensemble minimum, multi-model 

mean, and maximum values of ΔT (gray lines) as well as the likely range of warming 

(green trapezoid) from figure 11.25b of AR5 [Kirtman et al., 2013]. Temperature 

projections from our EM-GC agree well with the expert judgement of the near-future rise 

ΔT provided by Chapter 11 of AR5. The white color in figure 4.19 for EM-GC 

probability is the median warming projection in our model framework. Similar to the 

comparison shown in §4.3.3 for AAWR, projections of warming from the CMIP5 GCMs 
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Figure 4.19 – Global Warming Projections for RCP 4.5, 1950 to 2100 
 

 
 
The EM-GC ensemble is shown with red-to-blue envelope and the CMIP5 GCM 
ensemble is shown with grey lines. Color at any given point within the EM-GC envelope 
represents the chance of ΔT reaching at least that temperature at that time. The three 
CMIP5 lines represent the minimum, multi-model mean, and maximum of ΔT from the 
GCMs that submitted projections of each RCP scenario respectively to the CMIP5 
archive (grey lines). One set of observed temperatures to date (CRU4, orange line), the 
expert judgement from Figure 11.25 of AR5 (green trapezoid and vertical bar), and the 
targets of the Paris Agreement (gold spikes at right) are also shown for comparison.  
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tend, on average, to be larger than the warming projection from our empirical model of 

global climate. Notably from a policy perspective, our most likely outcome for ∆T lies 

slightly above the CMIP5 GCM multi-model minimum, with both the EM-GC-based 

median and the GCM-based minimum lying below the Paris Climate upper limit of 2 °C. 

As explored further in §4.3.7, carbon emissions consistent with the CO2 trajectory of 

RCP 4.5 provide a more likely chance of limiting global warming to either the Paris goal 

(1.5 °C) or upper limit (2 °C) than is projected by CMIP5 GCMs constrained by RCP 4.5. 

Most notably, observed ∆T over the years ~2005 to 2020 lies between the CMIP5 GCM 

multi-model minimum and mean, which of course was the driving factor behind the 

formulation of the green trapezoid in figure 4.19 by the authors of Chapter 11 of AR5 

[Kirtman et al., 2013]. 

The values of λΣ for the EM-GC-based projections shown above suggest less 

future warming than similar values provided by most CMIP5 GCMs. Table 9.5 of AR5 

[Flato et al., 2013] suggests model mean values for λΣ of 1.6, 2.04, or 2.15 W/m2/°C 

depending on which quantities are used to infer λΣ ; specifically, the first value is the sum 

of the average value of the four individual feedbacks, the second value is based upon 

their estimate of ECS and the RF associated with 2×CO2, and the third value is based 

upon the values for the climate sensitivity parameter and climate feedback parameter 

given. Table 1 of Sherwood et al. [2020] gives a value for λΣ of 1.9 W/m2/°C, with a 66% 

confidence range of 1.46 to 2.34 W/m2/°C. Although tabulations of λΣ from CMIP5 

models exist [Andrews et al., 2012; Forster et al., 2013; Vial et al., 2013], particularly 

Table 9.5 of AR5 [Flato et al., 2013] and Table 1 and Figure 4 of Sherwood et al. [2020], 

comparison to our values is complicated by the sensitivity of λΣ to AER RF for good fits 
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to the climate record (figure 4.10). In general, our λΣ (and thus λ) suggest less future 

warming than those from the CMIP5 GCMs. 

An important assumption for our quantification of both AAWR and ΔT2100 using 

the EM-GC is that λΣ (and thus λ) has remained constant over time. However, we can 

also simulate time dependent climate feedback to address the possibility that λΣ may 

change over time (section 12.5.3 of AR5 and references therein; also Rose et al. [2014], 

Shindell [2014], and Marvel et al. [2018]). Recall that 1/𝜆𝜆 = (1 + 𝛾𝛾)/𝜆𝜆𝑝𝑝 = 1/(𝜆𝜆𝑝𝑝 −

𝜆𝜆Σ) from equations 4.5 and 4.6; we have used λΣ up to this point as simulations with 

higher values of λΣ have higher future ΔT. For this reason, we prefer to examine a time 

dependent λ in terms of its inverse, 1/λ, also known as the climate sensitivity parameter, 

because this quantity also has a positive correlation with ΔT. Figure 4.20 and table 4.5 

summarize how ΔT2100 changes if we allow 1/λ to vary over time while still keeping the 

strength of fit between ΔTOBS and ΔTMDL at acceptable levels (χ2 ≤ 2) for either the full 

historical time period or the most recent 80 years. 

For four different cases of aerosol forcing, we find that allowing 1/λ to scale with 

anthropogenic forcing while still keeping χ2 ≤ 2 over the full historical time period results 

in roughly doubling of ΔT2100 compared to the constant feedback case (table 4.5). This 

scenario with time-varying feedback, which results in our maximum warming, implies an 

increase in 1/λ by nearly a factor of three over two and a half centuries (figure 4.20e). 

This rise in 1/λ is much more rapid than expected. Even one of the most extreme 

estimates from recent work [Marvel et al., 2018] suggests an increase in median 

estimated equilibrium climate sensitivity (ECS) from 1.8°C (for simulations constrained 

to match data acquired over 1979-2005) to a long-term (end of century) value of 3.1°C, 
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Figure 4.20 – EM-GC Temperature Comparisons for Time-Varying 1/λ  
 

 
 
Historical and modeled temperatures (left column) and the residuals between them (right 
column) for different treatments of the climate feedback parameter. Each row 
corresponds to the respective row of table 4.5. All results shown here are for runs with 
the aerosol scenario of AER RF2011 = –0.9 W/m2 as used through much of this paper.  
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Table 4.5 – ΔT2100 and 1/λFINAL as 1/λ Varies 
 

λ treatment AER RF2011 value 
 –0.1 W/m2  –0.4 W/m2  –0.9 W/m2  –1.5 W/m2 

Constant 1/λ 1.6°C 1.7°C 2.1°C 3.5°C 
0.38°C/W/m2 0.44°C/W/m2 0.62°C/W/m2 1.43°C/W/m2 

Varying 1/λ, 
recent fit 

2.2°C 2.6°C 3.5°C 7.6°C 
0.54°C/W/m2 0.65°C/W/m2 1.02°C/W/m2 3.14°C/W/m2 

Varying 1/λ, 
full record fit 

2.6°C 3.0°C 4.2°C 8.4°C 
0.62°C/W/m2 0.76°C/W/m2 1.21°C/W/m2 3.46°C/W/m2 

 
End-of-century temperatures and the values of 1/λFINAL for different treatments of the 
climate feedback parameter across four aerosol forcing scenarios (as built from 
[Lamarque et al., 2011] with “middle road” construction). The first row corresponds to 
runs as used throughout the main body of the paper, with 1/λ remaining constant over 
time (i.e. 1/λ = 1/λINITIAL = 1/λFINAL). The next two rows of the table take the runs from 
the first row and, keeping everything else identical, modify the ΔTHUMAN component of 
the original EM-GC simulations to represent 1/λ that varies. The climate feedback in 
these cases takes the same shape as total RCP 4.5 RF, scaled and shifted so that the new 
1/λ time series maintains an average value over the time of the ΔTOBS record identical to 
the original unaltered λ value. This produces a “tilt” in the residual between modeled and 
observed temperatures, causing χ2 to increase as the scaling versus RCP 4.5 increases. 
The third row is the result from the maximum scaling that can be applied to climate 
feedback over time while keeping χ2 ≤ 2, as defined over the entire ΔTOBS record. This 
scenario produces a noticeable gap between observed and modeled temperatures over the 
most recent decades, so the second row is the result of the maximum scaling that can be 
applied to climate feedback over time while keeping χ2 ≤ 2 except just over the recent 
decades. 
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which corresponds to a 72% increase. This rise in ECS postulated by Marvel et al. (2018) 

is predicated on the assumption that current atmospheric and oceanic conditions are truly 

exceptional. The validity of preliminary results for a handful of CMIP6 models 

suggesting even higher ECS [Belcher et al., 2019; Gettelman et al., 2019; Zelinka et al., 

2020] has been questioned by numerous recent papers based upon analysis of 

paleoclimate data as well as climatic conditions over the past several decades [Forster et 

al., 2020; Nijsse et al., 2020; Sherwood et al., 2020; Voosen, 2019; Zhu et al., 2020]. 

Such scenarios that greatly increase 1/λ by the end of the century also produces a time 

dependent drift in the residual between observed and modeled over the historical record 

in our model framework (figure 4.20f). Coincidentally, the comparison between modeled 

and measured ∆T in figure 4.20f looks similar to the comparison of the CMIP5 GCM 

multi-model mean and ∆TOBS shown in figure 4.2. This time dependent drift between 

∆TOBS and our modeled ∆T, combined with the large temporal change in λ that underlies 

this simulation, suggests this might be an unreasonable scenario for use in CO2 emission 

mitigation strategies. 

We also calculate a medium-varying feedback case by considering a χ2 ≤ 2 

strength-of-fit restriction that focuses only on the most recent 80 years of the ΔTOBS 

record (figure 4.20c,d) instead of χ2 ≤ 2 over the full ΔTOBS time series. This scenario 

results in a simulation of ∆T that appears more reasonable upon inspection of the 

residuals and the smaller rise in 1/λ. However, depending on the strength of AER RF, the 

increase in 1/λ can still range from roughly 50% to more than a factor of two (table 4.5). 

Changes in 1/λ of this magnitude over two and a half centuries are faster than the 

millennia-order timescale changes usually referenced (e.g. section 12.5.3 of AR5 and 
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references therein) when discussing noticeable changes in λ, ECS, and other related 

quantities such as transient climate sensitivity (TCS). While a factor of two or more rise 

in 1/λ does not match literature, an increase of roughly 50% falls in line with a 50% 

increase in TCS [Shindell, 2014] and neatly between the 28% increase (1.8 °C to 2.3 °C) 

and the 72% increase (1.8 °C to 3.1 °C) [Marvel et al., 2018] seen in other re-analyses of 

historical forcing results from GCMs. As there is no strong evidence from the climate 

record for a noticeable rise in 1/λ on the multidecadal time scale consistent with the 

simulations shown in figure 4.20, we assert that the assumption of constant feedback 

within the EM-GC framework seems to be a reasonable assumption for the next few 

decades. There also certainly exists the possibility that by end of century, the rise in ∆T 

could be a few tenths of a degree warmer than our current best estimates assuming 

constant λΣ due to a slow rise in 1/λ. 

We also assume for our computation of QOCEAN that κ is constant over time. This 

assumption follows from the fact that, like λ, the rate of change of κ is most likely small 

enough to not have a significant effect on the time scale of our calculations of ∆T [Raper 

et al., 2002]. Our application of κ requires a monotonic increase in the magnitude of this 

term, we solve for QOCEAN based on ΔTATM,HUMAN instead of total ΔTMDL because the 

latter displays strong natural variability and thus is not monotonically increasing. The 

anthropogenically-forced temperature itself is not strictly monotonic either, especially for 

AER RF time series corresponding to more negative values of AER RF2011, but the short, 

small, instances of cooling in those scenarios are relatively insignificant. Also, those 

cooling instances are pre-1950, and the OHC record we fit does not extend earlier than 

1950. As such, the few instances when ΔTHUMAN includes short, small cooling periods 
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should not affect the overall approximation of κ as a constant. As with λ and fitting 

ΔTOBS, a constant value of κ results in modeled OHC that fits the observed OHC quite 

well (figure 4.3b and figure 4.13). 

Model treatment of aerosols and clouds are two possible explanations for why λ 

from the EM-GC differs from CMIP5 models. About half of the CMIP5 GCMs do not 

include aerosol indirect effects [Schmidt et al., 2014]. A lack of the indirect effect in our 

EM-GC would result in cooler projections of future ΔT, as less total AER RF over the 

historical record would favor lower values of λΣ and thus lower ΔT2100. Such a 

relationship between ΔT2100 and the presence of the indirect effect does seem to appear in 

CMIP5 results as well: models without the indirect aerosol effect consistently warm less 

from 2014 to 2100 than models that do include it [Chylek et al., 2016]. Considering that 

the CMIP5 GCMs tend to warm more than the EM-GC in terms of both AAWR (§4.3.3) 

and ΔT2100 (§4.3.5), a lack of the indirect effect in some GCMs does not explain the 

excess warming in GCMs, meaning it seems more likely that the difference between the 

EM-GC and CMIP5 GCMs lies in cloud feedback. (This should not eliminate 

considerations of aerosols and their complex interactions, however, especially given that 

aerosol indirect effects and cloud feedback processes are related.) It is widely known that 

uncertainty in the cloud feedback is much larger than that of other major feedbacks and 

this uncertainty is a main driver for the spread between CMIP5 models [Dolinar et al., 

2015; Stocker et al., 2013; C Zhou et al., 2015]. While the fourth IPCC report [Solomon, 

2007] suggested a cloud response spread centered around zero feedback within the 

CMIP3 GCMs, AR5 suggests a largely positive cloud feedback, in line with some recent 

observations [Dolinar et al., 2015; C Zhou et al., 2015]. However, there is considerable 
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spread in the determination of cloud feedback from observations, including the possibility 

of a neutral or even negative feedback [Ceppi et al., 2017; Vial et al., 2013; Zelinka et al., 

2016]. While some recent studies suggest that cloud feedback and overall ECS 

interpreted from observation are higher than those from modeling studies based solely on 

observations since 2000 [Dessler, 2013; Sherwood et al., 2020], other observational 

studies offer lower ECS values than those found in modeling studies [Lewis and Curry, 

2018; T Masters, 2014; Otto et al., 2013; Schwartz, 2012]. If the actual cloud feedback is 

less positive than the models currently suggest, that could also be a factor in the high bias 

of GCMs for AAWR, ECS, and ΔT2100 [Hope et al., 2017; Tokarska et al., 2020; C J 

Weaver et al., 2020; Zelinka et al., 2020]. 

4.3.5 Other RCPs and comparisons to projections from GCMs 

One advantage of simple models such as the EM-GC is the ability to perform 

sensitivity testing by completing many more runs of the model with less computing 

power. For example, each ensemble represented in figure 4.14, originally consisting of 

160,000 simulations, takes roughly two hours to complete. All those ensembles focus on 

ΔTHUMAN driven by RF from GHG abundances from RCP 4.5, and a full treatment of the 

effects of uncertainty in RF due to aerosols. Figures 4.21a and 4.22a, driven by RCP 2.6, 

and figures 4.21b and 4.22b, driven by RCP 8.5, show the results of EM-GC ensembles 

constrained by low and high ends of RF tested in CMIP5, respectively. The panels of 

figure 21 and figure 22 are the same as figure 4.10b and figure 4.11b, respectively, except 

for the different RCP scenario driving the ensembles. As the RCP scenarios are identical 

up to 2005 and do not differ greatly until after 2020, the shape of the model output shown 

in figure 4.10b and figure 4.21 are nearly identical, because the three χ2 calculations (fits 
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to total ΔT, recent ΔT, and OHC) used to select good fits to the climate record consider 

only historical data. The difference in end-of-century RF drives the differences in ΔT2100, 

shown both in the colors of the model output and the positions of the PDFs in figure 

4.11b, figure 4.22a, and figure 4.22b. The probabilities of the rise in ΔT2100 staying 

beneath 2°C are 92%, 50%, and 0% for RCP 2.6, 4.5, and 8.5 respectively; probabilities 

for ΔT2100 remaining below 1.5°C fall to 67%, 10%, and 0%. For RCP 6.0, (not pictured,) 

the probability of staying beneath 2°C is 20%, which falls to 0.1% for 1.5°C. 

Figure 4.22c and 4.22d also compare ΔT2100 from the EM-GC to temperatures at the end 

of the century presented in Sherwood et al. [2020]. The probabilistic estimate of end of 

century warming given in Sherwood et al. [2020] is based upon their expert evaluation of 

climate sensitivity combined with the assumption of a linear relation between the 

transient climate response and radiative forcing. They estimate that by end of century 

warming will be less than 2°C relative to pre-industrial are 83%, 17%, and 0% for RCP 

2.6, 4.5, and 8.5, respectively.  The probabilistic estimate of the upper end of  warming 

given by Sherwood et al. [2020] is considerably less than indicated by the CMIP5 GCMs 

(green versus red lines in figure 4.22). They also compute a lower probability for the low 

end of the distribution of ΔT2100 than we find using our EM-GC, which is traceable to 

their judgement that the most likely value of total cloud feedback is positive [Klein et al., 

2017]. 

There are three clear takeaways from figures 4.11b and 4.22. First, earth’s climate 

allows for a wide range of future temperatures, even when a model such as our EM-GC is 

sufficiently trained with historical data due to uncertainty in quantities such as AER 

RF2011. Second, consistent with the expert assessment of temperature projections from 
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Figure 4.21 – ΔT2100 as a function of AER RF2011 and λΣ, RCP 2.6 and 8.5 
 

 
 
Same as figure 4.10c except for ensembles using RCP 2.6 and RCP 8.5 anthropogenic 
forcing instead of RCP 4.5.  
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Figure 4.22 – Probability Density Functions of ΔT2100, RCP 2.6 and 8.5 
 

 
 
Panels a and b are the same as figure 4.11b except for ensembles using RCP 2.6 and RCP 
8.5 anthropogenic forcing instead of RCP 4.5. Panels c and d then exchange CMIP5 data 
for data taken from figure 23 of Sherwood et al. [2020], binned to match the structure 
presented in the previous PDFs of this study.  
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CMIP5 GCMs given in Chapter 11 of AR5 [Kirtman et al., 2013], our EM-GC projects 

smaller future increases in ΔT than provided by most of the CMIP5 GCMs. Third, while 

temperature projections from our EM-GC agree with CMIP5 GCM results in that society 

must avoid a GHG  pathway consistent with RCP 8.5 to achieve the goals of the Paris 

Climate Agreement, our model simulations show that RCP 4.5 and particularly RCP 2.6 

are GHG pathways more likely to achieve limited warming than indicated by GCM 

results within the CMIP5 archive. Our model projections suggest that adhering to the 

RCP 4.5 pathway is as likely as not (=50%) to give Earth a future that limits global 

warming to 2°C above preindustrial; placing GHGs on the RCP 2.6 pathway is highly 

likely (>90%) to limit global warming to 2°C and likely (>66.7%) to stay beneath 1.5°C.  

Our probabilistic temperature projections disagree somewhat with AR5. 

According to CMIP5 GCM results as presented in AR5, RCP 2.6 is likely but not highly 

likely (that is, >66.7% but not >90%) to keep global temperatures beneath 2°C. AR5 also 

says RCP 4.5 is more likely than not (>50%) to exceed 2°C. The power of RCP 2.6 to 

keep us beneath 2°C of warming appeared in another recent study [Goodwin et al., 2018] 

that determined staying beneath 2°C to be highly likely, much closer to our result than to 

those of CMIP5. 

Figure 4.23 shows probabilistic projections of global warming for RCP 2.6, 4.5, 

and 8.5. This figure is the same as figure 4.19 (that showed results for RCP 4.5), using 

the same vertical axis for all three ensembles.  This figure demonstrates a fourth key 

takeaway from our modeled projections of future temperature. Projections of global 

warming computed using our EM-GC agree well with the expert judgement of near-

future ΔT from AR5 of Chapter 11 [Kirtman et al., 2013], shown as a trapezoid on each 
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panel of figure 4.23. The colored envelope for each panel of figure 4.23 is based upon a 

representative sample of the runs from each respective RCP ensemble (figure 4.10b and 

figure 4.21) and displays the rise in ΔT out to the end of the century. At each time along 

this envelope, the color represents the probability within the ensemble of reaching at least 

that temperature. Whatever RCP scenario we examine, the EM-GC results match the 

near-future projections (trapezoid) based on the expert judgement of AR5’s Chapter 11 

authors. Our projections of warming using a physically based model tied to observations 

of ocean heat content, natural as well as anthropogenic drivers of variations in ∆T, and 

the consideration of uncertainty in AER RF are thus remarkably similar to the expert 

assessment of the CMIP5-GCM-based future rise in ΔT sketched out in figure 11.25b of 

AR5 [Kirtman et al., 2013]. 
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Figure 4.23 – Global Warming Projections for Various RCPs, 1950 to 2100 
 

 
 
Global warming projections for RCP 2.6, RCP 4.5, and RCP 8.5 relative to the 
preindustrial baseline. Figure 4.23b is the same as figure 4.19; all three panels are of 
similar construction. Color at any given point within the EM-GC envelope represents the 
chance of ΔT reaching at least that temperature at that time.  
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4.3.6 The Effect of Increased Future Emissions of CH4 

As many countries around the world transition from coal to natural gas as a 

primary fossil fuel for electricity production, assumptions about future methane scenarios 

must shift to account for faster growth [Molnár, 2018; Saunois et al., 2020]. The RCP 4.5 

scenario has future CH4 leveling off by midcentury at near-current atmospheric mixing 

ratios, then decreasing until the end of the 21st century (Figure 4.1b). The RCP 2.6 

scenario has even more drastic and immediate reductions in atmospheric CH4. This 

leveling off may be difficult for society to achieve due to natural gas becoming a primary 

source of energy for the foreseeable future [R B Jackson et al., 2018]. This energy shift 

would imply more leakage of CH4 from extraction and utility infrastructure as demand 

increases [Saunois et al., 2020] which would lead to increases in RF instead of decreases, 

though this could be offset with significant improvements to leakage rates [Alvarez et al., 

2012]. The atmospheric mixing ratio might also rise through anthropogenically-induced 

releases of natural CH4 reservoirs, such as permafrost melting, or increased biogenic 

activity [Comyn-Platt et al., 2018; Voigt et al., 2017]. Finally, the observed abundance of 

atmospheric CH4 has already been rising faster in the past few years than in the previous 

two decades [Nisbet et al., 2019; Saunois et al., 2020], exceeding the RCP 4.5 projection 

and mapping closer to the most intense RCP 8.5 scenario. These factors taken together 

suggest that we should expect that the abundance of CH4 in the atmosphere may increase 

over time, and not level off as suggested in the RCP 4.5 scenario [Saunois et al., 2016]. 

Therefore, we have created blended CH4 scenarios, noted in section §4.2.1.2 and shown 

in Figure 4.5, to test the sensitivity of warming computed using our EM-GC to various 

future for atmospheric CH4. 
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Figure 4.24 shows the probability of achieving the Paris Climate Agreement goals 

as a function of the atmospheric abundance of CH4 in 2100. Each symbol in figure 4.24 

shows ΔT2100 for an ensemble of EM-GC runs where the only change between the 

ensembles is the input time series of CH4. Starting from either the RCP 2.6 (squares) and 

RCP 4.5 (diamonds) as scenario for all GHGs other than CH4, the time series for each 

ensemble calculation is based upon either RCP 2.6, RCP 4.5, RCP 8.5, or one of four 

linear combinations of CH4 versus time between RCP4.5 and RCP 8.5 shown in Figure 

4.5. Otherwise the ensembles are identical to those in figures 4.22a and 4.22b for RCP 

2.6 and RCP 4.5 respectively. In RCP 4.5, the abundance of CH4 in 2100 is 1578 ppb; in 

the ensemble driven by RCP 4.5 with no changes to CH4, we compute a 50% probability 

of ΔT2100 remaining beneath 2°C and a 10% chance of remaining beneath 1.5°C. These 

probabilities correspond to the leftmost diamonds in each panel of figure 4.24. As the 

CH4 time series approaches the RCP 8.5 pathway, which has a CH4 mixing ratio of 3748 

ppb in 2100, the probabilities of future warming remaining beneath 2°C and 1.5°C fall to 

30% and 2%, respectively (rightmost diamonds). Similarly, switching from RCP 2.6 for 

all GHGs to a combined scenario that uses CH4 from RCP 8.5 causes the probability of 

ΔT2100 staying below 2°C to decrease from 92% to 73% and the likelihood of staying 

below 1.5°C warming to decrease from 66% to 33% (left- and rightmost squares). This 

analysis indicates that failure to limit methane to the RCP 2.6 trajectory will have a large 

impact on the achievement of the 1.5°C goal of the Paris Climate Agreement. 
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Figure 4.24 – Impact of CH4 on EM-GC Projections 
 

 
 
Shown are the probabilities that ΔT2100 remains below 2°C (4.24a, blue) or below 1.5°C 
(4.24b, gold) for both the RCP 2.6-based ensembles (squares, solid lines) and RCP 4.5-
based ensembles (diamonds, dotted lines) relative to preindustrial. Each ensemble based 
on RCP 4.5 uses all GHG and aerosol forcing inputs from RCP 4.5 except replacing the 
RCP 4.5 CH4 time series with one of six linear combinations between the RCP 4.5 CH4 
scenario and the RCP 8.5 CH4 scenario, inclusive. Likewise, each ensemble based on 
RCP 2.6 uses all forcing inputs from RCP 2.6 except substituting the RCP 2.6 CH4 with 
one of the six linear combinations (save for the seventh ensemble, far left, which is 
purely RCP 2.6). Ensembles are placed in this figure based on the CH4 mixing ratio in 
2100 (i.e. end values of figure 4.5).  
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4.3.7 Response to cumulative emissions 

The Transient Climate Response to cumulative carbon Emissions (TCRE), which 

relates ∆T to accumulated anthropogenic emissions of CO2, is an important policy metric 

[Gregory et al., 2009; Millar et al., 2017]. As the EM-GC projects generally less future 

warming than most of the CMIP5 GCMs, it follows that TCRE derived from the EM-GC 

falls on the low side of the range for TCRE given in AR5 (0.8 to 2.5°C per 1,000 GtC). 

Figure 4.25 shows the results of the ensemble median EM-GC simulations for the four 

RCP pathways. All four EM-GC ensemble medians suggest a TCRE of roughly 1.4°C per 

1,000 GtC. The other four lines on figure 4.25a show the multi-model mean projections 

from the CMIP5 GCMs for the four RCP scenarios, taken from figure SPM.10 of AR5. 

TCRE from the CMIP5 GCMs in this figure has a value of 2.3°C per 1,000 GtC, which 

lies well above the EM-GC estimate and in the high end of the assessed range given by 

AR5. Following AR5 and Millar et al. [2017], future cumulative emissions of CO2 in 

figure 4.25a are based on the rise since 1870, with ∆T shown relative to the two-decade 

average for 1861-1880. The emissions along the horizontal axis represent global, 

atmospheric release of CO2 due to combustion of fossil fuels, flaring, cement production, 

and LUC from the RCP database. 

Figure 4.25b shows an adjustment of the RCP 8.5 lines from figure 4.25a that are 

set to zero for the most recent decade (2010 to 2019), as done in Millar et al. [2017]. This 

adjustment clarifies the allowable remaining carbon budget for limiting future warming 

to remain beneath a given amount. Millar et al. [2017] presented this adjustment as one 

manner of accounting for the overestimate of ΔTMDL provided by CMIP5 GCMs  
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Figure 4.25 – ΔT as a Function of CO2 Emissions, Ensemble Medians 
 

 
 
a) Transient climate response to cumulative CO2 emissions, in units of GtC. Average ΔT 
from CMIP5 GCMs, as taken from figure SPM.10 of AR5, is plotted against the average 
cumulative emissions since 1870 modeled to meet RCP prescribed concentrations 
(circles). EM-GC results show ΔT from a single EM-GC simulation for each RCP 
scenario representing the median of the ensemble; CO2 emissions for each RCP ensemble 
are taken directly from the RCP database. 
 
b) TCRE for different studies of RCP 8.5, illustrated using the same axes as Millar et al. 
[2017]. Both the EM-GC projection and the Millar et al. [2017] projection from CMIP5 
are plotted such that the point representing the decade of the 2010s (centered on 2015) is 
set to the origin, based on current ΔT and estimated cumulative emission to date. For 
comparison, the CMIP5 projection is also shown such that it matches the EM-GC results 
for roughly the first century of the simulation, as done in panel a, i.e. instead of matching 
in the 2010s, so as to demonstrate the effective shift that Millar et al. [2017] applied to 
the CMIP5 projection. Vertical dotted and dashed lines indicate the remaining amount of 
CO2 that can be released prior to having ∆T rise 1.5°C above preindustrial (i.e., 0.6°C 
above the observed 0.9°C rise in ΔT for the 2010s) according to the three studies.  
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Figure 4.26 – ΔT as a Function of CO2 Emissions, RCP 8.5 
 

 
 
Full EM-GC projection of transient climate response to cumulative CO2 emissions for 
RCP 8.5. Colors and structure mirror those of figure 4.23c. The three grey lines of 
varying darkness provide a visual guide to highlight the lines of 50%, 66%, and 95% 
probability for keeping temperatures cooler than those temperatures, while the black 
horizontal lines are a visual guide to the two Paris Climate Agreement target ΔT values. 
As such, the intersection of a grey line with a black line determines the maximum amount 
of cumulative emissions that would be allowed while remaining cooler than one of the 
Paris Climate Agreement targets with the given probability.  
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Table 4.6 – Carbon Budget Comparisons 
 

Source & reference emissions 
Threshold Budget for 1.5°C Threshold Budget for 2.0°C 

50% prob. 65% prob. 90/95% prob. 50% prob. 65% prob. 90/95% prob. 

Millar et al. (2017) - 545 GtC, 2014 768 GtC 749 GtC 709 GtC (90%) 961 GtC 940 GtC 875 GtC (90%) 

Tokarsak & Gillet (2018) - 555 GtC, 2015 763 GtC 685 GtC * * * * 

Rogelj et al. (2018) – 605 GtC 2017  158 GtC 114 GtC * * * * 

Goodwin et al. (2018) - 572 GtC, 2016 * 767-777 GtC * * 967-1027 GtC * 

This study - 532 GtC, 2014 ; 590 GtC, 2019 930 GtC 850 GtC 710 GtC (95%) 1250 GtC 1140 GtC 900 GtC (95%) 
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compared to ΔTOBS; setting the ΔT baseline to recent years is also the process behind the 

expert judgement of Kirtman et al. [2013] that produced the AR5-based trapezoid shown 

in previous figures. The central finding of Millar et al. [2017] is that the best estimate of 

the remaining carbon budget needed to limit future warming to 0.6°C relative to 2015 

(which translates to 1.5°C relative to preindustrial) is higher than the best estimate 

suggested by AR5. They later issued a public clarification saying their estimate for future 

temperature (and thus their carbon budget) still lies within the AR5 uncertainty [Allen 

and Millar, 2017], albeit with their carbon budget on the high extreme of the AR5 range. 

As shown in figure 4.25 and further discussed below, our EM-GC projection of ΔTMDL 

indicates the remaining carbon budget is even larger than the values given by AR5 and 

Millar et al. [2017]. 

We can also use full ensemble simulations within the EM-GC to compute 

probabilistic forecasts of emissions thresholds for the Paris Agreement targets. Figure 

4.26 displays ΔT with respect to cumulative emissions of CO2, using the same color 

scheme adopted for figures 4.19 and 4.23. The colors represent the probability that a 

particular future value of ∆T will reach at least that temperature for the specified 

cumulative emission of CO2. Figure 4.26 is based on the RCP 8.5 scenario for GHGs, to 

cover the widest range of future anthropogenic emissions of CO2. 

Figure 4.26 shows that according to calculations conducted in our model 

framework, if society can keep cumulative carbon emissions below 900 GtC, then we 

will have a 95% chance of preventing global warming from exceeding 2°C relative to 

preindustrial. Cumulative emissions of 1140 GtC or 1250 GtC would lower the chance of 

∆T remaining below 2°C to 66% or 50%, respectively. Likewise, the 95%, 66%, or 50% 
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probabilities for ∆T remaining below 1.5°C correspond to cumulative CO2 emissions of 

710 GtC, 850 GtC, or 930 GtC, respectively. For comparison, these emission numbers are 

listed in table 4.6, alongside comparable numbers from other studies [Goodwin et al., 

2018; Millar et al., 2017; Tokarska and Gillett, 2018]. Similar quantities from Chapter 2 

of the IPCC 1.5 C Special Report are also included, and show lower allowable carbon 

emission budgets driven by two intermediate-complexity climate models, FAIR and 

MAGICC, that are constrained to approximate climate sensitivity from the CMIP5 GCMs 

[Rogelj et al., 2018]. 

For reference, while Millar et al. [2017] suggest that human activity has emitted 

roughly 545 GtC from 1870 to 2014, leading to a rise in ΔT of 0.9 °C for that time 

[Millar et al., 2017]. Improvements in the understanding of LUC emission and five more 

years of emitting CO2 suggest these values increase to 635 GtC [Friedlingstein et al., 

2019; Le Quéré et al., 2018] and 1.0 °C respectively for 1870 to 2019. Using only 

emissions prescribed by the RCP scenarios, the carbon budget values are 532 GtC to 

2014 and 590 GtC to 2019, but similar to the 545 GtC value from Millar et al. [2017], 

these numbers do not reflect updated understanding of past emissions from LUC. Society 

has been emitting 11.0 ± 0.8 GtC per year over the past decade, a rate that has also been 

increasing over previous decades, with a current annual value of nearly 12 GtC per year 

[Friedlingstein et al., 2019]. 

Table 4.7 shows the remaining, post end of 2019 carbon budget for limiting 

warming to either 1.5°C or 2.0°C in our model framework. For all entries in table 4.7 we 

assume at the end of 2019 that cumulative carbon emissions are 590 GtC. We tie this 

cumulative carbon emission estimate to the time series used to drive the global carbon  
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Table 4.7 – Metrics for Future Carbon Budgets Leading to Crossing the Pairs Thresholds 
 

Warming Targets Future Budget to 
Threshold Budget a 

Future Budget as % of 
Past Budget a 

Range of Years to Meet 
Threshold Budget b 

1.5 °C 

95% 120 GtC 20% 2028-2029 

66% 260 GtC 44% 2037-2041 

50% 340 GtC 58% 2042-2048 

2.0 °C 

95% 310 GtC 53% 2040-2045 

66% 550 GtC 93% 2052-2065 

50% 660 GtC 112% 2057-2074 

 
aFuture Budget = Threshold Budget – Past Budget, with threshold and past budgets taken 
from the final row of Table 4.6 (2019 reference year). 
bFirst year of range is taken from RCP 8.5 prescribed emissions; last year of range 
assumes the current rate of emissions of roughly 12GtC continues into the future. 
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cycle model that underlies the RCP 8.5 specification of atmosphere CO2. The current 

annual rate of global carbon emission of nearly 12 GtC would imply surpassing 710 GtC, 

our RCP-based threshold for staying below 1.5 °C with 95% confidence, in 2029 and 

surpassing the 2.0 °C, 95% confidence threshold of 900 GtC in 2045. These dates of 

passing the 95% confidence intervals for the target and upper limit of the Paris 

Agreement fall to 2028 and 2040, respectively, if we allow total carbon emissions to rise 

at the rate that underlies RCP 8.5. Similarly, year ranges for passing the 66% confidence 

interval for 1.5°C and 2.0°C warming are 2037-2041 and 2052-2065, respectively (table 

4.7). The 50% confidence interval estimates for these thresholds rise to 2042-2048 and 

2057-2074. We emphasize that even though our EM-GC exhibits slower warning than the 

CMIP5 GCMs, the Paris Climate Agreement target of limiting warming to 1.5°C cannot 

be achieved unless society begins a near immediate transition to a low carbon future, and 

at the same time slows or eliminates the rise in atmospheric CH4 (section §4.3.6). 

4.4 Conclusions 

The value of the anthropogenic contribution to global warming over the past three 

decades, termed attributable anthropogenic warming rate (AAWR), has been analyzed in 

detail using both an empirical model of global climate (EM-GC) and output from CMIP5 

GCMs. We find AAWR to be as 0.14 ± 0.06 °C/decade (full range of possible values) for 

1979 to 2010 using our EM-GC, where the uncertainty covers the full range of model 

runs that yield a good fit to ∆TOBS from CRU4. The CMIP5 GCMs exhibit values of 

AAWR of 0.22 ± 0.10 °C/decade (standard deviation among AAWR values from the 

CMIP5 GCMs), considerably larger than inferred from the climate record using our EM-

GC.  More than two-thirds of the 112 archived CMIP5 GCM runs exhibit a value for 
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AAWR larger than our upper limit of 0.20 °C/decade. The uncertainty in the EM-GC 

based derivation of AAWR is driven by imprecise knowledge of the radiative forcing of 

climate due to tropospheric aerosols, whereas the largest source of spread in the GCM 

simulation of GMST is  due to uncertainty in cloud feedback [Ceppi et al., 2017; Vial et 

al., 2013; Zelinka et al., 2016]. Our finding that the CMIP5 GCMS exhibit a considerably 

faster rise in GMST than observed is consistent with finding of Chapter 11 of AR5 

(Kirtman et al., 2013). Attempts to improve the understanding of aerosol species is an 

active area of current research, but large uncertainties persist [Bond et al., 2013; W J 

Collins et al., 2017; Pincus et al., 2016; Shen et al., 2020; S Smith et al., 2011; S Smith 

and Bond, 2014; Thornhill et al., 2020]. Similarly, while some recent studies suggest 

total cloud feedback is positive [Klein et al., 2017; Sherwood et al., 2020], a recent 

analysis of a 40 year satellite record shows no trend in cloud reflectivity [C J Weaver et 

al., 2020], which is thought to be the largest driver of this positive trend. 

While it is beyond the scope of this study to thoroughly assess the possible 

shortcomings of the CMIP5 GCM simulations over the past three decades, we suggest 

that high values for the sum of climate feedback mechanisms (λΣ), in particular the 

various cloud feedback processes, could be responsible for the apparent warm bias of the 

CMIP5 GCMs. Indeed, a recent analysis of CMIP6 shows that the next generation of 

GCMs displays high correlation between high ECS (i.e. high λΣ in the EM-GC) and a 

poor fit to observed AAWR from 1981 to 2014/17 [Tokarska et al., 2020], and these 

high-ECS models have strongly positive cloud feedbacks [Zelinka et al., 2020]. If the 

actual cloud feedback is less positive than currently exhibited by CMIP5 and CMIP6 

GCMs, this could explain the apparent warm bias of these models. 
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Accurate projections of ΔT are critical to the successful implementation of the 

Paris Agreement. However, the wide span of possible futures even in our EM-GC 

framework confounds policy-making efforts and confidence in achieving the desired 

warming limits. While our model projections show a wide range of possible warming by 

end of century for the same GHG scenario, our forecasts produce a more optimistic 

likelihood for achieving the goals of the Paris Agreement than is provided by the CMIP5 

GCMs. The temperature forecasts given by our EM-GC tend to lie among the lower half 

of the projections provided by the CMIP5 GCMs, with our maximum forecast warming 

tending to lie near the CMIP5 multi-model mean. Most importantly, the projections of ∆T 

from our EM-GC agree extremely well with the “indicative likely range for annual mean 

ΔT” from Chapter 11 of AR5 [Kirtman et al., 2013] – lending important computational 

support for this expert assessment of the CMIP5 GCMs driven by the fact many of the 

GCM-based values of ∆T have exceeded ∆TOBS over the past few decades (Figure 4.2 

here and figure 11.25b of Kirtman et al. [2013]). 

Projections of ΔT versus cumulative emissions provides a policy relevant 

framework for achieving the goals of the Paris Climate Agreement. From 1870 to date, 

humans have emitted roughly 600 GtC, and are currently emitting nearly 12 GtC per 

year. If society is to achieve the Paris Agreement by keeping the rise in ∆T below 2oC 

with 95% probability by 2100, then only 20 to 25 years of cumulative carbon emissions 

remain in the allowable budget (table 4.7). However, in reality society has less than 20 to 

25 years when considering practical complications. Since it is unreasonable to assume 

that annual emissions can drop from 12 GtC to zero instantaneously, the reduction in 

emission rate must begin earlier to reach the same cumulative emissions total. While the 



277 
 

20 to 25 year limit found in our model framework suggests society has more time to act 

than indicated by the CMIP5 GCMs, we emphasize that the goal of the Paris Climate 

Agreement can only be achieved by near immediate reductions in global carbon 

emissions. 

Methane, a potent GHG, also needs to be a large part of policy considerations 

when considering how cumulative emissions compare to global warming projections. As 

the United States and other major coal-burning nations switch to natural gas, the risk of 

significant CH4 leakage into the atmosphere increases, potentially negating the climate 

benefit of switching to the less carbon intensive fossil fuel source [R B Jackson et al., 

2018; Saunois et al., 2020]. Carbon cycle feedbacks, such as higher activity in natural or 

agricultural wetland methane production or leakage from previously locked natural 

reservoirs, could further increase the atmospheric abundance of CH4 [Comyn-Platt et al., 

2018; Voigt et al., 2017]. It is probably not reasonable to expect CH4 to follow the peak-

and-decline component pattern of RCP 4.5; on the other hand, the aggressive methane 

growth of RCP 8.5 also seems unreasonable (figure 4.1). A projection of methane mid-

range between RCP 4.5 and RCP 8.5 is a more likely scenario, implying a value for 

atmospheric methane between 2 and 3 ppm by 2100. Placing all GHGs other than 

methane along the RCP 2.6 trajectory would place us on a trajectory for having a 

reasonably favorable probability of liming warming to 2°C, irrespective of the future 

methane scenario (figure 4.24). However, even for RCP 2.6, achievement of the 

ambitious Paris Climate Agreement target of 1.5°C drops noticeably as future 

atmospheric methane intensifies. Quite simply, limiting warming to 1.5°C will require 

aggressive future controls on atmospheric release of both CO2 and CH4.  
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Chapter 5: Conclusion and Future Research Opportunities 

5.1 Summary of Work Presented 

In this thesis research, I have analyzed past and future GMST using a simple 

energy balance model of climate that includes MLR. With this model, my group has 

determined the relative importance of various forcing agents of climate and used these 

analyses to create probabilistic projections of future temperature. Most notably, we have 

shown that keeping GMST below the goals set by the Paris Agreement with significantly 

higher than a 50% likelihood requires a future GHG emissions scenario notably more 

ambitious than RCP 4.5. We also have performed a large amount of sensitivity testing to 

determine our confidence in our results, such as quantifying the dependence of ECS on 

choice of OHC record and evaluating the effect of future atmospheric CH4 on ΔT2100 in a 

manner based upon interpolation of the RCP scenarios. Many of the improvements I have 

added to the EM-GC since Canty et al. [2013] have had the effect of raising λΣ and 

ΔT2100, bringing the predictions of the EM-GC somewhat closer to those from CMIP5. 

The EM-GC still produces cooler temperature projections than are provided by the 

CMIP5 GCMs, suggesting society has a bit more time to act to alleviate dire effects of 

climate change than one would infer from literal interpretation of GCM output. 

Nonetheless, society must still implement rapid and strong reductions in the emissions of 

CO2 and CH4 to slow and potentially reverse current global warming. 

Our work shows that attributable anthropogenic warming rate (AAWR) from 

1979 to 2010 is lower than that inferred from GCM output, particularly as the latter does 

a poor job of matching observed temperatures from 1998 to 2012, though this comparison 

between the EM-GC and the CMIP5 GCMs is not very sensitive to the exact start and end 
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years for each comparative time period. At the same time, AAWR from the EM-GC is 

comparable to or higher than AAWR from other empirical studies [Christy and McNider, 

2017; Foster and Rahmstorf, 2011; J Zhou and Tung, 2013a]. Due to updates made over 

the course of this project, AAWR determined through the EM-GC has increased from 

roughly 0.12 °C/decade to roughly 0.14 °C/decade; this falls between values for AAWR 

below 0.10 °C/decade from Zhou & Tung [2013a] and Christy & McNider [2017] and 

values above 0.18 °C/decade for over 75% of CMIP5 GCMs. 

Similar to the resulting increase in AAWR, my updates to the EM-GC drove our 

projections for ΔT2100 with the RCP 4.5 scenario toward more warming, from a median of 

roughly 1.39 °C (range 0.91 to 2.40) to a median of 2.00 °C (range 1.20 to 3.74). This 

significant increase in ΔT2100 is largely driven by the addition of a responsive ocean with 

an explicit application of climate feedbacks, allowing what was previously an infinite 

heat sink to also begin warming in tandem with the atmosphere. In turn, the responsive 

ocean allows the atmosphere to warm towards a true equilibrium slowly as opposed to 

rapidly reaching a cooler false equilibrium. This large increase does not bring the EM-GC 

projection for RCP 4.5 to fully agree with the CMIP5 median and range of 2.52 °C (1.69 

to 3.64); the EM-GC median and minimum are still noticeably lower than the respective 

values from the CMIP5 GCMs. Similar comparisons happen with RCP 2.6 (median and 

maximum are cooler than those from the GCMs) and RCP 8.5 (minimum, median, and 

maximum). While consideration such as growth in CH4 and a potential increase in λΣ can 

further warm the EM-GC projections, cooler projections than those in AR5 suggest that 

society has a bit more time and a larger carbon budget, than suggested by GCM results, to 

reach goals such as those articulated in the Paris Climate Agreement. 
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5.2 Potential Future Work 

There are numerous research opportunities that we could address with updates to 

the EM-GC, both in the structure of the model and in the data we analyze. The EM-GC 

currently runs with global average time series on a monthly grid. Changing our input data 

sets and model equations to a regional scale could allow for a more thorough examination 

of temperature attribution and a reduction in uncertainty by comparing a larger number of 

experiments. Such changes could allow for examination of climate-relevant quantities 

other than temperature (such as precipitation) especially if examined on seasonal or 

yearly time scales. 

Future comparisons to GCMs will also include newer models than those used in 

CMIP5. While CMIP5 produced enough data to provide many more analyses, GCMs are 

continuously updated, and new emissions scenarios are produced as well. The current 

generation of GCMs participate in CMIP6 [Eyring et al., 2016] and its component 

experiments such as ScenarioMIP [O'Neill et al., 2016], using the Shared Socioeconomic 

Pathways (SSPs) [O’Neill et al., 2017; O’Neill et al., 2014] in place of the RCPs. These 

scenarios closely tie social and political changes to GHG atmospheric mixing ratios 

through dozens of possible futures, ideally giving a more tangible outline of potential 

global warming. They also include updates to the science underlying the projections, such 

as a 15% increase in the RF of CH4 due to the associated production of SWV [Myhre et 

al., 2007]. An increase in the strength of past GHG RF would imply a weaker climate 

feedback (§4.2.1.2); a change in the shape of the time series of past GHG RF (due to an 

increase in just one of its components) would also change the strength-of-fit between 

ΔTMDL from the EM-GC and ΔTOBS, potentially growing or shrinking the size of the EM-
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GC ensemble with allowable fits (§4.3.3). Use of the SSPs within the EM-GC and 

comparison to CMIP6 output is thus a logical continuation of the work presented here. 

We have taken a first step in this regard, with submission of a paper to Earth System 

Dynamics led by University of Maryland chemistry graduate student Laura McBride, on 

which I am a co-author [McBride et al., 2020].  The results of this paper will appear as a 

chapter in her doctoral dissertation. 

5.2.1 Altering the Spatial and Temporal Resolution of the EM-GC 

One of the largest simplifications of the EM-GC is its global resolution. While 

treating the whole Earth as a single unit is highly appropriate for a first-principles energy 

balance analysis, it limits the analysis to GMST and hinders the ability to make policy 

decisions on regional, national, and local scales. As such, altering the EM-GC to run on 

smaller spatial scales is a major opportunity for increasing our scientific capabilities. 

To run the EM-GC on regional and smaller scales, all appropriate data sets would 

require according updates. For example, temperature and aerosol RF depend on the area 

being examined and TSI varies with season for all regions outside the tropics, while GHG 

RF would not have such a dependence due to most GHGs being well-mixed in the 

atmosphere; teleconnection forcings such as ENSO would also not need a regional 

update. In addition to data set regionalization, the core model equations would require 

extra terms to account for the fact that each experiment would now have spatial 

boundaries within the atmosphere (and, depending on region, within the ocean as well) 

through which other forcing to the region of interest could be applied. Our treatment of 

QOCEAN would also require new consideration for any region that is purely continental, as 

the lack of ocean surface in such regions would prevent direct OHE; the effect of QOCEAN 
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on the atmospheric surface temperatures of that region would necessarily have to be 

incorporated into the atmospheric boundary conditions of such an experiment instead. 

An alternate or concurrent version of regionalization that could be added to the 

model is the addition of parameterizations to account for circulation pattern differences in 

both the atmosphere and ocean. In the atmosphere, these patterns are largely determined 

by latitude, with the most basic pattern being the six circulation cells (north and south 

polar, Hadley, and Ferrel cells). Of Earth’s regions, the poles are warming significantly 

faster than other areas, so a division or parameterization of atmospheric temperatures to 

represent the latitudinal differences and interactions could provide extra enlightenment 

and accuracy. In the ocean, these patterns depend both on latitude and on the physical 

shape and limitations of the various ocean basins. The background ocean temperature 

profile and depth of the mixed layer varies greatly with latitude, meaning the average 

ocean warming profile interpreted from CMIP5 output may not be an accurate 

simplification for calculating TOCEAN,HUMAN. Importantly, mixed layer depth and warming 

rate are generally inversely correlated. As such, adding in parameterizations for 

horizontal heat transport in the ocean and a dependence on mixed layer depth could be an 

alternate or additional option during regionalization. 

Regionalization of the EM-GC also opens the possibility of considering other 

regressors that don’t significantly affect global scale temperatures but do have effects on 

smaller scales, especially by affecting weather patterns. Like previous considerations of 

SWV for the global warming hiatus period (§2.3.1), we could add forcings to the EM-GC 

such as the Arctic Oscillation, the Pacific-North American pattern, or the Quasi-biennial 

Oscillation to look at temperatures or other climate indicators on the continental or 
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country scale. Adding extra regressors makes overfitting of the climate record a concern, 

so as part of such an analysis, determining which regressors explain the most variation in 

the climate record and which regressors do not significantly improve the fit (as done in 

Chylek et al. [2016]) should be a larger part of the project than currently in this thesis. Of 

course, the addition of new regressor variables also has to be based on a physical 

mechanism linking the process under consideration to variations in regional temperature. 

In addition to adding alternate spatial scales to the EM-GC, we can expand the 

model’s capabilities by adding options for alternate temporal scales as well. While the 

EM-GC currently operates on a monthly time grid, the strength-of-fit calculations already 

leverage an annual time scale to account for autocorrelation of the GMST anomaly 

[Canty et al., 2013]. Directly running on an annual time grid would bypass this slight 

mixing of time scales, and it would involve more use of combining existing data 

(averaging monthly time series such as ENSO or TSI to the yearly scale) in favor of 

inferring data (interpolating annual data such as GHG emissions or AER RF to the 

monthly scale). The ability to run the EM-GC on seasonal time scales – whether as four 

time steps per year or by selectively examining a single season through successive years 

– could also provide information on temperature-dependent nonlinearity in the climate 

system, e.g. whether temperature or other factors react more to the same amount of 

forcing depending on season. 

5.2.1.1 Other Ocean Temporal and Spatial Issues to Examine 

Several aspects of ocean physics not currently accounted for in our simple ocean 

module could potentially affect our atmospheric temperature analysis. The properties 

range from the aforementioned regional differences in mixed layer depth and temperature 
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to the vertical diffusion of heat between ocean layers to the two-way interactions between 

ocean circulation patterns. Some of these properties act on timescales far longer than our 

model simulations, but others act on the order of centuries, potentially providing a 

drifting effect over the length of our simulation, and some have a timescale of several 

decades, putting them in the same category as our AMV and PDO signals. As such, any 

efforts we make to improve the model should at least consider these changes to the ocean 

in addition to our atmospheric advances. 

In addition to creating a parameterization of the horizontal transfer of heat 

mentioned in the previous section, we could also write a parameterization to better 

represent the vertical diffusion of heat between layers of the ocean. For the length scale 

of the “surface layer” our simple ocean module considers, the time scale for internal 

diffusion of heat is on the order of a few decades. In theory, the sample warming profile 

used in our ocean module could equilibrate over time, within the span of our simulations, 

with a smaller percentage of heat remaining in the surface layer, thus increasing the value 

of QOCEAN and lowering our atmospheric temperatures. However, as our CMIP5-based 

warming profile appears similar to the existing average temperature profile of the oceans, 

I expect this result would have only a small effect on our warming projections. On the 

other hand, the differences between CMIP5 experiments in figure 4.8 and the quantities 

in table 4.3 suggest experiment scenario design could be important, as the historical, RCP 

8.5, and RCP 4.5 experiments appear like they may map onto the “shallow”, “CMIP5”, 

and “middle” warming profiles when separated – these experiments differ by how close 

the scenario is to equilibrium at the beginning and end of each experiment. A 

parametrization to represent downward diffusion would not be too difficult to include, as 
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we could program fp to decrease slowly over the course of a simulation; the difficulty 

would be deciding what rate of decrease would be most appropriate, and would likely 

require sensitivity testing. A future student could look into simple, zonal mean 2D 

models of MOC [Ferrari et al., 2014; Jansen and Nadeau, 2019] and attempt to pull 

simple relations out from their results to construct both the horizontal and vertical 

parameterizations. 

The interplay between ocean circulation patterns and climate change also should 

be taken into account. One consideration is the ability of the oceans to continue to 

function as a heat sink. Heat that enters the MOC and travels through the deep oceans 

requires multiple centuries to millennia to fully cycle [UCAR SCIED]. In theory, heat that 

entered the ocean during the early stages of the Industrial Revolution (mid-1700s) could 

be completing the cycle and returning to warm the surface now, or at least by the end of 

this century; more likely, though, is that it takes longer, and would be a minor effect 

compared to the accelerated warming that has occurred since the mid-1900s. 

Nonetheless, other more regional circulation patterns operate on shorter timescales, 

providing more noticeable effects on our simulations. The AMV, which we use as a 

proxy for AMOC, is the most notable of these, and not only does it have a large effect on 

our simulations of climate [DelSole et al., 2011], but it also stands to change significantly 

under the effects of climate change [Rahmstorf et al., 2015; Stocker et al., 2013; Willis, 

2010]. The deep water that drives MOC forms as cold, salty ocean water sinks. Global 

warming suggests not only a warmer surface layer, but a fresher one as well as ice melts 

and extra precipitation falls. These changes could greatly alter the character of AMOC, 

directly affecting the regression component of our model and potentially changing the 
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rate at which we can send heat from the atmosphere into the ocean. While our model is 

not able to resolve circulation patterns by design, we could certainly alter input time 

series to represent the effect of major changes to AMOC and/or our QOCEAN mechanism. 

On top of that, future work that includes full regionalization of the EM-GC should be 

constructed such that we can examine the evolution of AMOC more precisely with the 

regional coupling between the atmosphere and ocean, which should hopefully do better 

than a linear model at capturing nonlinearities. 

Of course, with any of these potential additions, we must assess and sample the 

uncertainty in the data or parameter space we might consider. Similarly, we must remain 

cognizant of the uncertainty in existing portions of our ocean module. In the current 

framework, we attempt to fit various OHC records based on observations by calculating 

the average rate of OHC increase, with the value for that rate driving the ocean module in 

the model. We do not span this range for the average rate of OHC increase or test values 

outside the reasonable range in a continuous manner similar to the process for examining 

aerosol forcing or climate feedback. In future updates to the model, we could add the 

capability to feed any value in for the rate of OHC increase to thoroughly test the 

sensitivity of our results to this quantity. That said, doing so would remove the meaning 

of our χ2 fitting parameter for the oceans, so we would need to find a new way to evaluate 

whether our modeled OHC shows a reasonable increase over time. Also, the OHC 

records we do consider already span a large range for this value without seeing a large 

sensitivity to OHC in our results, so I do not anticipate such sensitivity testing producing 

any significant changes to our conclusions. 
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5.2.2 Climate Relationships to Examine 

The ability to run the EM-GC at multiple spatial and temporal scales would 

provide the opportunity to test hypotheses that could not be done with a single, global-

scale experiment. The strength of many individual feedback processes will vary by 

locality depending on things such as aridity and surface type, meaning that the range and 

best estimate of overall feedback values found by the EM-GC ensembles will likely vary 

by region. Also, the strength of aerosol radiative forcing will also vary by a very large 

amount, as developing agricultural regions will likely be dominated by biomass burning 

while heavily industrials regions will be dominated by sulfate and nitrate emissions, with 

temporal variations that must consider various emission controls. These facts together 

could provide significant insight on which feedback processes are important in various 

locations as well as provide weighted statistics for the global averages of λΣ and AER RF 

to hopefully reduce the overall uncertainty in these terms. 

Regionalization could also allow us to begin bridging the weather-climate gap by 

making annual and seasonal projections on topics such as precipitation. While the EM-

GC would of course not be able to make daily weather predictions for specific cities, 

seasonal predictions of basin-scale rainfall would be incredibly useful for agriculture, 

municipal water management, and flood preparation and mitigation efforts. As examples 

of such relationships we could expect to see when examining precipitation, ENSO is well 

known for causing precipitation shifts across the USA [Lindsey, 2017], the IOD affects 

the Asian monsoon [Ashok et al., 2001] and precipitation from east Africa to Australia 

[Hirons and Turner, 2018; Ummenhofer et al., 2009], and the Arctic Oscillation greatly 

alters storm tracks from the northeastern USA to Europe [Nie et al., 2008]. 
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Understanding how these multi-annual patterns then interact with anthropogenic global 

warming would be one potential goal of regionalizing the EM-GC. 

As we make all the input data updates necessary for regionalization, we could also 

begin directly incorporating GCM output data as inputs. By training the EM-GC with 

output of ΔT from GCM historical experiments instead of with ΔTOBS, we could then 

determine whether the discrepancy in future ΔT is driven solely by the GCMs’ inability 

to match ΔTOBS over the past few decades, whether it is due to some more fundamental, 

persistent difference in physics, or some combination of the two. This exercise could 

provide some potential validation of GCM projections of future warming and the 

associated carbon budgets, and would at least give insight into what aspect of GCM 

simulations are driving their warm bias based on the fit we would provide to their 

historical data. I am co-author of a paper that describes this possibility, currently under 

review at Geoscientific Model Development [Nicholls et al., 2020]. 

5.2.3 Public Modeling 

One last potential line for future development would be outreach rather than 

research. Our group has previously discussed is creating a web version of the EM-GC for 

public use. Due to the relatively simplicity of the EM-GC and how rapidly it runs, it is 

possible for a user to make a handful of simple choices for inputs and have the EM-GC 

return a single simulation of climate with those inputs in a matter of minutes, with 

minimal stress on the server hosting the web-based model. Most input choices with the 

EM-GC had to be made with hard coding when I began my project, so I created an 

exhaustive text-based user interface to run the EM-GC. It would not be too difficult to 

make an effectively similar GUI of model inputs for a potential web version of the model. 
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Climate modeling research is a political topic in modern society, a fact that is not helped 

by how abstract climate models are to most people. Providing a way for people to work 

with a climate model in a hands-on fashion could help bridge this gap, and at the very 

least help children become interested in science and coding. Also, if we retain access to 

the model output that members of the public produce through this web version of the 

model, this “crowdsourcing” could also bring to light potential relationships we have not 

yet seen in our own ensembles, providing another new avenue for potential research. 

5.3 Final Comment 

The EM-GC is ripe with potential for future work, ranging from inclusion of new 

data sets to extra atmospheric and oceanic parameterizations for fully coupled 

regionalization. The simplicity of this model makes it an incredible tool for interacting 

with the public, and no matter how much more complexity is added, it will be useful to 

also maintain the version of this model described in Chapter 4. The primary version of 

the model provides a cautionary counterpoint to GCMs; the future warming forecast by 

our model is somewhat uncertain, as some considerations (time-varying λΣ, increasing 

CH4 emission scenarios) suggest warming closer to GCM results while others (increases 

in the best estimate of AER RF2011, downward diffusion of heat in the ocean) suggest less 

warming then found by GCMs.  Currently, it appears that the upward trajectory of 

anthropogenic global warming is not quite as drastic as seen in GCM output. Either way, 

it is still clear and imperative that society, as the main source on equilibrium-disturbing 

GHG emissions, has to undertake considerable actions for reducing future warming, and 

maybe even reversing warming if technology advances quickly enough. Hopefully future 

work with the EM-GC can continue to examine these advances.  
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