
A Generalized Spatio-Temporal Threshold Selection
Method for Identification of Extreme Event Patterns

Vitaly Kholodovsky

A scholarly paper in partial fulfillment of the requirements for the
degree of Master of Science

August 2018

Department of Atmospheric and Oceanic Science
University of Maryland College Park, Maryland

Advisor: Dr. Xin-Zhong Liang



Abstract

Extreme weather and climate events such as heavy precipitation, drought, heat

waves and strong winds can cause extensive damage to society in terms of human

lives and financial losses. As climate changes, it is important to understand how

extreme weather events may change as a result. Climate and statistical models are

often independently used to model extreme events. To better assess performance

of the climate models, a variety of spatial forecast verification methods have

been developed. However, in most cases, the spatial verification measures that are

widely used to comparemean states do not have sufficient theoretical justification to

benchmark extreme weather events. As part of an integrated modeling framework,

we propose a new generalized spatio-temporal threshold selection method for the

identification of extreme event episodes, which couples existing pattern recognition

indices with high (or low) threshold choices. This integrated approach has four

main steps: 1). Construction of essential climate quantities; 2). Dimension

reduction; 3). Spatial domain mapping; and 4). Threshold clustering. We

apply this approach to observed standardized precipitation rate anomalies over

CONUS. The proposed method automates the threshold selection process and can

be directly applicable in conjunction with modeling of extremes. Additionally,

it allows for identification of synoptic scale spatial patterns that can be directly

traced to individual extreme episodes, and it offers users the flexibility to select an

extreme threshold that is linked to desired geometrical properties.
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1 Introduction

Extreme events of essential climate variables (Bojinski et al. 2014) such as heavy

rainfall, high temperatures, strong winds and their derivatives such as droughts and

heat waves, are a major source of risk to society and the environment. The purpose

of risk management is to design and implement a set of common procedures for

identifying, measuring, and managing such high impact events. However, there

is no uniformly accepted definition of extreme events. More often than not, the

process of identifying of extreme events has been typically based on classifying

them into groups with characteristics such as frequency of occurrence, intensity,

temporal duration and timing (Stephenson 2008). In addition, the evaluation

of multidimensional nature of extreme events, in most cases, has been confined

to individual grid points, thus overlooking embedded spatial dependency. The

Intergovernmental Panel on Climate Change (IPCC) defines climate extreme as

"the occurrence of a value of a weather or climate variable above (or below) a

threshold value near the upper (or lower) ends of the range of observed values of

the variable" (IPCC 2012). Typically, choice of high (or low) threshold depends

on the conventions of specific scientific disciplines. For example, the climate

science community tends to choose location-specific thresholds based on either

categories (e.g. Sun et al. 2007; Dai 2001; Dai et al. 2017), quantiles (e.g. Groisman

et al. 2005; Lau et al. 2013; Pendergrass and Hartmann 2014), combinations (e.g.

Kunkel et al. 2003, 2007, 2010, 2012) or indicies (e.g. Alexander et al. 2006;

Zhang et al. 2011; Donat et al. 2013a,b). In the realms of statistical modeling,

under appropriate conditions, excesses above (or below) high (or low) threshold

are often represented as part of generalized Pareto distribution (GPD) (Balkema
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and de Haan 1974; Pickands 1975), where requirements for a chosen threshold

is to be high (or low) enough to satisfy chosen goodness of fit test. Although

an interdisciplinary overlapping for the threshold choice is widely practiced, it is

still hard to compare extreme value analysis results between different scientific

studies if the threshold selection methodologies are differ. Even though, the

same forecast verification strategy (in this case, a variety of traditional grid-by-

grid point verifications methods (e.g Jolliffe and Stephenson 2003; Wilks 2011,

Chapter 8) is used across studies, the choice between forecasting models could

significantly diverge leading to different inference results. Thus a unified approach

for threshold selection (i.e. universal extreme event definition) is important because

it standardizes inference process for extreme events analysis, leading further to

consistency and transparency when compare results between different scientific

findings. Unification, standardization and transparency are the key pillars for

disciplined risk management.

Although, many univariatemethods have been proposed to automate the thresh-

old choice (e.g. Fukutome et al. 2015; Scarrott and MacDonald 2012; Bader et al.

2017), there are no clear cut criteria, and in practice threshold choice tends to be

determined by either explorationmethods or by stability assessments of parameters

estimates. Ultimately, the choice of threshold is always an interplay between bias

and variance (Smith 1987). For high extreme thresholds, if the chosen threshold is

not high enough, the GPD likely will not have a good fit to the excesses above the

threshold, leading to approximation bias. Conversely, if the chosen threshold is

too high, only a small number of exceedances will be generated and consequently,

there will be high variance in the estimators (in the case of low extreme thresholds,

these conditions are reversed). A more comprehensive evaluation of univariate
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extreme value theory (EVT) is given in the excellent book by Coles (2001).

Analysis of extreme events must also incorporate the spatial nature of the key

climate variables since many single quantities such as precipitation or temperature

are measured at multiple sites. Implementation of spatial extreme value analysis

has to be done using an integrative modeling approach (IMA), in which different

scientific disciplines are combined into one holistic process, joined by a common

modeling factor(s) subject to uniform assumptions. For example, in statistics, it

may involve integration of multivariate EVT (e.g. Cooley et al. 2012), geostatistics

(e.g. Banerjee et al. 2015), and spatial forecast verification (e.g. Friederichs and

Thorarinsdottir 2012), and in atmospheric science, it would encourage use of cou-

pled high resolution climate systems to resolve localized extreme events coupled

with spatial threshold selection algorithm to model spacial dependencies. While

myriad of other coupling combinations are possible, the challenging aspect of

this integration lies in maintaining suitable and consistent statistical assumptions

across all modeling blocks.

This paper proposes a new generalized spatio-temporal threshold selection al-

gorithm for extreme events within IMA framework. By the generalized, we mean

the algorithm’s applicability to the wide variety of essential climate variables and

their derived quantities (hereafter, essential climate quantities (ECQs)). The al-

gorithm detects large scale extreme spatial patterns that occupy fairly extensive

geographical areas. Those patterns contain extreme fields (i.e. for high (or low)

extreme thresholds, only fields from upper (or lower) quartile of the distribution

are selected) in both temporal and spatial variations, and can be linked to the

individual extreme episodes such as flash floods, hurricanes, droughts etc. The

threshold selection process is conditioned on these extreme patterns and enables
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one to detect latent spatial dependencies with a help of geometric indices from

digital topology. The algorithm incorporates spatial and temporal dependence in

one holistic modeling framework opening an opportunity for future analysis of

statistical inference of extreme events for spatial data for either a single quantity

(e.g. precipitation) or an index of multiple quantities (e.g. the Palmer Drought

Severity Index), which is not possible with traditional grid-by-grid point methods.

Moreover, the extreme threshold value that was estimated in the observational

setting and the resulted extreme geometrical field can be further applied in spatial

forecast verification and independently, in statistical modeling utilizing multivari-

ate EVT within IMA framework. This ensures consistently in matching extreme

threshold values and graphical fields across all stages of extreme value analysis.

Throughout, our analysis will describe the spatial pattern of conditional fre-

quency of extreme ECQ of precipitation over land, when conditioned on positive

extreme field (we can also condition on negative extreme field with minor algo-

rithm modification). The concept is similar to the high field energy that has been

described in (Gilleland et al. 2013) and defined as upper quartile in space of the

product of wind speed of updrafts and wind shear greater than its 90th percentile

over time, to identify severe storm environments. We adapted this approach to

accommodate specificity of our precipitation dataset and apply to detect high (or

low) extreme field for precipitation (or drought) as the 99th (or the 1st) percentile

in space greater than its 95th (or 5th) percentile in time. The formal definition will

be given in Section 4.2. Furthermore, to evaluate areas with the largest conditional

frequency values, we apply a new generalized spatio-temporal threshold selection

methodology that uses time series clustering procedure for a number of geometric

indices. This facilitates the algorithm’s ability to classify a spatial pattern of an
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image (here, conditional frequency of extreme ECQ of rainfall or drought) by a

number of geometrical constructs described in Table 1.

Pixel Smallest unit of a digital image

Isolated Structure Collection of adjacent pixels with value of one

Area Number of non-zero pixels in the structure

Convex Hull Smallest convex polygon that contains the structure

Perimeter Length of the outside boundary of the structure

Table 1: Geometrical constructs used in geometric indices

As far as we aware, this is a first published IMA in atmospheric science that

links threshold selection process conditioned on extreme patterns with clustering

of geometric index series.

The reminder of the paper is structured as follows. In Section 2, the dataset

is described. The conceptual framework and all methods are reviewed in Sec-

tions 3 and 4. The detailed desription of all steps for spatio-temporal threshold

selection algorithm starts with Section 4.1, where ECQ constructions is clarified.

In Section 4.2, the dimension reduction techniques are explained and important

definitions are formalized. The spatial domain methodology of mapping an image

to its corresponding geometric indices is formulated in Section 4.3. We inte-

grate geometric index series with clustering analysis in Section 4.4 and clustering

analysis with a threshold choice in Section 4.5. An application on daily precipita-

tion dataset for conditional frequency of extreme ECQ and important findings are

highlighted in Section 5. Our conclusions are presented in Section 6.
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2 Data

We will consider station-based precipitation measurements in mm/day obtained

from the Global Historical Climatology Network-Daily (GHCN-Daily; (Menne

et al. 2012b)) collected over the period 01/01/1961 to 12/31/2016 (56 years).

While the GHCN-Daily dataset is subject to a rigorous quality assurance procedure

(Menne et al. 2012a), it is not adjusted for artificial discontinuities such as changes

in station location, instrumentation and time of observation (Donat et al. 2013b).

To deal with this issues, we only select stations with at least 40% data coverage,

yielding 8516 observations shown in Figure 1.
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Figure 1: Spatial extent of GHCN-Daily dataset. The color
shade indicates the length of the observation period (14-56
years).

In addition, as described in Liang et al. (2004), we perform topographical

adjustments to account for the strong elevation dependence of the rain gauge sites
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by using Parameter-Elevation Regression on Independent Slopes Model (PRISM)

(Daly et al. 1994, 1997). We interpolate the GHCN-Daily dataset to a 30 km X 30

km grid covering the contiguous United States (CONUS), resulting over 20,000

days of spatial rainfall coverage.

3 Conceptual framework

The spatio-temporal threshold selection algorithm consist of four main steps:

1. ECQ construction is closely matched to the timeframe of interest.

2. Dimension reduction is based on statistical quantiles.

3. Spatial domain mapping is represented by geometric indices.

4. Threshold selection is linked to time series clustering.

For the purpose of this study, our focus is selecting a high threshold for

frequency of extreme ECQ based on daily precipitation rates for daily (short term)

rainfall events. Our algorithm is flexible enough to incorporate a low threshold

choice and for longer lasting events aswell. Next, we apply the dimension reduction

step to identify extreme processes which are spread out over a fairly extended

portion of spatial domain. These processes are used within the threshold selection

framework and integrated with methods from digital topology. Values greater or

equal than a chosen threshold are assigned to one, and values below to zero. This

is called image digitizing, and is a widely used technique in computer imaging.

The digitized image then can be mapped to a number of geometric indices that

represent certain graphical quality of the image. As the threshold varies, so do the

values of the geometric indices. As such, one can create threshold series that is
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mapped to the corresponding geometric index series. The mapping process can be

repeated for all geometric indices, creating a non-linear dependence between the

threshold series and the desired geometrical properties. A time series clustering

algorithm can be further used to select a representative threshold for each cluster.

Rather than considering extreme values at individual locations and their tem-

poral dependence, we consider an overall spatial field that is conditioned on being

extreme. In this case, it is possible to depict large-scale spatial extreme processes

independent of whether or not individual grid cells in space are being extreme.

The objective of the algorithm is to detect latent spatial dependencies for ECQ

of interest within large scale extreme events and to automate threshold selection

for extreme spatio-temporal processes. Ultimately, the identified spatial extremes

can be linked to the individual weather patterns because the corresponding occur-

rences times of such extremes events are tracked during the identification process

and the threshold choice for extreme events modeling can help to deepen our under-

standing of the underlying processes in forming those patterns that were possibly

overlooked in conventional grid point by grid point methods.

4 Methods

4 ECQ construction

The testing process for the algorithm will be based on standardized anomalies

over daily accumulation window (W). The proposed ECQ derivation involves the

following steps:

1. Remove seasonal patterns by subtracting climatological mean values over

the entire time length from the raw data.
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2. CalculateW - days rolling accumulated precipitation anomalies.

3. Standardize accumulated values by the corresponding 95th percentile.

In this study, we select W = 0, that is, our interest lies in short term (i.e.1-

day) extreme rainfalls. These short-duration impactful precipitation events can

produce a major natural hazard such as flash flood in some areas. For example,

a major rainstorm on September 2010 in Minnesota and Wisconsin is shown in

Figure 2, caused flash flooding and forced evacuations. The flexibility of this step

enables us to capture others, longer term, impactful extremes, such as September

2013 Colorado floods (W = 1, Figure 3), October 2012 superstorm Sandy (W = 4,

Figure 4) and May to October great floods of 1993 (W = 180, Figure 5)

30oN

40oN

50oN

120oW 100oW 80oW

−4 0 4 8 12 16

ECQ (W = 0)

Figure 2: Minnesota and Wisconsin flash floods, September
2010 (9/22-9/23/10).
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ECQ (W = 1)

Figure 3: Colorado floods, September 2013 (9/11-9/12/13).
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Figure 4: Superstorm Sandy, October 2012
(10/29-11/02/12).
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Figure 5: Great Flood of 1993, May - October 1993.

4 Dimension reduction

Traditional temporal dimension reduction methods such as principal component

analysis (PCA) and linear discriminant analysis (LDA), which rely heavily onmean

and covariance estimation, are not very informative for extremes. The block-

maxima approach often used to analyze extremes potentially excludes relevant

observations (Coles 2001). The challenge is therefore to subsample a relatively

small number of unsmoothed observations to represent the tail of the distribution.

Since our primary aim is to describe the spatial pattern of conditional frequency of

extreme ECQ and its temporal evolution, we adapted a quantile-based dimension

reduction methodology used by Gilleland et al. (2013) to analyze frequency of

severe storm environments, and applied it for temporal and spatial quantile values

more appropriate for the ECQ constructed from GHCN-Daily dataset. We further

formalize this approach with the following definitions.

Definition 4.2.1. Let Y (s, t) be a spatio-temporal ECQ, with number of spatial
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pixels s = [1, . . . ,S] and temporal samples t = [1, . . . ,T ], Q(η)
s (Y ) is called as η-th

quantile in space andQ(τ)
t (Y ) as τ-th quantile in time of ECQ Y , whereη ,τ ∈ [0,1].

Definition 4.2.2. LetQ(η)
s (Y ) be a univariate time series representingη-th quantile

in space of ECQ Y (s, t), Q(τ)
t [Q(η)

s (Y )] is called as τ-th quantile in time of η-th

quantile in space of ECQ Y .

Definition 4.2.3. Let H(s, t ′) ∈ Y be a spatio-temporal ECQ with t ′ = [t ′1, . . . , t
′
K],

where t ′ ∈ t and K 6 T , a process H(s, t ′) is called Positive Extreme Field (PEF)

if Q(η ′h)
s (Y )> Q(τ ′h)

t [Q(η ′h)
s (Y )] and η ′h,τ

′
h ∈ [0.75,1].

Definition 4.2.4. Let L(s, t ′) ∈ Y be a spatio-temporal ECQ with t ′ = [t ′1, . . . , t
′
K],

where t ′ ∈ t and K 6 T , a process L(s, t ′) is called Negative Extreme Field (NEF)

if Q(η ′l )
s (Y )< Q(τ ′l )

t [Q(η ′l )
s (Y )] and η ′l ,τ

′
l ∈ [0,0.25].

Based on these definitions, we can formulate a conditional frequency for ex-

treme ECQ as a function of high threshold θh as

f(Y|H)(θh) =

S
∑

i=1

K
∑
j=1

[H(si, t ′j)> θh]

K
(1)

Alternatively, we can define similar quantity if a low threshold θl is of interest.

f(Y|L)(θl) =

S
∑

i=1

K
∑
j=1

[L(si, t ′j)< θl]

K
(2)

For simplicity, we will omit the subscripts Y|H and Y|L when referring to the

conditional frequency. In terms of additional notations, let θ = [θ1, . . . ,θn] be

a set of initial thresholds and θ1 < θ2 <,. . . ,< θn. We can think of the series
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f (θ1), . . . , f (θn) as a procedure of partitioning a conditional frequency image

into several overlapping homogeneous fields, where each field is mapped into the

geometric indices described in the next section.

4 Spatial Domain Mapping

Geometric indices were first introduced by AghaKouchak et al. (2010) and applied

to validate radar data against satellite precipitation estimates andweather prediction

models. Gilleland (2017a) complemented geometric indices with mean-error and

mean-square-error distances, to introduce new diagnostic plots within a spatial

forecast verification framework. The diagnostics were applied to number of cases

from the spatial forecast verification intercomparison project (ICP, http://www.

ral.ucar.edu/projects/icp) (Ahijevych et al. 2009; Gilleland et al. 2009,

2010). The indices vary between zero and one and describe the connectivity,

shape and area of the image pixels for a predefined threshold. The connectivity

index is defined as

Cindex = 1− n−1√
m+n

, (3)

where n is the number of isolated structures, and m is the number of pixels with

value of one (i.e. above a chosen threshold). The connectivity index shows how

the structures within the image are interconnected. The higher (lower) the index

the more connected (dispersed) the fields are within the image. The shape index

is given by

Sindex =
Pmin

P
, (4)

where P is the perimeter of the pixels above a given threshold, and Pmin is the

theoretical minimum perimeter of an s-pixel pattern, which is attained if the
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pattern of non-zero pixels was formed closest to a perfect circle. Mathematically,

it is defined as

Pmin =

 4×
√

s, if b
√

sc=
√

s

2× (b2×
√

sc+1) , otherwise
,

where b·c is the floor function. The near one values of Sindex imply approximately

circular pattern of non-zero pixels. For more detailed discussion about these

indices see Gilleland (2017a). Finally, to measure object complexity, we introduce

another geometric index defined in Bullock et al. (2016) as follows

{index = 1− A
Aconvex

= 1−Aindex, (5)

where A is the area of the pixels (i.e. the number of non-zero pixels) above a given

threshold, Aconvex is the area of the convex hull around those pixels and Aindex is

defined as their ratio. The index values close to zero are representative of more

structured image patterns, whereas fairly dispersive image patterns imply values

near one.

As previously stated, past applications of geometric indices were performed

primarily for model validations. However, we adapt this approach to the obser-

vational settings to evaluate geometric index valued for different thresholds. The

aim is to determine specific geometrical properties that are relevant to the extreme

ECQs, where high (or low) threshold values are derived via time series clustering

procedure. That is, for every threshold θi from the set of initial thresholds θ ,

geometric indices are estimated and then grouped into the index series for time

series clustering depicted in the following section. For brevity, we will represent
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these index series as I j[ f (θ)], where j = [1,2,3] and I j[·] is an index operator

for geometric index j of conditional frequency f at threshold θ . For example,

I1[·] = Cindex[·], I2[·] = Sindex[·] and I3[·] = {index[·]. An example of evolution of

geometric indices as a function of a threshold is shown in Figure 6.

0.3
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0.5

0.6

0.7

0.8

0.9

4 6 8 10
Threshold

Cindex

Sindex

1-Aindex

Figure 6: Geometric indices evolution as a function of
threshold for summer ECQ (GHCN-Daily dataset).

Analyses are performed using the SpatialVx (Gilleland 2017b) package in R.

4 Time Series Clustering

Clustering is a Machine Learning process of grouping unlabeled data into ho-

mogeneous segments or clusters. Segmentation is performed in such a way that

inter-group dissimilarity is maximized and intra-group similarity is minimized ac-

cording to objective criterion. The degree of dissimilarity (or similarity) between

the clustered objects is of major importance in cluster analysis. Partitioning in the

clustering method entirely depends on a distance or dissimilarity metric, which

measures how far away two objects are from each other. Common dissimilarity

metrics such as Euclidean and Manhattan are not suitable for time series cluster-

ing because they ignore serial correlations within the time series. Our main aim
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however is to investigate the spatio-temporal features of sequences of conditional

frequency images that may exhibit high degrees of serial correlation at different lag

times. Therefore, the first fundamental task in applying the clustering method is

the selection of a dissimilarity metric that can capture these subtle characteristics.

The following dissimilarity measures have been adapted from Galeano and

Peña (2000) and Caiado et al. (2006). Given f (θ) mapping to I j[ f (θ)], where

j = [1,2,3], we let Il[ f (θ)] and Im[ f (θ)] to be two geometric index series, that is

Il[ f (θ)] = Il[ f (θ1)], . . . , Il[ f (θn)] and Im[ f (θ)] = Im[ f (θ1)], . . . , Im[ f (θn)] for l 6=

m. We denote estimated autocorrelation vectors of Il and Im by ρ̂Il = (ρ̂1,Il . . . ρ̂R,Il)

and ρ̂Im = (ρ̂1,Im . . . ρ̂R,Im) for some R such as ρ̂i,Il ≈ 0 and ρ̂i,Im ≈ 0 for i > R.

Dissimilarity between Il and Im is measured by the following Euclidean distance:

dACF(Il, Im) =

√
R

∑
i=1

(ρ̂i,Il− ρ̂i,Im)
2 (6)

Analogously, we define φ̂ii,Il and φ̂ii,Im as the estimated partial autocorrelations of

Il and Im. A corresponding dissimilarity metric is given by

dPACF(Il, Im) =

√
R

∑
i=1

(φ̂ii,Il− φ̂ii,Im)
2 (7)

We use the TSclust package in R (Montero and Vilar 2014) to calculate

both distances. Choice of the number of clusters K is another important task in

the clustering algorithm. It typically involves an extensive search for number of

clusters greater than one, which is further evaluated by the a variety of criterion

measures. For example, the NbClust() function in the NBClust package in R

(Charrad et al. 2014) gives user a choice between 30 different indices to judge a

quality of clustering solution. Generally, cluster selections is still an unresolved

23



problem requiring multiple iterations. This step, however, is somewhat simpler in

our case. Given the initial threshold series θ , which is constructed in the ascending

order, the clustering choice will be limited to the three clusters only (K = 3), we

call them: low extreme, penultimate extreme and extremewith particular emphasis

on the penultimate extreme (here, second) cluster. This decision is motivated by

the tradeoff between bias and variance. After the clustering solution is found,

the first (low extreme) cluster should have threshold values that are too low for

the extreme values selection and the third (extreme) cluster should have threshold

values that are too high. If the threshold choice is made from the first cluster, bias

can occur and the choice from the third cluster could lead to increased variance

in the estimators. We therefore focus on the second cluster in order to minimize

both bias and variance impact. Having decided on the number of clusters and

the dissimilarity measures, makes it possible to describe clustering algorithm.

The most popular partitioning clustering approaches are k-means and partitioning

around medoids (PAM) (Kaufman and Rousseeuw 1987). K-means creates cluster

centers by averaging points within the cluster. The averaging process can be

sensitive to outliers and it also breaks the max-stability property, so that mean of

two maxima is no longer a maximum, which is an important assumption in EVT.

PAM, implemented in cluster package in R (Maechler et al. 2017), provides a

more robust outcome, where each cluster is identified by its most representative

object called a medoid. Additionally, it preserves observational features of the

dataset, which is important for clustering extremes. The algorithm has two phases,

BUILD and SWAP:

1. In the first phase, k representative objects are selected to form initial clus-

tering set.
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2. In the second phase, an attempt is made to improve clustering by exchanging

selected and unselected objects.

The objective of PAM is for all selected clusters to minimize average dissim-

ilarity between their centrally located representative object and any other object

in the same cluster. Further details can be found in Kaufman and Rousseeuw

(1990). The quality of the resulting clusters and the choice of number of clusters

can be assessed using the so-called "silhouette coefficient" (Rousseeuw 1987). A

silhouette coefficient is a useful statistic for determining how similar an object is

to its own cluster (cohesion) compared to other clusters (separation). For an object

i it is defined as follows,

s(i) =
b(i)−a(i)

max{a(i),b(i)}
, (8)

where a(i) is the average dissimilarity of object i to all other objects in its cluster

and b(i) is the minimum average distance of object i to all other objects in the

given cluster not containing i. The value of the silhouette coefficient s(i) ranges

between -1 and 1, where a negative value is undesirable. If s(i) ≈ 1, a strong

structure has been found, which means that inter-cluster distance is much larger

than intra-cluster distance. Conversely, if s(i) < 0.25, no substantial structure

has been found. The average silhouette coefficient s̄(K) can be used to evaluate a

quality of segregation into K clusters, such as, for any K = [1, . . . ,n] find max
K

s̄(K).

4 Threshold Selection

It is worth mentioning that there is a considerable amount of literature on threshold

selection for image segmentation (e.g. Sezgin et al. 2004; Sahoo et al. 1988), a
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process of image partitioning into meaningful regions, which is somewhat similar

to our procedure. This may include such computer vision tasks as finding a single

threshold to separate an object in an image from its corresponding background, or

segregation of light and dark regions, or in our case, it involves identifying distinct

extreme episodes that spread out over a large portion of spatial domain. Though

offering invaluable information, these methods are not informative about spatial

patterns (Kaur andKaur 2014) and are thus not appropriate for complex images (i.e.

color images where multiband thresholding may be necessary) (Yogamangalam

and Karthikeyan 2013).

Our threshold choice is directly linked to the outcome of the time series clus-

tering step. The clustering solution produces results for the three clusters and

their medoids, where every member is linked to the threshold and corresponding

values of three geometric indices. As mentioned in previous section, we address

bias/variance trade-off by selecting members from the second cluster only. The

threshold selection is implemented as follows. First, we select maximum average

silhouette coefficient between S̄ACF and S̄PACF and call it S̄best. This is necessary

to select a best clustering solution between two distance measures. Next, the

medoid from the second cluster is matched by the S̄best. This will correspond to

our threshold choice. Finally, the medoid index in the overall time series is used

to determining corresponding geometric indices. Equipped with both, the high

spatio-temporal threshold value and the spatial domain snapshot represented by

geometric indices, the user can make more informative choice on the threshold

selection for the extremes and its applications.
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5 Results

We applied the threshold selection algorithm to the daily ECQ for precipitation

over CONUS. The heavy rainfall is seasonally dependent and varies in space and

time. Thus, in order to understand the complete evolution of f (θ) and its spatial

extent, we stratified the dataset by seasons defined as winter (DJF), spring (MAM),

summer (JJA), and fall (SON). For every season, we automatically determined a

high threshold value using the geometric index series clustering procedure. Each

cluster strength was analyzed with the average silhouette coefficient; values near

one suggest strong clustering structures. Every threshold value was mapped to a

corresponding set of geometric indices, revealing various geometrical properties

of the spatial image. In addition, to evaluate performance of the algorithm on how

well three clusters are separated and the resultant geometrical properties of the

conditional frequency of extreme ECQ, we characterized the results for GPD fit in

the following manner:

Cluster 1. Low extreme. Sampling from this cluster will most likely result in

approximation bias.

Cluster 2. Penultimate extreme. The threshold values from this cluster can be

used for GPD analysis.

Cluster 3. Extreme. Selection from this cluster may lead to high variance in the

estimators because of lack of data points.

The outcome of this process for all three clusters is displayed in Tables 2 - 4.
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Months θ s̄(K) Cindex Sindex {index A

DJF 7.07 0.51 0.69 0.44 0.75 2218

MAM 9.46 0.49 0.61 0.40 0.77 1796

JJA 9.42 0.51 0.58 0.40 0.80 1953

SON 9.58 0.51 0.63 0.45 0.73 2594

Table 2: Results of spatio-temporal threshold selection algorithm for second (penultimate
extreme) cluster.

Months θ s̄(K) Cindex Sindex {index A

DJF 4.05 0.79 0.80 0.65 0.48 5787

MAM 5.62 0.79 0.74 0.62 0.49 5180

JJA 6.67 0.72 0.69 0.56 0.62 3970

SON 6.76 0.74 0.74 0.62 0.50 5423

Table 3: Results of spatio-temporal threshold selection algorithm for first (non-extreme) cluster.

Months θ s̄(K) Cindex Sindex {index A

DJF 9.09 0.56 0.71 0.37 0.79 1173

MAM 10.35 0.56 0.64 0.31 0.86 989

JJA 11.52 0.58 0.64 0.32 0.86 1209

SON 11.27 0.58 0.63 0.36 0.82 1597

Table 4: Results of spatio-temporal threshold selection algorithm for third (extreme) cluster.

Since our main interest lies in the spatial distribution of frequency for ex-
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treme ECQ conditioned on PEF, we performed inter-cluster comparison to further

demonstrate that the three clusters are well separated. The first, low extreme, clus-

ter depicted in Table 3 has higher connectivity and shape index, in addition to a

larger areal extent and smaller complexity than the other two cluster. Utility of this

cluster is to sample relatively small threshold values. not appropriate for extreme

value analysis. Comparing Tables 2 and 4 (Cluster 2 and Cluster 3) reveals that the

frequency of extreme ECQ in the penultimate extreme cluster has the following

characteristics: lower connectivity (all numbers have been rounded to two digits)

and higher shape index, with larger areal extent and smaller complexity. The same

information can be visually validated in Figure 7.
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Figure 7: Frequency of ECQ conditioned on PEF with W = 0 for GHCN-Daily dataset.
Left column - low extreme cluster with threshold values from Table 3; middle column -
penultimate extreme cluster with threshold values from Table 2, and right column -
extreme cluster with threshold values from Table 3, for every season: Winter (top row),
Spring (second row), Summer (third row), and Fall (bottom row).
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The main advantage of having larger areal extent and lower connectivity in

spatial forecast verification for extremes is that it provides a more coherent rep-

resentation of extremes in space and, as a result, allows for a more informative

decision about the causes, severity and impact of the extremes under climate

change, assuming climate models can simulate these patterns reasonable well.

These graphical qualities make the penultimate extreme cluster the best choice for

higher threshold selection for extreme value analysis.

In addition, this threshold selection approach illustrates a fundamental differ-

ence between the methodology adopted here and other approaches for defining

extreme event frequency. It is a common practice for threshold choice in univari-

ate EVT to carry out an exploratory analysis or stability assessment of estimated

parameters in temporal domain without considering any spatial dependencies. In

our case, having frequency for extreme ECQ conditioned on PEF algorithmically

determined, allows for the analysis of temporal patterns within a fairly large spatial

field, notwithstanding that many of the individual grid cells are not necessarily

extreme. Each box plot in Figure 8 summarizes one of the geometric indices and

the areal extent distribution when the dataset was stratified by year.
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Figure 8: Time series of Cindex (top left), Sindex (top right),
{index (buttom left), and A (bottom right) for annual ECQ
conditional frequency for three clusters in the threshold
selection algorithm.

Unsurprisingly, for the penultimate extreme cluster, the spatial and temporal

dependence of the geometric indices and the area of frequency for extreme ECQ

conditioned on PEF determined by the threshold selection algorithm is different

from two other clusters. Of course, one important question to be addressed from

these analyses is whether the difference is statistically significant. We compared

the second cluster to remanding two clusters by performing a two-sided Wilcoxon

rank sum test. The results were all significant at the 99th percentile confidence

level. Clearly, our clustering process characterized clustering structure for low

extreme, penultimate extreme and extreme clusters well, which is also confirmed

by the relatively high average silhouette coefficients in the corresponding tables.

Therefore, a threshold selection from three different clusters for extreme value

analysis could lead to different outcomes in spatial forecast verification, and ul-

timately to different statistical inferences regarding factors that explain extreme

weather and climate events.
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6 Conclusions

Lack of universal definition of what we mean by the word "extreme" creates a

difficulty when comparing different scientific studies of extreme events. This

makes statistical inference much harder and obfuscates transparency and risk

management process. The current study is an attempt to formalize this important

concept. We introduced a new spatio-temporal threshold selection algorithm

for extreme events within IMA framework. With the help of three clusters, we

demonstrated that the results for the penultimate extreme cluster are statistically

significant when compared to two other, low extreme, and extreme, clusters.

The main advantages of this algorithm are the following. It automates the

threshold selection process in the objective way and can ultimately be used in

conjunction with spatial forecast verification and modeling of extreme events. It

is adaptable to model extremes with both high and low threshold choices. It

incorporates spatial and temporal dependence in one holistic modeling framework

thus opening an opportunity for future analysis of statistical inference of extreme

events for univariate and possibly multivariate ECQ, which is not possible with

traditional grid point by grid point methods. It also links a threshold choice with

desired geometrical properties therefore offering a user a more informative and

flexible choices in selecting extreme events. The algorithm is relatively fast and

could be embedded within weather modeling systems to identified synoptic scale

spatial patterns that can be linked to the individual extreme episodes.

Furthermore, an interesting perspective for this work is to determine whether

or not, from the ensemble of different climate models and multiple statistical sim-

ulations, one can capture dynamic and thermodynamic properties of the spatio-

32



temproal structure of f (θ). Another perspective is to investigate how the observed

spatio-temporal patterns for frequency of extreme ECQ have changed and the

causes of those changes, utilizing the most recent detection and attribution frame-

work (e.g. Knutson et al. 2017; Ribes et al. 2017).
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