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There is growing consensus that persistent and increasing anthropogenic emissions, 

since the beginning of the industrial revolution in the 19th century, are increasing 

atmospheric temperatures, increasing sea levels, melting ice caps and glaciers, 

increasing the occurrence of severe weather, and causing regional shifts in 

precipitation patterns.   Changes in these parameters or occurrences are responses to 

changes in climate forcing terms, notably greenhouse gases.    The NASA 

Atmospheric InfraRed Sounder (AIRS), launched in May of 2002, is the first high 

spectral resolution infrared sounder with nearly complete global coverage on a daily 

basis.   High spectral resolution in the infrared provides sensitivity to nearly all 

climate forcings, responses and feedbacks.  The AIRS radiances are sensitive to 



  

changes in carbon dioxide, methane, carbon monoxide, ozone, water vapor, 

temperature, clouds, aerosols, and surface characteristics.   This study uses the raw 

AIRS data to generate the first ever spectrally resolved infrared radiance (SRIR) 

dataset (2002- 2006) for monitoring changes in atmospheric temperature and 

constituents and for assessing the accuracy of climate and weather model analyses 

and forecasts.  The SRIR dataset is a very powerful tool.  Spectral signatures derived 

from the dataset confirmed the largest depletion of ozone over the Arctic in 2005, and 

also verified that the European Center for Medium Range Weather (ECMWF) model 

analysis water vapor fields are significantly more accurate than the analyses of the 

National Centers for Environmental Prediction (NCEP).  The NCEP moisture fields 

are generally 20% more moist than those from ECMWF.  This research included 

computations of radiances from NCEP and ECMWF atmospheric states and 

compared the calculated radiances with those obtained from the SRIR dataset.  

Comparisons showed very good agreement between the SRIR data and ECMWF 

simulated radiances, while the agreement with NCEP values was rather poor.   

Interannual differences of radiances computed from ECMWF analyses were nearly 

identical to those derived from the SRIR dataset, while the corresponding NCEP 

interannual differences were in poorer agreement.  However, further comparisons 

with the SRIR dataset in 2006 found degradation in the ECMWF upper tropospheric 

water vapor fields due to an operational change in ECMWF assimilation procedures.  

This unexpected result demonstrates the importance of continuous routine 

monitoring.  The SRIR climatology will be extended into the future using AIRS and 

other high spectral resolution sounders.    
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Chapter 1: Background and Scope of the Dissertation 

 

1.1 Background and motivation 
 

There is growing consensus that persistent and growing anthropogenic 

emissions over the past 150 years are causing increases in atmospheric and ocean 

temperatures, rising sea levels, melting ice caps and glaciers, more frequent severe 

weather, and regional shifts in precipitation patterns.   Changes in these parameters or 

occurrences are responses to changes in climate forcing terms.    Key climate forcing 

terms include solar irradiance, aerosols, and greenhouse gases of carbon dioxide 

(CO2), methane (CH4), ozone (O3), and Nitric Acid (N2O).  Climate forcing terms are 

external variables that control climate.  Response terms are variables responding to 

climate forcing and include temperature, precipitation, wind, and sea level.  Feedback 

terms are variables which not only respond to climate forcing but can also modify 

climate forcing.  These variables include clouds, vegetation, snow and ice cover and 

earth radiation budget.   As reported in the Intergovernmental Panel on Climate 

Change Fourth Assessment Report [IPCC, 2007], “Warming of the climate system is 

unequivocal, as is now evident from observations of increases in global average air 

and ocean temperatures, widespread melting of snow and ice, and rising global 

average sea level”.  Fig.1.1 is from the IPCC report and clearly illustrates the increase 

of greenhouse gas emissions. Global atmospheric concentrations of CO2, CH4 and 

N2O are increasing rapidly and far exceed pre-industrial values determined from ice 

cores spanning many thousands of years.  The major contributor to global increases in 
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CO2 concentrations is the combustion of fossil fuel, with land-use change providing 

another significant but smaller contribution. The observed increase in CH4 

concentration has contributions from both agriculture and fossil fuel. The increase in 

N2O concentration is due to agriculture.   Increase of greenhouse gases has a positive 

radiative forcing influence, which warms the climate.    Fig. 1.2, shows that the 

increase in radiative forcing due to CO2, CH4 and N2O from 1750 to 2005 was +2.3 

W/m2, with a 5% and 95% uncertainty range of  [+2.1 to +2.5] W/m2.  The CO2 

radiative forcing increased by 20% from 1995 to 2005, the largest change for any 

decade in at least the last 200 years.  Reduction in stratospheric ozone caused by 

CFCs has resulted in a positive radiative forcing of 0.35 [0.25 to 0.65] W/m2 in the 

troposphere and a slight negative forcing of -0.05 [-0.15 to 0.05] W/m2 in the 

stratosphere.  Aerosols, on the other hand, have a net negative radiative forcing. 

Anthropogenic contributions to aerosols (primarily sulphate, organic carbon, black 

carbon, nitrate and dust) together produce a cooling effect, with a total direct radiative 

forcing since 1750 of -0.5 [-0.9 to -0.1] W/m2 and an indirect cloud albedo forcing of 

-0.7 [-1.8 to -0.3] W/m2.  The total net radiative forcing is 1.6 [0.6 to 2.4] W/m2.   
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Fig. 1.1: From IPCC 4th Assessment Report, Global annual emissions of anthropogenic GHGs 
from 1970 to 2004.5 (b) Share of different anthropogenic GHGs in total emissions in 2004. (c) 
Share of different sectors in total anthropogenic GHG emissions in 2004 

 

.  

 

Fig. 1.2:  From IPCC 4th Assessment Report,  Global-average radiative forcing (RF) in 2005 (best 
estimates and 5-95% uncertainty ranges) with respect to 1750 for CO2, CH4, N2O and other 
important agents and mechanisms, together with the typical geographical extent (spatial scale) of 
the forcing and the assessed level of scientific understanding (LOSU). Aerosols from explosive 
volcanic eruptions contribute an additional episodic cooling term for a few years following an 
eruption. 
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The response to increasing forcings is an increase in global temperatures at a 

rate of about 0.2 C per decade over the past 30 years, with regional change as much 

as 2 degrees per decade, which has been observed over Alaska.    Fig. 1.3 displays the 

change in surface temperature, sea level, and snow cover since 1850, relative to the 

30 year 1961- 1990 climatological average.   Note the acceleration in surface 

temperature warming during the past twenty years, the decrease in snow cover during 

this period, and the consistent increase in sea level since 1930. 

Climate models are projecting continuation of rising surface temperature, with 

an increase between 2 and 5 C by 2100.  This large range has a dependency on 

different scenarios for future greenhouse gas emissions, with the 5% and 95% 

uncertainty range corresponding to 1 to 6.5 C, respectively. 

Observing and documenting temperature change are very important to ensure 

future projections are valid.  Climate model projections of global surface temperature 

in the first IPCC report in 1990 ranged between about 0.15 and 0.3°C per decade 

from 1990 to 2005, which now can be compared with observed values of about 0.2°C 

per decade.  The agreement between the 1990 projections and the actual change over 

the 15 year period since 1990 has increased the confidence in decadal projections. 

However, to understand the root causes of climate change and to achieve more 

reliable longer range projections, we need to observe and document, in addition to 

temperature, changes in the forcing, feedback and response variables discussed 

above.   There are many different observing strategies including collecting 

meteorological data from weather stations, trace gases measurements from airborne  
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Fig. 1.3. From IPCC 4th Assessment Report, Observed changes in (a) global average surface 
temperature; (b) global average sea level from tide gauge (blue) and satellite (red) data and (c) 
Northern Hemisphere snow cover for March-April. All differences are relative to corresponding 
averages for the period 1961-1990. Smoothed curves represent decadal averaged values while 
circles show yearly values. The shaded areas are the uncertainty intervals estimated from a 
comprehensive analysis of known uncertainties (a and b) and from the time series (c). 
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and ground-based instruments, and satellite remote sensing.   In situ observations 

from ground and aircraft usually have the best accuracy, but the major shortfall is not 

being able to make daily global contiguous measurements.   Satellite remote sensing 

on the other hand has very good global coverage but often lacks high vertical 

resolution.  Fortunately for many climate applications, data are averaged over 

monthly time scales and instantaneous observations with restricted vertical resolution 

are not a limiting factor.   For example, deep-layer mean temperatures of  2- 4 km are 

sufficient for monitoring temperature change because the impact of climate forcing 

should be well mixed in the vertical at monthly and annual time scales [ Spencer and 

Christy, 1992; Goldberg and Fleming, 1995; Mears et al.; 2003, Vinnikov and Grody, 

2003; Zou et al., 2006].   

The research described in this dissertation applies infrared measurements from 

the Atmospheric InfraRed Sounder (AIRS) on the NASA AQUA satellite to produce 

and establish a first ever high quality spectrally resolved radiance climatology for the 

purpose of detecting and monitoring climate change, to better understand the sources, 

sinks and distribution of trace gases, and to validate weather and climate models.   

The concept for using spectrally resolved radiances for validating the realism of 

climate models was first suggested by Goody et al. [1998]. The AIRS, launched in 

May of 2002, is the first high spectral resolution infrared sounder with nearly 

complete global coverage on a daily basis [Aumann et al., 2003].   High spectral 

resolution in the infrared provides sensitivity to nearly all forcing, response and 

feedback terms.  Specifically AIRS is sensitive to changes in CO2, CH4, carbon 

monoxide (CO),  O3,  N2O,  water vapor (H2O),  aerosols,  temperature, clouds, and 
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surface characteristics.  Over the past 30 years, broadband instruments, such ERBE 

[Barkstrom, 1984] and CERES [Wielicki et al., 1996] have been used to measure the 

outgoing longwave radiation (OLR) as a fundamental climate measurement.  The 

high spectral resolution of AIRS will allow for the first time to understand the root 

cause of changes in OLR, by observing changes in the spectral signature.    

Simulating AIRS using radiative transfer and atmospheric state variables from 

numerical weather and climate models will allow us to validate the accuracy of the 

model by directly comparing simulated with observed data.   

1.2 Research and study objectives 
 

The objectives of this study are to generate a multiyear Spectrally Resolved 

Infrared Radiance (SRIR) dataset from AIRS and to demonstrate the applications of 

this dataset to describing interannual/interseasonal and global/regional changes in 

climate.   The dataset will also be used to validate and understand differences in the 

NCEP and ECMWF atmospheric analysis fields.  A multiyear SRIR dataset has never 

been produced before, and it will be derived using scientific techniques which I have 

developed and adapted to AIRS over the past few years.  These techniques have not 

been published, but have been demonstrated to the AIRS Science Team. 

The specific steps in generating the SRIR dataset from AIRS include: 

1. The use of principal component analysis to assess the quality of the 

individual spectrally resolved radiance observations and to reject 

radiances not meeting a quality threshold  (2 sigma of expected 

instrumental noise) 
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2. Limb adjustment of the radiances to remove the effect of viewing 

geometry.  This step is crucial in generation of monthly global fields 

and must be demonstrated to be accurate. 

3. Averaging of the limb adjusted observations to a monthly 2 x 0.5 

degree latitude/longitude field.  Also, retaining the individual 

observations (original and limb adjusted) in a daily non-averaged grid. 

The specific steps in generating the outgoing radiances from model analyses 

include: 

1. Simulate cloud-free AIRS radiances, at the AIRS viewing geometry 

and nadir, using Stand-Alone Radiative Transfer Algorithm (SARTA), 

[Strow et al., 2003] from ECMWF and NCEP analyses fields. Create 

daily and monthly gridded datasets at the same spatial resolution as the 

SRIR datasets. 

 

Results from this research include: a) demonstration of the high accuracy of 

the limb adjustment procedure, b) utilization of the SRIR datasets to detect 

interannual /regional changes in the observed spectra attributable to changes in 

temperature, moisture and GHG concentrations, and c) validation of model-derived 

atmospheric states from NCEP and ECMWF analyses.  This dataset will be continued 

into the future using the MeTOP Infrared Atmospheric Sounding Interferometer 

(IASI) and the NPOESS Cross-track InfraRed Sounder (CrIS). 

The scientific goals for this research are: 
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1. Demonstrate the fidelity of AIRS using the SRIR dataset to capture 

signals caused by annual and regional changes in atmospheric 

temperature and atmospheric greenhouse gases, including ozone. 

2. Quantify NCEP and ECMWF model errors using AIRS as a 

benchmark (truth), determine which model agrees better with AIRS, 

and understand the role of model physics and data assimilation in 

causing differences between models. 

The scientific hypotheses I am testing are: 

1. The AIRS SRIR dataset can detect spatial and temporal changes in 

atmospheric temperature and greenhouse gases, including ozone. 

2. The AIRS SRIR dataset not only can check which model fields (NCEP 

or ECMWF) best fit the AIRS data, but can also be used to understand 

the root causes of the differences (model physics or lack of AIRS 

data).  Data denial can be tested because during the AIRS time period, 

there were times when both NCEP and ECMWF did not assimilate 

AIRS data, including times when ECMWF assimilated AIRS and 

NCEP did not. 

1.3: Organization of the dissertation 
 

The paper is organized in the following sections.  Section 2 begins with an 

overview of the AIRS instrument, followed by subsections on infrared remote sensing 

theory, AIRS science objectives, applications of spectrally resolved radiances, and the 

research and study objectives of this paper.  Section 3 discusses the critical steps need 

to generate a high quality spectrally resolved radiance climatology.  Section 4 
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discusses the validation of the principal component analysis and the limb adjustment 

procedure.  Section 5 demonstrates applications of the radiance climatology, and 

Section 6 provides the summary and a discussion of future work. 

1.4: Statement of originality 
 

During the course of my doctoral studies, I performed the following: 

 

 Developed a method to adjust AIRS observations to account for viewing 

geometry and demonstrate the accuracy of the methodology by comparing 

adjusted AIRS observations with those computed from ECMWF analyses 

using the AIRS radiative transfer algorithm SARTA. 

 

 Generated a global representative set of empirical orthogonal functions (i.e., 

eigenvectors) of the AIRS data using principal component analysis (PCA), 

and demonstrated the ability of the PCA to filter instrumental noise and 

reproduce the original AIRS brightness temperatures within the instrumental 

noise level.  I developed the PCA methodology used for AIRS.  The 

description of the methodology included in the dissertation is also described in 

[Goldberg et al., 2003]. 

 

 Computed the AIRS radiance climatology, which consists of daily and 

monthly data sets of angle (limb) adjusted brightness temperatures for 2003 – 

2006.  The radiance climatology is produced for all sky and clear conditions.  

The clear detection algorithm is the one I produced as a member of the AIRS 



 

 15 
 

science team.  It is slightly modified from the algorithm I described in 

[Goldberg et al., 2003]. 

 

 Simulated brightness temperatures from ECMWF and NCEP atmospheric 

analyses for the purpose of determining which model is more accurate.     This 

demonstrated the importance of the AIRS radiance climatology for validating 

model generated analyses. 

 

 Compared interannual differences of AIRS spectra to demonstrate a capability 

to detect anomalous events.  The event described in the dissertation is a 

significant reduction of ozone in the Arctic winter in 2005.  This demonstrated 

the importance of the AIRS radiance climatology for detecting anomalous 

events with the long term goal of extending this dataset well into the future 

(2020s) using AIRS, IASI, and CrIS. 



 

 16 
 

Chapter 2:  Introduction to AIRS, Infrared Radiative 
Transfer and Applications of Spectrally Resolved Radiances 
 

2.1 AIRS instrument 
 

Infrared sounders on satellites observing the Earth were primarily designed to 

enable the retrieval of vertical profiles of atmospheric temperature and water vapor 

for use in numerical weather prediction models.  Even though the infrared spectrum 

contains information on important greenhouse gases, the spectral resolution of the 

first generation of operational infrared sounders, the National Oceanic Atmospheric 

Administration’s (NOAA) High resolution InfraRed Sounder (HIRS) [Kidwell, 1990], 

was inadequate to measure changes in greenhouse gases.  A series of HIRS 

instruments dating back to 1979 continues to observe the Earth’s surface and 

atmosphere using 19 spectrally broad channels. The high resolution in the acronym 

HIRS, notable for the time, referred to the spatial resolution near nadir of 18 km.   

High spectral resolution with near global daily coverage became available with the 

launch of the NASA Atmospheric InfraRed Sounder (AIRS) in May 2002.  AIRS has 

2378 channels measuring outgoing radiance between 650 cm-1 and 2675 cm-1 

wavenumbers which is equivalent to wavelength, λ, range of 15.38 to 3.74microns.  

The AIRS is a cryogenic cooled (155 K) array grating spectrometer operating over 

the entire AIRS infrared (IR) spectral range at a spectral resolution (λ /Δ λ) of 1200 

[Aumann et al., 2003]. A grating disperses infrared energy across arrays of high-

sensitivity HgCdTe detectors.  In contrast the spectral resolution of HIRS is 

approximately 70. AIRS looks toward the ground through a cross-track rotary scan 
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mirror which provides +/- 49.5 degrees (from nadir) ground coverage along with 

views to cold space and to on-board spectral and radiometric calibration sources 

every scan cycle. The scan cycle repeats every 8/3 seconds. Ninety ground footprints 

are observed each scan. One spectrum with all 2378 spectral samples is obtained for 

each footprint. A ground footprint is measured every 22.4 milliseconds. The AIRS 

spatial resolution is 13.5 km at nadir from the 705.3 km orbit.   The AIRS is 

accompanied by two microwave sounders, the Advanced Microwave Sounding Unit-

A (AMSU-A) and Humidity Sounder for Brazil (HSB).  The microwave instruments 

are used to correct for cloud contamination in AIRS footprints.  The HSB is 

essentially the same as the NOAA AMSU-B instrument without the 89 GHz channel.  

Details of the NOAA HIRS and AMSU-A and –B instruments can be found in 

[Kidwell, 1990].   Unfortunately, HSB malfunctioned in October 2002.  The AMSU-

A near-nadir footprint size is 42 km, and both AIRS and AMSU-A are co-registered 

such that there is a 3 x 3 array of AIRS footprints for each AMSU-A footprint.   Fig. 

2.1 shows the scanning geometry of AIRS and AMSU-A. 
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Fig. 2.1:   Schematic of the AIRS and AMSU scan geometries 

 

Fig. 2.2 is an example of the AIRS spectral coverage for a clear-sky middle 

latitude summer atmospheric atmosphere. Information that can be extracted from the 

measured clear-sky AIRS infrared spectra includes water vapor, temperature, and 

trace gases such as CO2, CO, CH4, and O3. 
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Fig. 2.2:  Example of AIRS spectrum for a typical clear-sky middle latitude summer atmospheric 
condition. Also shown are the key absorbers of infrared radiances. 

 

The radiometric accuracy and stability of AIRS radiances have been 

confirmed by a number of studies: 1) long-term comparisons of the AIRS 2616 cm-1 

window channel, which has a maximum atmospheric contribution of 0.3 K, with daily 

measurements of sea surface temperature (SST) [Aumann et al., 2006], 2) direct 

spectral radiance comparisons with aircraft observations [Tobin et al., 2006], and 3) 

comparisons with brightness temperatures simulated from ECMWF analyses [Strow 

et al., 2006].  These studies have confirmed that AIRS has exceptional radiometric 

performance, which includes low instrument noise, spectral response function 

stability, and long-term radiometric stability.  Comparisons with SST and aircraft 

observations, shows a stability of .01 K per year and an absolute accuracy within 0.1 

K, respectively.    The instrumental noise of AIRS is shown in Fig. 2.3. 
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Fig. 2.3:  AIRS instrumental noise at an equivalent temperature of 250 K 

 

The AMSU-A consists of two separate modules, A1 and A2. The A1 

component has 12 channels between 50 and 58 GHz in the oxygen band and an 89-

GHz window channel. The A2 has two window channels at 23.8 and 31.4 GHz.      

The AMSU-A temperature sounding channels are used in the cloud clearing of AIRS 

partially cloud contaminated radiances (discussed in section 2.3) to derive cloud-

cleared radiances. 
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2.2 Infrared Radiative Transfer 
 

Infrared instrument in space are designed to measure the earth’s outgoing 

infrared radiation at different wavenumbers υ and view angles θ.  The measurements, 

R(υ,θ),  can be expressed as the sum of four components: 

                        R(υ,θ)   =    Rs(υ,θ)    (surface) 

                                       + Ra(υ,θ)    (atmospheric) 

                                        + Rd(υ,θ)    (downwelling) 

                                         +R●(υ,θ)    (reflected solar)                                         (2.1) 

The surface component Rs is the emission from the surface radiance, averaged 

over the footprint, and attenuated by the atmosphere.  The emission from the surface 

is also dependent on the surface emissivity ε and the surface temperature Ts. The 

surface component is given as 

                                 Rs(υ,θ)    =  ε (υ, θ) B(υ,T s)τ(ps, υ, θ)                                 (2.2)                                   

Where τ is the transmittance evaluated at the surface pressure Ps , θ and υ,  

and B is the Planck Blackbody radiance evaluated at υ and T s.   The Planck radiance 

is given by 

                                             B(ν,T)  =  c1ν3 / [e c
2
ν/T  -1]                              (2.3) 

Where c1 = 1.191044 x 10-5 (mW/m2/ster/cm-4), c2 = 1.438769 (cm deg K), and T is 

temperature. 

The derivation of transmittance will be shown shortly in more detail.   The 

amount of attenuation by the atmospheric is given by τ(ps, υ, θ).   To simplify 

notation, τs = τ(Ps, υ, θ) and ε = ε(υ, θ).   For measuring surface temperature from 
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satellites, the ideal case is when the τs and ε are both unity, hence the other terms are 

zero and the outgoing radiance measured by the satellite sensor is equivalent to the 

Planck blackbody temperature of the surface.  There are frequencies, called window 

regions that approach this ideal situation.  In the infrared region, windows occur 

between 800 to 1000 cm-1, 1100- 1250 cm-1, 2100-2150 cm-1, and 2400 – 3000 cm-1.   

The atmospheric contribution generally ranges between 0.5 and 2 Kelvin (K) for 

traditional window channels, but is larger for the shortwave infrared due to 

contamination by reflected solar radiation.  Infrared surface emissivities are generally 

close to unity (> 0.95) except for deserts.    

The atmospheric component Ra is the emission from the atmosphere.   In the 

infrared region, where scattering of radiation is negligible, the radiation is 

simultaneously absorbed and emitted.  Both absorption (k) and emission coefficients 

are assumed to be equal.  Transmission through an absorbing medium (gas) for a 

given frequency is governed by the number of intervening absorbing molecules (path 

length u) and their absorbing power (k) at that wavelength.  Beer’s law indicates that 

transmittance decays exponentially with increasing path length, u(p) 

                                                     τ (p → o) =  e – k(υ) u (p)                               (2.4) 

The path length is given by u (p)  =   1/g  ∫ q(p) dp,  where g is gravity,  q is the 

mixing ratio of the absorbing gas, and integral limits is from ps to pressure at the top 

of the atmosphere (p=0).      So if τ  = 0.9 at 500 mb, this means 90% of the outgoing 

radiation is coming from 500 mb and higher pressures;  only 10% from the remaining 

upper atmosphere.  

 The atmospheric component is given by  
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                                     Ra(υ,θ)    =    ∫ B(υ,T(P))[dτ(p, υ, θ)/ dp] dp            (2.5) 

 

where the integral limits is from ps to pressure at the top of the atmosphere (p=0).  

The expression in the brackets is the vertical change of atmospheric transmittance 

with respect to the vertical change in atmospheric pressure, and is often called the 

weighting function (WF).  Fig. 2.4 shows the weighting function for a lower 

stratospheric channel.   The total area of the weighting function is unity.  This 

weighting function shows that the largest contribution of the outgoing radiance is 

from approximately 90 mb. Note the shape of the weighting function; the contribution 

from 400 mb to the surface in negligible and the contribution above 10 mb is no 

larger than 5%.   Observations from multiple channels can be combined using 

inversion techniques [Rodgers, 2000] to derive an atmospheric temperature profile 

(retrieval) that yields the observed radiance spectrum within the instrumental noise, 

when the profile is inserted in the radiative transfer solution of eq. (2.1). With one 

channel the retrieval is the observed brightness temperature which can be thought of 

as deep-layer mean temperature. The layer is defined by the weighting function. 

Numerous overlapping weighting functions are needed to derive an accurate 

vertically resolved temperature profile.   
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Fig. 2.4:  Example of an atmospheric weighting function for a channel peaking near 90 mb. 

 

The third term is the downwelling atmospheric radiation reflected by the 

surface and transmitted to space and is given by 

                                 Rd(υ,θ)    =    (1- ε) τs [Rs(υ,θ)  +  Ra(υ,θ)]                   (2.6)    

Typically this term is very small, since in the infrared the surface emissivity is 

generally near unity.  It becomes negligible for atmospheric channels with relatively 

small surface contributions. 
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The last term is the downwelling radiation from the sun, reflected by the 

surface and transmitted to space, and is given by:   

                                                     R●(υ,θ)    =  ρ H (υ)  τs 
2

                               (2.7) 

The reflected solar component requires computation of the transmittance along the bi-

directional path from the sun to the surface, and back to the spacecraft.  H is the solar 

radiance outside the Earth’s atmosphere. The solar surface reflectivity, ρ, is a function 

of surface type, zenith angle, solar zenith angle, azimuth angle, and wavenumber.   

This solar term is only significant for frequencies greater than 2400 cm-1.   Generally, 

channels affected by solar contaminated are not used during the day. 

2.3 AIRS Science Objectives 
 

The objective of the AIRS mission is to provide high precision and highly 

accurate spectrally resolved radiances for operational numerical weather forecasting 

and climate research.  The much higher spectral resolving power of AIRS, with 

respect to heritage operational infrared sounders such as HIRS, is crucial for 

retrieving temperature and moisture soundings with vertical resolutions approaching 

1 km, instead of the 3 to 5 km obtained from the heritage instrument.   Assimilation 

of AIRS in weather prediction models have resulted in forecast improvements 

[LeMarshall et al., 2006].  The higher vertical resolution is possible because AIRS 

can resolve individual absorption lines with high precision (low instrumental noise) 

resulting in sharper atmospheric weighting functions.     In addition to sharper 

weighting functions, there are now many more channels.  As noted earlier, AIRS has 

2378 channels, the HIRS only 19.  Low channel noise, large number of channels, and 

high spectral resolution results in higher vertical resolution of derived geophysical 
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parameters.   The AIRS spectral coverage allows for the retrieval of temperature, 

water vapor, ozone, methane, carbon dioxide, carbon monoxide, and nitrous oxide 

from clear-sky observations.  Fig. 2.5 shows a comparison of water vapor weighting 

functions from HIRS and AIRS. 
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Fig. 2.5:   HIRS and AIRS representative water vapor weighting functions 

The AIRS/AMSU retrieval process includes an AMSU initial guess, cloud 

clearing, an Empirical Orthogonal Functions (EOF) regression guess [Goldberg et al. 

2003], and a physical retrieval [Susskind et al. 2003].  The cloud clearing algorithm is 

a critical step since it increases the global percentage of clear-equivalent scenes from 

5% to more than 50%. The cloud clearing algorithm is described in [Susskind et al., 

2003]   Cloud-clearing begins with an AMSU physical retrieval [Rosenkranz, 2003] 

of atmospheric temperature, moisture (liquid and vapor), microwave spectral 

emissivity, and skin temperature.  The AMSU retrieval, based on channels not 

sensitive to clouds, is used to compute an estimate of the AIRS radiances for the clear 

component of the scene.  Cloud clearing assumes that the only difference between a 

set of AIRS footprints is the amount of clouds, therefore, the clear radiance estimate 
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can be used to retrieve a set of extrapolation parameters from a set of AIRS partially 

cloudy contaminated footprints.  A set of 3 x 3 AIRS footprints, coaligned with the 

AMSU footprint, as was shown in Fig. 2.1, is used.  Scenes are rejected when the 

cloud clearing assumptions fail; this generally occurs when a poor clear state estimate 

is used or the scenes are too cloudy.  The extrapolation parameters for accepted 

scenes are then used to compute the cloud cleared radiances for any channel that is 

sensitive to clouds.   Channels that are not sensitive to clouds are averaged over the 

nine footprints.      

Fig. 2.6 shows the comparison of temperature and water vapor retrieval 

uncertainties, which I derived from the AIRS and the Advanced TIROS-N 

Operational Sounder (ATOVS) which in addition to HIRS also includes the 

Advanced Microwave Sounding Unit (AMSU).  Note the large reduction in error for 

both temperature and water vapor.  The vast number of relatively sharp AIRS water 

vapor channels (Fig. 2.5) results in a notable reduction in water vapor retrieval 

uncertainty.  The retrieval algorithm is based on linear regression.  I used an ensemble 

of 10,000 atmospheric temperature and water vapor profiles from radiosondes. I 

simulated AIRS, AIRS and AMSU brightness temperatures.  I applied principal 

component analysis, described in much greater detail in Chapter 3, to the AIRS 

ensemble of spectra.  The eigenvectors from the PCA are projected onto the spectra to 

produce principal component scores (PCS).     Principal component regression simply 

uses principal component scores for predictors in least squares regression.  For AIRS 

we use 60 principal component scores for predictors and solve for atmospheric 

temperature, moisture, ozone profiles and surface temperature and surface emissivity.  
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With 2000+ channels, many of the channels are similar to each other, making the 

 

Fig. 2.6:  Comparison of AIRS and ATOVS Root Mean Square Errors for temperature and 
water vapor using radiosonde soundings as truth. 

 

covariance matrix nearly collinear.  A significant advantage for using 60 principal 

component scores instead of all 2000+ channels is that the inverse of the predictor 

matrix is more stable and less collinear.  Another advantage is that the regression 

solution is computationally fast.  In matrix notation the form of the regression 

coefficients C, dimensioned m number of parameters by the k number of principal 

component scores, is 

                                     C    =    XP*T(P*P*T )-1           (2.8) 

where X is a training dependent predict and ensemble matrix, of dimension m by 

sample size s.  P*, the training predictor ensemble matrix of PCS, has dimension k by 

S.  On independent data the m-dimension solution vector is obtained from the matrix 

multiplication of C p*, where p* is the independent vector of principal component 

scores of length k.   The ATOVS coefficients were derived without using PCA, since 

the total number of channels was only 34 (19 HIRS plus 15 AMSU).  
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The AIRS provides traditional retrievals of atmospheric temperature, water 

vapor, ozone, cloud amount and cloud height, as well as new research products of 

greenhouse gas and aerosols.    Fig. 2.7 shows the sensitivity of the AIRS radiances to 

a 0.5% change in CO2, CH4, CO, O3, and H2O a given trace gases profile.  The 

sensitivity in brightness temperature is relatively small, generally within 0.06 K.   As 

shown in Fig 2.8,   between 1984 and 2004 20 years, CO2 concentrations have 

increased by about 10%.  The equivalent radiance signal in brightness temperature 

during this period, particularly near 725 cm-1, should have been approximately 1 K.  

From 2002 to 2006, the change of brightness temperature in AIRS channels most 

sensitive to CO2 was found to be about 0.2 K (Strow, private communication).  

 

Fig. 2.7: Sensitivity of AIRS radiances due to a 0.5% increase in a given trace gas profile. 
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Fig. 2.8: CO2 concentration at Mauna Loa as a function of time 

 

Deriving accurate greenhouse gas measurements requires not only high 

spectral resolution and excellent noise performance, but also accurate background 

states for temperature and water vapor (Chahine et al., [2006]).  As shown in Fig 2.7, 

AIRS channels sensitive to CO2, particularly near 725 cm-1, are also sensitive to 

H2O.  Engelen and McNally, [2005] use the ECMWF model analysis to provide the 

background state of temperature and water vapor.  The core AIRS algorithm derives 

the background state, including ozone, by avoiding channels that are overly sensitive 

to the other trace gases, primarily CO2, CO, and CH4.  [Maddy et al., 2008].  The 

trace gases are then derived by iterating the physical retrieval with the trace gas 

channel set.  CO2 is primarily retrieved from AIRS spectral radiances in the 712-750 
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cm-1 region. However, since temperature and CO2 are strongly coupled, retrievals 

must be done carefully.  The temperature profile is first solved with a CO2 error 

covariance term, which makes the temperature retrieval very insensitive to the CO2 

background climatology.  The temperature profile is solved with CO2   in the wings of 

the CO2 lines.   After water vapor and ozone are retrieved, the total column CO2 is 

solved using the CO2 line centers.   Comparisons with NOAA’s Earth System 

Research Laboratory (ERSL) aircraft flask measurements of carbon dioxide yield a  

standard deviation with collocated AIRS CO2 of approximately 1.8 parts per million 

(ppm) or about 0.5% [Maddy et al., 2008].   Tropospheric carbon monoxide CO 

abundance is retrieved from the 2180-2230 cm-1 region of the IR spectrum. CO is the 

direct product from the combustion of fossil fuel and biomass burning and that it has 

a role as a smog and tropospheric ozone precursor.  As shown in Fig. 2.9, extremely 

high CO concentrations result from biomass burning in central South America, 

Africa, and Indonesia, with significant transport to the South Atlantic and Indian 

Oceans. Validation by McMillan et al. [2005] against aircraft observations indicates 

that AIRS CO retrievals have an accuracy of about 15%.   
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Fig. 2.9: AIRS CO for September 29, 2002 shows biomass burning in South America, Africa and 
Indonesia 

 

AIRS measures approximately 200 channels in the absorption band of CH4, centered 

near 1305 cm-1, of which 71 channels are used to retrieve CH4.  The retrieval 

algorithm of CH4 is described in [Xiong et al., 2008].   ERSL aircraft flask 

measurements also include CH4; comparisons with AIRS CH4 result in a standard 

deviation of 1.5%.  

AIRS can also detect atmospheric aerosols.  The absorption of silicate 

aerosols peaks in the 900-1100 cm-1 region while both ice and aerosols show 

minimal absorption around at 1232 cm-1   [Volz, 1973],.   The brightness temperature 

difference between AIRS radiances at 961 and 1232 cm–1 (DeSouza-Machado et al. 

2006) has been used to provide global maps of brightness temperature sensitivity to 

aerosols.  Aerosols are detected when the negative differences are less than -0.25 K, 

and large events are noted when the negative differences are less than -2.0 K.  AIRS 
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spectra have been used to observe the total column of sulfur dioxide (SO2) injected 

into the atmosphere during a volcanic event, by a simple difference of two channels 

which have similar measurements when there is no SO2.   The AIRS channels used 

for detecting SO2 are at 1258.90 cm-1 and at 1354.10 cm-1.  Both channels have 

similarly sensitivity to water vapor, but only the 1354.10 cm-1 channel is sensitive to 

large amounts of SO2.  

2.4 Applications of spectrally resolved radiances 
 

Observations from satellite instruments have been used to estimate climate 

change and variability.  One of the most widely used satellite instruments for 

monitoring tropospheric temperature change is the Microwave Sounding Unit (MSU).  

Spencer and Christy [1993] pioneered the first temperature time series from MSU 

channel 2.  This channel’s weighting function peaks near 600 mb, similar in shape to 

Fig. 2.4. The series of MSU instruments operated from 1979 to 2006, and today these 

types of measurements are continued by the Advanced Microwave Sounding Unit 

(AMSU).  Twelve different MSU instruments over the course of nearly 20 years were 

used to generate the time series.  The unique attribute of the MSU is its very stable 

spectral response function (SRF), the wavelength interval over which the radiation is 

measured.  The MSU’s SRFs are boxcar functions over the bandpass (values of unity 

within the bandpass, zeros outside).  Identical bandpasses were designed for each 

MSU were used.    However there were still systematic biases between coincident 

measurements from different instruments, due to time variant errors in the 

instrument’s warm target used in the calibration process.  A number of investigators, 
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[Christy et al., 2000, Mears et al., 2003, Vinnokov and Grody, 2003; and Zou et al., 

2006] applied different techniques to correct for the warm target anomaly. Each 

approach resulted in different trend estimates ranging from 0.05 C per decade to 0.20 

C per decade. The MSU cannot be considered as a climate benchmark instrument, 

since benchmark (i.e. irrefutable) measurements cannot be obtained.  In other words, 

the results will always be questionable.  The HIRS instrument, which flew on the 

same satellites as the MSU, is not often cited for monitoring climate change.  The 

problem in generating time series from the HIRS instruments is their varying 

instrument dependent SRFs, shown in Fig. 2.10.   Hence the information content from 

the different instruments varies, which adds complexity in constructing a stable time 

series. Furthermore, dominant component of the bias is due to real differences 

between the SRFs. These cause differences in weighting function shapes, leading to 

profile dependent differences in brightness temperatures that are much more difficult 

to correct for.  

 

Fig. 2.10:   Four different HIRS channel 2 spectral response functions associated with different 
satellites – NOAA-15,-16,-17, and –N. 
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Even a perfect MSU time series has limited applications for understanding 

climate change.  The MSU can detect trends, but the trend is for a vertically 

integrated temperature profile weighted by the MSU weighting function.   One does 

not know the vertical distribution of the trend within the integration layer which is 

about 10 km thick.  Spectrally resolved infrared radiances provide the opportunity not 

only to detect climate change but also to understand the processes contributing to 

climate change.   Fig. 2.11 shows, at high spectral resolution, the atmospheric 

absorption spectrum and comparative black body curves.  If the earth was devoid of 

an atmosphere, the outgoing radiance for a surface temperature of 300 K would be the 

top curve in the figure.  Fortunately, the Earth has a very rich atmosphere with many 

important constituents including CO2, CH4, H2O, CO, N2O and O3.  The infrared 

region is affected by these trace gases, and the spectrum shown in the figure is due to 

the absorption outgoing infrared radiation by these gases. The surface temperature 

used in computing the radiances is 295 K.  For example the large valley in the curve 

between 9 and 10 um is due to ozone; as ozone increases the amount of absorption 

increases.  Fig. 2.11 shows the radiance spectrum, but this can easily be converted to 

the brightness temperature of Fig. 2.12 by using the inverse of Planck’s equation.  In 

this figure, we can easily see the window channels which have brightness 

temperatures close to the surface temperature of 295 K.  Even in these window 

regions there is some absorption, primarily due to water vapor.   We can see large 

absorption due to water vapor near the center of the spectrum.  Between 600 and 800 

cm-1 and 2200 and 2400 cm-1, the absorption is primarily due to CO2.   
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Fig. 2.11:  High resolution atmospheric absorption spectrum and comparative blackbody curves  

 

 

 

Fig. 2.12:   Infrared spectrum in brightness temperature for summer midlatitude atmosphere 
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The brightness temperatures are related to the height in the atmosphere.  For 

example the low brightness temperatures in the water vapor region (centered at 1600 

cm-1) correspond to upper tropospheric water vapor absorption, while the higher 

brightness temperatures are associated with middle and lower tropospheric water 

vapor absorption.  The decrease of brightness temperature from 800 cm-1 to 667 cm-1 

is associated with observing temperature higher and higher into the atmosphere.  The 

increase of brightness temperatures near 667 cm-1 is due to observing temperature in 

the warmer stratosphere. 

The advantage of high spectral resolution infrared observations is that we can 

start to understand the contributions to changes in climate.  For example, outgoing 

longwave radiation (which is the spectral integration of the infrared region) is often 

used to monitor climate change, but it has limited use because of difficulties in 

determining the cause of the change.  Is it due to changes in clouds, temperature, 

water vapor, carbon compounds, ozone, etc?   However with spectrally resolved 

radiance we will be able to start dissecting and understanding the root causes of 

observed changes.   We can also use spectrally resolved radiances to validate weather 

and climate models, by simply comparing the observed spectra with those calculated 

from the model’s geophysical parameters.   
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Chapter 3:  Generating the High Quality Spectrally 
Resolved Infrared Radiance (SRIR) Dataset 

 

3.1 Overview 
 

The SRIR datasets are generated by the following steps:  1) The AIRS 

observations are screened for outliers,  2)  the observations are converted to 

brightness temperatures and mapped into ascending and descending daily brightness 

temperature (BT) gridded datasets, 3) the observations within the gridded datasets are 

converted to principal component scores and stored in principal component (PC) 

gridded datasets, 4)  the PC grids are adjusted for viewing angle (limb darkening) and 

stored in angle adjusted PC (AAPC) gridded datasets, 5)  angle  adjusted brightness 

temperatures are computed from the AAPC datasets and stored in the angle adjusted 

brightness temperature (AABT) gridded datasets and 6) the BT and AABT daily 

datasets are screened for clear sky values and averaged to produce monthly clear sky 

and all sky datasets.  Each daily grid box contains only the first AIRS field of view 

(all channels) to observe that box that day for ascending and descending orbits.   

Ascending and descending refers to orbiting direction of the satellite.  As the satellite 

ascends (~southeast to northwest direction), due to its inclination angle, it does so 

during the daytime side of the Earth.  Likewise when it descends it does so during the 

nighttime side.   The AQUA satellite crosses the equator at 13:30 local time when it 

ascends, and 12 hours later when it descends. By keeping the data separated into 

ascending and descending, the radiance climatology can be used to look at daytime 

and nighttime differences and trends.  
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The SRIR climatology consists of monthly brightness temperature datasets of 

two types – at the original viewing angle and adjusted for viewing angle to a nadir 

view - for the period 2003 – 2006 for:  

1. Ascending (day), clear sky 

2. Ascending, all sky  

3. Descending (night), clear sky  

4. Descending, all sky datasets 

The spatial resolution is 2.0 degree latitude by 0.5 degree longitude. The monthly 

averaging of the original viewing angle is only for diagnostic purposes. 

In a separate process, geophysical parameters from the NCEP and ECMWF 

atmospheric model analyses are interpolated to the same AIRS gridpoints inserted 

into SARTA to simulate daily clear sky brightness temperature grids.   The simulated 

datasets are used to demonstrate how the SRIR datasets can be applied to the 

validation of weather and climate models.  This chapter describes the algorithms and 

steps needed to generate the SRIR AIRS climatology. 

3.2 Data Screening 
 

Some of the AIRS HgTeCd detectors suffer from a phenomenon described as 

“popping” in which the detector has a non-Gaussian noise event that can be many 

times larger than the normal instrumental noise. The occurrence of “popping” for any 

arbitrary channel is about once every 10,000,000 measurements.  I have developed a 

technique using principal component analysis (PCA) to screen for such erroneous 

AIRS data and to independently assess AIRS instrument performance.  I also used 
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PCA to develop the AIRS Science Team statistical regression algorithm used for 

deriving atmospheric temperature, moisture, ozone and surface temperature and 

emissivity, and to angle adjust AIRS data.    PCA, also referred to as eigenvector 

decomposition, is generally used to approximate data vectors having many elements 

(e.g. AIRS observations of 2000+ channels) with a new set of data vectors having 

fewer elements, while retaining most of the variability and information of the original 

data.  The new data vectors are called principal component score vectors, and because 

they consist of the components of the original data vector in an orthogonal coordinate 

system, the elements of a given principal component score vector are independent of 

each other (unlike the original spectrum).  Principal component analysis has been 

used in sounding applications as described in Wark and Fleming, [1966]; Smith and 

Woolf, [1976] , and for high spectral resolution infrared sounders by Huang and 

Antonelli, [2001], and Goldberg et al. [ 2003].  Elements of a principal component 

score vector are projections of the spectrum onto each of the orthogonal basis vectors, 

which are the eigenvectors (principal components) of the radiance covariance matrix.   

The total number, n, of eigenvectors is equal to the total number of channels.  

However, it will be shown that a much smaller set of k eigenvectors (< 100), ordered 

from largest to smallest eigenvalues, is sufficient to explain most of the variance in 

the original spectra.   The covariance matrix is derived from an ensemble of AIRS 

normalized spectra, i.e. radiance divided by the instrument noise.    The matrix of 

eigenvectors, E, is related to the covariance matrix, S, by: 

 

                              S = E Λ ET                                                                       (3.1) 
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where S, E and Λ are all dimensioned n x n, and Λ is a diagonal matrix of 

eigenvalues.   The principal component scores vector p is computed from: 

 

                                         p    =    ET r                                                                      (3.2)  

  

where r is the vector of centered (departure from the mean) normalized radiances. 

The next equation is used to reconstruct the radiances from a truncated set of k 

eigenvectors E* and a vector of principal component scores p*.  (The symbol * 

indicated that the matrix or the result of a matrix operation is due to truncated set of 

vectors.) 

 

                                           r* = E*p*                                                                      (3.3) 

 

The normalized reconstructed radiance vector is r*, E* has dimension n x k, 

and the vector p* has length k.  To obtain the un-scaled radiance, one must add the 

ensemble mean normalized radiance used in generating the covariance matrix and 

multiply the sum by the noise used in constructing the normalized radiances. 

The square root of the eigenvalues is equivalent to the standard deviation of 

the principal component scores of the dependent ensemble.  Since we are using 

normalized radiances, the square root of the eigenvalues can be interpreted as signal 

to noise.  Principal component scores can be thought of as super channels since each 

one is a linear combination of all channels. The first score contains the largest signal 
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to noise ratio, which as shown in Table 3.1 is very large. When the eigenvalues fall 

below unity, the noise has larger contribution than the signal. By using a truncated set 

of eigenvectors much of the noise in the original measurement can be removed.   

Table 3.1  First Seventy Two Square Root of the Covariance Matrix Eigenvalues 

 

         

 

 

 

 

 

 

 

 

An overall measure of how well the principal component scores can 

reconstruct the original data is provided by the reconstruction score (RS) that is 

defined as 

      

                                                                       N                  1/2 
                                                  RS =    [ 1/N ∑(Oi - Ri)2 ]                                     (3.4) 
                                                                      i = 1 
 

where O and R are the noise scaled observed and reconstructed radiances, 

respectively, for the ith channel and N is the total number of channels used in the 

principal component analysis. A reconstruction score of less than one indicates that 
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the root measure square (rms) difference over the number of reconstructed channels is 

within the noise level. Large reconstruction scores also can be used to identify 

suspicious data. Fig. 3.1a-b shows the RS as a function of eigenvector; Fig. 3.1b is an 

expanded view of Fig. 3.1a.  Here we see that unity is reached near the 60th 

eigenvector.  One can either examine the eigenvalues or RS to estimate the number of 

principal component scores needed to reconstruct the radiances to the noise-level.  

However another important consideration for determining the appropriate number of 

eigenvectors is to examine the spatial patterns of the coefficients of the eigenvectors 

(i.e. the principal component score).  Fig. 3.2 a-d show global maps of the 60th, 100th, 

125th and 150th PCS.   Even though the information obtained from Fig 3.1 a-b would 

suggest 60 PCS is adequate, the plots provide a different assessment.  The 

eigenvector domain representing noise should associate with PCS spatial patterns 

with no apparent spatial patterns.  We see in Fig. 3.2 a-d, the spatial patterns do not 

become negligible until the 150th PCS.    Therefore one should use at least 150 PCS, 

and I selected 200 PCS to be conservative.  

       

Fig. 3.1a-b: Reconstruction score as a function of the number of eigenvectors 
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Fig. 3.2a-d  Global maps of principal component scores for the 60th (A),  100th (B), 150th (C) and 
200th (D) eigenvectors.  

 
Reconstructed radiances are compared with original radiances to determine 

the quality of the original radiances.   If the difference between the original radiance 

and the recomputed radiances is greater than twice the expected instrumental noise, 

the observed radiance is not selected.   Fig. 3.3 shows the result of this screening 

method to remove outliers.  The red curve is the expected instrumental noise, the 

green is the rms of the observed minus reconstructed radiances for a single day.  

Large departures from the red curve denote channels with significant anomalies. 

 



 

 45 
 

 

Fig. 3.3: Root Mean Square (rms) of reconstructed radiance (green curve) compared with the 
instrument calibration noise (red curve) as a function of channel in wavenumbers cm-1. 

 

Another important application of PCA is data compression. For example one 

can distribute to users 200 principal component scores instead of 2378 channels, and 

directly use the principal component scores in a retrieval algorithm instead of the 

individual channels [Goldberg et al., 2003]. In this research project, the principal 

component scores will be used as predictors for the angle adjustment of the AIRS 

radiances. 

3.3 Mapping 
 

The data are gridded into a 2 x 0.5 degree latitude/longitude projection, 

separately for ascending and descending orbits.  I originally was going to use a 1 x 1   
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latitude/longitude projection.  I selected the 2 x 0.5 grid cell size because I wanted to 

have contiguous horizontal grid boxes populated from the same scan line to better 

study and correct for the effect of viewing geometry.  The inclination angle of AIRS 

results in a latitude displacement of greater than 1 degree over a scanline.  A 2 degree 

latitude dimension, particularly between +- 50 degrees latitude allowed for individual 

scanlines to populate contiguous horizontal grid boxes.  

3.4 Angle Adjustment 
 

Since AIRS is a cross-track scanning sensor, the radiances from the different 

view angles need to be limb adjusted to a fixed angle (e.g. nadir).  As the instrument 

scans from nadir, the absorbing path also increases which results in an increase in 

height of the peak of the weighting function.  The AIRS observations must be angle 

adjusted in order to average them; otherwise the averaging procedure would average 

radiances representing different absorbing path lengths. The basis of limb adjustment 

is that the brightness temperature for a given channel near nadir has a weighting 

function that is similar to the weighting function of a nearby channel at a different 

view angle [Goldberg et al., 2001].  Limb adjustment provides the optimal 

combination of channels to yield a channel radiance that appears to be independent of 

scan position and only dependent on airmass.   Fig. 3.4 shows a comparison of the 

original and limb-adjusted brightness temperatures for AMSU channel 5 on AQUA. 

Only the limb-adjusted data can be averaged to derive a radiance climatology.   
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    Fig. 3.4: Observed and limb adjusted brightness temperatures for AMSU channel 5 

The AIRS limb adjustment methodology is based on the AMSU approach with 

the exception that the limb adjustment is performed by principal component analysis.  

Specifically we limb adjust the first 200 principal component scores and then 

reconstruct the limb adjusted radiances from the limb adjusted principal component 

score. The predictors for limb adjusting a given principal component score for an off-

nadir position to a nadir value is the given principal component score plus the first six 

principal component scores.  Linear regression is used to generate the predictor 

coefficients.   The left panel of Fig. 3.5 shows an image of the original AIRS 

radiances and the limb adjusted radiances for an ozone channel.  Note the limb effect 

in the lower image. On the right panel of Fig. 3.5, we show the monthly averaged 

field.  Again the lower image is the original data without any limb adjustment.  Note 

the signal is not nearly as intense as the upper image, because the limb effect was not 

accounted for. 
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Fig. 3.5: Limb corrected (upper left) and original observed (lower left) AIRS radiance; monthly 
averaged limb corrected (upper right) and original (lower right) AIRS radiance 

 

The SRIR datasets will allow the generation of difference fields for various 

time periods and regions.  Fig. 3.6 shows the expected change in radiances due to 

changes in the state field.  For example, in this figure one can see that a 15% increase 

in ozone results in a brightness temperature reduction of approximately 2 K, and a 

15% increase in water vapor causes a reduction of approximately 1.25 K. 

3.5 Radiance Simulations 
 

The AIRS radiances are simulated using the AIRS radiative transfer forward 

model, SARTA.  Required input is the temperature, water vapor and ozone profile at 

100 atmospheric levels.  Climatological values are used for CO2, CH4, and CO.  All 

other gases are assumed fixed.   SARTA has been validated by comparing the 

observed AIRS spectra with those simulated from near temporal and spatial time 
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coincidence high accurate in-situ observations from the Department of Energy (DOE) 

Atmospheric Radiation Monitoring (ARM) sites in the Tropical Western Pacific 

(TWP). 

 

 

 

 

 

 

 

 

 

Fig. 3.6: Response in brightness temperatures due to a change in atmospheric and surface 
parameters 

 
Fig. 3.7 shows the time averaged bias between observed AIRS and those 

computed from TWP under clear-sky conditions. Notice the bias is sufficiently small 

to allow the validation of different descriptions of the atmospheric state.   Fig. 3.7 

also shows biases between simulated AIRS radiances from the ECMWF model 

analyses and the observed AIRS data for two different versions of SARTA.  The 2004 

version is derived using modified absorption coefficients based on TWP data.  Note 

the bias for the water vapor region of the spectrum (1300 to 1600 cm-1) is 

significantly smaller for the ARM TWP sites and the 2004 version of SARTA has 

smaller residuals than the earlier version. For channels predominately sensitive to 
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temperature (e.g. 700 – 800 cm-1 and 2200- 2300 cm-1) the differences of the biases 

are much smaller.  In other words, the model derived temperature fields are more 

accurate than the corresponding moisture fields.  Also moisture is much more 

variable in space and time than temperature, and generally result in larger differences 

between measured and computed brightness temperatures for water vapor channels 

because of the inexactness of the spatial and temporal collocations. 

 

Fig. 3.7: Upper panel: Brightness temperatures observed by AIRS at the tropical western pacific 
ARM site (TWP-2) Lower panel: Brightness temperature residuals between observed and 
calculated brightness temperatures from the TWP-2 site and from ECMWF. 
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3.6 Data used in the Generation of Eigenvectors and Limb Adjustment 
Coefficients. 
 

 It is very important for the eigenvectors to represent all AIRS radiance 

spectra, so that a given linear combination of the truncated eigenvectors will 

reproduce the near noise free AIRS radiance spectra.   I used a 6 month period of data 

starting on January 15, 2003 to generate the eigenvectors.    

This ensemble was constructed by first generating eigenvectors for “day 1” of 

the six month period; these eigenvectors are applied over the six months of data.  Any 

reconstruction score found to exceed 1.2 was added to the original ensemble.   The 

eigenvectors are then recomputed using the updated ensemble. 

To generate the limb adjustment coefficients, PC scores as a function of scan 

angle beam position (90 per scan line) are averaged for 2 degree latitude bands for 

ocean and non ocean cases (for the same six month period)   Such averaging results in 

a matrix dimensioned 200 x 180 by 90.   The 200 elements represent the first 200 PC 

scores, 180 elements are the total number of latitude bands (90 bands x 2 (ocean/non 

ocean)), and 90 is the number of beam positions.    Averaging over such a long period 

of time reduces any scan angle variation due to air mass and surface features.  Linear 

regression is used to generate a matrix of limb adjustment coefficients which is 

dimensioned 7 predictors by 90 beam positions.   The seven predictors are the first six 

PC scores and the PC score to be limb adjusted.    The averaged first four PC scores 

are shown in Fig. 3.8  Each plot shows the PC score as  a function of scan angle (x-

axis) which is given only for the center AIRS footprint within the AMSU footprint 
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(i.e., 1-30, instead of 1-90)  and by latitude (y-axis) which ranges from 1 – 90 latitude 

bins).  The principal component scores are normalized by the square root of their 

eigenvalue.  Note that the fourth PC score has a strong view angle dependency and is 

an important predictor for limb adjustment. 

 
Fig. 3.8:  First four principal component scores normalized by the square root of their eigenvalue 
(color scale range +- 1.0) and averaged over latitude bins (y-axis) and view angles (x-axis) 

 
 

3.7 Cloud Detection 
 

             Applications of the radiance climatology will require the use of clear spectra, 

and therefore an algorithm to discriminate clear from cloud contaminated scenes is 

needed.   An algorithm consisting of five different tests was developed to find mostly 

clear observations.  Only the fifth test makes use of ancillary non-satellite 
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information. The first test makes use of the Advanced Microwave Sounding Unit 

(AMSU) thermal channels.   Since microwave brightness temperatures are not 

sensitive to non-precipitating clouds, the AMSU observations are used to predict a 

single AIRS channel at 2390 cm-1 wavenumber.   The 2390 cm-1 channel can be 

predicted from AMSU-A with an accuracy of about 1 K.  The weighting function for 

this particular AIRS channel has a peak value near 850 mb.  The 2390 cm-1 channel is 

ideal because it is predominately affected by temperature and contamination from 

water vapor and other trace gases is negligible.  Simulations have shown that this 

channel is only marginally affected by solar contamination for clear conditions.   

Ideally, a channel peaking lower in the troposphere would be better for detecting very 

low altitude clouds.  However, predicting near-surface AIRS channels would require 

the use of AMSU-A window channels.  The large variability of the AMSU-A window 

channels due to variations in cloud liquid water and surface emissivity result in a very 

poor prediction (> 5 K) of near-surface AIRS channels.  Test 1 compares the 

predicted and observed 2390 cm-1 channel brightness temperatures; if the observed is 

colder by 3K then the AIRS footprint is not cloud-free.  For overcast conditions 

during the day, solar contamination can result in a warm brightness temperature.  To 

avoid false detection of clear footprints due to solar contamination of the 2390 cm-1 

channel in presence of clouds, Test 2 was added to compare the difference of 

longwave and shortwave infrared window brightness temperatures at 2558.23 (solar 

sensitive) and 937.81 cm-1 (solar insensitive). If the difference is greater than 10 K, 

the footprint is not cloud-free.  Experiments have found that footprints with very low 

level clouds are often not detected.  This of course was expected since the 2390 cm-1 
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channel peaks near 850 mb.  To improve the detection of very low clouds, Test 3, the 

coherence test, computes the standard deviation of the 3x3 array of the 2390 cm-1 

channel radiance within the AMSU-A footprint.   Radiance is used instead of 

brightness temperature because the noise is temperature dependent.   If the standard 

deviation is greater than 3 times the noise, then the footprint is not cloud-free.  This 

test can produce false positives in regions of high and variable terrain.   Test 4 is used 

over ocean, the test simply checks if brightness temperature at a single longwave 

window channel at 965.43 cm-1 is warmer than 270 K.    If it is less than 270 K, it is 

almost certain that clouds are present since the freezing temperature of sea water is 

near 271 K.   Test 5 makes use of the NCEP model surface temperature.   The surface 

temperature is predicted from four AIRS window channels at 918, 965, 1228 and 

1236 cm-1.   Using simulated brightness temperatures, the surface temperature can be 

predicted within 0.2 K.   However in practice, the surface temperature from the model 

is considerably more accurate over ocean than land, so different thresholds are used.   

For ocean, the predicted sea surface temperature must be no colder than 1K of the 

NCEP SST value.  Over land, because the NCEP surface temperature can have large 

errors, the test is used as a sanity check with the threshold set to 10 K. 

 Coefficients predicting the AIRS 2390 cm-1 brightness temperature 

from AMSU channels 4, 5 and 6 brightness temperatures, and the surface temperature 

from the four AIRS window channels, are all derived from simulated AIRS and 

AMSU brightness temperatures.  The brightness temperatures were simulated from 

the NCEP analyses.   The AIRS 2390 cm-1 test uses AMSU channels 4, 5 and 6, the 

cosine (COS) of the solar zenith angle (SZA), and  cosine of the scan angle (SA).  
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AMSU channels 4, 5 and 6 weighting function peak at 800, 600 and 400 mb, 

respectively.   The regression solution is: 

 

Predicted AIRS (2390 cm-1) = 18.653 – 0.169* AMSU4  + 1.975*AMSU5 
            – 0.865*AMSU6 + 4.529*COS(SZA) + 0.608*(1 – COS(SA))                 (3.5) 
 

The regression solution for predicting surface temperature is: 

Predicted Surface Temperature = 8.28206 - 0.97957*AIRS(918 cm-1) 
 + 0.60529*AIRS(965 cm-1) +1.74444*AIRS(1228cm-1) 
 -0.40379*AIRS(1236 cm-1)                                                                       (3.6) 

 

For cloudy conditions with mean cloud fractional amount of 0.45 (where 1 = 

complete overcast) and a standard deviation of 0.33, the percentage of the entire 

population detected as clear is only about  5% [Goldberg et al., 2003].   The clear 

detection test over ocean is quite accurate with an overall cloud residual 

contamination of only 0.6%, while land cases have a residual contamination of 2.5% 

due to greater uncertainties in surface emissivity and greater surface inhomogeniety.    
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Chapter 4:  Validation of the Principal Component Analysis 
(PCA) and Limb Adjustment Procedures 
 
 

4.1 Validation 
 

Validation of the AIRS PCA is very straightforward.  One simply needs to 

compare the reconstructed radiances with the original values.   Plots similar to Fig. 

3.3 are generated each day to ensure the representativeness of the eigenvectors.   Fig. 

4.1 shows the observed, reconstructed and difference for a randomly selected granule 

for an AIRS channel centered at 1002.24 cm-1 wavenumber.  Here we can see the 

reconstruction is very accurate, the distribution of the differences is Gaussian, with a 

standard deviation of 0.10 C, which is nearly the same as the 0.10 instrumental noise 

value. 

 

Fig. 4.1  Reconstructed brightness temperatures (upper left), observed brightness temperatures 
(upper right),  reconstructed minus observed (lower left) and the distribution of the differences 
(lower right) for AIRS channel centered at 1002.24 cm-1  
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The limb adjustment is first validated by comparing the deviations of the 

uncorrected and limb adjusted radiances from nadir values as a function of angle for a 

large spatial and temporal domain.  Fig. 4.2 shows the mean deviation from nadir 

averaged over the month of September 2005 for a latitude range between +- 40 

degrees.  This comparison was done for the approximately 250 AIRS channel subset 

assimilated operationally by NCEP and ECMWF.  Each solid curve shows the 

deviation in brightness temperature from the nadir value for groups of channels with 

similar weighting functions. The first two channel groups are sensitive to the 

stratosphere. As the scan angle increases, the atmospheric path increases, causing 

greater absorption and a rise in height of each channel’s weighting function.  In the 

stratosphere, with temperature increasing with height, this results in an increase of 

brightness temperatures with increasing scan angle.  The deviations after the limb 

adjustment (dashed curves) are less then 0.25 K for all angles.   

A more detailed validation is accomplished by comparing deviations between 

observed brightness temperatures with those simulated from ECMWF analysis fields, 

and limb adjusted brightness temperatures with those simulated from ECMWF 

analysis fields assuming a view angle of zero.  This is a very important step in the 

validation process for the algorithm.  By comparing the statistics of differences 

between measured and computed brightness temperatures for the original and limb 

adjusted brightness temperatures we will be able to clearly assess if there is a 

degradation of information by the limb adjustment procedure.  If the statistics  
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Fig. 4.2:  Deviations of averaged original (colored curves) and limb adjusted (heavy dashed 
curve) brightness temperatures from nadir as a function of beam position.   

 

for the two populations are nearly the same, then we can assume there is no 

degradation.   Fig. 4.3 through Fig. 4.9 show these comparisons for AIRS channels at 

the following wavenumbers, in cm-1 (the peak of their weighting functions for a 

representative summer midlatitude atmospheric state are given in parentheses), 

666.766 (40 mb), 681.457, (90 mb), 704.436 (350 mb), 723.029 (700 mb), 801.099 

(850 mb), 1519.07 (315 mb) and 1598.49 (490 mb), respectively.      The last two 

channels are water vapor channels, while the other channels are primarily sensitive to 

atmospheric temperature.  Each figure includes the bias, rms, and the minimum and 

maximum of the deviations.  The unadjusted and limb adjusted statistical parameters 

are nearly the same.  The relatively larger cold bias in the 801.099 cm-1 channel is due 

to low level cloud contamination.   It should be noted that the weighting function 
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peak pressure is a function of airmass.  Table 4.1 gives the weighting function peak 

pressure of the single AIRS channels which have been or will be discussed in this 

dissertation for three different sets of atmospheric states.  Notice that the peak of the 

two water vapor channels has the largest range.   All weighting peak pressures 

referred to in this dissertation are for the summer midlatitude atmospheric state; their 

weighting functions are shown in Fig. 4.10.  The three atmospheric states are given in 

Fig. 4.11. 

These results show that there is no degradation of information due to the limb 

adjustment and validate the method developed for limb adjustment.  

 

Fig. 4.3: The difference between observed and calculated brightness temperature  using the 
ECMWF model analysis at the original AIRS viewing geometry separated for ascending and 
descending data (left upper and lower),  and the difference between limb adjusted brightness 
temperatures and nadir calculated (scan angle = zero) using the ECMWF model analysis (right 
upper and lower) for AIRS channel centered at  666.766  cm-1 and with atmospheric weighting 
function peak near 40 mb. 
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Fig. 4.4: Same as Fig. 4.3 except for AIRS channel centered at  681.457  cm-1 and with 
atmospheric weighting function peak near 90 mb.    

 

 
Fig. 4.5: Same as Fig. 4.3 except for AIRS channel centered at 704 .436 cm-1 and with 
atmospheric weighting function peak near 350 mb. 
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Fig. 4.6: Same as Fig. 4.3 except for AIRS channel centered at 723.029 cm-1 and with atmospheric 
weighting function peak near 700 mb. 

 

 

Fig. 4.7: Same as Fig. 4.3 except for AIRS channel centered at 801.099 cm-1 and with atmospheric 
weighting function peak near 850 mb. 
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Fig. 4.8: Same as Fig. 4.3 except for AIRS channel centered at 1519.07 cm-1 and with atmospheric 
weighting function peak near 315 mb. 

 

 

Fig. 4.9: Same as Fig. 4.3 except for AIRS channel centered at 1598.49cm-1 and with atmospheric 
weighting function peak near 490 mb. 



 

 63 
 

Table 4.1 Weighting function peak pressures of selected channels for three airmass: Polar, 
Midlatitude and Tropical. 

 
Channel polar mid latitude tropical 

667.775 (cm-1) 1.5 (mb) 1.5 1.5 
667.27 15 15 10 
667.03 30 25 20 
666.766 40 40 35 
681.457 80 90 70 
689.491 150 150 150 
704.436 200 350 300 
723.029 900 700 600 
801.099 1000 850 850 
1519.07 400 315 290 
1598.49 600 490 400 
 
 

 
Fig. 4.10: Weighting functions representative of the midlatitude airmass for the AIRS channels 
listed in Table 4.1. 
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Fig. 4.11: Atmospheric states of temperature, water vapor and ozone representing polar (blue), 
midlatitude (green) and tropical (red) airmasses.  
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Chapter 5:  Applications 

5.1 Introduction 
 

The SRIR climatology includes daily PCS data files which contain the first 

200 PCS, along with the AMSU brightness temperatures.   The eigenvectors and the 

limb adjustment coefficients are static.  With these coefficients, the daily PCS files 

can be converted to limb adjusted brightness temperatures.  The data also contain the 

result of the clear test that is used to determine if a particular observation is 

predominantly free of cloud contamination.   The climatology currently covers the 

period from January 2003 through December 2006.  Monthly datasets, ascending and 

descending, are averaged from the daily limb adjusted brightness temperatures. 

Two important applications are now demonstrated.   The first is to use the 

climatology to detect and investigate potential areas of large atmospheric change.   

The second is to use the climatology to independently validate model analyses, such 

as those derived from NWP models, climate reanalyses, and climate prediction 

models.    This study will demonstrate the usefulness of the climatology for validating 

NWP model analyses. 

5.2 Climate Change Detection 
 

The SRIR climatology provides very accurate information on the top of the 

atmosphere infrared radiance at high spectral resolution.  The spectral range is from 

650 to 2750 cm-1 wavenumbers, equivalent to 15.6 to 3.75 micron wavelengths.   Fig. 

5.1 is an example of images which can be produced for an upper tropospheric water 
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vapor channel at 1520.87 cm-1.   This figure shows the mean clear-sky brightness 

temperature for January and July 2005, separated into ascending and descending data 

(day and night).   The patterns are different between July and January.  The regions 

with higher brightness temperatures are generally areas with low water vapor.  In 

these areas, the water vapor weighting functions will peak lower in the atmosphere 

resulting in warmer brightness temperatures.   

 

Fig. 5.1 Mean brightness temperature field for January and July 2005 for AIRS water vapor 
channel centered at 1520.87 cm-1. 

 

Quantitative analysis of differences between different years of spectra can be an 

indicator of regions experiencing large changes.   Since the radiance climatology still 

covers a relatively short period of time, a search for significant differences was 

performed by comparing mean spectra from the same month for different years.   Fig. 
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5.2 shows differences of spectra for July 2004, 2005 and 2006, for all sky conditions 

(clear, partial clouds, overcast) and for ascending data (day time).  (Results for night 

time are nearly identical)  In this example the differences are rather small and 

spectrally featureless, with the exception of the spectral range of 650 to 700 cm-1, 

which is sensitive to the upper troposphere and stratosphere.   The spectral range of 

700 to780 cm-1 is sensitive to the mid to lower troposphere.   The spectral range of 

780 to1000 cm-1 is primarily sensitive to the surface (with some weak absorption due 

to water vapor).  And the spectral range of 1000 to1100 cm-1 is sensitive to ozone, 

with the peak of the ozone band at 1040 cm-1.    The difference between the two 

curves is the difference between 2005 and 2006, and the difference is nearly zero, 

with the exception of a few tenths of a degree in the upper troposphere and 

stratosphere. 

 

Fig 5.2: Differences of spectra for July 2004, 2005 and 2006, for all sky conditions (clear, partial 
clouds, overcast) and for ascending data (day time) between 650 and 1100 cm-1 wavenumber. 
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Fig. 5.3 shows differences of spectra for January 2004, 2005 and 2006. In this 

figure, there are appreciable differences in the lower to mid troposphere and the 

surface.  However the most noticeable feature is the difference between 2005 and 

2004 near the center of the ozone band.    The difference is approximately 0.6 K, 

which, based on Fig. 3.6, translates to a difference of about 5% in total ozone.    This 

feature warrants further investigation and will demonstrate the utility of the SRIR 

climatology.    

 

Fig. 5.3: Differences of spectra for January 2004, 2005 and 2006, for all sky conditions (clear, 
partial clouds, overcast) and for ascending data (day time) between 650 and 1100 cm-1 
wavenumber. 

 

The first step is to examine the difference fields generated between 2004 and 2006, 

which is given in Fig. 5.4.  The differences are within normal interannual variations.  

However, in Fig. 5.5, the difference fields between 2005 and 2004 show very large 
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departures poleward of 60 degrees north latitude.   January 2005, north of Canada, is 

significantly colder by more than 8 K.  A study by Schiermeier [2005], Fig. 5.7, 

reported on the largest observed depletion in ozone, of approximately 140 Dobsons 

(relative to a normal amount of 300 ), in the Arctic in January 2005 as well as very 

low stratospheric temperatures.  The large reduction in the AIRS brightness 

temperature is due to two factors:  a much colder stratosphere as a result of the 

reduced ozone and the reduced infrared absorption due to the reduced ozone.   

Theoretically, a 50% change in ozone can cause AIRS brightness temperatures to 

change by 8 degrees since a 0.5% change, as was shown in Fig. 2.7, can cause a 

change of  0.08 K.   However, the actual change is dependent on the shape of the 

temperature profile, since a change in ozone results in the change in the peak and 

shape of the ozone channel’s weighting function.  Less ozone broadens the weighting 

function and reduces its height.  So a reduction in ozone results in AIRS observing 

more of the lower stratosphere.   In a nearly isothermal atmosphere, the change in 

ozone concentration would have very little impact on the brightness temperature, 

whereas a temperature profile with a large lapse rate will correspond to a significant 

change in brightness temperature 
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Fig. 5.4:  Brightness temperature fields for January, July 2004 and 2006, and their differences 
for AIRS channel centered at 1040.03 cm-1 wavenumber. 

 

 

Fig. 5.5: Brightness temperature fields for January, July 2004 and 2005, and their differences for 
AIRS channel centered at 1040.03 cm-1 wavenumber. 
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Fig. 5.6: Artic ozone depletion from 1992 to 2005 (from Schiermeier (2005)). 

 

 

This example shows that the SRIR climatology has significant value for 

finding and investigating regions of large changes in outgoing longwave radiation at 

high spectral resolution and then determining which atmospheric constituent 

contributed to the change. 

5.3 Validation of Model Analyses 
 

The most common analysis methods in NWP are optimum interpolation and 

variational data assimilation. Both methods make corrections to a first guess forecast 

(typically a 6 hour forecast from the analysis 6 hours earlier) in such a way that the 

differences between the corrected first guess and the accepted observations at the 

analysis time are minimized. Therefore information from the forecast, which is based 
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on assumptions of model physics, is retained in the analysis.   Analysis fields are used 

to initialize the next series of forecasts and are also used as truth for validating 

forecasts for different time periods.   Analysis fields are used for providing the best 

estimate of the atmosphere.   A climate reanalysis provides a historical collection of 

analyses from which trends and variability in climate can be assessed.  Weather 

prediction centers, as part of their operations, generate analyses and forecast fields.  

The fields generated from each center are different due to differing data assimilation 

and forecast systems.  Though the analysis is often regarded as truth, there are 

different “truths” from different NWP centers.  Therefore, it is of utmost importance 

to independently assess the accuracy of different analysis systems.  The use of the 

SRIR climatology will provide this very important capability. 

 

5.4 Comparisons of ECMWF and NCEP analysis fields 
 

ECMWF and NCEP analysis fields are available at 6 hour intervals.  Both 

models provide the atmospheric states of temperature, water vapor, ozone, and 

surface temperature needed to simulate outgoing clear radiances.  Both models also 

include cloud information, and therefore the SRIR climatology can be used to 

validate the accuracy of model-derived clouds as part of a future study.  The spatial 

resolution of ECMWF is a 0.5 x 0.5 lat/lon grid, where as NCEP is at a 1 x 1 degree 

grid.  The top model layer boundaries for NCEP is 0.64 sigma to zero (0.64 mb for 

1000 mb surface pressure), whereas for  ECMWF the top layer is 0.2 to zero.  Both 

data are interpolated, spatially and temporally, to the AIRS location and time.   The 
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NCEP results shown in figures are also labeled GDAS, which is an acronym for the 

NCEP’s Global Data Assimilation System.  The SRIR climatology for validating the 

model analysis has one very important limitation, which is, the 3-5 km vertical 

resolving capability of the infrared radiances.  In other words, differences between 

two model analyses may be indiscernible by the SRIR climatology if the difference is 

isolated to a very shallow atmospheric layer.    Therefore the comparisons begin with 

examining difference fields between simulated brightness temperatures from NCEP 

and ECMWF analysis fields to assess differences at the vertical resolution of the 

SRIR climatology.   Fig. 5.7 through Fig. 5.9 show differences between ECMWF and 

NCEP simulated brightness temperature fields for a set of channels representative of 

different atmospheric layers for September 2004.   The figure caption includes the 

channel wavenumber and in parentheses the peak region of atmospheric or surface 

contribution (for midlatitude airmass). 

Fig. 5.7 through 5.9 show channels predominately influenced by temperature.   

From the lower troposphere to the middle stratosphere the root mean square of the 

differences between NCEP and ECMWF is no larger than 0.22 K.  The overall mean 

bias is well within 0.1 K.  It’s not until the upper stratosphere where the differences 

become significant, as shown in Fig. 5.9.  The differences between the two models in 

the upper stratosphere are mainly due to differences in model physics, vertical 

layering and the satellite data being assimilated.   NCEP, for example, does not 

assimilate AMSU channel 14 because, even though this channel peaks at about 1.5 

mb, the NCEP model top layer, (0.67 sigma to zero), is too coarse for accurate 
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A CBA CB

forward model computations.  Whereas ECMWF’s top layer, (0.2 sigma to zero), is 

sufficiently narrow to allow the assimilation of AMSU channel 14.     

 

 

 

Fig. 5.7:  ECMWF minus GDAS simulated brightness temperatures for A: 801.09 cm-1 (850 mb), 
B: 723.029 cm-1 (700 mb),  and  C: 704.436 cm-1 (350 mb)  
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C D

A B

C D

 

Fig. 5.8: ECMWF minus GDAS simulated brightness temperatures for A: 689.491 cm-1 (150 mb), 
B: 681.457 cm-1 (90 mb), C:  666.766 cm-1 (40 mb), and D: 667.018 cm-1 (25 mb) 
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Fig. 5.9: ECMWF minus GDAS simulated brightness temperatures for A: 667.27 cm-1 (15 mb)   
and B: 667.775 cm-1 (1.5 mb) 

 

For comparing and validating NCEP and ECMWF water vapor fields,  two channels 

at 1519.07 cm-1 and 1598.45 cm-1 were selected  representing upper and mid 

tropospheric water vapor, respectfully.  The difference fields for those channels are 

given in Fig. 5.10. The differences for the water vapor channels are significant. As is 

shown in Fig. 3.6, a 1.25 K difference is about a 15% change in water vapor.  In Fig. 

5.10, the bias is also 1.25 K for the upper tropospheric water vapor channel. 

 

A BA B
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Fig. 5.10:  ECMWF minus GDAS simulated brightness temperatures for A: 1519.07 cm-1 (315 
mb) and B: 1598.45 cm-1 (490 mb)  

 

5.5 Validation of the model fields using the AIRS clear-sky radiance 
climatology 

 

In the previous section, discrepancies between NCEP and ECMWF model 

analyses were found in the simulated brightness temperatures of the channels 

sensitive to the temperature fields of the upper stratosphere and the tropospheric 

water vapor fields.  Otherwise the brightness temperature fields for channels sensitive 

to the troposphere and lower stratosphere were quite similar for NCEP and ECMWF.  

When compared with measured AIRS brightness temperatures, one can make an 

assessment of the accuracy of each model.  Figure 5.11 show the differences between 

A BA B
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limb adjusted AIRS with simulated ECMWF and NCEP brightness temperatures for 

667.27 cm-1 (15 mb).  Fig. 5.12 show the differences for 667.775 cm-1 (1.5 mb). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11: Difference between limb adjusted AIRS and simulated ECMWF brightness 
temperatures (A) and with NCEP (B) for 667.27 cm-1 (15 mb)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12: Difference between limb adjusted AIRS and simulated brightness temperatures (A) 
ECMWF and (B) NCEP for 667.775 cm-1 (1.5 mb)   

A BA B

A BA B
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Based on the results given in Figs. 5.11 and 5.12, it is clear that the ECMWF 

temperature analysis is in better agreement with the AIRS radiance climatology.  

Note the exceptional agreement for the 667.27 cm-1 (15 mb) channel.  The bias with 

ECWMF is only about -0.1 K, whereas with NCEP the bias is about - 1 K.   In the 

case of the 667.775 cm-1 channel, ECMWF bias is about -1.7 K, whereas NCEP is 

about -3.6 K.   At this level, there is not much observed data used to constrain the 

model.  One can conclude that the ECMWF’s temperature analysis in the upper 

stratosphere appears to be more accurate than NCEP’s.   As mentioned above, 

differences in the stratosphere are likely due to differences in model height and the 

data assimilated.  However in the troposphere, any differences must be due to other 

causes.   The differences for the water vapor channels, shown in Fig. 5.10, are 

particularly interesting and warrant further investigation. 

Figure 5.13 shows the difference between the ECMWF and NCEP total 

precipitable water vapor fields and their mean for September 2003 and 2004.   Both 

difference fields show a moist bias of about 1 mm in the NCEP field with respect to 

the ECMWF field. 
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Fig. 5.13:   Comparisons of ECMWF and GDAS Total Precipitable Water for September 2003 
and 2004. 

 

Figure 5.14 shows the difference between the ECMWF and NCEP total precipitable 

water vapor fields above 500 mb and their mean for September 2003 and 2004.   Both 

difference fields show a moist bias of about 20% in the NCEP field. To determine 

which model analysis is most accurate with respect to water vapor, brightness 

temperatures are simulated using NCEP and ECMWF temperature and moisture 

analysis fields.  Because the clear detection algorithm and the radiative transfer model 

are more accurate over ocean, and surface emissivity is better known, the brightness 

temperatures simulations are restricted to ocean areas.  
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Fig.  5.14:  Comparisons of ECMWF and GDAS above 500 mb precipitable water for September 
2003 and 2004. 

 

Figure 5.15 shows the ECMWF and NCEP biases (computed minus measured) for the 

entire AIRS spectral range for September 2003 and 2004.  The clear detection 

algorithm threshold for the test 5 (comparisons with SST) was relaxed to allow for a 

larger population of clear cases, about 35% instead of just 5%.  As a result, there is a 

positive bias of about 1 K for the window channels (800 -1000 cm-1, 1070 – 1250 cm-

1 and 2400 – 2650 cm-1) due to low cloud contamination.  However, for mid to upper 

tropospheric water vapor channels (1450 – 1600 cm-1), the relaxed test does not 

introduce appreciable cloud contamination.  Fig. 5.15, shows that the largest ECMWF 

bias in the water vapor region is about - 0.7 K,  
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Fig. 5.15: Bias of AIRS measured minus computed from ECMWF (upper) and NCEP GDAS 
(lower) for September 2003 and 2004 

 

Fig. 5.16: Standard deviation of AIRS measured minus computed from ECMWF (upper) and 
NCEP GDAS (lower) for September 2003 and 2004 

whereas for NCEP it is about -2.4 K.  From Fig. 3.6, it can be inferred that a 

differences of the two biases, which is 1.7 K,  results in a change in water vapor of 

about 20%, which is approximately the same value show in Fig.  5.14.   The standard 

deviations of the computed minus measured differences are plotted in Fig. 5.16, 

which shows a lower standard deviation with respect to ECMWF.      ECWMF started 

to assimilate AIRS radiances operationally in October, 2003, whereas NCEP 
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operational use of AIRS began in May, 2005.   Inspection of Figs. 5.15 and 5.16 

suggests a small impact of AIRS data in the ECMWF analysis, because the difference 

between September 2003 and 2004 appears to be small.  However these figures 

represent a global average, so a closer examination is needed for the two water vapor 

channels discussed in section 5.4.   Shown in Fig. 5.17 are the observed AIRS minus 

simulated ECWMF brightness temperatures for the 1519.07 cm-1 (315 mb) upper 

tropospheric water vapor channel, for September 2003, 2004 and 2005.  Fig. 5.18 

shows the comparable figure using the NCEP analysis.  Fig. 5.17 shows relatively 

smaller biases for all three periods, demonstrating that ECMWF analysis water vapor 

fields were relatively accurate even before AIRS was assimilated.  The rms was 

reduced by about 0.3 K.   Note that the absence of locally large deviations after 2003.  

In Fig. 5.18, there was a very large reduction in the bias (September 2005) after AIRS 

was used operationally by NCEP. The bias was reduced by more than 1 K and the 

rms was reduced by nearly 1 K.  Figs. 5.19 and 5.20 show the results for the mid-

tropospheric 1598.45 cm-1 (490 mb) channel. 
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2003                                     270 mb 2004           AIRS assimilated operationally      2005

Observed AIRS minus ECMWF Simulated AIRS for Upper Trop. Water Vapor

September,  1519.07 cm-1

2003                                     270 mb 2004           AIRS assimilated operationally      2005

Observed AIRS minus ECMWF Simulated AIRS for Upper Trop. Water Vapor

September,  1519.07 cm-1

 

Fig. 5.17: Observed AIRS minus ECMWF simulated AIRS for upper tropospheric water vapor 
channel at 1519.07 cm-1 wavenumber. 

2003                                     270 mb 2004          AIRS assimilated operationally       2005

Observed AIRS minus NCEP Simulated AIRS for Upper Trop. Water Vapor

September,  1519.07 cm-1

2003                                     270 mb 2004          AIRS assimilated operationally       2005

Observed AIRS minus NCEP Simulated AIRS for Upper Trop. Water Vapor

September,  1519.07 cm-1

 

Fig. 5.18: Observed AIRS minus NCEP simulated AIRS for upper tropospheric water vapor 
channel at 1519.07 cm-1 wavenumber. 
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2003                                     520 mb 2004           AIRS assimilated operationally      2005

Observed AIRS minus ECMWF Simulated AIRS for Mid. Trop. Water Vapor

September,  1598.49 cm-1

2003                                     520 mb 2004           AIRS assimilated operationally      2005

Observed AIRS minus ECMWF Simulated AIRS for Mid. Trop. Water Vapor

September,  1598.49 cm-1

 

Fig. 5.19: Observed AIRS minus ECMWF simulated AIRS for middle tropospheric water vapor 
channel at 1598.45 cm-1 wavenumber. 

2003                                     520 mb 2004          AIRS assimilated operationally       2005

Observed AIRS minus NCEP Simulated AIRS for Mid. Trop. Water Vapor

September,  1598.49 cm-1

2003                                     520 mb 2004          AIRS assimilated operationally       2005

Observed AIRS minus NCEP Simulated AIRS for Mid. Trop. Water Vapor

September,  1598.49 cm-1

 
Fig. 5.20: Observed AIRS minus NCEP simulated AIRS for middle tropospheric water vapor 
channel at 1598.49 cm-1 wavenumber.   
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For the mid tropospheric channel, the ECMWF bias is only about 0.1 K.  The bias 

does not change much over the three different years.  However there is a reduction in 

the rms, from approximately 1.5 K to 1.15 K, after AIRS is assimilated operationally.  

In the case of NCEP, the bias is larger, about 0.9 K, however it does decrease to about 

0.6 K in 2005, after AIRS is assimilated operationally by NCEP.  There is a small 

reduction in the rms.  However a large bias in excess of 4 K is found over the eastern 

Pacific just south of the equator.  This is very interesting because the feature is 

nonexistent in ECWMF, and the cause remains unknown.   In summary, the ECMWF 

analyses are shown to be more consistent with the AIRS radiance climatology.   In the 

next section, the validation focuses on the consistency of interannual differences. 

5.6 Interannual Differences 
 

This section will compare interannual differences, (specifically September 2005 

minus September 2004), of the model analyses, the original AIRS brightness 

temperatures and the limb adjusted brightness temperatures (i.e. the AIRS SRIR 

climatology).  These comparisons will demonstrate the fidelity of the limb adjusted 

radiance climatology and the ECMWF analysis.   The similarity of the annual 

differences derived from the limb adjusted radiance climatology and the ECMWF 

analysis will verify the accuracies of the ECMWF analysis, the AIRS radiance 

climatology, and the radiative transfer model.  Figure 5.21a shows the interannual 

difference between September 2005 and 2004 for channel 704.436 cm-1, which is an 

upper tropospheric temperature peaking near 350 mb.  The left panel of the figure is 

the interannual difference of the unadjusted AIRS brightness temperature separated 
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into ascending and descending data;    the center panel is for ECMWF simulated 

brightness temperatures for a scan angle of zero (nadir); and the right panel is for the 

limb adjusted brightness temperature.  The patterns in the center and left panels are 

different as expected, since the left is an average of different viewing geometries 

(scan angles), and the center is for nadir observations..  The patterns in the center and 

right panels are nearly identical.  Interannual differences from the ECMWF analysis 

and the AIRS radiance climatology are in excellent agreement.  The interannual bias 

differs about 0.1 K.  Note the patterns in the left panel, which are artifacts due to 

averaging observations from different scan angles and clearly demonstrate the 

importance of the limb adjustment.   Figure 5.21b is very similar to Fig. 5.21a, 

however, the center panel is ECMWF simulated at the original scan angles.  Now the 

center and left panels are virtually identical.  This clearly demonstrates the fidelity of 

the radiative transfer model to simulate radiances at different scan angles.     Figure 

5.21c is similar to Fig. 5.21a; however, the center panel now represents annual 

differences simulated from NCEP analyses.  The reason the left and right panels in 

Fig 5.21c are not exactly the same as those in Fig. 5.21a is my requirement that the 

same sample size be the same for all three panels of a given figure.   In Fig 5.21c, the 

interannual difference from the NCEP analysis is about 0.2 K larger than the 

interannual differences from the limb adjusted AIRS brightness temperatures.   The 

differences between the  NCEP and ECMWF interannual differences for this 

particular AIRS temperature channel is relatively small, and this is to be expected 

since it was shown earlier that the NCEP and ECMWF temperature analyses in the 

troposphere and lower stratosphere are similar. 
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Fig. 5.21a:  Annual difference between September 2005 and 2004 for AIRS channel 704.436 cm-1 
for AIRS observation (left ),  AIRS simulated from ECMWF for nadir (center), and limb 
adjusted AIRS (right). 

 

 
Fig. 5.21b:  Annual difference between September 2005 and 2004 for AIRS channel 704.436 cm-1 
for AIRS observation (left ),  AIRS simulated from ECMWF (center), and limb adjusted AIRS 
(right). 
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Fig. 5.21c:  Annual difference between September 2005 and 2004 for AIRS channel 704.436 cm-1 
for AIRS observation (left), AIRS simulated from NCEP for nadir (center), and limb adjusted 
AIRS (right). 

 

Fig 5.22a shows the comparisons of interannual differences with ECMWF for 

channel 1519.07 cm-1, which is the same upper tropospheric water vapor channel 

peaking near 315 mb discussed earlier.    Note the excellent similarity of the center 

and right panels.  Unlike the temperature channels, water vapor channels from the 

unadjusted AIRS observations (left panel) are also in good agreement.  This is likely 

due to the fact that even though the path length increases as scan angle increases, the 

height of the channel weighting functions does not change considerably because 

water vapor exponentially decays with height.  On the other hand for CO2 

temperature channels, CO2 concentration, which is relatively constant with height, 

results in much larger absorption with increasing angles, thereby considerably 
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increasing the height of the weighting function.  Visual inspections of the three panels 

show they are all very similar.  However this is not the case when compared with 

NCEP, which is shown in Fig 5.22b. (Fig. 5.22b is the same as Fig. 5.22a; however 

the center panel is replaced with NCEP (GDAS).)   The NCEP annual differences are 

very different from the limb adjusted annual differences.  (Note similar findings for 

ECMWF and NCEP annual differences were found for differences between 2004 and 

2003). 

Figs. 5.23a and 5.23b are similar to Fig.5.22a and 5.22b, however the results 

are for the middle tropospheric water channel at 1598.07 cm-1, which peaks near 490 

mb.    Again, ECWMF annual differences are very similar those generated from the 

AIRS SRIR climatology.   With respect to NCEP, the agreement with the AIRS 

radiance climatology is indeed better than the upper tropospheric water vapor 

channel.  However closer inspection will find discrepancies over the eastern Pacific 

just south of the equator, which was first noted in Fig. 5.20.  Hence, we can conclude 

that the ECMWF water vapor analysis fields appear to be more accurate and realistic 

than those of NCEP. 
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Fig. 5.22a:  Annual difference between September 2005 and 2004 for AIRS channel 1519.07 cm-1 
for AIRS observation (left), AIRS simulated from ECMWF for nadir (center), and limb adjusted 
AIRS (right). 

 
Fig. 5.22b:  Annual difference between September 2005 and 2004 for AIRS channel 1519.07 cm-1 
for AIRS observation (left), AIRS simulated from NCEP for nadir (center), and limb adjusted 
AIRS (right). 
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Fig. 5.23a:  Annual difference between September 2005 and 2004 for AIRS channel 1598.49 cm-1 
for AIRS observation (left ),  AIRS simulated from ECMWF for nadir (center), and limb 
adjusted AIRS (right). 

 

 

Fig. 5.23b:  Annual difference between September 2005 and 2004 for AIRS channel 1598.49 cm-1 
for AIRS observation (left), AIRS simulated from NCEP for nadir (center), and limb adjusted 
AIRS (right). 
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5.7 Summary of NCEP and ECMWF Analysis Validation 
 

The AIRS radiance climatology has been demonstrated to have significant 

value in validating NWP model analyses.  Based on the above results, one can 

conclude that, for the period of 2003 to 2005, ECMWF’s analyses appear to be more 

accurate than NCEP’s and in excellent agreement with AIRS observations, except for 

the upper stratosphere.  Unfortunately, in 2006 the AIRS radiance climatology 

detected degradation in the ECMWF water vapor analysis, underscoring the 

importance of the AIRS data for ongoing validation.  After an operational upgrade of 

the ECMWF data assimilation system in early 2006 to use an adaptive radiance bias 

correction scheme (McNally, private communication), the bias in the upper 

tropospheric water vapor channel for September 2006, shown in Fig. 5.24,  increased 

significantly to 1.55 K from 0.71 K in September 2005 and is now larger than that of 

NCEP.    Fig. 5.25 shows the biases for the lower tropospheric water channel for 

September 2006. The bias has increased to 0.43 K (September 2006) from -0.10 K 

September (2005); however the bias for this channel remains lower than the NCEP 

bias.    Fig. 5.26 show the difference between the ECMWF and NCEP total 

precipitable water vapor fields, which is now much smaller,  above 500 mb and their 

mean values for September 2005 and 2006 

  Table 2 is the tabulation of the biases given in Figs. 5.13 through 5.25.   

Notice how the precipitable water above 500 mb for ECMWF (row d) in 2006 departs 

significantly from the mean values for 2003 through 2006.  The difference between 

NCEP and ECMWF precipitable water above 500 mb (row f), shown is only a 

fraction of a percent in 2006; in 2003 and 2004 it was about 21%, decreasing to 
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11.45% in 2005.    Further inspection of Table 2 shows a strong relationship between 

rows m and f.  Row m is the sum of rows i (the difference of the NCEP and ECMWF 

bias for 1519 cm-1) and l (the difference of the NCEP and ECMWF bias for 1598 cm-

1).  This should be expected since both channels together are more sensitive to the 

water vapor above 500 mb, as opposed to the total precipitable water.  The 

relationship between the numerical values in rows f and m can be approximated very 

accurately with a polynomial expression (f   =    2.38 – 9.96m – 0.92m2 ) with 

Pearson correlation squared (r2) of 0.9992. 

The interannual differences for the upper tropospheric water vapor channel for 

both ECMWF and NCEP are given in Figs. 5.27a and 5.27b, respectively.   The 

interannual differences for ECMWF are not nearly as similar to the limb adjusted 

interannual differences as they were for 2005 minus 2004.  Large departures are 

highlighted by the elongated oval in Fig. 5.27a.   Fig. 5.27a shows, for the first time, 

interannual differences that include the operational assimilation of AIRS data in both 

years by NCEP.   The interannual differences are now closer to the limb adjusted 

values; however, some areas of large departures still exist as noted by the oval.  The 

interannual differences for the lower tropospheric water vapor channel for both 

ECMWF and NCEP are given in Figs. 5.28a and 5.28b, respectively.   Here the 

interannual differences of both models are similar to those obtained from the limb 

adjusted brightness temperatures. 
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Fig. 5.24: Observed AIRS minus ECMWF simulated AIRS (left panel) and observed AIRS 
minus NCEP simulated AIRS (right panel)   for upper tropospheric water vapor channel at 
1519.07 cm-1 wavenumber for September 2006. 

 
Fig. 5.25: Observed AIRS minus ECMWF simulated AIRS (left panel) and observed AIRS 
minus NCEP simulated AIRS (right panel)   for lower tropospheric water vapor channel at 
1598.49 cm-1 wavenumber for September 2006. 
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Fig.  5.26:  Comparisons of ECMWF and GDAS precipitable water above 500 mb for September 
2005 and 2006. 

 

Table 5.1 Tabulated bias from Figs. 5.13 through 5.26  

   2003 2004 2005 2006 
a ECMWF TPW 23.22 mm 23.29 22.70 22.34 
b NCEP     TPW 24.15 mm 24.44 24.02 24.01 
c NCEP - ECMWF 0.93   mm 1.14   1.32   1.67 
d ECMWF PW above 

500mb 
0.69   mm 0.68  0.68 0.75 

e NCEP     PW above 500 
mb 

0.79   mm 0.78  0.75 0.75 

f NCEP - ECMWF  21.14% 20.96% 11.45% 0.37% 
g ECMWF 1519cm-1 0.73 K 0.61 0.71 1.55 
h NCEP     1519cm-1 2.34  K 2.16 1.06 1.13 
i NCEP – ECMWF* -1.61 K -1.55 -0.35 0.42 
j ECWMF 1598cm-1 0.10 K -0.01 -0.10 0.43 
k NCEP     1598cm-1 0.86 K 0.90 0.56 0.65 
l NCEP – ECMWF* -0.76 K -0.91 -0.66 -0.22 
m SUM OF DIFF* -2.37 K -2.46 -1.01 0.20 
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Fig. 5.27a:  Annual difference between September 2006 and 2005 for AIRS channel 1519.07 cm-1 
for AIRS observation (left), AIRS simulated from ECMWF for nadir (center), and limb adjusted 
AIRS (right). 

 

 
 

 

Fig. 5.27b:  Annual difference between September 2006 and 2005 for AIRS channel 1519.07 cm-1 
for AIRS observation (left), AIRS simulated from NCEP for nadir (center), and limb adjusted 
AIRS (right). 
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Fig. 5.28a:  Annual difference between September 2006 and 2005 for AIRS channel 1598.49 cm-1 
for AIRS observation (left), AIRS simulated from ECMWF for nadir (center), and limb adjusted 
AIRS (right). 

 

 
Fig. 5.28b:  Annual difference between September 2006 and 2005 for AIRS channel 1598.49 cm-1 
for AIRS observation (left), AIRS simulated from NCEP for nadir (center), and limb adjusted 
AIRS (right). 
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In summary, the SRIR climatology can validate model analyses and detect 

changes in both model physics and data assimilation procedures.   The “golden 

years”, when ECMWF’s analyses agreed exceptionally well with the SRIR 

climatology, were 2003, 2004 and 2005.  The above results have been reported to 

ECMWF. 
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Chapter 6:  Summary, Conclusions and Further Study 
 

The Spectrally Resolved Infrared  Radiance (SRIR) climatology created in 

this research from AIRS observations is the first step in establishing a long-term 

record of thermal infrared radiances at high spectral resolution to help monitor 

climate change and assess the accuracy and realism of weather and climate analyses 

and forecasts.  

Generation of the SRIR climatology required execution of the following 

procedures: 

1. Screening the AIRS observations outliers 

2.  Converting the radiance observations to brightness temperatures (BT) 

and mapping them into ascending and descending orbit daily grids 

3. Transforming the observations within the gridded datasets to principal 

component scores and stored in principal component (PC) gridded 

datasets 

4. Adjusting the PC grids for viewing angle (limb darkening)  

5. Computing viewing-angle adjusted brightness temperatures (AABT) 

from the PC datasets  

6. Screening the BT and AABT daily datasets for clear sky values and 

averaging to produce monthly clear sky and all sky datasets.  

Thus, the SRIR climatology consists of monthly brightness temperature 

datasets of two types – at the original viewing angle and adjusted for viewing angle to 

a nadir view - for the period 2003 – 2006 for:  
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5. Ascending (day), clear sky 

6. Ascending, all sky  

7. Descending (night), clear sky  

8. Descending, all sky datasets 

The monthly averaging of the original viewing angle is only for diagnostic purposes. 

The data must be angle adjusted for monitoring and validation applications. 

This dissertation demonstrated the important applications of the SRIR dataset 

for monitoring interannual changes (section 5.2), and assessing the accuracy of 

atmospheric model analyses (sections 5.3 – 5.7).  Interannual differences of less than 

0.1 C in brightness temperature can be resolved, thus demonstrating the capability of 

the dataset for monitoring long term temperature trends. The ability of the dataset to 

monitor atmospheric composition changes was demonstrated by the detection of 

arctic ozone depletion in 2005. The ability to evaluate atmospheric analyses was 

demonstrated through comparisons of brightness temperatures simulated from NCEP 

and ECWMWF analyses with the dataset 

The operational IASI on the MeTOP satellite series and the future operational 

CrIS on the NPOESS satellite series will provide continuous observations of high 

spectral resolution infrared radiances well into the 2020s.    Both AIRS and IASI are 

now in orbit, and intercomparisons of both sensors have generally shown brightness 

temperature differences between the two sensors of less than 0.1 K [Tobin et al., 

2006].  Most importantly, the recently computed trend of the differences is less than 

.01 K per year, which means both sensors have the stability and the fidelity to 

accurately detect long term trends of at least a few tenths of a degree K per decade. 
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Follow-on missions will continue this type of measurement well into this century.   

Long-term stability of infrared sensors require internal blackbody targets with very 

high emissivities approaching unity (generally the requirement is > 0.9995).   Both 

AIRS and IASI meet these requirements; however there is no internal monitoring to 

determine whether the high blackbody emissivity is maintained in orbit.  This is why 

continuous intercomparisons between AIRS and IASI, and later CrIS is needed to 

demonstrate long term stability.   NASA is considering a new mission called Climate 

Absolute Radiance and Refractivity Observatory (CLARREO), which measures 

outgoing radiances in the far, near and thermal infrared with high spectral resolution, 

high stability and internal monitoring.  The CLARREO instrument will have a 

relatively large field of view (~ 100 km), and only nadir.   It will have difficulty 

providing sufficient data sampling for examining regional trends and variability, 

however it can be used as a benchmark measurement to anchor operational 

instruments such as AIRS, IASI, and CrIS. 

I plan to extend the time series of the SRIR climatology for AIRS into the 

future, and I plan to start generating the radiance climatology for IASI.   Both 

climatologies will be publicly accessible and will be a NESDIS operational climate 

product.   In addition to sensitivity to trace gases, the SRIR dataset includes 

signatures in radiative forcings due to changes in clouds, aerosols and surface 

emissivity.  The dataset includes both clear and cloudy data, so cloud forcing studies 

can be conducted.  The clear sky data will enable monitoring of changes in surface 

emissivity caused by changes in land surface conditions.  I expect the SRIR 
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climatology to encourage research by those interested in monitoring climate change 

and variability, understanding radiative forcings, and validating models.    
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