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Abstract 

Four machine learning (ML) models for cloud and aerosol classification, utilizing spectral, spatial, 
and temporal features of the Advanced Baseline Imager (ABI) on board the geostationary satellite 
GOES-R, are developed and evaluated. The models include a Random Forest (RF) for extracting 
ABI spectral features, a Long Short-Term Memory (LSTM) for extracting spectral and temporal 
features, and a ConvLSTM-UNet model for extracting features from all dimensions. A new model 
that combines the RF and LSTM by leveraging the advantages of both models is also developed.   
Training data include 9 visible and infrared channels and 3 parameters calculated with specific 
channel combinations. Training datasets were manually labeled by domain experts, while test 
datasets were labeled using collocated CALIOP products. The accuracy scores in the training stage 
for RF, LSTM, and RF+LSTM exceed 0.99, while ConvLSTM-UNet achieves a slightly lower but 
still impressive accuracy of over 0.94. And the test accuracy scores of these models exceed 0.96, 
suggesting an excellent overall fit of these models. To further assess and compare their capabilities, 
some specific scenarios are employed, and their results are compared with RGB figures and ABI 
level-2 products. The findings unequivocally showcase the superior performance of ML models 
over traditional algorithms, emphasizing their effectiveness in accurately detecting and classifying 
cloud and aerosol components across diverse scenarios. The inclusion of temporal features in the 
LSTM and RF+LSTM models significantly improved their performance, particularly in 
distinguishing between thick dust, high-albedo surfaces, and clouds. Furthermore, one-year 
consecutive ABI data from five representative areas are analyzed to objectively assess the daily 
cloud fraction generated by the ML models, which closely aligns with both Terra and Aqua 
MODIS products. This agreement further confirms the robustness of the developed models. The 
comparison of spectral distributions between dust and cloud pixels, classified by RF and LSTM, 
demonstrates the limitations of the RF model, which solely relies on spectral features and can lead 
to misclassifications when confronted with objects exhibiting similar spectral distributions. 
However, the inclusion of temporal features significantly improves the RF model performance, 
enhancing its ability to discriminate between atmospheric components and the surface. These 
findings highlight the potential of ML models in satellite-based cloud and aerosol classification, 
contributing to advancements in remote sensing techniques. However, it is important to note the 
limitations observed in the ML models as well. RF encounters challenges in accurately identifying 
cloud and highly reflective objects, such as dust and snow. The ConvLSTM-UNet model has the 
potential to erroneously learn surface features, which can result in misclassifications. Furthermore, 
none of the ML models developed in this study demonstrate the ability to detect thin aerosols. To 
enhance the performance of the ML models in future research, we plan to collect data from diverse 
scenarios, incorporate land surface features into the models, and explore hybrid approaches that 
combine different techniques.  
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1. Introduction 

With the rapid advancement of technology, remote sensing instruments have become 
indispensable tools for measuring the Earth's system. Satellites, in particular, enable observations 
of large-scale systems from the space. It has been demonstrated that clouds and aerosols play a 
crucial role in the Earth's radiation budget system while also remaining a significant source of 
uncertainty. Accurate detection and classification (DC) of clouds and aerosols using satellite 
observations are vital for meteorological studies, as even minor errors can have a significant impact 
on downstream retrieval products and scientific analysis (Wang et al., 2020). For example, access 
to cloud cover distribution substantially improves weather prediction and rainfall estimation 
systems (Torsum & Kwiatkowska, 1999). Furthermore, the Moderate Resolution Imaging 
Spectroradiometer (MODIS) aerosol algorithm requires a cloud mask product as input, as it can 
only accurately retrieve aerosol optical depth (AOD) for "non-cloudy" pixels (Remer et al., 2005). 
Therefore, detecting and classifying clouds and aerosols represent vital pre-processing steps in 
many remote sensing algorithms, with significant implications for meteorological research and 
applications. 
An increasing number of DC methods have been proposed for satellite instruments. For instance, 
Rossow and Schiffer (1991) proposed a cloud detection procedure for the International Satellite 
Cloud Climatology Project (ISCCP) based on a collection of visible and infrared radiance images. 
Vaughan et al. (2009) developed a selective, iterated boundary location (SIBYL) algorithm to 
retrieve clouds and aerosols in the earth’s atmosphere for the Cloud-Aerosol Lidar and Infrared 
Pathfinder Satellite Observations (CALIPSO) mission. MODIS has also developed algorithms for 
cloud detection (Platnick et al., 2016; Frey et al., 2008; Ackerman et al., 2008) and aerosol types 
(Levy et al., 2013). Most DC methods primarily focus on individual pixels, which can easily result 
in the misclassification of pixels with similar spectral features. For example, operational MODIS 
cloud and aerosol products frequently misidentify optically thick dust layers as clouds. 
Consequently, large-impacts due to strong dust storms are missing (Marais et al., 2020). Another 
obvious weakness is that the traditional DC methods have difficulties in differentiating clouds 
from high reflective surfaces, such as sand in deserts, snow/ice, and human made infrastructures 
(Jeppesen et al., 2019). All these methods mentioned so far are single-time methods, which only 
need a single snapshot of observations. In contrast to these single temporal methods, Zhu and 
Woodcock (2014) developed a multitemporal mask (Tmask) algorithm which detects cloud, cloud 
shadow, and snow by using multitemporal images at the same location. Tmask needs 15 clear 
observations in each pixel to estimate a time series model, making it less applicable in places that 
are covered by snow and ice for a long period. As discussed earlier, traditional algorithms face 
significant challenges in accurately detecting clouds and aerosols using the current operational 
observation instruments, highlighting the need for more efficient methods that can improve 
accuracy. 
Machine learning (ML) methods have shown great potential in improving the accuracy of cloud 
and aerosol detection. Recent applications using machine learning methods have already provided 
unprecedented improvements by utilizing spectral, spatial, and temporal information. Taravat et 
al., (2015) used multilayer perceptron (MLP) neural networks and support vector machine (SVM) 
to detect cloud in whole-sky images automatically. Ghasemian and Akhoondzadeh (2018) 
introduced two random forest (RF) based algorithms to detect cloud by incorporating spectral and 
textural features. Wohlfarth et al. (2018) explore convolutional neural network (CNN) and SVM 
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to distinguish 10 cloud types based on multispectral satellite imagery. Yu and Lary (2021) 
proposed an ensemble of different machine learning methods to detect cloud with channel 
information only. Liu et al. (2022) introduced both daytime and nighttime cloud detection 
algorithms on the basis of artificial neural network (ANN) and RF. In addition to detecting clouds, 
ML algorithms also have satisfying performance in detecting aerosols. Lee et al. (2021) developed 
5 ML based algorithms to detect the occurrence of dust aerosols from daytime images under cloud-
free conditions. Christopoulos et al. (2018) select chemical and physical features of particles with 
RF to differentiate aerosols. Marais et al. (2020) identify aerosols and distinct cloud regimes with 
CNN by leveraging the coherent spatial information in multispectral imagery. 
The promising outcomes demonstrate the immense potential of machine learning (ML) methods 
for satellite-based aerosol and cloud detection and classification. Motivated by these successful 
applications, this paper presents the implementation of three classifiers: Random Forest (RF), 
Long Short-Term Memory (LSTM), and CNN U-net architecture. These algorithms are utilized to 
extract channel, temporal, and spatial features from satellite daytime observations separately, with 
the aim of improving the accuracy of detection and classification. Furthermore, we explore the 
benefits of combining different algorithms to further enhance the results. The paper is structured 
as follows: In Section 2, we provide a brief description of the individual ML algorithms and explain 
how these algorithms are combined in the experiment. Section 3 introduces the details of the data 
generated for training and validation purposes. In Section 4, we evaluate and discuss the 
performance of each model on the task of detection and classification (DC). Finally, in Section 5, 
we conclude the paper with a discussion on future work and potential research directions. 

2. Methodology 

This section presents a comprehensive overview of the individual ML models utilized in this study, 
namely Random Forest (RF), Long Short-Term Memory (LSTM), and U-net. Each model is 
described in detail, highlighting their unique characteristics and capabilities for extracting specific 
features from satellite observations. Additionally, we explain how these models are effectively 
combined to leverage their respective strengths and enhance the accuracy of detection and 
classification. 
2.1 Random Forest (RF) 
RF is an ensemble learning method that consists of a number of tree-structured classifiers to 
classification and regression (Breiman, 2001). Each individual tree in the RF votes for a prediction 
class and the prediction class with the maximum votes will be the final prediction class. Due to the 
large amount of randomly produced decision trees, one of the key advantages of RF is its 
robustness against overfitting and its ability to handle datasets of varying quality. Since RF 
generates a large number of decision trees using random sampling, it is less sensitive to the quality 
of the training data compared to other classification methods. This characteristic makes RF 
particularly suitable for classifying hyperspectral data, which often suffers from the curse of 
dimensionality and highly correlated features (Belgiu and Drăguţ, 2016). The remote sensing 
community has widely adopted RF due to its accuracy in classifying and detecting various 
phenomena. It has proven effective in handling complex and high-dimensional remote sensing 
datasets. RF has become a popular choice in remote sensing applications, including cloud and 
aerosol detection and classification. In this paper, we set the maximum depth of each tree to 20 
and use a total of 120 estimators (i.e., decision trees) in the RF ensemble. These parameter values 
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are selected to optimize the performance of RF in classifying and detecting clouds and aerosols in 
satellite observations. 

2.2 Long Short Term Memory (LSTM) networks 
LSTM networks are an advanced version of Recurrent Neural Networks (RNN) that are capable 
of processing long-term dependencies, making it suitable for sequence prediction problems. They 
were designed by Hochreiter & Schmidhuber (1997) to solve the vanishing gradient and exploding 
problems of standard RNN. LSTM networks incorporate three gates: the input gate, the forget gate, 
and the output gate. These gates regulate the flow of information within the network. The input 
gate determines which elements of the input should be retained to update the memory, while the 
forget gate controls which information should be discarded. The output gate generates the output 
of the LSTM unit and determines the information to be passed on to the next LSTM unit. By 
learning which information to keep or discard, LSTM networks can effectively propagate relevant 
information through sequences and make accurate predictions.  
With these advanced properties, LSTM has been widely used in meteorological studies, such as 
predicting sea surface temperature (Zhang et al., 2017; Yang et al., 2018), estimating the 
concentration of air quality pollution indicators (Kim et al., 2019; Wu and Lin, 2019; Seng et al., 
2021; Sun et al. 2022), and change detection, which analyzes and quantifies temporal changes at 
the same geographical location (Wang et al., 2015), in remote sensing images (Jing et al., 2020). 
Change detection can also be applied for DC since the temporal variations of atmospheric 
components are different. Thus, LSTM shows a substantial potential to differentiate cloud and 
aerosol by detecting the pixel-based spectral changes of satellite data. In this paper, LSTM is 
employed to extract spectral and temporal features for distinguishing clouds and aerosols. The 
structure of the LSTM network used in this study is depicted in Figure 1, providing a visual 
representation of the network architecture. 

 
Figure 1. Structure of LSTM model 

2.3 RF+LSTM 
In this study, the limitations of both RF and LSTM in differentiating cloud and aerosol are 
addressed by combining the two algorithms. RF excels in scenarios where there are distinct 
differences in channel information but struggles when faced with objects that exhibit similar 
spectral features, such as clouds and thick aerosols. On the other hand, LSTM is adept at 
distinguishing similar objects by capturing their temporal variations, but its effectiveness 
diminishes when dealing with rapidly changing phenomena like clouds. 
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To overcome these limitations and enhance the performance of cloud and aerosol differentiation, 
a novel approach that combines RF and LSTM is proposed. This approach takes advantage of the 
unique strengths of each algorithm. Specifically, incorporate the LSTM-predicted probabilities of 
slowly varying objects, such as dust and clear air, as additional parameters in RF. By integrating 
these probabilities into RF, its ability to discriminate between clouds and thick aerosols is expected 
to be improved. By combining RF and LSTM, the complementary capabilities of both algorithms 
are leveraged, resulting in enhanced accuracy and robustness in cloud and aerosol detection from 
satellite observations. This integrated approach allows us to exploit the benefits of temporal 
variation analysis provided by LSTM while utilizing the superior feature extraction capabilities of 
RF. Through this combination, we aim to address the limitations of each algorithm and achieve 
improved performance in differentiating clouds and aerosols. 
2.4 ConvLSTM-UNet 
The U-Net architecture, initially introduced for biomedical image segmentation, has gained 
significant recognition in semantic segmentation tasks and pixel-based classification. Ronneberger 
et al. (2015) proposed U-Net as a convolutional network architecture that aims to classify each 
pixel in an image into a specific class, unlike traditional CNNs that focus on the final classification 
result. The U-Net architecture comprises two paths: the contracting path (encoder) and the 
expansive path (decoder). The encoder network functions as a typical convolutional neural 
network, extracting features and learning abstract representations from the inputs. The decoder 
network projects the features learned by the encoder onto the pixel space, reconstructing a dense 
classification output from lower to higher resolution. The skip connections play a crucial role in 
preserving information by combining data from both encoder and decoder blocks, preventing 
feature loss. The bridge connects the contracting and expansive paths, facilitating the flow of 
information. U-Net has demonstrated superior performance compared to its predecessors, 
achieving accurate segmentation with minimal training images, reduced information loss, and 
lower computational costs. Given these advantages, U-Net is selected as the backbone architecture 
in this study to differentiate pixel-based clouds and aerosols. 

 
Figure 2. Structure of ConvLSTM-UNet model 

As is mentioned above, the LSTM has proven power for extracting temporal features, but it’s 
powerless for spatial data. Indeed, to address the limitations of LSTM in handling spatial data, Shi 
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et al. (2015) proposed an extension called ConvLSTM. ConvLSTM incorporates convolutional 
structures in both the input-to-state and state-to-state transitions, effectively replacing internal 
matrix multiplications with convolution operations. This modification enables ConvLSTM to 
process sequential images, where the input data dimension is 3D, unlike LSTM that operates on 
1D vectors. In the context of differentiating between cloud and aerosol pixels, the ConvLSTM-
UNet network architecture is employed to leverage the strengths of both ConvLSTM and U-Net. 
The ConvLSTM layers within the model enable the processing of sequential images, allowing for 
the extraction of temporal information. On the other hand, the U-Net structure facilitates pixel-
based classification and preserves spatial information. 
The ConvLSTM-UNet model consists of two main paths: the encoding path and the decoding path. 
The encoding path comprises several convolutional layers followed by pooling layers, which 
progressively extract hierarchical features from the input image. In the ConvLSTM-UNet 
architecture, the first encoding block is replaced with ConvLSTM layers to enable sequential 
image processing. The decoding path consists of several upsampling layers followed by 
convolutional layers, which gradually reconstruct the high-resolution classification map. Skip 
connections are included in the architecture to preserve spatial information and prevent feature 
loss. These skip connections combine information from corresponding encoder and decoder blocks, 
allowing for the fusion of multi-scale features. Ultimately, the output of the ConvLSTM-UNet 
model is a pixel-based classification map that assigns each pixel in the input image as either cloud 
or aerosol. The network architecture and its components are illustrated in Figure 2, providing a 
visual representation of the ConvLSTM-UNet structure. 

3. Data 

3.1 Training and validation datasets 
Generating accurately labeled training data is crucial for training machine learning models. In this 
study, a geostationary instrument, the advanced Baseline Imager (ABI), onboard NOAA’s GOES-
R is used as it provides continuous observations at a 10-minute interval for the full disk. It captures 
imagery of the Earth with 16 different spectral bands, including visible, near infrared, and infrared 
channels. The ABI offers improved capabilities compared to previous GOES imagers, including 
more spectral channels, faster image repetition rates, and higher spatial resolutions (Schmit et al., 
2017). These features make the ABI well-suited for detecting various elements on Earth's surface, 
such as clouds, water, moisture, and smoke. 
For the purpose of this study, the ABI data are manually categorized into four distinct classes: 
clear, cloud, dust, and smoke. Clear means no aerosol and cloud scenario, cloud includes both ice 
and liquid cloud types, and aerosol types are divided into dust and smoke categories. Labeling 
training data for the RF, LSTM, and RF+LSTM models is relatively straightforward as these 
methods do not require labels for surrounding pixels. We manually generated 80,000 pixel-level 
labels for each of the models. However, the training dataset for the ConvLSTM-UNet model 
differs from the other three models. It is constructed using 1000 manually selected patches of size 
32 ´ 32, with approximately 800 patches used for training and the remaining 200 for validating 
the accuracy of the trained model. Labeling pixels for the ConvLSTM-UNet model presents a 
challenge as it requires grouping pixels together (i.e., 32 ´ 32 pixels) for labeling. To overcome 
this challenge, labels from the other three models (RF, LSTM, and RF+LSTM) are manually 
selected as reference points. These models have demonstrated superior performance in pixel 
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classification, making their predicted labels suitable as guides. To ensure the accuracy of the 
selected labels, correlated RGB images are plotted as additional references. The labels are chosen 
from the classification results of the three models only when they align closely with the RGB 
image, with a matching rate of over 90%. Furthermore, to ensure the accuracy of the ConvLSTM-
UNet model's labels, the selected labels are also verified using NASA's Worldview web platform. 
This meticulous manual selection process serves to verify and validate the predicted labels, 
ensuring their accuracy and bolstering the reliability of the training data for the ConvLSTM-UNet 
model. 

3.2 Test datasets 
Accurately labeled test datasets are indeed crucial for evaluating the performance of machine 
learning models. In this study, to ensure the reliability of the evaluation, test datasets were 
generated using cloud and aerosol labels provided by active remote sensing instruments, 
specifically the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the 
CALIPSO satellite. CALIOP is a polarization-sensitive lidar that operates at two wavelengths 
(532nm and 1064nm). It is capable of providing high-resolution vertical profiles of global clouds 
and aerosols in the lower troposphere and lower stratosphere. CALIOP employs sophisticated 
algorithms to detect and retrieve the microphysics and optical properties of these atmospheric 
components, representing a significant advancement over previous lidar instruments (Winker et 
al., 2009). The cloud and aerosol labels obtained from CALIOP are considered to be more reliable 
compared to labels from other instruments. These labels serve as a reference for evaluating the 
performance of the machine learning models in this study. To construct the test datasets, ABI data 
was utilized along with the corresponding labels provided by CALIOP for collocated observations. 
The ABI data contains multi-channel spectral information that enables the differentiation of 
various elements on Earth's surface, including clouds and aerosols.  

Table 1 Summary of Training and Testing datasets 

Models Training/Validation Datasets Testing Datasets 

RF 
Manually picked clear/cloud/dust/smoke cases 

and labels (samples: 80,000 pixels) ABI 32x32 patches whose 
center pixels are labeled by 

CALIPSO. (Samples: 
15312 patches)   

LSTM 

RF + LSTM 
Manually Picked Cases and Labels, LSTM clear 
and dust category probabilities (samples: 80,000 

pixels) 

ConvLSTM-UNet 
Manually Picked patches with labels from 

RF/RF+LSTM/LSTM with higher probability 
(samples: 1,000 patches) 

-- 

Table 1 summarizes the training and testing datasets used for the four models in this study, 
indicating the sources of the data and the corresponding labels. By using the CALIOP observations 
in conjunction with the ABI data, the study ensures the availability of accurately labeled test 
datasets, which facilitates a reliable evaluation of the performance of the machine learning models. 
Note that for the ConvLSTM-UNet model, the test dataset cannot be generated from CALIOP 
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labels. Therefore, the evaluation of its classification results is conducted by comparing them with 
RGB images. 

3.3 Quality assurance of labeled data 
The quality of training and testing datasets is indeed crucial for training machine learning models. 
In this paper, the manually labeled data were collected by interacting with the RGB plotting of 
ABI data. The red, green, and blue channels of the ABI data were represented by the 1600nm, 
860nm, and 470nm channels, respectively. To ensure the accuracy of the labels, the researchers 
utilized NASA's Worldview (https://worldview.earthdata.nasa.gov/) interface as a reference. The 
Worldview web interface provides a comprehensive record of the changes in objects over time, 
making it easier to identify ambiguous pixels, such as thin clouds and thick aerosols or the 
distinction between snow and clouds in polar regions. For LSTM-related models, time series 
datasets were constructed. However, the labeling of these time-series pixels presented a challenge. 
To address this issue and avoid inconsistencies in the data, it was essential to ensure that each pixel 
belonged to a specific category throughout the entire time series. To achieve this, images with a 
size of 32 ́  32 pixels, centered around the selected pixels, were plotted and used to select qualified 
cases. Only these qualified cases were used to construct the training datasets, ensuring the quality 
of the training database and avoiding confusion in the model. 
By carefully selecting and labeling the data using the ABI RGB plotting and referencing the 
Worldview web interface, as well as addressing the challenges of labeling time-series pixels, this 
study aimed to enhance the quality and accuracy of the training and testing datasets, thereby 
improving the overall performance of the machine learning models. 
3.4 Input and Output of the ML Models 
In this study, a total of 12 parameters comprising 9 channel observations and 3 parameters have 
been carefully selected as input spectral features. This selection includes the incorporation of both 
shortwave reflection and longwave emission, which aims to capture a wide range of features 
relevant to the target categories. To ensure consistency in the analysis, the resolutions of the 
channels used for collecting data (which vary between 0.5km, 1km, and 2km) are standardized to 
a uniform resolution of 1km. The three indexes employed are BTD, NDVI, and NDAI: 

𝐵𝑇𝐷 = 8.4um	 − 11.2um                                                    (1) 

𝑁𝐷𝑉𝐼 = (0.86um	 − 	0.67um)/(0.86um + 	0.67um)                            (2) 

𝑁𝐷𝐴𝐼 = 	−10𝑙𝑜𝑔!"(0.46um − 2.2um)                                        (3) 

which account for surface types and attempt to mitigate their influence on the classification process. 
As previously discussed, the study examines four distinct models, each of which necessitates 
specific input requirements. In particular, the RF only considers 12 spectral features as is discussed 
above. The LSTM and RF+LSTM models incorporate temporal variations by incorporating the 
time dimension as an additional factor. The input data for these models encompasses consecutive 
4 10-minute interval observations. On the other hand, the ConvLSTM-UNet model takes into 
account spatial characteristics in addition to temporal variations. Instead of considering individual 
pixels, the input for the ConvLSTM-UNet model comprises 32 ´ 32 pixel patches, with a 
resolution of 1 km. 
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The outputs of RF, LSTM, and RF+LSTM models consist of four probabilities denoting the 
likelihood of being categorized as clear, cloud, dust, or smoke. To determine the final label, only 
the category with the highest probability is selected. In contrast, the output of the ConvLSTM-
UNet model differs in nature. It produces 32 ´ 32 pixel patches, each containing four possibilities. 
Similar to the aforementioned models, the final label is determined by selecting the option with 
the highest probability. However, only the 16 ´ 16 pixels situated at the center of the patches are 
considered to be reliable. This approach is adopted because the encoding and decoding processes 
involved in the U-Net structure may lead to the loss of edge information. The detailed 
specifications of the inputs and outputs for all models can be found in Table 2. 

Table 2 Models Input and Output 

Input 
Dimensions 

Spectral 
Dimension 

Temporal 
Dimension 

Spatial 
Dimension Output Dimensions 

RF (1D) Reflectance: 
0.46, 0.67, 0.86, 

1.37, 1.6, and 
2.2 um 

BT: 8.4, 11.2, 
and 13.3 um 

BTD  
NDVI 
NDAI 

N/A N/A 

Single Pixel Category 

(Clear/Cloudy/Dust/Smoke) 
LSTM (2D) 

4 consecutive 
observations, 

10-mins interval 

N/A 
RF + LSTM 

(2D) 

ConvLSTM-
UNet (4D) 

32 ´ 32 (1km) 
patches 

Category for a group of 
pixels 16 ´ 16 

4. Results and discussion 

During the training stage of the four models, a random selection process is employed to allocate 
80% of the data for training, while the remaining 20% of are reserved for validation. To ensure the 
reliability and robustness of the models, a 5-fold cross-validation approach is employed for sample 
selection during training and validation in this study. This repetition allows for the validation of 
the models' performance across multiple iterations, providing a comprehensive evaluation of their 
robustness and generalizability. The training-validation samples are randomly chosen to maintain 
similar pixel type distributions between the training and validation sets. 
4.1 Training and test accuracy 
The evaluation of classification models is essential to assess their reliability and applicability in 
various scenarios. In this study, an accuracy score and a confusion matrix are employed as 
evaluation metrics for the ML models. 
The accuracy score is a commonly used metric in classification models, which measures the 
proportion of correct predictions (both true positives and true negatives) out of the total predictions 
made by the model. It is calculated using the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑆𝑐𝑜𝑟𝑒 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁),   (4) 
where TP (True Positive) and TN (True Negative) represent correctly predicted positives and 
negatives, respectively, while FP (False Positive) and FN (False Negative) represent incorrectly 
predicted positives and negatives, respectively. Table 3 displays the training and test accuracy 
scores for all the models developed in this study. The notably high accuracy scores achieved for 
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both validation and testing phases indicate the excellent performance of these models. Figure 3 
showcases the corresponding validation confusion matrices, which further illustrate the 
satisfactory accuracies observed for each class, aligning with our expectations. 

Table 3 Validation and test accuracy scores 
Model RF LSTM RF+LSTM ConvLSTM-UNet 

Validation accuracy score 0.99 0.99 0.99 0.94 

Test accuracy score 0.96 0.96 0.96 -- 

 
(a) RF (b) LSTM 

  
(c) RF + LSTM (d) ConvLSTM-UNet 

  
Figure 3. The confusion matrixes of four ML models in four scenarios. The diagonal elements indicate 
the correctly classified cases. 

When a LSTM layer is incorporated, such as in the LSTM and RF+LSTM models, fewer clear 
pixels are wrongly predicted as clouds compared to the RF model. The misclassification rate is 
0.05% and 0.04% for the LSTM and RF+LSTM models, respectively, whereas it is 0.20% for the 
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RF model. Additionally, the inclusion of LSTM layers reduces the error rate of classifying cloud 
pixels as clear. These results indicates that the LSTM layer is effective at distinguishing objects 
with different rates of temporal variation. Another notable improvement is the reduced 
misclassification of smoke pixels as clear pixels. This suggests that even when there is minimal 
difference in channel features between clear and smoke pixels, they can still be differentiated 
through temporal changes and spatial features extracted by the LSTM layers and U-Net structure, 
respectively. The training and validation accuracy scores demonstrate the excellent performance 
of the four models. However, these results alone cannot validate the models' robustness in real-
world scenarios.  
4.2 Case studies 

 
Figure 4. GOES-R 2020-06-28 16:40 (UTC) full disk classification results generated from four ML models. 
ABI Level-2 products and RGB image are also shown for comparison. 

To assess the practical performance of the four models, a range of scenarios is employed for testing 
purposes. These scenarios are carefully chosen from NASA's Worldview Web platform, ensuring 
a diverse and representative selection of cases. The RGB images used for testing are constructed 
using three different channels: 1.6um, 0.86um, and 0.47um, which are assigned as the red, green, 
and blue channels, respectively. In addition to the RGB images, NOAA ABI level-2 products, 
combination of Aerosol Detection product (The aerosol mask, which indicate the presence of either 
smoke or dust) and Clear Sky Mask product (a binary cloud mask that identifies covered pixels as 
clear or cloudy), are plotted for comparison purposes.  
Figure 4 shows the classification results from different ML models and NOAA ABI products of a 
full-disk image on June 28, 2020 (16:40 UTC). The results from both the NOAA ABI product 
using traditional algorithms and our ML models demonstrate commendable performance when 
comparing with the RGB image. However, some discrepancies can be observed in certain areas. 

ABI Level 2 RF LSTM

RF + LSTM ConvLSTM-UNetRGB
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One notable difference is observed in western Africa, an area heavily affected by thick dust. In 
this region, both the RF model and the ABI product incorrectly identify the dense aerosol as clouds. 
However, when temporal features are incorporated through the use of LSTM, RF+LSTM, and 
ConvLSTM-UNet models, the classification of dust over the Atlantic area shows improvement. 
This promising outcome highlights the value of incorporating temporal features learned by these 
models. Further investigation and validation of specific cases are currently underway to confirm 
the advancements offered by these machine learning models. In addition to the full disc image, we 
compared a coupled of featured cases, namely, Uyuni Salt Flat, mixed cloud and thick dust plume, 
thin and thick smoke, are discussed below.  
4.2.1 Uyuni Salt Flat 

 
Figure 5. Similar to Fig. 4, but a Salt Flat case captured on 2020-06-20 at 17:30 (UTC). 

Figure 5 showcases an image of the Uyuni Salt Flat in southwest Bolivia on 2020-06-20 at 17:30 
(UTC). The ABI level-2 product, the RF and ConvLSTM-Unet models classified the salt flat and 
the edges of a nearby lake (located northeast of the images) as a cloud due to its similar bright 
color and shape. However, the incorporation of temporal features in the LSTM and RF+LSTM 
models resolved the classification issue as anticipated. These results not only highlight the 
advanced performance of the LSTM and RF+LSTM models but also emphasize the significance 
of incorporating temporal features for accurately identifying high-reflective objects and clouds. 
Despite the outstanding performance, both the LSTM and RF+LSTM models still exhibited 
misclassification of some pixels at the edge of the salt flat. It appears that edge detection remains 
a significant challenge for all the algorithms examined in this study. 
4.2.2 Mixed cloud and thick dust plume 
The second case is a mixed strong dust and cloud scenario close to the west shore of Africa on the 
eastern Atlantic Ocean, 2020-06-18 at 16:40 (UTC). Figure 6 reveals that all the ML models 
successfully identified clouds with cold toppings in the strong dust event, whereas the ABI Level-
2 products erroneously classified most dust pixels as clouds. Additionally, models without a 
convolutional layer (RF, LSTM, RF+LSTM) provided more detailed information about the 
detected objects. This finding suggests that the inclusion of convolutional layers may result in 
some information loss. Results of this scenario underscore the superiority of all present ML models 
over the traditional algorithm in accurately detecting and classifying objects. 
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Figure 6. Similar to Fig. 4, but a mixed cloud and thick dust plume case captured on 2020-06-18 at 16:40 
(UTC). 

4.2.3 Thick smoke 

 
Figure 7. Similar to Fig. 4, but a thick smoke case captured on 2020-06-18 at 16:40 (UTC)  

Figure 7 presents an image of a thick smoke event captured on 2020-06-18 at 16:40 (UTC), in 
western USA. The RGB channels combination used in this study does not provide a clear depiction 
of the smoke case due to the interference of surface features. The path of the smoke is marked with 
a thick black line in the image for reference. As anticipated, all the ML models successfully 
detected the path of heavy smoke, while the ABI Level-2 products inaccurately classified the 
smoke as clear and cloud. However, Box A in Figure 7 reveals an erroneous result produced by 
the ConvLSTM-UNet model. Upon comparison with the RGB image, it becomes evident that the 
ConvLSTM-UNet model mistakenly identified the surface texture as smoke. This observation 
suggests that while the U-Net structure aids in learning spatial features, it can be prone to confusion 

A

A

Smoke
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when confronted with complex surface textures. To enhance model performance, future 
improvements could involve incorporating surface features.  
All the results showed so far indicate the advancement of machine learning models, but it is found 
that they do experience some challenges in some scenarios. 
4.2.4 Thin smoke 

 
Figure 8. Similar to Fig. 4, but a thin smoke case captured on 2023-02-17 at 21:50 (UTC)  

Figure 8 displays an image of a thin smoke event captured on 2023-02-17 at 21:50 (UTC), near 
the west coast of South America. It is evident that none of the products accurately detect the entire 
smoke areas. Box A in represents the main branch of the smoke event, which appears relatively 
thicker. Only the ConvLSTM-UNet model correctly identifies the shape of the smoke in this region, 
although some pixels are still misclassified as clear. The RF model predominantly classifies most 
pixels in this area as cloud, which aligns with the results obtained from the ABI Level-2 products. 
Moving on to Box B, the spread of the smoke is thinner compared to Box A. The ABI Level-2 
products exhibit excellent performance in detecting this thin smoke, whereas all the ML models 
fail to capture this event, including the ConvLSTM-UNet model, which performes well in Box A. 
Particularly disappointing is the fact that the LSTM and RF+LSTM models, which emphasize 
temporal features, completely miss this thin smoke event. This outcome suggests that traditional 
algorithms excel at identifying thin smoke, and spatial information plays a critical role in machine 
learning models' ability to detect smoke. Lastly, Box C highlights the Random Forest model 
misclassifying the pixels at the edge of the continent as clouds, a recurring edge-related error 
observed in the salt flat case (Fig. 5) as well. 

4.3 Statistical analysis 
In order to conduct a thorough and unbiased evaluation and comparison of DC models, we 
collected continuous observations at three-day intervals throughout the year 2020 from the ABI 
and classified them using machine learning models built in this study. To provide a reference point, 
the daily mean cloud fraction products from MODIS on both Terra and Aqua are used. Rather than 
generating a full-disk prediction, which would be resource-intensive and time-consuming, only 
five typical areas (as shown in Figure 9) are selected and classified every hour during daytime (i.e., 
when the solar zenith angle is less than 80 degrees).  

A A A

A

BB C

B
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Figure 9. Five selected representative areas used for statistical analysis. These areas encompass a diverse 
range of scenarios discussed in the study.  

Area A is situated at the Inter-Tropical Convergence Zone (ITCZ) region, which experiences an 
abundance of cirrus and convective clouds throughout the year. Area B is located along the mid-
west coast of South America, while area E is situated on the west coast of California. Both areas 
experience numerous smoke events over a large area of semi-persistent marine boundary layer 
clouds, especially during summer and autumn. Area C, located near the Sahara Desert, is 
characterized by frequent dust events that occur throughout the year, with a higher occurrence 
during the late spring to mid-fall period. Area D is situated near Greenland, where ice cover exists 
throughout the year and the daytime is relatively short during the winter. Given that the detection 
targets are present in all five areas, analyzing the statistical prediction results for these regions 
would be highly meaningful. And some interesting results are shown in this section. 
4.3.1 Cloud fraction comparison with MODIS product 
Figure 10 illustrates a comparison of cloud fraction variations derived from MODIS L3 Daily 
products and the predictions of machine learning models for five specific areas. The Terra traverses 
each of these areas at 10:30 AM (local time), while Aqua passes at 1:30 PM (local time), 
approximately. For comparison purposes, ML model classification results for each area at the 
corresponding local time are utilized. The MODIS cloud fraction for each area is computed using 
the "Cloud Fraction Day Mean" and "Cloud Fraction Day Pixel Counts" extracted from 
MOD08_D3 (MYD08_D3 for Aqua), represented by the gray line. 
As depicted in Figure 10, all the ML models developed in this study exhibit satisfactory overall 
performance, displaying close correspondence with both Terra and Aqua MODIS products. 
However, noticeable discrepancies are observed in the comparison results for Area C. Area C is 
situated in close proximity to the Sahara Desert, an area characterized by a persistent presence of 
clouds and dense aerosols, in particular from Summer to mid-Autumn. It is widely recognized that 
MODIS products may not consistently discern optically thick aerosols and cloud types (Marais et 
al., 2020). Consequently, it is highly probable that the MODIS product misclassifies the thick dust 
as clouds in Area C, thereby justifying the higher cloud fraction values derived from the MODIS 
product. To further quantify the comparison between MODIS and ML model products in each area, 
the correlation coefficient between the MODIS product and the result obtained from each machine 
learning model is calculated and presented in Figure 11. 
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Figure 10. Comparison of cloud fraction products, which are generated from ML models classification 
results and MODIS Level-3 products (a. Terra and b. Aqua), separately. 

It is evident that all ML models and MODIS products (both Terra and Aqua) exhibit the relatively 
poor agreement in Area C, except RF. It is expected that the LSTM or RF+LSTM models would 
demonstrate superior performance, as evidenced by the case studies conducted. However, it is 
observed that the RF model yields the closest match with the MODIS products. There are two 
reasons that can be attributed to this outcome. Firstly, while LSTM layers indeed enhance the 
detection of dust and clear pixels, their performance is adversely affected when it comes to cloud 
identification. The LSTM layer enables the model to learn features from all inputted timesteps in 
order to predict the label of the last timestep. Consequently, if a pixel was contaminated by a cloud 
in previous timesteps, it will be erroneously labeled as a cloud. This issue has the most significant 
impact on the classification of clear pixels. Hence, the adverse impact of LSTM layers on cloud 
detection contributes to the discrepancy observed. The second reason lies in the fact that both the 
traditional algorithm employed by MODIS and the RF algorithms solely utilize spectral 
information to generate labels for each pixel. It has already been demonstrated that the inclusion 
of additional temporal features alters the classification results, thereby resulting in discrepancies 
between the other three models and RF, and consequently, disparities with the MODIS products. 

(a) (b)
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Figure 11. The correlation coefficients of the daily cloud fraction between the MODIS Level-3 product 
from Terra and Aqua satellites and the corresponding results obtained from each ML model. 

4.3.2 Spectral distribution comparison between cloud and dust 
As discussed earlier, RF is more prone to identify thick dust as cloud, while the LSTM and 
LSTM+RF algorithms are more accurate in thick dust detection. Consequently, an investigation is 
conducted into the channel distribution of dust and cloud pixels classified by RF and LSTM. These 
pixels were collected from one year of consecutive observations in area C, which is located near 
the Sahara Desert and experiences a high presence of clouds and thick dust. Figure 12 illustrates 
the statistical results obtained from RF and LSTM, with a selection of 80,000 pixels for each 
distribution. Specifically, we focused on the pixels identified as dust by LSTM but mistakenly 
classified as clouds by RF. 

 
Fig 12. Comparison of cloud and dust spectral features classified by RF and LSTM models. The data is 
collected from the west coast of Africa, which is characterized by a significant presence of clouds and 
thick dust. 
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The spectral distribution plot in Figure 12 provides valuable insights into the performance of the 
Random Forest (RF) and LSTM models in distinguishing between dust and cloud classifications. 
The purple plot represents the spectral distribution of pixels recognized as dust by RF but identified 
as clouds by LSTM. Conversely, the orange plot depicts the spectral distribution of pixels 
identified as clouds by RF but recognized as dust by LSTM (of particular interest to us). The green 
and red plots correspond to the distribution of dust and cloud classifications from both models, 
respectively.  
Interestingly, RF demonstrates superior performance in learning spectral features, as evidenced by 
the similar distribution of the green and purple plots (both recognized as dust by the RF model). 
Similarly, the red and orange plots (both identified as clouds by the RF model) exhibit a similar 
distribution, albeit with slight differences. The orange plot (classified as dust by LSTM) does not 
perfectly align with the red plot (the distribution of cloud pixels) as expected. This discrepancy 
between the orange and red plots highlights an interesting finding: the orange plot signifies the 
distribution of thick dust, with pixels exhibiting a spectral distribution similar to that of clouds. 
Consequently, these pixels are misclassified as clouds by the Random Forest models. This 
emphasizes the limitations of relying solely on spectral features for distinguishing between clouds 
and dust, underscoring the crucial role of temporal features learned by the LSTM model. 
4.4 Discussion 
Evaluation of the four models is based on their training and validation accuracy scores, which 
indicate their overall performance. The RF, LSTM, and RF+LSTM models show excellent 
performance with training accuracy scores above 0.99, and test accuracy score above 0.96. The 
ConvLSTM-UNet model doesn’t have test dataset, but its advancement can still be observed from 
training accuracy score, which is more than 0.94. To further assess and compare the models, they 
are applied to some specific cases. The inclusion of the LSTM layer in the LSTM and RF+LSTM 
models enables them to capture temporal features, leading to the identification of high-albedo 
surfaces, clouds, and thick dust. However, the ConvLSTM-UNet model does not seem to learn 
temporal features as effectively. In the case of thin smoke detection, both the ABI products and 
the models struggle, with the ML models performing even worse than the ABI products. The 
ConvLSTM-UNet model show some capability to capture spatial features allows it to identify parts 
of thin smoke but may also result in misidentification of surface features as aerosols. Therefore, 
the addition of surface information to the models is necessary to improve their performance. 
Objective conclusions have been derived from the statistical analysis conducted on one year of 
ABI observations, classified by the four ML models, across five representative areas. The 
comparison between the results generated by the ML models and the MODIS products underscores 
the robustness of the machine learning models employed. The slight discrepancies in terms of 
cloud fraction can be attributed to the limitations of the MODIS algorithm in effectively 
identifying clouds and dense aerosols. Furthermore, the highest correlation coefficient between the 
RF model and the MODIS products indicates the limitations of LSTM layers in accurately 
identifying cloud pixels and the advancement of RF to learn spectral features. Additionally, the 
comparison of spectral features between clouds and dust further highlights the RF model's ability 
to extract hyperspectral features. However, this analysis also underscores the significance of 
incorporating temporal features for precise identification of components. 
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5. Conclusion 

Four machine learning models were trained to accurately identify cloud and aerosols by leveraging 
spectral, spatial, and temporal features. The RF model extracted spectral features, while the LSTM, 
RF+LSTM models utilized both spectral and temporal features, and the ConvLSTM-UNet further 
considers spatial features. The training datasets comprised 1 km ABI day-time observations, 
incorporating 9 visible and infrared channels along with 3 calculated indexes. Manual labeling was 
performed using NASA's Worldview web interface, and the test datasets were labeled using 
collocated CALIOP level 2 1 km cloud layer and 5 km aerosol layer products. 
The accuracy scores and confusion matrices demonstrated that all ML models exhibited excellent 
overall performance, making it challenging to determine the superiority of any particular model. 
To further assess these models, multiple scenarios were examined, with RGB figures (1600 nm, 
860 nm, and 470 nm) and ABI level-2 products (comprising aerosol detection and clear sky mask) 
used as reference. The results showcased the effectiveness of these models in detecting and 
classifying cloud and aerosol components across various scenarios. The inclusion of temporal 
features in the LSTM and RF+LSTM models significantly enhanced their performance. These 
models demonstrated proficiency in identifying high-albedo surfaces, clouds, and distinguishing 
between thick dust and cloud, which posed challenges for traditional algorithms. A comparison 
with ABI Level-2 products underscored the advantages of machine learning models over 
conventional approaches. Remarkably, the machine learning models displayed superior 
performance in diverse scenarios, including severe dust events and smoke detection. 
For in-depth analysis, one-year consecutive observations from five representative areas were 
collected. The comparison of cloud fraction variations between the ML models and MODIS 
products (Terra and Aqua) demonstrates satisfactory overall performance and close 
correspondence. And the noticeable discrepancies observed in the west coast of Africa can be 
attributed to the limitations of the MODIS algorithm in accurately differentiating optically thick 
aerosols from clouds. Furthermore, the analysis reveals that the RF model yields the closest match 
with the MODIS products, which illustrates the adverse impact of LSTM layers on cloud detection. 
Additionally, the reliance of both the traditional MODIS algorithm and RF models solely on 
spectral information for pixel labeling also contribute to the high correlation coefficient and 
highlights the importance of incorporating temporal features for accurate component identification. 
The analysis of spectral features highlights the robustness of RF in extracting spectral information. 
However, it is emphasized that temporal variations play a crucial role in accurately classifying 
cloud and aerosol components. The inclusion of temporal features significantly improves the 
performance of the models, underscoring their importance in remote sensing applications. 
Overall, this study showcases the potential of ML models for satellite-based cloud and aerosol 
classification. The present models exhibit excellent performance, surpassing traditional algorithms 
in many cases. The findings contribute to the advancement of remote sensing techniques and hold 
promise for enhancing weather and climate predictions. Further research is recommended to 
address challenges related to thin smoke detection and aerosol identification in highly 
contaminated regions. Future work should focus on expanding the training dataset to include more 
diverse scenarios, such as thin smoke, low-latitude snow/ice, and bare land without plants. 
Additionally, incorporating surface information into the models is crucial to improve their 
performance. Hybrid approaches that combine the strengths of different features and algorithms 
should be explored to further enhance the models' capabilities. 
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