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This research examines the feasibility of using observations of land surface 

temperatures (in principle available from satellite observations) to initialize soil 

moisture (which is not available on a continental scale). This problem is important 

because it is known that wrong soil moisture initial conditions can negatively affect 

the skill of numerical weather prediction models.

Since this problem requires the availability of a good soil model, considerable 

effort was devoted to the improvement of several aspects of the NCEP Noah land 



surface model and its numerical properties (reliability, efficiency, updates and 

differentiability). When tested against the experimental station data at Champaign, IL 

collected by Dr. Tilden Meyers of NOAA/ARL, where the surface fluxes, 

precipitation, and surface temperature were available, the Noah model forced with 

observed downward radiative surface fluxes and near-surface meteorology, including 

precipitation, was able to reproduce the observations quite well. 

A method for data assimilation was developed and tested, in a manner similar 

to 4-dimensional variational assimilation (4D-Var) in the sense of applying the 

temporal behavior of the observed variable but with a single spatial dimension (land 

surface models are typically “column models”, as they do not usually compute 

horizontal derivatives). The results show that it is indeed possible to assimilate land 

surface temperature and use it to correct soil moisture initial conditions, which may 

manifest significant errors if, for example, the precipitation forcing the model is 

significantly biased. This is true, however, only if the surface forcings besides 

precipitation are essentially correct. When surface forcing come from the North 

American Land Data Assimilation System (NLDAS) as they would be available for 

operational use over the US, the results are not satisfactory. This is because the 

assimilation changes the soil moisture to correct for problems in the simulated land 

surface temperature that are at least partially due to other sources of errors, such as 

the surface radiative fluxes. We suggest that in order to succeed in the soil moisture 

initialization, more (and more accurate) observations are needed in order to constrain 

the dependence of the observation part of the cost function solely on soil moisture.
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Chapter 1

Introduction

Land-surface and soil hydrology models used as a lower boundary condition 

by coupling with general circulation, climate or weather forecast models have been 

recognized, over the past few decades, as vital to the quality of the results. 

Consequently, progressively more sophisticated land surface models have been 

developed and incorporated for such uses.

In general, computational time constraints and the difficulty in establishing 

initial conditions in the soil has been a barrier for the use of the most sophisticated 

land surface models in operational settings. Fortunately, the recent advances in 

computational power allowed the incorporation of more complex and accurate land-

surface models. Still, the problem of estimating initial conditions for soil variables, 

given that observations of these variables are not generally available, remains an 

important challenge.

Early studies on the role of soil water (Namias, 1958) within the climate 

system brought attention to the need of considering surface fluxes and runoff, as 

affected by the variability of soil moisture. This justified the development of soil 

models - such as the so-called “bucket model” (Manabe, 1969) - to take into account 

the evolution of soil moisture and interaction with evaporation and runoff. In 1978, 

Deardorff showed the importance of the contribution of vegetation to the latent heat 

flux (evapotranspiration).

At the present time, land-surface models coupled with atmospheric models are 

expected to reproduce the evolution of land-surface-atmosphere fluxes and soil 

variables with reasonable accuracy given proper initial conditions and forcing.

Water storage in the soil affects directly evapotranspiration, soil heat storage, 

thermal conductivity, and the partitioning of energy between latent and sensible 

fluxes. As a result, it influences the moisture and temperature in the planetary 

boundary layer and, consequently, the evolution and amount of cloudiness and 

precipitation (Pan and Mahrt, 1987, Garratt, 1993).
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Given recent advances in the state-of-the-art of numerical weather prediction 

models, the quality of the simulation of the land-surface processes is having a larger 

impact on the models, due to the increased requirement of accurate lower boundary

conditions to interact with the atmospheric models (Chen, F. et al., 1997). For this 

reason, the quality of the simulation of the soil moisture field is of great importance in 

order to obtain a proper simulation of land-surface physics and, consequently, 

positively affect the quality of the weather forecasts (Viterbo and Illari, 1994; Koster 

and Suarez, 2003).

One problem that has not yet been overcome is how to adjust the soil moisture 

initial fields (Betts et al., 1996). This problem has serious consequences because, 

given that soil moisture is a slowly evolving variable, an error in the initial condition 

will affect the quality of the simulation for a long period of time, even if the correct 

precipitation is observed and specified (as seen in the experiments described in 

sections 5.4 and 6.1).

Soil moisture content values are not observed regularly over large areas, 

making the use of direct soil moisture observations in the data assimilation system 

impossible. Instead it becomes necessary to use indirect observations of soil moisture, 

something made possible by its relationship to other observed fields.

Another possible approach is the initialization of soil moisture from 

climatology as opposed to deriving or inferring it with the use of current observations. 

The past common approach in most operational numerical weather prediction (NWP) 

models has been to initialize soil moisture for the forecast cycle with values obtained 

either from a climatological database or by letting the soil moisture content, as a 

prognostic variable, to be cycled on itself in continuous adjustment with the rest of 

the model (Viterbo and Beljaars, 1995). The use of climatological values has the 

disadvantage of not reflecting real conditions associated to recent past evolution and, 

therefore, an inherent inability to adapt to anomalous conditions such as wet or dry 

spells. On the other hand, cycling the soil moisture content as a prognostic variable 

forced by model precipitation and surface fluxes without corrections derived from 

observations, may lead to drifting which is seen as a departure from realistic soil 
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moisture over time. This can be produced by inaccuracies in the forcing provided by 

the companion models, usually radiation and precipitation, both affected by the 

quality of the prediction of cloudiness within the atmospheric model. As a result, on a 

time scale of weeks to months, the prediction errors can grow through complex 

feedback loops, causing excessive accumulation or depletion of soil water stored, 

leading to systematic under- or overestimation of the actual land-surface evaporation 

(Viterbo, 1996). At NCEP, the global model in operation, using a version of Noah 

land surface model for the treatment of land surface and soil variables, applies 

nudging towards climatology in the Global Data Assimilation System (GDAS) cycle 

on a 60-day time scale as a means to curtail the effects of drifting (e.g., Kistler et al, 

2001). In the ETA model, the soil moisture was being initialized with analysis from 

the global model; but now, it is cycled continuously on itself (Mitchell, 1998, etc, 

personal communication).

In this context, it seems desirable to develop data assimilation approaches that 

could provide the necessary initial soil moisture values derived from non-soil 

moisture observations, while being consistent with the weather forecast model and 

sensitive to recent past evolution.

The strong influence of the soil moisture on surface fluxes that, in turn, affect 

low-level atmospheric parameters, suggests that it is possible to infer a correction to 

the soil moisture content values based on information from prediction errors on 

sensitive variables at the lower levels of the atmospheric model (Mahfouf, 1991, 

Bouttier, et al., 1993).

Another approach could be to infer the corrections to soil moisture from the 

surface fluxes themselves (van den Hurk et al., 1997; Jones et al., 1998), thus 

avoiding some of the disadvantages of using error information from near surface 

parameters, namely, miscalculations caused by components of these errors that have 

no relationship with soil moisture, such as effects from horizontal advection and 

situations in which surface fluxes effects are small compared to other effects. 

However, this method requires having information about the surface fluxes, which, 

until recently, was not routinely available. As new surface observations became 
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available with the recent implementation of GEWEX GOES satellite surface products 

retrieval (Gutman G, 1994; Pinker et al., 1996; Tarpley et al., 1996), there is a new 

perspective on the range of observations relevant to soil moisture data assimilation 

and their feasibility of implementation on future operational use.

1.1 Specific goals of this dissertation

The main goal of this thesis is to attempt to develop an approach that could 

provide the necessary soil moisture values derived from available non-soil 

observations while being consistent with the model physics and sensitive to recent 

past evolution. For this purpose, the following steps are defined for this work:

I. Show that the land surface model is realistic at updating the state variables 

and reproducing accurately the land-atmosphere fluxes when correct forcing 

and reasonable initial conditions are given. This includes making the 

necessary adjustments and improvements to the model as well as testing and 

validating the land-surface model at target sites where surface atmospheric 

fluxes and soil data are available. The new version of the NCEP model should 

be able to produce a reasonably unbiased response when verified by 

observations. Additionally, this upgraded model should also be made to be 

differentiable as much as necessary to produce the tangent linear of this code. 

Having this version ready, it will produce a control run (from nearly ideal 

initial conditions and forcing). A second run with errors and biases in initial 

conditions or forcing should show a cumulative degraded response due to, 

e.g., precipitation bias, in contrast to that of the control run response.

II. Develop a data assimilation scheme based on variational techniques. These 

techniques need to find the minimum of a cost function, procedure that may 

require computing the gradient of such cost function with respect to the 

control variables (e.g. initial time soil moisture correction). This gradient 

would be better calculated by using a differential of the FORTRAN source 

code (such as the linear tangent or the adjoint model). Consequently, 
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observations (other than soil moisture) can be used to adjust the trajectory of 

key state variables to improve the response of the model.

III. Test and assess possible improvements in the predictive ability of the model 

due to data assimilation by comparing the results with similar experiments but 

without data assimilation.
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Chapter 2

Theoretical overview

In this chapter we discuss the formulation of the data assimilation problem for 

finding optimal initial conditions for the model’s initial soil moisture and optimal 

parameters.

2.1 General approach

The ability to simulate dynamical-physical processes in nature through the use 

of a computer model requires a reasonable reproduction in time of the behavior of the 

variables representing those processes. This depends on the quality of representation 

of the mechanisms involved and matching the states of the model variables with those 

of the processes being simulated. In principle, if it were possible to find a perfect 

match at the initial time between the processes states and the model’s (initial 

condition), the increasing disagreement over time between the two would be 

attributed mostly to the model’s limitation in including and performing accurately all 

the required elements and their dynamics as involved in those processes.

In reality, neither condition is completely satisfied but it is desirable to 

approximate them in a cost-effective way. In this work, we are mostly concerned with 

finding initial conditions given that the model is satisfactorily capable at reproducing 

the desired processes from there.

What is meant by a trajectory is the set of time series of the state and output 

variables calculated by the model (forecast). If the time-span is long enough, a subset 

composed of just a few critical variables is sufficient to represent the model’s 

trajectory, this is explained by the model’s physical constraint between variables 

(through the model equations). Given this, it is possible to rely on one or very few 

observed variables (but over a time period) and still expect the model to change its 

entire trajectory consistently towards matching more closely the behavior of this or 

these variables.
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2.1.1 The problem of model performance versus parameters and 

initial conditions

Let’s call the whole set of model’s state variables plus time-dependent outputs 

as the set of "model predictions" (model calculations). This is everything the model 

produces by calculating forward in time given a set of initial conditions plus 

parameters (given or pre-determined).

Figure 2-1 Schematic of the setting for changes to the model’s parameters or initial 

conditions based on its adherence to observations.

The problem of improving model performance by making changes to the set 

of "given" values (model initial conditions and/or model parameters) relies on being 

able to compute model error, i.e., a measure of the discrepancy between the whole set 

of "model predictions" and observations (Figure 2-1).

If enough observations were available as to verify each and every element of 

the set of "model predictions", it would be possible to construct a model error 

function that takes as input the multi-dimensional vector with the whole set of the 

"given" and produces a scalar number. This should also take into account an 

appropriate normalization for the contribution to the error by each and every one 

element of the "model predictions" over a period of time (verification window) to the 

total error.
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Even in this scenario it is quite likely to find more than one set of the "given" 

producing minima in the error function as a result of compensation or contradicting 

effects within elements of the "given" set. In some cases, increasing the time-span of 

the verification window would reduce the number of dissimilar sets that produce a 

minimum in the error function (for example, two different sets of the "given" may 

seem equally satisfactory over a certain month but one of them seems better when the 

verification window extends over many months or the entire year). If many different 

sets of possible "given" are still found after all attempts, a simplification of the model 

may be considered, which could mean just to set some elements of the "given" as 

constant (no longer part of the error function domain) but they have to be identified 

and chosen. This deals into the limitations of models mandated by our limitations in 

verification.

In real life, having enough observations as to verify each and every element of 

the set of "model predictions" may certainly not be possible. Instead, only a subset of 

"model predictions" can be verified. This increases the likelihood of having different 

sets of "given" that appear to minimize the model error function.

2.2 Variational assimilation

The basic variational assimilation problem, for the purpose of correcting the 

initial conditions to be used by the model, consists of: first, computing a function 

(cost function) that measures the distance between the observed variables and their 

corresponding model-produced variables, (this distance between model and 

observations relates to the model error with respect to those observations) and, 

second, find the minimum of that function with respect to modifications done to the 

initial conditions (control variables). Running the model from those “optimal” initial 

conditions should lead to a trajectory much closer to that of the equivalent

observations.

The search for those “optimal” initial conditions can be put as a version of the 

basic variational problem:
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In our case, f(t) would represent the magnitude of the terms in the cost 

function formula at a certain time “t” of the integration, the integral (sum) “I” would 

be the cost function, it includes the behavior of the model within the interval t=a and 

t=b. In the case of looking for optimal initial conditions, the changes imposed at time 

“to” affect the behavior of f(t) within [a,b].

2.2.1 Cost Function

Given a dynamical physical system described by a model (M). The model 

operates using a set of parameters “P” (1) (vector of fixed, pre-established values), 

initial conditions in its state variables “S(to)”
 (2) (vector S at time=to) and a time-

dependent set of external forcing fields, “F(ti)”
 (1) (vector of externally determined, 

time dependent boundary conditions) producing the time change of state variables 

“S(ti)”
 (2) and a set of additional output variables, “U(ti)”

 (3), for i=1,2,… time-steps. 

The difference between “S(ti)” and “U(ti)” is that “S(to)” is used by the model as 

initial condition in other words, “S(ti)” is required in the computation of “S(ti+1)”, 

while no initial values of “U” are required to run the model.

With this notation, the model M( P, S(to), F(ti)) generates the time series 

(S(ti),U(ti)) for i=1,2,…,F (tF is the final time of integration).

Consider a set of observations in space and time, O (data), and the model 

simulation of these observations.

We may need to operate on the model output ( S(ti), U(ti) ) at each time-step, 

to transform it into the observational space, so that H( S(ti), U(ti) ) = Z(ti) can be

compared to O(ti) (the observational vector).

1 Not changed by the model.
2 Changed (updated) by the model
3 Generated by the model
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If there is interest in changing the response (behavior) of the model so that its 

predictions better approximate the systematic characteristics of the observations 

(“tuning the model”), the control variables to choose would most likely come from 

the parameters’ set (from the P vector). A different situation is the need to correct the 

model trajectory based on comparison with observations. Since the model trajectory 

is given by the time series of its state variables, in order to correct it we may want to 

change the initial conditions (from S(to) vector). Therefore the control variable, X, is 

a subset of the vector ( P, S(to) ). In both cases, we want to obtain optimized values 

that minimize the misfit between observations and corresponding model values. This 

misfit can be quantified through a function of the form:

( ) >−−<


= OZO,ZXo
2

1
J (2.2)

where

>⋅⋅< , represents an appropriate inner product, and

( )XoJ represents the cost function to be minimized.

The control variable, Xo, is an N-dimensional vector, where N is the number 

of parameters and/or initial conditions to be optimized (size of the problem).

If we express the problem in terms of what we intend to allow to be modified 

by the optimization process while letting the model use other variables without 

modification, we can write M as a function of the control variable Xo and time alone, 

hence,

M = M( X(to), tF ) (2.3)

Also, in practical applications, incomplete observations or conditions when 

sensitivity of the observable variables to the control variable is low, lead to the need 

to use background fields, Xb, defined from current forecasts before the assimilation 

process and/or climatological/standard fields that one desires to adopt in case of 
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absence or unreliability of observations. The use of a background field may also help 

to find a unique solution.

It is customary to derive a cost function that includes both a background field 

and observations by finding the solution X that maximizes the joint probability given 

Xb and O, assumed to be Gaussian random variables with error covariances B and R

respectively. This is equivalent (e.g., Kalnay, pp 169-170) to minimizing the 

following cost function

( ) ( )

∑
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−−−+

+−−−=
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(2.4)

where

R is the observational error covariance matrix,

B is the background error covariance matrix, and

k is the number of time-steps in the data assimilation window.

Matrices R and B are necessary when the model predicted states (background) 

and observations contain several variables and their reliability varies with time. They 

also provide scaling of units between variables and with respect to the control 

variable. The scalar versions of R and B have typical magnitudes in the range of the 

variance of each variable, which means that variables in the cost function are (in first 

approximation) scaled inversely proportionally to their variance.

Additionally, the cost function (2.4) indicates that when the observational 

errors are much larger than the background errors, the cost function will be more 

sensitive to the background values and vice-versa.

2.2.2 Cost Function Analysis

The possibility of finding the initial values for soil moisture content (solution 

to the optimization problem (LeDimet and Talagrand, 1986)) depends entirely on the 

characteristics of the cost function (convexity, smoothness, behavior of the first 
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derivative, presence of a minimum inside the physically acceptable region). A cost 

function without a well defined, physically consistent minimum may indicate lack of 

sensitivity of the control variables to the observed ones, or insufficiency of 

observation data necessary to determine a cost function that is sufficiently dependent 

on the control variables.

The cost function to be examined here will measure the misfit of the model 

calculated land skin temperature (or LST, Land Surface Temperature, model variable 

“T1”), to its observational counterpart. To plot a cost function depending on N

conditions (control variables), it is necessary to run an N-levels nested loop 

computation of the function. Each loop computes the function at the points along the 

range of variation of each condition, so that if one desires to have the N-dimensional 

grid with the values of the cost function given for all possible combination of 

conditions (with a resolution of M points taken along each condition) then MN

computations of the cost function would be needed. In this case, where there are only 

four conditions (the initial soil moisture at each one of the four soil layers of the 

model), obtaining a grid with 100 values along each soil moisture range would 

require 1004 computations of the cost function.

If the conditions of the cost function are the soil moisture at each of the four

soil layers of the model, one must be aware of the possibility of one layer erroneously 

compensating for the error of another, creating spurious secondary minima (Mahfouf, 

1991). The solution to this problem relies on being able to discard unrealistic 

solutions by imposing certain reasonable physical constraints and/or 

improving/enhancing the amount of information dealt within the cost function (longer 

time of integration, additional observed variables, improvements in the model). 

Regarding the physically based constraints, besides the maximum and minimum soil 

moisture acceptable for each layer, strong differences in soil moisture content 

between layers have a limited life due to diffusion, making it an unlikely solution. We 

may anticipate however, that intense drying of the surface layer (also via a dense root 

layer, through transpiration) due to summertime sunshine conditions may happen 

during daytime, leading to temporarily strong gradients (with corresponding profile-

smoothing refill from adjacent layers during the night).
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The following guidelines may also be used to plot the cost function:

If the cost function is a scalar function of four variables (4 layer soil 

moisture), we would need 5 dimensions to plot it, one axis for each variable and one 

additional to show the function value over each 4-dimensional point (θ1, θ2, θ3, θ4)
4. 

In this case, function cross sections can be examined (plotted) as dependent on only 1 

(or 2) of the control variable components at a time, maintaining the other 3 (or 2) 

remaining ones constant and using the above mentioned guidelines as explained next. 

Let us consider the case of specifying two of the components (fixed) consistently to 

each other, but far from optimality: it is expected that the minimum seen on the cost 

function cross section, dependent on the other two (free) variables, will be shifted in a 

compensatory direction (opposite to the error introduced in the specified ones with 

respect to optimality). As an illustration of this effect, Mahfouf (1991), examining a 

cost function measuring errors on screen level relative humidity and temperature, 

dependent on the soil moisture for a two-layer model integrated for two days, found a 

secondary, spurious minimum in which a very moist surface layer, evaporating at a 

potential rate, was able to compensate for a dry root zone. Given these facts, one 

should be cautious with solutions showing abrupt differences between layers, unless 

the observed conditions and events justify the profile.

The limitations given by available observed variables in realistic case 

scenarios indicate that contingent strategies are necessary in the formulation of the 

cost function in order to give it the necessary features needed for robust minimization. 

That means, specifically the presence of a well defined, unambiguous minimum. This 

issue has to do with the dimensionality of the observed space versus that of the 

control variable. That means, the higher the dimension or detail (amount of 

information) in the control variable, the greater will be the required strength or detail 

of the observed variable(s). In our specific case, there is only one observed variable, 

the LST (land surface temperature) over time, which has to be compared to the 

4 θi is the volumetric soil moisture content in soil layer “i”.
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corresponding variable predicted by the model given an initial soil moisture 

condition. Preliminary experiments have shown that allowing the cost function to 

depend on each of the layer depths of the model initial soil moisture state as separate 

variables does not yield well defined minima (low sensitivity) in addition to leading 

often to multiple minima. Furthermore, we found that the only possible advantage of 

making the cost function depend separately on each and all levels of the soil moisture 

profile, which would be the ability to alter the vertical soil moisture gradients, has no 

significant impact to the model trajectory. This makes this choice unattractive in a 

cost-benefit sense.

The alternative that we developed and tested was to devise a cost function 

dependent only on a correction factor to the total column soil moisture content. The 

corrections to the soil moisture state obtained by this method are a fixed amount of 

volumetric soil moisture content added or subtracted to all layers. This way, the total 

soil moisture content is optimized letting the model itself to adjust the vertical profile 

when necessary (this adjustment is typically very small and quick because the new 

profile is similar to the one the model physics was already carrying only shifted 

towards greater dryness or wetness).

The general form of our cost function that we settled upon is therefore:

( )[ ] [ ]∑
= 



 ∗+



 −=

end

begint

scale
2xBK

2

tobs
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t
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lsm
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2

1
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Here the series [T1lsm(x)]t is the LST (land surface temperature, model 

variable “T1”) produced by the model over the data assimilation window (time 

interval) when the soil moisture state variable is changed by “x” at a time-step prior 

to the one that begins the data assimilation window, thus, changing the initial 

condition from:
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Therefore, our cost function depends on only a single scalar “x” which 

produces a well defined unambiguous impact on the LST produced by the model. A 

positive value for x increases the total soil moisture content while a negative one 

decreases it.

The constant “BKscale”, in the term “BKscale*x2” in the cost function formula, 

is used to scale the magnitude of the background term, which depends on the square 

of the change made to the soil moisture. This term is calibrated to cause the 

contribution of the background term to the cost function to be in between the 

magnitudes of the “model minus observations squared” (first) term for periods of high 

and low sensitivity of the observed variable to changes in the initial condition. The 

role of the background term is illustrated in Figure 2-2 and Figure 2-3, in which the 

axes’ scales are kept equal for both the high and low sensitivity conditions cases. In 

the high sensitivity case (Figure 2-2), the background term has negligible effect on 

the cost function, while in the low sensitivity case (Figure 2-3), it dominates the 

function causing its minimum to be located near zero (no change due to data 

assimilation).
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Figure 2-2 Example of the cost function (all terms) and its background component 

computed during a high sensitivity period over the entire range of the control variable, which 

represents the possible change to the initial conditions.
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Figure 2-3 Same as Figure 2-2 but for a low sensitivity period.

2.2.3 Gradient and Minimum of the Cost Function

In order to minimize J with respect to changes in x, minimization algorithms 

require the gradient of J(x) with respect to x (Shanno, 1978; Gill et al., 1981; Lewis 

and Derber, 1985; Nash and Sofer, 1996), denoted as Gx (x) (Lewis and Derber, 1985; 

Navon et al., 1992; Giering and Kaminski, 1996, Kalnay, 2003, pp 181-184 and 264-

265). First, collecting all time steps in the data assimilation window into vectors:

( ) ( )[ ]
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scale xbeginend
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From an infinitesimal perturbation to the cost function with respect to x, one obtains

( ) ( )[ ]
xBKscalebeginend

endbegintendbegintx
x

T

∗∗−+

+=−==∂
∂

)(

,,)(1 obs
T1

lsm
T1A

x
)J(

(2.9)

where
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x

x

∂
∂ )J( is the gradient of the cost function with respect to x, and
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)(A is the conjugate transpose of the tangent 

linear model, LT1(x). This conjugate transpose is called the adjoint model.

Now, writing )(G x x  instead of 
x

x

∂
∂ )J(  to more compactly designate the gradient of 

the cost function and using T1lsm(x) as the notation for the model-output of the LST 

time series (from t = begin to t =end) after the addition of “x” to the initial conditions, 

the gradient of our cost function is:

[ ] )(BO)(T1)(A)(G 1
T1x blsm xxxxx −+−= − (2.10)

In our case, to obtain the value of the correction to the soil moisture, it is 

necessary to take this correction to the initial condition of soil moisture as the control 

variable xo. Then, the cost function J(xo) is set to calculate the squared differences 

between model predictions and observations when the model is run from initial 

conditions θo = θbef + xo*[1,1,1,1]T. By changing xo the cost function changes value 

provided that the variables in the model matching the observed ones are sensitive to 

changes in xo). The purpose is to determine the optimum xo that minimizes J. In 

practice, this requires the numerical minimization of J with respect to the elements of 

vector xo. The minimization algorithms are more effective when the gradient of the 

cost function, 
ox

J
G ∂

∂=
r

, is provided.

2.2.4 Tangent Linear Model and Adjoint

In order to ensure the validity of the above formula for the gradient, )(T1 xlsm

must satisfy certain conditions. For example, discontinuities or severe non-linear 

behavior of the model could complicate the computation or effectiveness of the 

gradient, therefore it is necessary to test the model, verify its response to a range of 

inputs and find suitable options to eliminate or improve problematic behavior 

(Vukicevic and Errico, 1993; Zou et al. 1993; D. Zupanski, 1993).
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To verify the continuity, the tests consist of imposing an ordered range of 

initial conditions followed by comparison of the sequence from these initial values 

against the corresponding results (sensitivity to initial conditions).

Further modifications are necessary when automatic differentiation tools are 

used, because in programmed codes it is common to encounter certain features that 

are not directly differentiable or understandable by an automatic differentiation tool, 

creating the need to prepare the model in a manner that it becomes an automatically 

differentiable model. These modifications included, in our case, replacement of table 

look-up functions with their respective formulas, and replacement of problematic 

logical statements by differentiable functional counterparts. If the modifications are 

correct (i.e., compatible with the original model), one should expect to obtain an 

almost identical model with an acceptable performance compared to the original. This 

is verified by checking the behavior of the modified version against the original, for 

accuracy and performance.

The development of tangent linear (LT1) and adjoint (AT1) versions of the 

model was done with the help of one of the above mentioned automatic 

differentiation tools, in this case, the Tangent linear and Adjoint Model Compiler -

TAMC (Giering, R., 1997). These tools are able to substantially reduce the time for 

coding and error debugging, depending on the original code to be differentiated and 

on the experience of the user. Unfortunately, at the present stage of development, they 

still require considerable attention and verification (e.g., Shu-Chih Yang, personal 

comm., 2004), and specific tests need to be applied to determine whether the tangent 

linear and adjoint versions are correct (tangent linear and adjoint model validation, 

Kalnay, 2003, pp 264; Jaervinen, 1993). Even when these tests are satisfied, the 

results can be incorrect in very subtle but catastrophic ways (e.g., Shu-Chih Yang, 

personal comm., 2004)

Once a valid version of the adjoint (A) is obtained, and a suitable cost function 

(J) defined, its gradient (Gx) can be computed with greater precision and less 

computational cost using the adjoint than with any finite differences method that finds 

the minimum by using the full model. This is because of the condition error effect 
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(see Appendix A) that does not permit a very small difference interval in the finite 

differences approximation for the gradient (Gill et al., 1981; Nash and Sofer, 1996; 

Appendix A), and because of the fact that the finite differences gradients require, at 

least N (the dimension of the control variable) computations of the function.

The optimization software uses the gradient obtained by the adjoint approach 

to perform the minimization of the cost function measuring the misfit between 

observations and model predictions of land-surface state variables or surface fluxes 

(cost function) with respect to our control variables. For our data assimilation scheme, 

the control variable is the change imposed to the initial soil moisture.

In order to test and quantify the effects of the method, it should be first 

applied within a control region where observations are complete and comprehensive, 

including soil moisture content. The planned tests consist of running the NCEP land-

surface model in a one-dimension column mode at selected sites with observed 

atmospheric surface-station forcing.

The effects of the method will be assessed by comparing the results from 

assimilation runs (observed LST modifying the soil moisture through the variational 

assimilation method) and control runs (without data assimilation). In these 

experiments two situations could be presented: (a) erroneous initial conditions of soil 

moisture and (b) correct initial conditions, but soil moisture errors emerge 

subsequently through degraded surface forcing (e.g. precipitation and surface solar 

incoming radiation), as it could happen in a coupled land-atmosphere model.

2.2.5 Deriving the data assimilation tools for the Noah LSM

In summary, the calculations needed for data assimilation are:

1) A cost function J based on the observable variable(s) and dependent on 

our control variable, x; 

2) The gradient of this cost function with respect to the control variable;

3) An optimization scheme to minimize J (may require the gradient of J) 

and;
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4) Including the above three calculations via calls to appropriate subroutines

in the driver program of Noah LSM in order to return the changes made 

to the control variable (consequently, changing the model soil moisture 

state to reflect the data assimilation results).

In our case, the tangent linear of J results in 
x

J

∂
∂

 which, given the fact that x is 

one-dimensional (formulas (2.5) to (2.7)), can be calculated explicitly with the 

tangent linear model rather than through the use of the adjoint model. Since J uses the 

model in its computation, the gradient of J uses the tangent linear version of the 

model. The validation of the tangent linear was done by verifying that the series of 

x

xJxxJ oo

∆
−∆+ )()(

 for decreasing magnitudes of x∆  converges to the tangent 

linear computation of 
x

J

∂
∂

 at x=xo.
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Chapter 3

Description of the Noah Land Surface Model (Noah LSM)

The land-surface model used in this dissertation is the “Noah LSM” (Ek et al., 

2003) of NCEP. The Noah LSM evolved from the land component of the Oregon 

State University (OSU) 1-Dimensional Planetary Boundary Layer (PBL) model (Ek 

and Mahrt, 1991). It began with the coupling of the Penman potential evaporation 

approach of Mahrt and Ek (1984) to the multilayer soil model of Mahrt and Pan 

(1984) and Pan and Mahrt (1987), with addition of a canopy evaporation-transpiration 

formulation (Jacquemin and Noilhan, 1990; Jarviz, 1976). Further refinements and 

modifications of the Noah LSM were accomplished by EMC/NCEP and OH/NOAA,

including the addition of the surface runoff component from the simple water balance 

(SWB) model of Schaake et al. (1996) and the snow and frozen ground 

parameterization of Koren et al. (1999-A). Descriptions of the model during its 

evolution at NCEP in the 1990’s and early 2000’s are given in Chen et al. (1996), 

Koren et al. (1999-A) and Ek et al. (2003).

As it evolved at EMC/NCEP, the Noah LSM was tested and validated by the 

research community in both uncoupled mode, using observed surface forcing, and in 

a coupled mode within the NCEP mesoscale Eta model. The uncoupled validations 

include simulations ranging in length from several months to several years at both

single sites in column mode (Luo et al., 2003-A) or across regional (Mitchell et al., 

2004) and global domains (Dirmeyer et al., 2002). The coupled validations in the Eta 

model include Berbery et al. (2003), Betts et al. (1997), Marshall (1998), and Ek et al. 

(2003).

Some of the previous assessments of the Noah LSM are intercomparisons 

with other land surface models, indicating that the Noah LSM performs well, falling 

consistently within the best performing models. Among the most recent, Berbery et 

al. (1998) compared monthly mean surface fluxes over the entire U. S. domain, from 

four different models, including the coupled Eta/Noah model. For a list and 
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description of the coupled and uncoupled validation works on the EMC/NCEP land 

surface model, see Mitchell et al. (2004) and Ek et al. (2003).

In the present work, we have also conducted major model validation 

experiments using this model in an uncoupled column mode. Our validation work is 

discussed in sections 5.1 and 5.4.2.

3.1 Water component

The prognostic equation for the volumetric soil moisture content (θ ) follows 

the Darcy equation for soil hydraulics:
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where

( )θD is the soil water diffusivity (governs the diffusive flow that vertically 

distributes soil moisture among adjacent regions of the soil column), 

( )θK is the hydraulic conductivity (governs the downward vertical drainage) and

θF is the soil water sources and sinks (evaporation from the soil surface, 

transpiration via intake from plant roots and infiltration of precipitation).

Both K and D are functions of the soil moisture content (θ )

3.1.1 Surface Water Budget

Integrating (3.1) over each soil layer and expanding θF  we have:
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(soil layers i=2,3)
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(bottom soil layer)

here, subscripts “i” refer to the soil layer numbers (1:surface…4:bottom), 

dzi is the ith soil layer thickness,

I is the surface infiltration = Pd-R1,

Pd is the precipitation not intercepted by the canopy,

R1 is the surface runoff,

Edir is the direct evaporation from the top soil layer, and

Et ti is the canopy transpiration taken by the canopy roots in the soil layer (the root 

zone covers up to four layers). 

In the absence of snow cover, the total evaporation, E, is the sum of the direct 

evaporation from the top shallow soil layer, Edir, evaporation of precipitation 

intercepted by the plant canopy, Ec, and transpiration via the roots, Et , i.e., E= Edir+ 

Et+Ec. The direct evaporation from the ground surface is:
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where,

Ep is the potential evaporation calculated by a Penman-based energy balance 

approach including a stability-dependent aerodynamic resistance (Mahrt 

and Ek, 1984), and
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fσ is the fraction of green vegetation cover.

3.1.2 Canopy Evaporation:

The wet canopy evaporation is determined by

n

c
pfc S

W
EE 


= σ (3.4)

where,

Wc is the intercepted canopy water content,

S is the maximum allowed capacity, chosen here to be 0.5 mm,

and n=0.5 as formulated in Noilhan and Planton (1989) and Jacquemin and Noilhan 

(1990).

The intercepted canopy water budget is governed by

cf
c EDP

t

W −−=∂
∂ σ (3.5)

where P is the input total precipitation. If Wc exceeds S, the excess precipitation (drip 

D) reaches the ground. Note that what reaches the ground during precipitation is 

DPP fd +−= )1( σ .

The canopy evapotranspiration is determined by
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where Bc is a function of canopy resistance and is formulated as:
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where,
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Ch is the surface exchange coefficient for heat and moisture,

∆  depends on the slope of the saturation specific humidity curve, and

Rr is a function of surface air temperature, surface pressure, and Ch.

Details on Ch, Rr and ∆  are provided by Ek and Mahrt (1991). The canopy 

resistance Rc is calculated here following the formulation of Jacquemin and Noilhan 

(1990):

SOILQTS

MIN
C RCRCRCRCLAI

RS
R ∗∗∗∗= (3.8a)

where,

RSMIN is the minimum allowed stomatal resistance,

LAI is the leaf area index,

RCS is the contribution due to incoming solar radiation,

RCT is the contribution due to air temperature at first model level above ground,

RCQ is the contribution due to vapor pressure deficit at first model level,

RCSOIL is the soil moisture dependent contribution to plant transpiration stress 

factor. 

RCSOIL is calculated as the layer thickness-weighted average of the function Gx(θ) 
over all layers that contain plant roots, given by
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In which Gx(θk) is given by
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-

-
)Gx( θθ

θθθ =k  subject to: 0 ≤ Gx ≤ 1 (3.8c)

where,
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θk volumetric soil moisture at soil layer k, 

θWLT wilting point,

θREF reference soil moisture for plant transpiration stress onset,

Nroot number of soil layers containing roots,

dzk thickness of the kth soil layer, and

zroot depth of the bottom of the deepest soil layer containing plant roots.

Figure 3-1 illustrates the dependence of Gx with the soil moisture content, θ.
Gx is maximum (equal to 1) when θ is equal or greater than θREF  contributing to 

increase Bc and, consequently, the evapotranspiration, Et in (3.6).

Figure 3-1 Soil moisture stress factor in the plant transpiration, Et  (example).

Wilting point
θ = θWLT 

Reference 
soil moisture
θ = θREF
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3.2 Energy component

The energy component of the Noah LSM (covering sensible, latent and soil 

heat fluxes) calculates the energy fluxes at the topmost soil-surface and internal soil 

heat flow in the soil column.

3.2.1 Relationship between Soil Moisture Content and Land 

Surface Temperature

The land surface temperature (Ts) is obtained in the model as the solution of 

the surface energy balance equation. It includes the upward terrestrial radiation (from 

the soil surface and plant canopy as a single aggregated entity) from the Stefan-

Boltzmann equation ( )4
STL εσ↑= , where, ↑L  is the upward terrestrial radiation (in 

W/m 2), σ  is the Stefan-Boltzmann constant (in W m-2 K-4), ε  is the surface 

emissivity and TS is the model land surface temperature (LST, in Kelvin units).

The surface energy balance (see schematic in Figure 3-2) that is solved for ST

is given by

eS LHGTLS ++=−↓+↓− 4)()1( εσα (3.9)

where

α is the surface albedo, 

↓S is the downward solar radiation (W/m 2), 

↓L is the downward long-wave radiation (W/m 2), 

ε is the surface emissivity coefficient is assumed to be 1.0 in Noah LSM in 

snow-free conditions, 

G is the soil heat flux (W/m 2), 

H is the sensible heat flux (W/m 2), and

eL is the latent heat flux (W/m 2).
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The sensible heat flux, in turn, also bears a relationship with the land surface 

temperature:

)( airShpo TTCcH −= ρ (3.10)

where

oρ is the air density (Kg/m 3),

pc is the specific heat for air (JKg-1K-1),

hC is the turbulent surface exchange coefficient, dependent on the wind speed 

at the first level above ground (m/s), and

airT is the air temperature at the first level above ground (K).

Figure 3-2 Illustration of the NCEP LSM heat budget at the surface (adapted from Ek 

and Mahrt (1991)).

The dependence of the land surface temperature on the soil moisture content is 

due to 1) the latent heat flux in the energy balance equation (3.9), and 2) the soil 

thermal capacity, C(θ), and soil thermal conductivity, Kt(θ) (both introduced later in 
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section 3.2.2), which impact the ground heat flux G in equation (3.9). The soil 

moisture content influences the latent heat flux through availability of water for 

evaporation, through the plant stomatal resistance stress factor (see equations (3.6) to 

(3.8) and Figure 3-1). During the warm season (i.e., without the snowpack 

sublimation term) the latent heat flux is equal to Lv E. Here Lv (J/Kg) is the latent heat 

of gas-liquid phase change for water and E (m/s) is the total evaporation rate, the sum 

of the direct evaporation, the transpiration and the canopy evaporation (see Figure 3-3 

for a schematic illustration of the moisture budget):

tcdir EEEE ++= (3.11)

The direct evaporation has dependence on the soil moisture content in the 

upper layer and the rate by which the soil can diffuse water from below; the 

transpiration is affected by the soil moisture content in the root zone (layers 1-3 in 

present configuration) due to its stress effect on the canopy resistance.

Figure 3-3 Illustration of the NCEP LSM moisture budget (adapted from Ek and Mahrt 

(1991)).
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3.2.2 Surface Energy Balance

The land surface temperature is determined following Mahrt and Ek (1984) by 

solving an explicit linearized version of surface energy balance equation (representing 

the combined ground/vegetation surface) in equation (3.9). Accompanying this, the 

soil heat flow is controlled by the usual diffusion equation for soil temperature (T):

( ) ( ) 
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where the volumetric heat capacity C and the thermal conductivity Kt are formulated 

as functions of volumetric soil water content θ  (fraction of unit soil volume occupied 

by water). The prediction of T is performed using the Crank-Nicholson scheme on the 

layer-integrated form of (3.12) for each soil layer.

3.2.3 Soil heat flow

The layer-integrated form of (3.12) for the i-th soil layer is:
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The ground heat flux, G is part of this equation applied to the first soil layer:
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3.3 Order of Computations

Here we briefly describe the model code and computations in order to help 

understand the variational data assimilation approach in the following chapters.

Main subroutine SFLX state variables (initialization is read from a control 

file, conditions should reflect state before the first time-step):

(Note: NSOIL=1 to 4 denotes each soil layer of the model.)

1. CMC........................Canopy Moisture Content (m).
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2. T1 ............................Ground/canopy/snowpack effective land surface temperature 
(K).

3. STC(NSOIL)...........Soil temperature (K).

4. SH2O(NSOIL) ........Unfrozen soil moisture content (volumetric fraction).

5. SICE(NSOIL) .........Frozen soil moisture content (volumetric fraction) = smc -
sh2o. SMC(NSOIL)=total soil moisture content . (volumetric 
fraction).

6. SNOWH..................Actual snow depth (m).

7. SNEQV ...................Liquid water-equivalent snow depth (m). note: snow density 
equals SNEQV divided by SNOWH.

8. ALBEDO ................Surface albedo including snow effect (unitless fraction).

9. CH...........................Surface exchange coefficient for heat and moisture. (m s-1); 
note: CH is technically a conductance since. it has been 
multiplied by wind speed.

From the above given settings, inputs and initial conditions, the model 

computes and updates the following sequence each time-step:

1. snow depth

2. snow density (accounting for new snowfall)

3. snow cover fraction

4. surface albedo (including snow cover effects)

5. soil thermal diffusivity

6. snow roughness length (currently a null/no effect process)

7. surface exchange coefficient for heat/moisture

8. potential evaporation

9. canopy resistance

10. land surface temperature updated via surface energy balance 

11. direct evaporation from top soil layer

12. transpiration from vegetation canopy

13. time-rate-of-change of soil moisture

14. hydraulic conductivity and diffusivity 

15. forward time-step integration of soil moisture rate-of-change (uses a tri-
diagonal matrix solver)

16. soil thermal diffusivity

17. time-rate-of-change of soil temperature
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18. soil thermal diffusivity (dependent on soil moist.)

19. determine soil layer interface temperature

20. heat sink/source from soil ice phase change

21. soil thermal diffusivity

22. calculate subzero unfrozen soil water (equilibrium between frozen and liquid 
water inside the soil for temperatures below 0oC)

23. forward time step integration of soil temperature rate-of-change (uses a tri-
diagonal matrix solver).
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Chapter 4

Data Sources Utilized

The two separate data sources used for this work came from data observed at a 

ground-based flux station in Illinois and data extracted from the North American 

Land Data Assimilation System (NLDAS) (Mitchell et al., 2004) interpolated in 

space and time to the flux station.

4.1 Reference site flux station (Tilden Meyers site)

Dr. Tilden Meyers (Atmospheric Turbulence and Diffusion Division - ATDD 

/ NOAA) made available atmospheric, land surface-flux, and soil data collected at a 

flux station at Bondville, IL. This data is used to provide the model with near ideal 

atmospheric forcing and validation.

The site is within 5 km of a NOAA SURFRAD site, which provides 

measurements of direct and diffuse shortwave radiation and the incoming and 

outgoing longwave components.

Site: Champaign, Illinois (near Bondville).

Latitude:   40 deg 00.366 min  N

Longitude:  88 deg 22.373 min  W

Elevation:  approx 300 m

The variables used for forcing are (given as half-hour averages in this data set) 

wind speed, air temperature (3 m), relative humidity (3 m), surface pressure, 

incoming shortwave radiation, incoming longwave radiation and precipitation (half 

hour accumulation). The site also provides other half hourly data, some of which are 

used for validation. They are: soil or ground heat flux, land surface temperature (skin 

temperature), sensible heat flux and latent heat flux.
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4.1.1 Filling in gaps of missing data in land surface forcing

The missing data found in the files recorded at the Bondville, IL flux station 

can appear in the form of long and/or short gaps with alternative data or not. Short 

gaps (less than four time-steps) are filled with a linear interpolation of the bracketing 

original data. When alternative data can be found and especially if the gaps are 

longer, the procedure uses the alternative data converted to represent the magnitude 

of the original data while using the alternative data variability, as described next:

We have two time series: s(t) and r(t) the first is the data to be used but 

contains gaps, the second one is the alternative data time series. Let’s say series s(t)

has a gap bracketed by t=t1 and t=t2. The difference between series s(t) and r(t) at 

times of observations t=t1 and t=t2 are:

d1 = s(t1)-r(t1) and d2 = s(t2)-r(t2)

then, the correction d(t) made to r(t) for t between t1 and t2 will be:

)()( 1
12

12
1 tt

tt

dd
dtd −−

−+= for [ ]21, ttt ∈ (4.1)

and the corrected r(t) to fill the gap will be g(t):

)()()( tdtrtg += for [ ]21, ttt ∈ (4.2)

Then the series g(t) is inserted to fill the gap in s(t). It matches s(t) exactly at 

the last point before the gap (t=t1) and the first point after the gap (t=t2). Figure 4-1 

illustrates the case of gaps in downward long wave radiation (series “LW_in” in 

figure), the alternative data is derived from the thermal emission of the air, i.e. it is 

proportional to air temperature in Kelvin raised to the fourth power (series LWDN 

from Ta, in figure). The segments labeled “LW_in fill” in figure represent the result 

of the transformation given in (4.2).
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Figure 4-1 Example of filling the gaps in the necessary forcing with the use of 

appropriately converted alternative data.

4.2 NLDAS forcing

To have a more realistic scenario of the forcing available on a continental 

scale, we used the North American Land Data Assimilation System (NLDAS) data 

sets (see Mitchell, K. E., et al. ,2004; Cosgrove, B. A., et al. (2003) and Luo, L., et al. 

(2003-B) for the NLDAS project, its data and respective validation) interpolated in 

space and time to match the frequency and location of the surface data collected at 

Bondville, IL (mentioned above). This helps to provide some idea of the expected 

distortions in the derivation of real-time surface forcing across a large continental 

domain and their effect on the model’s performance in conditions one step closer to 

the situation of operational weather forecasting, where forcing is provided by the 

coupled atmospheric model.

Additionally, some of the required forcing data had to be converted through 

subroutines that were designed so that all the demands (required input and state 

variables) for the call to the land surface package could be satisfied.
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4.3 GOES land surface temperature

The GOES LST fields are included in the NLDAS data set (Mitchell et al. 

2004). They are produced by the GCIP (Geostationary Satellite Products for GEWEX 

Continental-Scale Project) partnership of NESDIS and UMD in GOES land surface 

products. The retrievals are obtained from GOES-East (GOES-8) and provide fields 

of hourly LST at 0.5-degree spatial resolution in cloud-free conditions during 

daytime. The LST retrieval provides a single aggregate LST for each 0.5-degree

target scene. The LST fields are bilinearly interpolated to the 1/8 th-degree NLDAS 

grid. The GOES LST is retrieved only at 0.5-degree targets deemed 100% cloud-free. 

Cloud detection is based on that of earlier GOES insolation-retrieval studies such as 

Tarpley [1979], as refined in later studies such as Pinker et al. (2003). Despite the 

100% cloud-free criteria, clouds may still be present in the scene owing to (1) 

optically thin cirrus, (2) subresolution or ‘‘subpixel’’ cloud (fair weather cumulus), 

and (3) difficulty of cloud detection over snow cover. GOES LST is retrieved by the 

so-called ‘‘split-window’’ technique of Wu et al. (1999), in which LST is obtained 

from a linear regression of the GOES brightness temperatures in the 11 mm and 12 

mm bands. The regression coefficients were derived assuming a surface emissivity of 

ε = 1. This assumption is valid over land surfaces of non-sparse vegetation or snow-

pack, but less valid over rather bare soils (wherein ε = 0.91–0.97). Uncertainty from 

emissivity issues is avoided in this study by staying over non-sparse vegetation and 

by our application of ε = 1 in (1) the Noah model and (2) the GOES retrievals.

Examples of validation of the GOES LST retrievals against LST measurements at 

surface flux stations is given in Mitchell et al., (2004).



51

Chapter 5

Evaluation and Improvement of the Noah Land Surface 

Model Performance

As described in Chapters 1 and 3, this work applies the Noah Land Surface 

Model and part of the work in this thesis consisted of the contributions that brought 

the model to the version used in the experiments.

The following changes were made in preparation for this research, in order to 

have this new version of the Noah model source code running and validated with the 

new data. Some of these changes were necessary in order to make the source code

suitable for automatic adjoint application. The new code, with the snow and frozen 

soil parameterizations, (Koren et al., 1999-A) needed to receive the updates I had 

already prepared for the previous version (Chen F. et al., 1996). The task of including 

in the new version the upgrades done to the previous one had to be performed 

carefully to avoid conflicts with this new version. In addition, the replaced or 

modified subroutines were tested against the new ones to ensure similar or better 

behavior and performance.

One of the major advantages of the first implemented updates was the 

elimination of 1600 lines of tables used by a look-up function. The solution obtained 

was the replacement of this function by a new one containing the appropriate 

formulas at an equal or greater precision without an increase in computational time.

Other modifications include the preparation of a more documented and 

appropriate control-file, the modification and rearrangement of array declarations and 

the argument section of subroutines to make the program acceptable by our local 

machines’ Fortran compiler.

To run the package off-line, it is necessary to have a driver program to read 

the control file, lower atmosphere surface forcing, precipitation forcing, radiation 

forcing, calculate variables not directly available, convert units if necessary, and 

make the call to the land surface package subroutine in a time loop. 
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5.1 Improved physics

Victor Koren (1999-A) showed that frozen soil has an effect on the 

precipitation-runoff partitioning during flood events, on the soil hydrology and on soil 

thermal properties and fluxes. He devised the subroutines to include a physically 

based representation of cold season processes in the Noah Land Surface Model. The 

extensions include the effects of frozen ground, patchy snow cover, and temporal-

spatial variability in snow properties. In the research for this dissertation, the 

validation experiments indicated that the model’s ground heat flux was greater than 

the observed (Figure 5-1) while the sensible heat flux was smaller than the observed 

(Figure 5-2).

Figure 5-1 Ground heat flux (W/m2) for the model versus observations using the old soil 

thermal conductivity formulation.
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Figure 5-2 Sensible heat flux (W/m2) for the model versus observations using the old soil 

thermal conductivity formulation.

The above results, in combination with similar published results obtained in 

the PILPS-2c (Liang, X.et. al., 1998) test and the coupled Eta model study of 

Marshall (1998), revealed the existence of problems in the ground heat flux because 

of the function applied to calculate soil thermal conductivity. Thus, a new function 

for the soil thermal conductivity (Peters-Lidard, et al., 1998) was adopted. A new 

subroutine was coded for the soil thermal conductivity, and it was tested against the 

old one (Figure 5-3). The original function in the old subroutine would produce a 

change from minimum to maximum values of conductivity within a small interval of 

the soil moisture range, while the new function gives a gradual variation of 

conductivity for the whole range. For the months covered by the experiments, soil 

moisture was moderate to high. As a result, the old subroutine would compute an 

excessively high conductivity, leading to an increased ground heat flux and a

compensation impact on sensible and latent heat flux. The Peters-Lidard approach for 

soil thermal conductivity is supported by field measurements (Peters-Lidard et al., 

1998). As shown in Fig. 5-3, the old formulation tends to underestimate thermal 
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conductivity for dry soils while overestimating it for moist soils due to its “step-like” 

features. The new formula produces a more gradual change of soil thermal 

conductivity as a function of soil moisture content.

Figure 5-3 Soil thermal conductivity as calculated by the new subroutine compared to 

the old one (marked with circles) for three main types of soils (marked with specific line-types). 

As new data were coming from the Bondville site, we enlarged our data set 

enough to perform a spin up initialization using a one-year cycle, plus a control 

experiment using the following year data. All of this was run with the latest 

improvements incorporated in the model.

5.1.1 Soil drainage

During the runs conducted to test the model it was found necessary to verify 

the behavior of the calculated hydraulic conductivity and diffusivity as it depends 

strongly on soil type and soil moisture (Figure 5-4 and Figure 5-5). Drainage 

experiments were performed with the model in which, starting from a near maximum 
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soil moisture condition, the model is executed for long periods of time (more than one 

year) without the effects of precipitation, evaporation or soil water diffusion, thus 

isolating the effect of gravitational drainage. A problem was found leading to an 

unrealistic drainage from the first layer (Figure 5-6), which was corrected (Figure 

5-7). In Figure 5-6 the effects of gravitational drainage have been isolated, showing 

the unrealistic drainage due to the original problem in the code. The first soil layer 

would quickly lose its moisture content, which would pass through layers 2 and 3 

until collected by layer 4. Figure 5-7, where the effects of gravitational drainage have 

been again isolated by turning off precipitation, evaporation and diffusion, shows that 

after the problem was corrected, the new results have the expected behavior.
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Figure 5-4 Hydraulic conductivity K(θ) (logarithmic scale), for 3 soil types, as a function 

of soil moisture content (volumetric).
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Figure 5-5 Hydraulic diffusivity D(θ) (logarithmic scale), for 3 soil types, as a function of 

soil moisture content (volumetric).

Figure 5-6 Drainage test with the old code, isolating the gravitational effects. 



57

Figure 5-7 Drainage test with the corrected code. 

5.1.2 Frozen soil state iteration

The subroutine FRH2O in the Noah LSM calculates the amount of water in 

the soil that remains unfrozen when the temperature is below the freezing point 

(supercooled liquid content due to adsorption of the water molecules to soil particles). 

It solves the following implicit equation (5.1) for θ ice  iteratively (from which one 

obtains θθθ icetotalliquid −= ) by the Newton method:
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where

g is the acceleration of gravity,

ψ s is the soil water potential,

L is the latent heat of fusion,

ck is a parameter that accounts for the effect of increase in specific surface of 

soil minerals and ice-liquid water,

θ is totalθ , the total soil moisture content,

θ s is the saturation soil moisture content,

b is a parameter in Campbell’s approximation [1974] for ψ, and

T is the temperature in Celsius degrees.

In the case of this function, the solution to F(x)=0 might be located in a region 

where the graph of the function is parallel to the abscissas, causing difficulties for the 

Newton solver. To overcome this problem, F(x) was substituted by L(x), a 

transformation of F(x) such that the solution to F(x) coincides with the solution to the 

transformation, L(x), for the useful range of x (θ ice ). The useful range of θ ice  is given 

as: θθ totalice <≤0  (frozen portion can only be positive and less than 100% of the total 

soil moisture). When the solution is negative (θ ice <0, unphysical), it is interpreted as 

not having potential for any frozen content so it is equal to zero. The method’s search 

for the solution equals locating the crossing of the abscissas by the function (see 

Figure 5-8). The function L(x) is obtained by putting (5.1) in the form:
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(5.2)

and taking the logarithm from both sides of the equality, to obtain
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which upon regrouping to obtain L(x)=0 yields
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Figure 5-8 shows the graphs of the functions F(x) and L(x) illustrating how 

L(x) much better defines the solution by intercepting the abscissas in a much more 

vertical angle (the slope of L(x), given by 
dx

L(x)d
, is further away from zero at the 

vicinity of the solution).

Figure 5-8 Graphs of the left hand sides of (5.1) and (5.4) as functions of frozen soil 

moisture content, F(θ ice ) and L(θ ice ), respectively. The vertical blue line (SMC) indicates the 

total soil moisture content ( iceliqtotal θθθ += ), a line that θ ice  cannot cross.
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Given experiences from users of the model that the convergence of the 

original FRH2O subroutine was slow the above solution was adopted. For 

comparative evaluation, results are shown here for the two methods while running the 

model over the year 1998 and illustrate the great reduction in computer time 

achieved. For a comparative evaluation, both the original and the new FRH2O 

subroutine were tested while the iterations required to solve the equation each time it 

is called (during a regular 1998 run) were recorded. First, using the original version, 

Figure 5-9 shows that temperatures closer to the freezing limit are more problematic 

owing to the issue of the solution being located in a region where the graph of F(x) 

was almost parallel to the abscissas.

Figure 5-9 Collected events of the Newton solver calls during a regular 1-year simulation 

with the model and the number of iterations required for the solution organized by temperature 

given as input.

In a typical 1998 run, when the subroutine is called on more than 6000 events for a 

single location, it was commonplace for the old version to require in the range of 100 
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iterations to reach the solution (Figure 5-10). The new version is not only more 

reliable but it also reaches the solution in three iterations or less (Figure 5-11). 

Figure 5-10 Event distribution (logarithmic scale) of all calls to the Newton solver 

during a regular 1-year simulation with the model by the number of iterations required for the 

solution.
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Figure 5-11 Percentage distribution of all calls to the Newton solver during a regular 1-

year simulation with the model by the number of iterations required for the solution

5.2 Improved differentiability

The automatic differentiation tool TAMC (Tangent linear and Adjoint Model 

Compiler, Giering, R., 1997) was applied to the previous version of the model and the 

inadequacies of the code for automatic differentiation were corrected on that 

occasion, until the code was accepted and processed yielding its tangent linear and 

adjoint. That experience helped to develop some programming rules that are being 

followed in the present version. In some instances, certain functions of the code were 

modified to behave smoothly and to avoid non-defined derivatives, as exemplified 

next.

5.2.1 Example of singular behavior with certain functions in the 

tangent linear model, and proposed solution.

Problems were found in functions of the kind:

( )[ ]pxabsxf =)(
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which give rise, in the tangent linear version, to functions of this kind:

( )[ ] ( )[ ] ′•=′ − xabsxabspxf p 1)(

For the above function, consider the two limits when x goes to zero from the positive 

side (0+) and the negative side (0-):
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In our case, the model was found to have functions where 1<p , depending 

on x which happens frequently to be zero, causing the derivative code (tangent linear 

and adjoint) to give a “division by zero” error because they require the computation 

of ( )xf ′ , which diverges to ∞±  when 
±→ 0x . Solutions to this kind of problem 

must take into account how ( )xf ′  is used in the derivative code, especially what is 

the expected value of the variables calculated using ( )xf ′  when 0=x  and also when 

x  is near zero. The following illustrates one such function as an example and 

describes how to modify it in order to achieve a good approximation to the original 

while eliminating the singularities from its derivative within the actually used range 

of variation of x .
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The function Ec(Wc) in equation (3.4) can be written, for n=0.5 in the form:

( ) 2
1

CxxF = (5.5)

where, 
S

W
x c=  has a range between 0 and 1.

( )xF  has no derivative for 0x =  (the graph of ( )xF  is parallel to the ordinate 

axis at that point).

Consider the difference with using ε+= xy  instead of x as the input variable 

in the above mentioned ( )xF , where ε  is an arbitrarily chosen, small positive 

constant. The most important feature is that y  cannot reach zero within the range of 

variation of x . In order for this function ( )( )xyF to approximate our original ( )xF , the 

difference between these two functions must be addressed.

This difference can be approximated by a first-order Taylor expansion of the 

original function. We have 

( ) ( )ε−= yFxF (5.6)

and ( ) ( ) ( ) ( )xFyFyFyF 2=−≈− •′ εε . In this case,

( ) ( )
( ) 
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x2

1
xCxF

ε
εε (5.7)

Unfortunately, the formula (5.7) does not meet the important requirement of matching 

( )xF  at 0x = , that is, does not satisfy ( ) 00F = which is true in (5.5). Instead, (5.7) at 

0x =  yields

( ) 2

1

2 2
0F εC=

therefore ( ) 00F2 ≠ , even though it approximates ( )xF  in a very acceptable manner 

elsewhere. To solve this problem, 2F  is changed by the inclusion of a correction 
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factor. This must smoothly change the function to make it equal to zero when x=0 

without producing much change in the rest of the x range. This correction factor, 

utilized here is ( )



+

+ ε
ε

x
1 , which multiplies the second term of 2F  (compare

formula (5.7) to formula (5.8) and causes greatest effect when x=0 but tends to 

neutralize itself for greater values of x

( ) ( )
( ) ( ) 
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+
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1
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2

1
2

1

2 (5.8)

This formula satisfies the constraint of having ( ) 00F2 =  and fits the original formula 

very well elsewhere.

5.3 Vertical diffusion of soil water during freezing

On occasions during the freezing season, the original version of the Noah 

LSM would exhibit large vertical transfer of water from warmer soil layers with 

predominantly liquid water content to adjacent colder layers with significant frozen 

content. The magnitude and swiftness of these transfers prompted questions about the 

physical validity of those effects given the possibility that the vertical and temporal 

resolution set for the model could be too coarse to properly represent this process. 

The water diffusion/conduction scheme was examined. First, we know that the water 

diffusivity depends strongly on soil moisture content. Second, the current approach

(Koren et al., 1999-A, hereafter referred to as VK) calculates the soil water diffusivity 

D(θ) in equation (3.1), denoted here as WDF for partially frozen soil using the same 

function as in the unfrozen case except that only the liquid (unfrozen) content is taken 

into account (5.9). 

) = WDF(WDF liqVK θ where θliq = θtotal - θICE (5.9)

For the model four soil layers, that could represent a large vertical gradient of 

diffusivity because adjacent soil layers can have a very different fraction of frozen 

content, especially when one layer freezes while the others are still melt or vice-versa. 
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To limit the transfer in the presence of frozen soil, one of the tested alternatives, the 

“D” approach, formula (5.10), 





≥
<

ThresholdforWDF

ThresholdforWDF
 = WDF

ICE

ICEVK

D

max

max

)2.0( θ
θ

(5.10)

constrains severely the diffusivity coefficient when the frozen soil moisture content in 

any layer is greater that a small non-zero threshold by setting the diffusivity to the 

one corresponding to a soil moisture volumetric fraction of 0.2. This leads to the 

problem of an abrupt change (discontinuous first derivative in the function WDFD) as 

soil moisture freezes and consequently spoils differentiability and arguably yields an 

overly strong departure from the expected behavior of a physically based simulation 

of the process. The final approach that was chosen (WDFW - “weighted approach” in 

formulas (5.11)) uses both the original (WDFVK) and the “D” (WDFD) functions but 

weights them in a way that it matches the original approach in value and first 

derivative at the freezing threshold (Figure 5-15) and falls rapidly but smoothly 

towards the “D” calculated values as soil freezing increases (Figure 5-14). The 

formulations for these weights are given in formulas (5.12) and their respective graph 

is in Figure 5-12. The general behavior of the functions given by the three approaches 

can be seen in Figure 5-13.
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Figure 5-12 Weights for transition from the unfrozen to the partially frozen hydraulic 

diffusivity behavior as function of the presence of volumetric frozen soil water content.
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where C1 and p
1
 are constants chosen to manipulate the shape of the function.
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Figure 5-13 Resulting hydraulic diffusivity at the transition from unfrozen to partially 

frozen soil for the old (VK), step (D) and the new (Weighted) approaches.

Figure 5-14 Magnification of the ordinates’ axis of Figure 5-13 showing the strong 

adherence of the weighted approach to the magnitudes prescribed by the D approach as soil 

moisture content freezes.
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Figure 5-15 Magnification of the abscissas’ axis of Figure 5-13 showing the weighted 

approach matching the old (VK) behavior in magnitude and first derivative (slope) at the 

transition from unfrozen to partially frozen soil moisture content.

5.4 Sensitivity to initial conditions

Early experiments were executed with the Noah LSM to demonstrate that an 

erroneous specification of the initial soil moisture content would have long term 

consequences in the simulation, even with correct atmospheric forcing. Running a 

five month simulation with the model for two different initializations of soil moisture, 

0.250 and 0.350 (volumetric soil moisture content, SMC hereafter), it is observed that 

the differences introduced by the different initial conditions have a very long term 

impact even with correct atmospheric and precipitation forcing. Figure 5-16 to Figure 

5-19 show the persistence of initialization-caused differences in the SMC for each 

one of the four layers of the soil model, respectively. Figure 5-20 shows the 

discrepancy in the latent heat flux that this difference in the initial SMC would 

produce during the first week of a forecast. These results emphasize the importance of 

a proper initialization of the soil moisture, discussed further in the next chapters.
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Figure 5-16 Volumetric soil moisture content (SMC) output from five months 

simulations using the model for two different initializations of soil moisture, 0.250 and 0.350 

(volumetric). First layer.
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Figure 5-17 Volumetric soil moisture content (SMC) output from five months 

simulations using the model for two different initializations of soil moisture, 0.250 and 0.350 

(volumetric). Second layer.
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Figure 5-18 Volumetric soil moisture content (SMC) output from five months 

simulations using the model for two different initializations of soil moisture, 0.250 and 0.350 

(volumetric). Third layer.
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Figure 5-19 Volumetric soil moisture content (SMC) output from a five months’ 

simulation of the model for two different initializations of soil moisture, 0.250 and 0.350 

(volumetric). Fourth layer.
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Figure 5-20 Impact of the initial soil moisture content for two different initializations of 

soil moisture, 0.250 and 0.350 (volumetric). Latent heat flux, 1 week.
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Chapter 6

Generation and validation of the model control run.

The control run should be produced under the best possible conditions in order 

to yield an idealized trajectory. This is needed in order to be able to use this trajectory 

as reference in the evaluations of other runs. To accomplish this, we use the most 

physically consistent initial conditions available, as resulting from a previous spin-up 

adjustment under conditions prior to the actual run, plus forcing as accurate as 

possible which, in our case, is given by ground station observations.

6.1 Multi-year spin-up of initial land states

The main experiments in this work are studied against the background of a

1998 control run with a companion 1997 spin-up run (discussed below) because of 

the availability and quality of ground station verification and forcing data during 

those two years. The following was done to produce the initial conditions for the 

control run.

First, it is necessary to note that without proper spin-up, land surface 

simulations can be negatively impacted (Maurer and Lettenmaier, 2003; Cosgrove et 

al., 2003; Zhang and Frederiksen, 2003). The soil moisture initial conditions have a 

long term impact; an initialization severely departing from the model’s climatology 

may affect the model’s performance during years of simulation (Cosgrove et al., 

2003). 

The availability of ground-based observations of forcing data for 1997 in our 

test site allows the use of that year for spin-up runs to achieve a better initialization 

for 1998. We reasonably expect that running 1997 from acceptable initial conditions 

would lead to even more acceptable 1998 initial conditions (with the use of actual 

observed forcing and good model physics). The problem is that the exact initial 

conditions for 1997 are unknown. As in Cosgrove et al., (2003), our approach was to 

repeat the forcing from 1997 in a yearly cycle for 10 years; therefore 1997 is also 
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used as a proxy for the average conditions of the last several years leading to 1997. 

The spin-up "convergence" can be defined as a continuous run whose time length 

exceeds the longest memory processes in the system/model, making the arbitrary 

initial conditions used irrelevant.

The figures below show the results of the spin-up performed with the Noah 

model using station observed forcing data over the year 1997. It was noticed that a 

common equilibrium is reached within four to five years-cycle regardless of the 

extreme initial conditions imposed. The typical e-folding times for the decay of the 

initial departures from equilibrium were in the range of one year for the extremely dry 

initial soil moisture conditions and less than five months for the extremely moist case. 

Figure 6-1 shows the total model column volumetric soil moisture content evolving 

along the repeated 1997 forcing cycles in two runs; one starting from saturated soil 

moisture conditions (moist) and the other from dry conditions converging to a 

common equilibrium.

Figure 6-1 Convergence to a common equilibrium after a few years of spin-up cycling 

starting from the opposite extremes of soil moisture, dry and moist.
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In figures Figure 6-2 to Figure 6-5 we see the RMS of the anomaly introduced 

by the extreme initial conditions with respect to equilibrium as they decay during the 

spin-up process and their respective exponential curves fit for both moist and dry 

extreme initial conditions cases. We also notice that, because the behavior is not 

exactly exponential, slightly different rates of decay are observed if only the 

beginning of the process is taken into account for the exponential fit.

Figure 6-2 RMS of the spin-up from the dry extreme conditions with respect to 

equilibrium and its exponential fit based on the first seven years of adjustment.



78

Figure 6-3 RMS of the spin-up from the dry extreme conditions with respect to 

equilibrium and its exponential fit based on the first three years of adjustment.

Figure 6-4 RMS of the spin-up from the moist extreme conditions with respect to 

equilibrium and its exponential fit based on the first three years of adjustment.
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Figure 6-5 RMS of the spin-up from the moist extreme conditions with respect to 

equilibrium and its exponential fit based on the first year of adjustment.

Table 1 shows that in the exponential fit for the dry case, the e-folding time 

decreases if we take into account more years of spin-up, while in the moist case, the 

opposite happens. The difference in times and behavior is explained by the physical 

processes involved in each case; for the moist case, the strongly increased drainage at 

the beginning (from the strong relationship of the soil hydraulic coefficients with soil 

moisture), speeds-up the adjustment while the dry case depends on the occurrence of 

rain to fill-up its deficit. This is an important conclusion because it provides guidance 

on the approach to soil moisture initialization for regional models.
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Table 1 Exponential decay e-folding time versus the length of spin-up used for the 

exponential curve fit and whether the initial conditions were on the moist or dry extremes.

Basis for e-fold 
calculation 
(years)

e-folding time 
(months)

dry 11 10.57
dry  7 11.01
dry  3 16.45

moist 3 4.79
moist 1 2.92

6.2 Validation against reference site flux station

The 1998 control run uses the idealized initial conditions given by the multi-

cycle 1997 spin-up. The first time step of 1998 takes in the adjusted states from the 

last time-step of 1997 and is forced by observations. The fluxes produced by this run 

were checked against observations. The results are shown in Figures Figure 6-6 to 

Figure 6-11.

Figure 6-6 Land surface temperature from the model 1998 control run versus 

observations from the ground station and its corresponding least squares linear fit.
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In Figure 6-6 we can see that the model land surface temperature stays quite 

close to the observations, given by the great concentration of points along the main 

diagonal (in red).

Figure 6-7 Sensible heat flux from the model 1998 control run versus observations from 

the ground station and its corresponding least squares linear fit.

The sensible heat flux (Figure 6-7) is well described by the model but with a 

larger dispersion around the main diagonal. The results seem acceptable given the 

many small scale random processes involved in the derivation of these fluxes from 

observations that are not captured in the model. The same remark applies to the latent 

heat flux (Figure 6-8).
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Figure 6-8 Latent heat flux from the model 1998 control run versus observations from 

the ground station and its corresponding least squares linear fit.

The ground heat flux (Figure 6-9) shows less agreement indicating the 

difficulties of modeling of the cold season processes, especially those related to 

freezing. This becomes clear in Figure 6-10 and Figure 6-11 that separate the results 

for the parts of the year with and without freezing. We can see from these two figures 

that the model is in much better agreement with observations during the non-freezing 

season, and that the two processes require different tuning. As a result, further 

refinements were made to the model including the handling of ground heat flux under 

partial snow cover but since they were incorporated after the main experiments 

presented in this work, they are not shown.
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Figure 6-9 Ground heat flux from the model 1998 control run versus observations from 

the ground station and its corresponding least squares linear fit.
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Figure 6-10 Same as Figure 6-9 but with the season in which freezing occurs removed.

Figure 6-11 Same as Figure 6-9 but just for the season in which freezing occurs



85

Chapter 7

Data Assimilation Experiments

To test our basic assimilation approach, we performed experiments with the 

land-surface model in settings that will be described in the following sections.

The experiments involve running the Noah Land-Surface Model off-line, 

which means that the companion atmospheric model is not coupled to it and this 

required that forcing from the atmosphere be provided by other means. In our case, 

the required atmospheric variables are read from a file containing either ground 

station observations or data from the GCIP Land Data Assimilation System (LDAS) 

Project (Mitchell et. al., 1999-B) retrospective LDAS forcing files. We also perform 

an experiment using GOES satellite-based land surface temperature retrievals 

described in section 4.3. This LDAS forcing data is made to correspond to the same 

location, time period and temporal resolution via time and space interpolations.

This information read from a file (similar to what would be provided by the 

coupled atmospheric model in an “on-line” coupled setting), is regarded as “forcing” 

and required by the land-surface model at every time-step but not changed by the 

model (read-only). Given this forcing, the model updates the soil and land-surface 

variables to compute the land-atmosphere fluxes for every time-step. The soil and 

land-surface variables that are updated by the model time-integration scheme have to 

be initialized (initial condition) and are regarded as “state variables”. There are also 

variables that the model calculates internally but are not given to the model externally 

in any case, these variables are collected at the end of each time-step, are regarded as 

“output” or “diagnostic” variables (for example, the computed fluxes, such as the 

ground, sensible and latent heat flux are in this category).

When observations are available and compared to either model state or output 

variables, they can be used for simulation verification. Since it is difficult to find 

observations on a continental scale that match land-surface models’ state or output 

variables, it may be necessary to extend the model creating special output variables 

that could be related to a particular available observation for verification purposes.
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Like forecast verification, variational data assimilation can only use 

observations that can be matched to state or output variables. The difference is that, in 

the data assimilation case, the verification of the skill of the system (model state or 

output variables versus corresponding observations) is a function that calculates a 

measure of error (within a chosen time window) that is related to the initial values of 

the state variables (initial conditions) or, in the case of model calibration, related to 

the parameters that are to be corrected in order to improve the model’s skill. The 

problem of finding corrections for these initial conditions or parameters that minimize 

the error in the prediction of the observed variable during the assimilation window is 

only part of the problem. The ultimate desired result is actually to obtain forecast 

improvements after the end of the assimilation time window. When considering 

possible forecast improvements, one should bear in mind that some land surface 

model state variables are strongly driven by the forcing and may carry little memory 

of the initial state after a short period of time; on the other hand, other variables could 

be very persistent and indicative of a more fundamental underlying condition. The 

latter variables are more useful in improving the model’s simulation after the 

assimilation time window (forecast). In this category, soil moisture is the most 

important variable and a single correction of its initial state can impact the forecast 

for months.

In the case of a multi-layer soil moisture model (accounting for the vertical 

distribution), one can choose the control variable to enhance the response at longer 

time-scales, since deeper layers have longer time-scales. Alternatively, taking 

advantage of the model’s physics, which are trustworthy, one can reduce the size of 

the control variable to facilitate the solution of the optimization problem. For 

example, relying on the good quality of the model soil hydraulics, the variational data 

assimilation can use a cost function dependent on a uniform correction for all layers 

(total soil moisture correction) which, as discussed in previous chapters, has a much 

better defined minimum than one dependent on corrections for each individual layer 

(in addition to the problem of the size of the space to search for solutions and multiple 

minima).
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The initial conditions for all the runs are provided by a spin-up run using 

forcing data from the surface station site (section 4.1) corresponding to the year 

previous to the actual test runs (1997 is cycled several times to provide initial 

conditions for 1998). This procedure provides good quality initial conditions for the 

starting point of Jan 1, 1998 as necessary for the actual experiments that use forcing 

data corresponding to the entire year of 1998.

The first four experiments are designed to test whether we can recover initial 

soil moisture information from land surface temperature (LST) observations within a 

“perfect model” scenario known as an “identical twin” experiment. For this purpose 

we consider the control run as “truth”, and perform a model integration with a forcing 

that has been degraded from the “true” run, for example by reducing precipitation. In 

the degraded run we assimilate LST provided by the “true” run during several 

episodes, and check whether the soil moisture after a period of assimilation is closer 

to the “true” soil moisture of the control run, and how long does the influence of these 

changes persist.

In last four experiments (except no. 7), we abandon the perfect model scenario 

and use real LST observations, and forcings from either the surface station 

(experiment 5) or the Land-surface Data Assimilation System (experiments 6, 7 and 

8). Because we are not using a perfect model, the biases between model variables and 

observed variables yield, not surprisingly, considerably worse results than in the 

identical twin experiments 1-4. We estimate the impact of longer assimilation 

windows, and are able to identify cases in which the use of observed temperatures in 

the data assimilation results in soil moisture corrections of the wrong sign. 



88

Tables 2 and 3 below summarize the data assimilation experiments to be explained 

and presented in the following sections.

Table 2: Schematic table of identical twin (perfect model) experiments.

Experiment Reference run 
(“truth”)

Forcing for 
DA run

Assimilated
variable

Figures

1. Original
MOIST conditions, 
assimilation run is 
drier

Control:
1997 spin-up
flux station
observed forcing.

Flux station
but precip 
reduced -
30%

Control run 
LST

Figures 7-1 to 7-5 

2. MOIST 
conditions, 
assimilation run is 
moister

Reference 2: 
Station observed 
forcing but 
precip. reduced 
by about 10% 
(still moist)

Flux station Reference 2 
run LST

Figures 7-6 to 7-7 

3. DRY conditions, 
assimilation run is 
drier

Reference 3: Dry 
(50% 
precipitation 
reduction)

Flux station 
but precip 
reduced -
70%

Reference 3 
run LST

Figures 7-8 to 7-12

4. DRY conditions, 
assimilation run is 
moister

Reference 4: Dry 
(70% 
precipitation 
reduction)

Flux station 
but precip 
reduced -
50%

Reference 4 
run LST

Figures 7-13 to 7-14

Table 3: Schematic table of non identical twin experiments.

Experiment Reference run 
(“truth”)

Forcing for 
DA run

Assimilated 
variable

Figures

5. Assimilating 
reference site 
ground station (T. 
Meyers) LST

Control Flux station 
but precip 
reduced -
30%

Flux station 
LST
observations

Figures 7-15 to 7-18

6. NLDAS forced 
run. Assimilating 
reference site 
ground station (T. 
Meyers) LST

Control NLDAS Flux station 
LST
observations

Figures 7-19 to 7-21

7. NLDAS forced 
run. Assimilating 
LST from the 
control run

Control NLDAS Control run
LST

Figures 7-22 to 7-26

8. NLDAS forced 
run. Assimilating 
LST from the 
GOES satellite

Control NLDAS GOES LST
observations

Figures 7-27 to 7-32
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7.1 Assimilating ideal synthetic data: Identical Twin 

Experiments

Our identical twin experiments consists of having a first or “reference” run

with ideal forcing and initial conditions, and a second run where the forcing is 

arbitrarily degraded. In our first run, the model is expected to reproduce the ground-

station observed fluxes as accurately as possible, and hence this is our “control” run 

or reference (“true”) trajectory. In the second run, the forcing data from 1998 is 

artificially degraded (to simulate some of the inaccuracies that could happen when the 

forcing is provided by a companion atmospheric model) and the data assimilation 

scheme is introduced to correct the trajectory of the land surface model as it deviates 

from the reference trajectory due to inaccurate forcing. The data assimilation scheme 

uses only the land surface temperature (LST) from the control run (as a proxy for land 

surface temperature observations) to derive corrections to the soil moisture state 

trajectory.

In order to be able to correct the soil moisture states based only on the 

behavior of the LST over a period of time, it is necessary that the soil moisture and 

LST have a physical connection in which a change in soil moisture causes a change 

in LST behavior. The physics of this connection in the model was presented in section 

3.2.1. In the experimental setting, this was shown in Figure 2-2 where changes in the 

initial soil moisture given to the model (abscissas) are responsible for changes in the 

value of a cost function computed from the squared differences of the model LST 

with respect to a recorded reference-state LST.

7.1.1 Degradation of precipitation forcing

As a first test to the data assimilation system, in experiment 1, following the 

spin-up year (1997), we degraded the forcing throughout 1998 by imposing a of 30% 

reduction to all moderate or large amounts in the 30-minute precipitation forcing. The 

form of the reduction applied to the precipitation forcing, only used in experiment 1, 

is as follows: for precipitation equivalent to 5mm/day or less, there is no reduction, 

between 5mm/day and 50mm/day, the reduction increases linearly from 0 to 30%, 
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and the reduction remains at 30% for precipitation intensities above that mark. As this 

run tends to depart from the reference trajectory given by the control run, the data 

assimilation system uses the land surface temperature (LST) from the control run to 

correct the soil moisture states.

Other experiments followed to further test the system in different situations 

such that four possible situations were covered, two in a predominantly moist state of 

soil moisture and two in a predominantly dry state. In each of these states (moist year, 

dry year), the data assimilation run would be made drier and then moister than the 

reference run. Therefore, throughout the four cases, the data assimilation system 

would have to correct the soil moisture content from moist to dry and vice versa. To 

achieve some of these conditions, artificially dry, alternative reference runs (“truth”) 

were generated and used in place of the control run. These runs were called Reference 

2, 3 and 4 to differentiate from control, which can be regarded as our Reference 1.

The Reference runs 2 to 4 were generated from the same initial conditions as 

control but some precipitation reduction was imposed. The three alternative reference 

runs plus the original control run aim to cover two moist situations and two dry 

situations for the first four data assimilation experiments. Our original experiment, 

using the control run, can be classified as being in a predominantly moist soil 

moisture state with a data assimilation run that tends to be drier than control.

The more generic formula (used only in experiments 2, 3 and 4) to achieve 

different degrees of reduction to the original 30 minutes precipitation data is of the 

form:

11  - )(P)(PP b
ininout += (7.1)

where

Pout is the reduced precipitation.

Pin is the original (input) precipitation.

b is an exponent between 0 and 1.
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This formula was chosen to have the output precipitation, Pout match the input 

Pin at near zero precipitation, and to have the reduction more severe for higher 

precipitation input, Pin and for small b.

7.1.2 Assimilating the LST of the control run

The assimilation of land surface temperature from the control run is done by 

reading those values and using them as observations. In the cost function, the model 

is run over a particular period of time (data assimilation window) taking as input the 

magnitude of the change, “x”, made to the soil moisture content at the beginning of 

this data assimilation window. This produces a time series of land surface 

temperature (LSTx) while at the same time the LST values stored from the reference 

(“truth”) run are read (LSTobs). LSTx and LSTobs correspond to the same period in 

time. The data assimilation window, in our case, is of 3½-day unless otherwise noted. 

The cost function adds the squared differences between the time series LSTx and 

LSTobs over this period (plus a background term proportional to x2, to penalize great 

changes and creating a default minimum at x=0 in case of lack of other influences).

The data assimilation scheme may run the cost function repeatedly over this 

time period making changes only to the input in search of the values of “x” that 

minimize the cost function. Here it is noted that the time series LSTx is affected by x.

The figures labeled “soil moisture content evolution” show the results of the 

data assimilation runs versus their reference run from May to November 1998. 

During this time there are four data assimilation events, the red marks indicate the 

beginning and end of each data assimilation window. The corrections to the soil 

moisture occur at the beginning of each window and the correction to the soil 

moisture affects LSTx in a direction that diminishes the differences in land surface 

temperature produced by the test run, LSTx (under the tentative soil moisture 

correction) and control run (LSTobs) over the time window.

For the identical twin model simulations, the data assimilation events are very 

successful in bringing the test run states closer to control. Note that the intervals 

between data assimilation events were set to be long enough to allow the effects of 
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incorrect forcing in the test run to cause it to diverge significantly from the reference 

trajectory (labeled “control” in the figures).

The figures illustrate the effects of data assimilation in two forms. First, the 

two time series of a single soil moisture level for the reference (“true”) run and the 

data assimilation run, and later, the soil moisture profiles at each data assimilation 

event, before and after the correction to be compared to the profile of the reference 

control run at that time. The time series shown are usually of the third soil layer 

because its slow time scale allows easier visualization of the data assimilation effects.

Experiment 1 is the original twin experiment; the control run is intended to be 

as accurate as possible in terms of initial conditions and forcing, the data assimilation 

run received precipitation reduced up to 30% when moderate or severe according to 

the first part of section 7.1.1 above. In Figure 7-1 (the moisture content evolution for 

soil layer 3) we see that the soil moisture corrections derived at each data assimilation 

event were very successful at bringing the state close to that of the control run. The 

data assimilation events’ profiles, Figure 7-2 to Figure 7-5 show that the first 

correction (mid May) was the most accurate while the others that followed had a 

slight propensity to overestimate the soil moisture state. The beneficial impact of the 

assimilation of LST on the moisture lasted for several weeks.
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Figure 7-1 Experiment 1. Soil moisture content evolution for the control run (black line) 

and data assimilation run (blue line). Third soil layer.
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Figure 7-2 Experiment 1. Soil moisture profiles before (blue) and after (black) data 

assimilation event 1 (mid-May) versus control (“truth” in red). Soil layer 1 is from the surface to 

10 cm deep, soil layer 2 is from 10 cm to 40 cm deep, soil layer 3 is from 40 cm to 1 m deep and 

soil layer 4 is from 1 m to 2m deep. Plant roots are present in layers 1 to 3.
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Figure 7-3 Experiment 1. Same as Figure 7-2, for data assimilation event 2 (July).

Figure 7-4 Experiment 1. Same as Figure 7-2, for data assimilation event 3 (September).
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Figure 7-5 Experiment 1. Same as Figure 7-2, for data assimilation event 4 (end of 

October).

Experiment 2 consists of the data assimilation run being moister than control 

with the soil moisture state for both runs being on the moist side (as the conditions 

observed for 1998 actually prescribe). Specifically, the differences with experiment 1 

are that the data assimilation run receives the 1998 precipitation as observed by the 

reference site ground station without reduction and the reference run (“truth”) is made 

artificially drier by imposing about 10% reduction on precipitation through formula in 

(7.1) of section 7.1.1. Figure 7-6 shows that the corrections derived from the data 

assimilation events were most effective on events 1 (mid-May) and 3 (September) but 

little change (still in the right direction) was produced on the other two events. This 

could be due to uncertainties inherent in the minimization scheme or can arise from 

lack of sensitivity (see Figure 2-3) on given conditions allowing a greater influence of 

the background term. The soil moisture profiles before and after the correction are 
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shown for data assimilation event 1 (Figure 7-7), the resulting profile after data 

assimilation came very close to the profile of the control run, as desired.

Figure 7-6 Experiment 2. Soil moisture content evolution for the reference 2 run (black 

line, considered as truth) and data assimilation run (blue line). Third soil layer.
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Figure 7-7 Experiment 2. Soil moisture profiles before and after data assimilation event 

1 (mid-May) versus reference.

Experiment 3 consists of the data assimilation run being drier than the 

reference or truth and the soil moisture state for both runs being significantly drier 

than the conditions presented in experiments 1 and 2. Specifically, the differences of 

experiment 3 with respect to 1 are that both the reference 3 run and the data 

assimilation run receive the 1998 precipitation forcing greatly reduced by formula 

(7.1), but the data assimilation run is the driest of the two runs. Precipitation 

reductions were in the range of 50% (in reference or “truth” run) and 70% (in data 

assimilation run). Figure 7-8 shows that the corrections derived from the data 

assimilation events were successful in bringing the state of the test run very close to 

the “truth”, also illustrated by Figure 7-9 to Figure 7-12, the soil moisture profiles 

before and after the corrections for each event. They also indicate that the state of 

layer 4 (the deepest layer, which in our setting, has no plant roots) has little weight in 

the determination of the correction.
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Figure 7-8 Experiment 3. Soil moisture content evolution for the reference 3 run (black 

line) and data assimilation run (blue line). Second soil layer.
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Figure 7-9 Experiment 3. Soil moisture profiles before and after data assimilation event 

1 (mid-May) versus reference (red).

Figure 7-10 Experiment 3. Soil moisture profiles before and after data assimilation event 

2 (July) versus reference (red).
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Figure 7-11 Experiment 3. Soil moisture profiles before and after data assimilation event 

3 (September) versus reference (red).

Figure 7-12 Experiment 3. Soil moisture profiles before and after data assimilation event 

4 (end of October) versus reference (red).
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Experiment 4 is similar to 3 except that consists of the reference (“true”) run 

being drier than the data assimilation run. As in experiment 3, the soil moisture state 

for both runs is significantly drier than the conditions presented in experiments 1 and 

2. The differences of experiment 4 with respect to 3 are that the 1998 precipitation 

forcing reductions by formula (7.1) are set so that the reference run is the driest one. 

Precipitation reductions were in the range of 70% (“truth”) and 50% (data 

assimilation). Figure 7-13 shows that the first three corrections derived from the data 

assimilation events were successful in bringing the state of the test run very close to 

the true state (reference) but no significant change occurred from data assimilation 

event 4. Figure 7-14 shows the change produced in the soil moisture profile after data 

assimilation event 1, bringing the state very close to the one from control 
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Figure 7-13 Experiment 4. Soil moisture content evolution for the reference 4 run (black 

line) and data assimilation run (blue line). Second soil layer.
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Figure 7-14 Experiment 4. Soil moisture profiles before and after data assimilation event 

1 (mid-May) versus reference (red).

7.2 Assimilating real data

The experiments that assimilate observed real data have the added challenge 

of the presence of differences between the model control run (taken as reference for 

the state variables’ trajectories) and observations. That means that the exact 

correspondence between variables as given by the reference model run simulating 

nature (“truth”) is no longer present (“perfect model” assumption no longer valid).

The impact of the differences between the control run and nature, can be reduced if 

the differences are largely unbiased, as such unbiased differences tend to cancel out 

as the data assimilation time window is increased, otherwise biased differences can 

compromise the results.
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7.2.1 Assimilating LST from the reference site station

Experiment 5 goes back to the original setting of experiment 1 (wherein an 

unaltered 1998 control run is compared with a data assimilation run that received up 

to 30% less precipitation) but the data assimilation events in Experiment 5 use the 

land surface temperature (LST) observed at the reference site ground station rather 

than the control run LST. Since the data assimilation run is receiving 30 percent less 

precipitation than the control run, its soil moisture will tend toward being too dry and 

its LST too warm during the day, so one expects the assimilation of LST to moisten 

the soil and lower the diurnal LST. Figure 7-15 shows the time evolution of the soil 

moisture content in model layer 3 for the data assimilation and control run. Only the 

third and fourth data assimilation periods (beginning of September and end of 

October) yielded the expected positive increase in soil moisture, while the first

assimilation event (in May) had an unexpected impact of the opposite sign. 

Taking into account the good correlation of the LST between the reference 

station and control run (Figure 6-6), the above experiment was repeated using a 

longer data assimilation window. The idea is that, from Figure 6-6, we expect to find 

relatively small uncertainties between the behavior of the LST from the control run 

and the reference site station and that those uncertainties would be almost unbiased.

Therefore, on a longer time scale, the impact of the unbiased uncertainties should be 

reduced or canceled. Figure 7-16 shows the result of this second version of 

experiment 5, using a data assimilation window of almost 12 days. This longer 

assimilation window resulted in a marked diminution but not elimination of the 

unexpected soil moisture decrease in event 1 (mid-May) and great improvement on 

events 3 and 4 (September and end of October, respectively). Figure 7-17 shows, for 

this case, the soil moisture profiles before and after data assimilation event 1, when 

the correction was in the unexpected direction of reducing soil moisture hence 

increasing the difference with respect to the control run. 

The unexpected soil moisture drying in event 1 (mid-May) suggests that the 

LST simulated in the degraded run during this period was not warmer that the LST 

observed by the ground station. Hence the apparent absence of bias inferred when 
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comparing the entire year scatter plot of LST from the control run and reference site 

station (Figure 6-6) likely masks the presence of significant temporary biases that 

change direction during the year. Indeed, Figure 7-18 shows the observed and 

simulated LST during the 3 ½ days of data assimilation event 1 and demonstrates that

the LST from the reference site observations is warmer than that simulated by the 

control run, so its assimilation will act to reduce the soil moisture rather than correct 

(raise) the lowering of soil moisture from the imposed reduction of precipitation. This 

is the opposite to what happened in identical twin experiment 1, which assimilated

LST from the control run (which has lower diurnal LST than the test run) and resulted 

in increasing (correcting) the soil moisture.
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Figure 7-15 Experiment 5. Using a cost function of 3 ½ days. Soil moisture content 

evolution for the control run (black line) and data assimilation run (blue line). Soil layer 3.
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Figure 7-16 Experiment 5. Using a cost function of  11 days 20 hrs. Soil moisture content 

evolution for the control run (black line) and data assimilation run (blue line). Soil layer 3.
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Figure 7-17 Experiment 5. Soil moisture profiles before and after data assimilation event 

1 (mid-May) versus control.
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Figure 7-18 Experiment 5. Land surface temperature (LST, K) as 1) observed by ground 

station (dotted), 2) simulated by control run (red) and 3) simulated by run assimilating the 

ground station (blue)

7.2.2 Surface forcing from the North American Land Data 

Assimilation System (NLDAS)

In experiments 6 and 7 in this section and experiment 8 in section 7.2.3 the 

first run, taken as truth, is the original control, which over the year 1998, reproduced 

reasonably well the station LST observations (Figure 6-6). The forcing used for the 

assimilation runs in experiments 6, 7 and 8 instead of being different from that in the 

control run only in the precipitation, contains differences from the control in all the 

forcing fields, which are also expected to cause this run to depart from the reference 

trajectory. Specifically, the 1998 forcing data is taken from analyses that combine

atmospheric observations and background states from runs of a mesoscale

atmospheric model (see Mitchell et al., 2004 for an overview of the NLDAS project 

and references to companion papers). This NLDAS data was interpolated spatially 

from its nearest four grid points to the reference site location and temporally from 1-
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hour resolution to the 30 minutes resolution matching the reference site station data.

The added challenge then for experiments 6, 7 and 8 is that not only the 

precipitation is different from the control but all the seven forcing fields differ 

(and by either sign) from what is used for the control run (see section 4.1 for a 

listing of the required forcing fields).

Experiment 6 is the first of the NLDAS forcing experiments examined here. 

The assimilated observation used in the data assimilation run for experiment 6 is the 

LST from the reference site ground station, as in experiment 5 (longer assimilation 

window case). Figure 7-19 shows the time evolution of the soil moisture in model soil 

layer 3 for these runs.
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Figure 7-19 Experiment 6. NLDAS forced run with assimilation of LST from the 

reference site ground station. Soil layer 3 moisture content evolution.
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Assimilation event 1 had almost no impact and, event 2 produced a small

change. Inspection of the early August period (a non-assimilating period) of the 

assimilation run in Figure 7-19 reveals a big departure (of increasing soil moisture) 

away from the control run. The magnitude and quickness of the departure strongly 

suggests a large precipitation event in the NLDAS forcing that was mostly absent 

from the control forcing. Following this early August departure, the subsequent 

assimilation events 3 and 4 in late August and October produced strong changes in 

the wrong direction, also depicted in the profiles (Figure 7-20 and Figure 7-21). 

Given this undesired result, it was deemed wise to test again the assimilation of LST 

from the control run, which was the object of experiment 7, described next.

Figure 7-20 Experiment 6. Soil moisture profiles before and after data assimilation event 

3 (September) versus control.
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Figure 7-21 Experiment 6. Soil moisture profiles before and after data assimilation event 

4 (end of October) versus control.

Experiment 7 is similar to 6 in which the data assimilation run is an NLDAS 

forced run, but control run LST (rather than ground station observed LST) is 

assimilated to derive soil moisture corrections. The time evolution for the soil 

moisture in layer 3 (Figure 7-22) and the soil moisture profile for data assimilation 

event 1 (Figure 7-23) indicate that the corrections derived are still in the wrong

direction.

This result seems to contradict the idea that in a “perfect model” situation, 

assimilating data from the control (“true”) run would be sufficient to bring the soil 

moisture states trajectory closer to that of the control run. However, we must 

remember that the NLDAS run has completely different forcing from that of the 

control run, including not only precipitation but also radiation, wind, air temperature, 

pressure and humidity. The data assimilation scheme can find the soil moisture states 

that make the test run’s land surface temperature be closest to that of the assimilated 
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LST over the data assimilation window, but since the test run LST is also responding 

to a very different direct forcing error (such as radiation), that does not mean making 

this run’s LST closer to that of the control run and consequently, does not mean 

finding a soil moisture state closer to that of the control run. This is to say that in 

experiments 6 and 7 the error in simulated LST may be arising not from soil moisture 

error due to wrong precipitation, but from other forcing error. If, for example, the 

radiative forcing is overestimated, this will tend to produce a warm LST in the model, 

and if we force a correction using only the soil moisture, the soil moisture will be 

incorrectly increased in order to cool the LST to counteract the warming of LST from 

high radiation forcing.

To illustrate this, Figures 7-24 to 7-26 below show (for a time interval within 

assimilation event 1) the model LST behavior with respect to different types of 

forcing error compared to the control. First, Figure 7-24 shows the LST time series of 

the assimilation run of experiment 7, along with the control run, corresponding to the 

two runs given by the red and black curves of Figure 7-23. Figure 7-24 shows that the 

LST of the two runs agree closely, despite significant differences (of order .05) in 

their soil moisture. Hence, the LST of the control run and the NLDAS-forced 

assimilation run of experiment 7 do not differ much despite non-trivial difference in 

their soil moisture states. This indicates that the data assimilation scheme has 

succeeded in modifying the soil moisture so that the assimilated run has an LST very 

similar to that of the observations (control or “truth”). Therefore, the assimilation run 

in experiment 7 provides a case where an error in soil moisture is not accompanied by 

a significant error in skin temperature. The latter result means that other sources of 

LST error besides soil moisture error are operating in the NLDAS-forced runs. As a 

reverse confirmation of the latter conclusion, Figure 7-25 shows cooler LST in the 

control run than in a non-assimilating test run whose only difference from the control 

is the application of slightly less precipitation forcing (and hence less soil moisture, 

which results in lower surface latent heat flux and thus warmer LST than the control).

A further illustration of error that emerges in simulated LST due to forcing 

errors unrelated to precipitation error, and its attendant soil moisture error, is given in 

Figure 7-26. This figure shows warmer LST in the control run compared to a non-
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assimilating test run in which the only difference from the control is a 30% reduction 

of the surface solar insolation. The figure demonstrates that the radiation reduction 

alone reduced the LST. Such non-precipitation forcing errors will disrupt and distort 

the determination of soil moisture corrections from the contrast between model and 

observed LST. In the case of Figure 7-26, an attempt to assimilate the warmer control 

run LST into the test run would erroneously decrease the soil moisture in order to 

reduce the surface latent heat flux and cause an increase in the simulated LST. This 

important result from non-precipitation forcing errors is illuminated further in Section 

7.3
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Figure 7-22 Experiment 7. NLDAS forced run with assimilation of LST from the control 

run. Soil moisture evolution for model soil layer 3.
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Figure 7-23 Experiment 7. Soil moisture profiles before and after data assimilation event 

1 (mid May) versus control.
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Figure 7-24 Experiment 7. Land surface temperature (LST) diurnal cycles during the 

time window of data assimilation event 1. Shown here are control (red) and NLDAS forced run 

(blue dashed line).

Figure 7-25 Soil moisture effect on land surface temperature diurnal cycle by 

comparison between model runs in which one of them (blue line) received less precipitation.
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The precipitation reduced run (blue line) shows greater LST amplitude due to its 

reduced soil moisture content.

Figure 7-26 Solar radiation effect on land surface temperature (LST) diurnal cycle by 

comparison between model runs in which one of them received less solar radiation forcing 

(70%). The radiation reduced run (blue line) shows smaller LST amplitude. 

7.2.3 Assimilating LST from the GOES satellite

GOES satellites provide the feasibility of retrieving hourly LST on a 

continental scale as discussed in section 4.3.. This would make possible the

assimilation of LST in order to correct soil moisture initial condition in land surface 

models. 

Experiment 8 differs from 7 and 6 by the fact that the assimilated LST comes 

from the GOES LST retrieval of section 4.3 temporally and spatially interpolated in 

the same form to the reference site as it was done with the NLDAS forcing. Also, 

since the temporal availability of this GOES LST data is sparse, data assimilation 

events were restricted to situations when at least six consecutive hours of GOES LST 
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data were available and the data assimilation time windows were restricted to this 

availability. In this data set, the longest time series of consecutive hourly GOES LST 

was 11 hours. Such data assimilation windows are too small to be visualized as two 

different marks signaling the beginning and end in a figure depicting a yearly time 

scale. Thus each mark labeled “DA event” in Figure 7-27 are actually two marks 

(representing the beginning and end of the data assimilation window). 

In experiment 8 the evolution third layer soil moisture (Figure 7-27) shows 

that the data assimilation events alter the trajectory of the data assimilation run (blue 

line) considerably in the direction of the control run (black line), as can be seen by 

comparison with the NLDAS forced run without data assimilation (dotted red). 

Nevertheless, the assimilation run (blue line) quickly departs from the control run 

(black line) in between data assimilation events during the moisture charged, rainy

part of the year (April-May) suggesting the strong differences in forcing and the 

limited memory of the system under these conditions. The presence of 1-2 degrees 

Kelvin warm biases (not shown) in the GOES land surface temperature are, to a 

certain extent, offset by the high surface solar insolation biases (not shown) imposed 

on the model land surface temperature under NLDAS forcing, causing the soil 

moisture corrections to be in the right direction (before and after profiles Figure 7-27

to Figure 7-32).
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Figure 7-27 Experiment 8. Soil moisture content evolution for the control run (black), 

the NLDAS forced GOES LST data assimilation run (blue) and the NLDAS forced run without 

data assimilation (dotted red). Third soil layer.
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Figure 7-28 Experiment 8. Soil moisture profiles before and after data assimilation event 

1 (early April) versus control.

Figure 7-29 Experiment 8. Soil moisture profiles before and after data assimilation event 

2 (mid April) versus control.
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Figure 7-30 Experiment 8. Soil moisture profiles before and after data assimilation event 

3 (late April) versus control.

Figure 7-31 Experiment 8. Soil moisture profiles before and after data assimilation event 

4 (early September) versus control.
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Figure 7-32 Experiment 8. Soil moisture profiles before and after data assimilation event 

5 (mid September) versus control.

7.3 Conclusions from the ideal and real data assimilation 

experiments.

In summary, we have shown that the assimilation of LST (a variable that in 

principle can be observed from geostationary satellites and/or from ground stations) 

to improve the initialization of soil moisture (a variable that is generally unobserved 

but which influences the forecasts) is feasible if the surface forcings other than 

precipitation are known with great accuracy and the model is not biased.

With a realistic model and detailed observations of surface forcing, we were 

able to generate realistic LST and soil moisture for a given station. With this model, 

and accurate forcing besides precipitation, we did succeed in improving substantially 

the initial soil moisture by assimilating LST, even if the precipitation driving the soil 

model was either substantially overestimated or underestimated. 
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However, when we used surface forcing estimated from NLDAS, which have 

substantial uncertainties and probably significant biases, in both precipitation and 

non-precipitation forcing like radiative fluxes, we found that the results were not 

good (Experiment 7). Essentially, the assimilation system, as designed, was able to 

change the model LST in order to reproduce the assimilated LST by modifying the 

soil moisture. In this case, however, the origin of the LST error in the model was not 

the precipitation forcing and soil moisture but the non-precipitation forcing. This 

indicates that the problem of soil moisture initialization is not sufficiently constrained 

by the observations of LST alone. Possible approaches to deal with this important 

problem are briefly discussed in the final chapter.
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Chapter 8

Conclusions

Land surface models are used to compute energy and water fluxes between the 

land and the atmosphere. A very important requirement of these models is the initial 

values of soil moisture, which is difficult to measure over large areas. Good quality 

soil moisture measurements for the above purposes involve planting devices into the 

soil at several depths between 0 and 1 meter or more. The problems are the large 

areas needing measurement and the spatial and temporal variations of soil moisture.

Through physics (Chapters 2 and 3), land surface models couple the soil 

moisture with other variables (such as low-level air temperature and relative 

humidity, land surface temperature, and sensible, latent and ground heat fluxes at the 

surface). Some of those (like land surface temperature) are easier to remotely measure 

than the soil moisture itself. Variational techniques allow the solution of the inverse 

problem of using land surface models to determine the soil moisture content from 

information on other variables (Chapter 2). The land surface model quality is 

important. We showed in Chapter 5 and in section 6.2 the several components of this 

project that led to improvements in either the model or in its numerical properties, 

leading to more efficient minimization algorithms. 

The main results of assimilating LST in order to estimate the initial soil 

moisture were presented in Chapter 7. The “perfect model” scenarios (such as the 

twin experiment, section 7.1) work very well (Figure 7-1) when only errors in the soil 

moisture content are affecting the observed variable (LST). In this sense, the 

methodology has succeeded: if the other surface forcings are accurate, the 

assimilation of LST succeeds in substantially improving the soil moisture.

However, when we used surface forcing fields that would be available 

operationally, such as those from the NLDAS, the results were not good. This is 

because when other factors (such as radiative fluxes) influence the observed variable 

(LST), the influence from the soil moisture content is not easily recovered. The 

method successfully modifies the soil moisture in such a way as to make the model 
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LST follow the observed LST during the assimilation window, but this may not be 

desirable when the errors in the non-precipitation forcings are large enough to impact 

the LST at least as much as the errors in the soil moisture.

Future developments suggested by this work indicate the need to observe and 

use more variables in combination leading to isolating the effects of the soil moisture 

content on this new set of observations. Variational techniques can also be used to 

optimize the model (e.g. model parameters) but need reliable observations related to 

model output in order to adjust the model to reproduce their behavior. There have 

been recent developments in data assimilation that also offer considerable promise for 

attacking this problem. In particular, a new method known as 4-Dimensional 

Ensemble Kalman Filter (Hunt et al, 2004) has several advantages of both 4D-Var 

and Ensemble Kalman Filter (EnKF). Like other EnKF approaches, it does not 

require the linear tangent or adjoint models, and it solves the assimilation problem 

directly, not iteratively.  EnKF would allow a simple inclusion of error correlations 

between different variables and forcings, thus reducing the problem of spurious 

corrections of soil moisture to account for errors due to other forcings that we found 

when using real data. EnKF can also be modified to estimate model deficiencies. 4D 

EnKF shares the ability of 4D-Var of assimilating observations at their correct time 

within an assimilation window, at the end of which the system provides not only an 

analysis but also an analysis error covariance. We believe that the combination of 

using more observations and such a flexible approach can achieve the desired goal of 

initializing soil moisture more accurately and thus improving forecasts.



129

 Appendices 

Appendix A: Limitations to the convergence of a finite-

difference approximation scheme to the derivative in the 

presence of round-off errors.

A finite-differences estimate of the first derivative of a function calculated 

with a certain computer precision carries two major sources of error: the truncation 

error and the condition error (Gill et al., 1981). It will be shown that in this case, the 

truncation error cannot be arbitrarily diminished by decreasing the differences 

interval, h, because the uncertainties in the function computation are being magnified 

by a factor of 
h

1
 in the finite differences formula.

The truncation error from a finite-differences estimate of the first derivative 

can be derived from the Taylor series expansion

( ) ( ) ( ) ( )ξfhxf hx fhxf ′′+′+=+ 2

2

1

yielding
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h
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indicating that the error in the approximation,

( ) ( ) ( )
h

xfhxf
xf

−+≈′

will be in the magnitude of ( )ξfh ′′
2

1
, where ξ  is between x and x + h.

The condition error is calculated from the rounding errors in the evaluation of 

the function f  itself at machine precision in the numerator of the finite differences 

formula, this rounding error is of the order of ( )εxf , where ε is the relative 
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precision of the computer calculation of f  so, the condition error in the finite 

differences formula will be of the order of 
( )
h

xf ε
, and this becomes arbitrarily large 

if h  becomes arbitrarily small. Therefore, the finite differences approximation error 

cannot be arbitrarily reduced by reducing the difference interval arbitrarily when the 

function being differentiated is computed with round-off errors.
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