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Abstract 
 

Massive amounts of observations are being assimilated into modern-era climate retrospective           

reanalyses and Numerical Weather Prediction (NWP). This makes very difficult to estimate            

the impact of a new observing system with Observing System Experiments (OSEs) because             

there is already so much information provided by other observations. In addition, the large              

volume of data prevents monitoring the impact of each observation with OSEs and hence the               

quality of reanalysis and NWP are subject to degradation due to occasional low quality              

observations. We propose using Proactive Quality Control (PQC, Hotta, 2014, UMD) based            

on Ensemble Forecast Sensitivity to Observations (EFSO, Kalnay et al, 2012, Tellus) to             

improve NWP, reanalyses, and observations. 

EFSO is used to efficiently examine the impact of all existing observing systems. We found               

in preliminary results that some observing systems (e.g., MODIS polar winds), even though             

their overall impact is beneficial, have a large detrimental impact under certain flow             

conditions, which EFSO can efficiently identify and thus help develop a better QC.  

A PQC method is being developed to improve the quality of NWP. Preliminary results show               

that the quality of the analysis and the subsequent forecast can be significantly improved by               

rejecting detrimental observations based on EFSO. The same PQC method can be extended to              

improve the quality of reanalysis, for which it is possible to explore Assimilation in the               

Unstable Subspace (AUS, Trevisan et al., 2010, QJRMS) for reanalysis in the EnKF             

framework. Early results show that AUS can substantially improve the quality of analysis             

(~5% in 5-day forecasts). 
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1. Introduction 

One of the essential basis of the success of Numerical Weather Prediction (NWP) and              

Reanalysis is the massive amount of observations that is constantly growing in number and              

quality. Both maintaining existing observing systems and developing new ones require           

enormous resources. It is natural to evaluate the usefulness of the observed data. More              

specifically for NWP, it is desirable to learn the impact of each observing systems on               

day-to-day model forecasts. Direct comparison between control run (with all the           

observations) and data denial runs is a straightforward approach, known as Observing System             

Experiments (OSEs). However, with millions of observations assimilated every 6 hours (Fig.            

1), this task is very challenging. In addition, more advanced new observing systems with              

higher spatial, temporal and spectral resolutions (e.g. phase array weather radar (PAWR) and             

new geostationary satellite series: GOES-R, Himawari) are being launched every once a            

while, which makes keeping track of the impact of the systems even harder. First, the               

computational expensive experiments limit the number of runs needed to separate the impact             

of observation subsets, so the discernibility is low. Second, the difference of having a subset               

of observations or not may not be significant enough even for 5-day forecasts, given that               

there are already a lot of additional observations assimilated. Hence accurate           

impact-estimation of small subsets of observations is virtually impossible. 
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To overcome the difficulties faced by OSEs, Forecast Sensitivity to Observations (FSO)            

was developed (Langland and Baker 2004). Taking advantage of the adjoint model, FSO             

attributes the changes of forecast back to each individual observation using a future analysis              

as verification. However, it has been found that the Moist and Dry Total Energy of the                

forecast error estimations obtained with FSO are inconsistent because of the problems of             

adjoint models in representing moist processes (Janisko and Cardinali 2016). By contrast,            

Ensemble Forecast Sensitivity to Observations (EFSO; Kalnay et al. 2012) that we propose to              

use does not require an adjoint model because it uses ensemble forecasts to estimate the               

impact of the observations on the forecasts, and the moist and dry estimations of the error are                 

very consistent (Fig. 2).  

 
 
One of the main objectives of this work is to improve NWP by EFSO, which makes                

quantification of observation impact on model forecast possible. There are two approaches to             

achieve this goal. The first is to improve the observations by identifying algorithm problems              

or modifying QC process using EFSO (Lien et al. 2017). The second approach is by               

Proactive Quality Control (PQC; Hotta 2014; Ota et al. 2013), which rejects detrimental             

observations identified by EFSO. We have already developed PQC approaches much more            

effective than those tested by Ota et al. (2013) and by Hotta (2014). In addition to improving                 
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NWP, we have shown that EFSO can quantify the impact of each observation on different               

forecast times so that the powerful method “Assimilating in the Unstable Subspace” (AUS;             

Trevisan et al. 2010) in the EnKF framework becomes attainable. Although not affordable in              

operations, because it would require waiting 24 hours for the verifying analysis, it can be               

very valuable in Reanalysis mode and improve the quality of Reanalysis data. 

2. Research Design and Methods 

2.1 Improving Observations. The goal is to identify potential instrumental or algorithm level 
problems and improve quality control for each observing system. 
 
One of the approaches to improve NWP using EFSO is through improving the quality of               

observations, which depends on the instrument, algorithm, and quality control procedure.           

EFSO quantifies the impact of each observation on any given short period of model forecasts.               

One valuable application of EFSO is that it could be used as an efficient online monitoring                

tool for observation quality. As an example, figure 3 shows the time evolution of total 6-hour                

impact of each observing systems throughout the 1-month experiment. It is clear that most of               

the observing systems are beneficial at all times as shown in figure 1, such as the top 3                  

beneficial systems: commercial aircrafts, GPSRO, and Radiosondes. However, there are          

several observing systems having occasional detrimental episodes, namely Profiler winds,          

PIBAL, Atlas buoy, Dropsondes, NEXRAD winds, and MODIS winds. This implies that            

even with overall beneficial impact, there could be some flow dependent condition that leads              

to detrimental impact in certain times and locations. Making use of EFSO, it is possible to                

quickly identify, if any, problems of an arbitrary subset of the observations in either the               

instrument, algorithm, or the quality control, even if it only takes place under special              

circumstances. 

For example, MODIS polar winds, vital to NWP in higher latitudes, provide critical wind              
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profiles over polar regions and an overall impact that is beneficial on model forecasts.              

However, we found with EFSO that the MODIS winds are frequently detrimental. Figure 4              

shows the EFSO 6-hr forecast impact of all the non-radiance observations for a 6 hour period.  

 
There are at least two regions of dense detrimental observations (red patches), most of              

which are MODIS winds, located north of Eurasia and south of Atlantic Ocean. Data denial               

experiments (Hotta 2014; Ota et al. 2013), confirmed that assimilating these detrimental            

MODIS winds degrades model forecast, showing that EFSO indeed captures the detrimental            

subset from massive amount of observations. And by analyzing EFSO impact of them, a              

specific set of conditions can be found which consistently produces detrimental observations.            

As shown in figure 5, we found such conditions for MODIS winds, in which the occurrence                

of detrimental observation depends highly on the innovation (observation-first guess) and on            

the observed wind direction. This shows that a simple QC method could be immediately              

implemented based on such dependence and have beneficial impact on NWP. More            

importantly, it gives clues to help identify the problem at the algorithm level and              

fundamentally improve the observation. We are collaborating with Wisconsin researchers          

Brett Hoover and David Santek, creators of the MODIS wind algorithm. 
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Although this part of the study aims at examining all observing system in general, we will                

focus on the newly launched observing systems, including but not limit to the VIIRS unit and                

the next generation GOES and Himawari satellite series. The radiance data and the derived              

feature tracking winds are especially important, since they cover regions in open ocean and              

provide information of atmospheric moisture, temperature, and wind profiles. It is noteworthy            

that the derived winds from these new systems are using essentially the same algorithm as the                

MODIS winds with slight differences, which indicates the possible existence of such            

detrimental conditions. This would greatly improve the quality of the observations. 
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2.2 Proactive Quality Control (PQC): correcting the analysis:   The goal is to improve the 
analysis on the fly and subsequent forecast by fully flow dependent PQC based on EFSO.  

While EFSO makes possible to identify and fix flow dependent detrimental observations, the             

process might take quite some time and there is a way to avoid the detrimental observations                

from degrading the forecast: Proactive Quality Control. The basic algorithm (Fig. 6) is the              

following:  

1. Compute EFSO using (green box in Fig. 6): 

a. 12-hr forecast from t = -06 

b. 06-hr forecast from t = 00 

c. analysis at t = 06 

2. Determine a set of observations at t = 00 to be rejected based on EFSO 

3. Repeat the analysis process without those observations. 

 

The idea of PQC based on EFSO was first proposed and tested for short term forecasts (e.g.                 

24 hours; Ota et al. 2013; Hotta 2014). In this study, the performance examination was               

extended to 5-day forecast. In the initial results, the analyses and the subsequent 5-day              

forecasts were indeed improved by rejecting the 6-hr detrimental observations identified by            

EFSO (see figure 8 left, labeled Hotta). Given the success of these early results, we would                
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like to explore whether it is possible to improve the current method and to prove that PQC is                  

affordable and beneficial in operational implementation.  

The rejecting strategy for PQC first tested by Ota et al. (2013) and Hotta (2014) was                 

designed to use EFSO to identify any region of 30o latitude by 30o longitude that was strongly                 

affected by detrimental observations. The EFSO impact of the observations in these regions             

were then examined to identify the probable culprit observations, and the ones with             

detrimental impact were rejected. The snapshots from several forecast lead-times (06, 24, 72,             

and 96 hours) of one typical case of the relative forecast improvement (%) by PQC is shown                 

in figure 7. In the beginning, the improvements are located at the vicinity of the area of                 

rejected observations (not shown). It is noticeable of the existence of a short-lived             

degradation at south pole, but it decays away very quickly. After 6 hours, it starts to grow in                  

both magnitude and areal coverage with time and there is a clear sign of propagation of the                 

improvement towards the downstream area, which is believed to be associated with            

dynamical instabilities. The peak of relative improvement is around 3-4 days and it begins to               

decay afterward, but he beneficial impact extends beyond 5 days (map view not shown, see               

figure 8.). It was very satisfying to note that applying this PQC reduced the average MTE                

error in the 5-day forecasts by about 0.5%.  
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One of the main purpose of this thesis is to improve the original very successful strategy for                 

rejecting observations developed by Hotta (2014). Two new methods have been developed.            

The Threshold approach deletes all observations with a detrimental impact of 10-5 or more in               

MTE units. As shown in Fig. 8 (middle panel), this approach seems more successful,              

reducing the MTE 5-day forecast error by about 3%. The AUS method (Fig. 8, right),               

discussed in section 2.3, and shows further improvements now larger than 5%. 
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While offline experiments have shown that PQC improves the analyses and forecasts,             

online cycling experiments, in which the PQC corrected analysis will continue to be used in               

following data assimilation cycle, are necessary to demonstrate the long-term accumulated           

beneficial effect. Preliminary results are very encouraging, suggesting that the benefits of            

PQC accumulate as the data assimilation continues. 

The practicality of operational implementation of PQC will be investigated. Current plan             

for performing PQC within the tight schedule of operational centers include making use of              

the early analysis and approximating the PQC correction. Most major operation centers            

implement a dual analysis system to deliver the forecast timely, in which the early analysis               

assimilates only observations before a cutoff deadline, whereas the final analysis assimilates            

full set of observations and is used in the following Data Assimilation (DA) cycle. Using the                

early analysis as verification would save 3 hours of wait time. In addition, we can               

approximate the Kalman gain K, the most expensive part in repeating the analysis without              

detrimental observations, by assuming that it is constant because only a small portion of              
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observations are rejected. We have shown that the correction from approximated PQC is very              

similar to that from fully nonlinear PQC obtained by repeating the analysis without the              

rejected observations (Fig. 5).  

 

Furthermore, satellite channel selection is another difficult task for NWP centers that            

select a limited number of channels containing maximum information of the vertical profile             

of atmospheric moisture, temperature, and composition for assimilation efficiency. It is           

challenging to choose an optimal set of channels from hyper-spectral instruments like            

Advanced InfraRed Sounder (AIRS). This is especially true to the fact that this theoretical              

optimal choice should vary with geographical location and be atmospheric conditions. PQC            

being fully flow dependent is a perfect tool in finding the optimal set of channels that varies                 

with the flow and location. 

This part of the study will benefit operational NWP by increasing the accuracy of analysis               

and the subsequent forecast. The quality of daily weather prediction will be improved and              

hence reducing the damage of hazardous events. 
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2.3 Assimilation in Unstable Subspace (AUS): Reanalysis mode: The goal here is to identify 
the unstable subspace of data assimilation by performing EFSO with respect to multiple 
forecast lead-times and improve the quality of reanalysis products. 

 
Reanalysis datasets, such as the widely used MERRA and the new, more advanced             

MERRA-2, which ingest as many observations as possible with a fixed version of model and               

data assimilation system, provide the most accurate multi-variate three-dimensional         

estimations state of the atmosphere for long periods (decades), which is essential for studies              

of climate change and variability. 

The idea of AUS was first proposed in 4D-Var data assimilation framework by Trevisan et               

al. (2010). They reasoned that it was better to confine the analysis increments to the growing                

subspace, since the errors in the decaying mode subspace would decay in time anyway. This               

was shown to be true with 4D-Var in a simple nonlinear scenario with the Lorenz (1996)                

model, for which it was possible to explicitly calculate the leading growing Lyapunov             

vectors. The experiments showed that the analysis accuracy indeed improved. However, with            

a realistic model it is impossible to determine the growing subspace spanned by the leading               

Lyapinov vector. We realized that by performing EFSO with multiple forecast lead-times            

(e.g., 6h, 12h, 24h), such optimal growing subspace can be identified. Hence, EFSO provides              

an opportunity to adapt AUS to EnKF framework. In preliminary offline experiments, in             

which the improved analyses are not used to produce the following analyses, the ensemble              

version of AUS demonstrates extremely promising results (Fig. 4, right panel), with reduction             

of errors of O(5%). 

However, before pushing towards implementation of AUS in, for example MERRA-2,           

several issues need to be addressed. Like in PQC, cycling experiments are necessary to prove               

the accumulated long-term beneficial impact from AUS. In addition, the unstable subspace is             
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simply defined as those observations with beneficial impact, having the 24-hr impact larger             

that of the 6-hr forecast. It worths further explorations using different combinations of EFSO              

with several lead-times. 

This part of the study should substantially improve the quality of the reanalysis, and              

therefore benefit other research related to climate variability and environmental change that            

rely heavily on the quality of reanalysis dataset. 

 

3. Summary 

The objective of this study is to improve the quality of observations, NWP, and reanalysis by                

using EFSO. In the first part, we have demonstrated the usefulness of EFSO in online               

monitoring of the impact of each observing systems or any arbitrary subsets and are              

developing techniques for identifying and finding fundamental problems causing detrimental          

observations. As an example, the production procedure of MODIS winds will be carefully             

examined in the collaboration with the developers. Second, PQC rejecting observations based            

on EFSO is shown to have large beneficial impact on the analyses and the subsequent               

forecasts. We have also demonstrated the feasibility of implementing PQC in operations by             

making use of GFS early analysis and a fairly accurate approximation of PQC correction to               

save time. Finally, PQC has been shown to be more powerful in reanalysis environment, in               

which has no tight schedule to meet. By constraining the assimilated observations to be in               

beneficial growthing mode, PQC-AUS can improve the analysis and forecasts much more            

than PQC-Threshold.  
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