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Clouds play a key role in regulating the Earth’s climate. Real cloud fields are 

non-uniform in both the morphological and microphysical sense. However, most 

climate models assume the clouds to be Plane-Parallel Horizontal (PPH) plates with 

homogeneous optical properties. Three characteristics of 3D clouds have been found to 

be important for longwave radiative transfer. They are: (1) the 3D geometrical structure 

of the cloud fields, (2) the horizontal variation of cloud optical depth, and (3) the 

vertical variation of cloud temperature. One way to incorporate the 3D geometrical 

effect in climate studies is through the use of an effective cloud faction, for which a 

major component is the Probability of Clear Line Of Sight (PCLOS). The PCLOS also 

plays an important role in accounting for longwave 3D effects caused by variable cloud 
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optical depth and vertical change of cloud temperature.  

Aimed at improving the parameterization of longwave radiative transfer through 

3D clouds, this study formulated a set of PCLOS models and tested the models with the 

Atmospheric Radiation Measurement (ARM) cloud observations.  

In order to investigate the sampling issue that arises from attempting to obtain 

domain-averaged information from time series of observations, an evaluation technique 

was developed and tested with Cloud Resolving Model (CRM) and Large Eddy 

Simulation (LES) model data. 

 Various cloud properties that are necessary for the PCLOS models such as the 

absolute cloud fraction (N), cloud thickness, cloud spacing, and horizontal size were 

inferred from the ARM observations. A set of automated inference techniques were 

developed. The modeled PCLOS was then tested with the PCLOS inferred from time 

series of total sky images.  

Based on parameters obtained, most models yield PCLOS values that agree with 

the observations within ±0.2 for the zenith angle range from 10o to 80o. Models that 

assume the clouds are Poisson distributed give better results than those that explicitly 

specify the cloud spacing and size distributions.  

Ignoring the 3D geometrical effect, the PPH approximation underestimates the 

downward flux by about 3.7 ± 2.5 Wm-2 for the fair weather cumulus over the ARM 

Southern Great Plains (SGP) site. The limiting factor for the models to generate reliable 

estimates of the effect may be the uncertainties in the cloud parameters obtained to date.
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Chapter 1 

Introduction 

 

1.1     Background 

Clouds can reflect solar radiation thereby cooling the climate system; they can 

also trap thermal radiation and heat the system. One measure of the cloud radiative 

effects on the climate system is cloud forcing, which is the difference between the clear-

sky and all-sky net radiation at the top of the atmosphere. The Earth Radiation Budget 

Experiment (ERBE) indicates that clouds can result in a global mean shortwave forcing 

of –44 Wm-2 and a longwave forcing of 31 Wm-2. The net forcing is  –13 Wm-2 

(Ramanathan et al. 1989), which means that, were the clouds to be removed suddenly 

from the atmosphere while keeping all other radiative properties unchanged, the global 

mean earth-atmosphere system would realize an instantaneous increase of the net 

radiation flux density to it of about 13 Wm-2, an increase of about 5.5%.  

The earth climate system is very sensitive to the changes of radiation balance. 

An inter-comparison of 19 different global climate models showed that the differences 

between model results may stem mainly from the climate induced changes of cloud 

radiative forcing (Cess et al. 1990). This indicates that relatively small systematic errors 

in either or both forcing components may greatly affect the performance of the models 

in predicting the responses of the climate system to the increase of the greenhouse 

gases. The high sensitivity of the climate models to the changes of radiative forcing 

requires an accurate treatment of the cloud-radiation process in Global Climate 
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Model (GCM). 

Most GCMs approximate radiation fluxes and heating rates as the cloud amount 

weighted average of clear and overcast values, i.e., 

clearcloud FNNFF )1( −+=                                                   (1.1) 

where Fclear and Fcloud are the clear and overcast (upward or downward) fluxes (F), 

respectively. The weighting factor N is the absolute cloud fraction, which by definition 

is the fractional area of the vertical projection of clouds.  Fclear and Fcloud are calculated 

using 1D radiative transfer model assuming both the atmosphere and clouds are 

horizontally homogeneous.  This simplification neglects the 3D structure of the real 

cloud field and inhomogeneity of the optical properties within individual clouds. It is 

equivalent to modeling the clouds as plane-parallel horizontal (PPH) plates with 

homogeneous optical properties.  Some models make an additional assumption that 

clouds are black in the longwave region.  

 Real cloud fields are non-uniform in both morphological and microphysical 

senses. Morphological properties that describe a cloud field include:  cloud fraction or 

number of clouds, spatial distribution of clouds, vertical and horizontal dimensions of 

individual clouds, shape of clouds and cloud height. Microphysical properties include: 

liquid water content, particle size distribution, phase composition, and temperature 

inside clouds. In combination, the morphological and microphysical properties 

determine the optical characteristics of a cloud field. A cumulus cloud field is an 

example of a real cloud field with high spatial variability.  

A cumulus cloud field consists of a group of individual clouds with finite 
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horizontal and vertical dimensions separated by clear air. The horizontal dimension of 

an individual cloud is the order of 0.1-10 km, which is much smaller than the resolution 

of the state-of-art GCMs. In addition to the bulk geometrical brokenness of the cloud 

field, there is also great spatial variation inside the clouds. A fine structure with 

significant variations may occur over a few meters inside a cumulus cloud. All these 

together make the optical properties in a cumulus cloud field highly inhomogeneous.   

The error due to neglecting the 3D cloud effects in radiative transfer calculations 

may be large enough to be climatically significant (Harshvardhan and Weinman 1982; 

Ellingson 1982; Heidinger and Cox 1996; Han and Ellingson 1999; Takara and 

Ellingson 2000). Based on Eq 1.1, the cloud forcing at the surface, defined as 

CF = F - Fclear, where F is the downward flux at the surface, may be written as 

CF = N (Fcloud - Fclear). Thus the error in CF due to the variations of N at a given level 

may be estimated as δN (Fcloud - Fclear). For low or middle clouds (cloud base less than 

6 km) and N = 0.5, a cloud fraction change of no more than 5% would generate an error 

in the surface longwave CF of the same magnitude as the direct forcing from CO2 

doubling, which is about 1 Wm-2 at the surface. As noted by the references cited 

directly above, the effects of neglecting 3D cloud effects are often much larger than 

this. 

By using the ASTEX (Atlantic Stratocumulus Transition Experiment) data, 

Heidinger and Cox (1996) estimated that longwave surface flux schemes that ignored 

the vertical dimensions of clouds typically underestimated the longwave surface forcing 

by about 9 Wm-2 on average.  

Harshvandhan (1982) made a study on the sensitivity of the outgoing longwave 
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and incoming shortwave radiative fluxes to the changes in global cloud cover. He 

concluded that, compared to the PPH approximation, the magnitude of the individual 

sensitivity terms (the shortwave sensitivity term and longwave sensitivity term) may be 

altered two- or three-fold under certain conditions if the cloud brokenness was taken 

into account.  These indicate that using the PPH approximation to deal with the 

radiative transfer under cloudy conditions may not be valid for some climate studies. 

 

1.2     Previous work 

The transfer of radiation through non-PPH clouds has received considerable 

attention for the past three decades. Using the cumulus observations of Plank (1969), 

Niylisk (1972) studied the possibility of computing the area averaged downward 

longwave flux using a modified plane-parallel calculation while taking into account the 

cloud side effects. He suggested the use of an effective cloud fraction, which 

incorporates the cloud side effect, instead of the absolute cloud fraction in Eq 1.1 to 

improve the calculation of the area-averaged fluxes. In addition, he presented a model 

for calculating the probability of clear line of sight (PCLOS), which is a geometrical 

characteristic of a 3D cloud field and also a key factor when discussing the cloud side 

effect or formulating the effective cloud fraction. 

In a study of the effects of cloud dimensions on longwave irradiance and heating 

rate calculations, Ellingson (1982) developed a simplified effective cloud fraction 

model to incorporate the effects of cloud geometry and vertical temperature variation 

within the cloud layer. The model is an extension of the approach of 
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Avaste et al. (1974). It parameterized clouds as randomly distributed black but non-

isothermal right circular cylinders with constant cloud base height. Based on the model, 

he found that the irradiance and heating rate are nonlinear functions of the absolute 

cloud amount, cloud size, and cloud base and top altitude. Incorporation of cloud 

dimensions in the calculation results in more downward irradiance at the surface 

(1 - 4%) and less escaping the atmosphere (up to 8%) than from the PPH 

approximation. The subcloud layer experiences more heating (as much as 20%), 

whereas the tropospheric column experiences more cooling (up to 10%).  

Harshvandhan and Weinman (1982) studied upward longwave radiative transfer 

through a regular array of cuboidal clouds. Clouds are either black or uniformly non-

black. One of their conclusions is that the geometrical considerations often dominate 

over the microphysical aspects of radiative transfer through the clouds. Their example 

shows that the difference in simulated 10 µm brightness temperature between black 

isothermal cubic clouds and cubic clouds of optical depth 10 is less than 2 K for zenith 

angle less than 50o for all cloud fractions. While neglecting the cloud side effects may 

result in 2 - 8 K error in brightness temperature for cubic clouds over a wide range of 

zenith angles.  In their study, they also gave an expression for the effective cloud 

fraction for a regular array of cubic clouds. Different from previous studies, their 

expression is not derived directly from the PCLOS but is based on a numerical fit to the 

transmission of diffuse light through an opaque array of cuboids. 

Barker and Wielicki (1997) examined the impacts of the horizontal variation of 

optical depth and cloud sides on the grid-averaged longwave flux transmittance. They 

revealed the effect of variable optical depth on the longwave radiative transfer. Like the 
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cloud side and variable temperature, variable optical depth is another aspect that affects 

the longwave radiative transfer through a non-PPH cloud field. They concluded that the 

magnitude of the effect due to variable optical depth is larger than that from cloud sides 

and suggested a scheme to parameterize area-averaged cloud transmittance. Their study 

was based on fields of optical depth inferred from 45 Landsat images and the PCLOS 

was simulated using Monte Carlo technique from the optical depth fields. 

Han and Ellingson  (1999, 2000) made the first attempt to test the various 

effective cloud fraction expressions with experimental data. Observations from the 

Atmospheric Radiation Measurement (ARM; Stokes and Schwartz 1994)) Southern 

Great Plains (SGP) Clouds and Radiation Tested (CART) site were used to derive the 

absolute cloud fraction, cloud size, spacing and many other cloud field variables. The 

effective cloud fraction was extracted from hemispheric flux observations. To derive 

area-averaged variables from time series observations, all their variables were averaged 

over a sampling period of 10 minutes. Their conclusions were: (1) Cloud bulk 

geometrical parameters significantly affect the difference between the effective cloud 

fraction and the absolute cloud fraction; and (2) Cloud horizontal distributions do not 

significantly influence cloud mutual shading and the effective cloud fraction for cloud 

fields with small aspect ratios and absolute amount. 

Takara and Ellingson (1996, 2000) investigated scattering effects on longwave 

radiative transfer through a field of randomly distributed right cylindrical clouds. The 

spectral interval was limited to the 8 - 12 µm window region where it is expected that 

the longwave 3D cloud effects and scattering effects will be most significant. Their 

results show that compared to the cloud side effect, cloud scattering can be neglected 



 7 

for optically thick water clouds in summer and tropical soundings. The errors due to 

neglecting cloud scattering are largest close to the cloud layer and decrease as the 

distance from the cloud layer increases. 

Many attempts have been made to find methods to incorporate 3D cloud effects 

into radiative transfer calculations while, at the same time, save computational 

resources. For example, the effective cloud fraction has been suggested to account for 

the cloud side effect (Niylisk 1972; Ellingson 1982; Harshvandhan and Weinman 1982; 

Naber and Weinman 1984; Han and Ellingson 1999; Masunaga and Nakajima 2001). 

Area-averaged cloud transmittance or emittance has been parameterized to account for 

the variable optical depth effect (Barker and Wielicki 1997; Li and Barker 2002). 

Much of the aforementioned research explicitly employed various forms of the 

PCLOS, which characterizes the radiative-transfer-relevant bulk geometrical effect of 

clouds with finite vertical dimensions. The PCLOS describes the probability that a line 

of sight can pass through a cloud field without intersecting a cloud. It is a function of 

absolute cloud fraction, cloud distribution, cloud size and shape.  Figure 1.1 shows an 

example of the PCLOS for randomly distributed cylindrical clouds with a constant 

cloud base altitude. If clouds have any vertical dimension, the PCLOS decreases with 

increasing zenith angle. This is due to the so-called cloud side effect. At a zenith angle 

θ > 0, cloud sides will also obscure part of the sky. Given the same cloud fraction and 

distribution, the greater the cloud vertical dimensions, the larger the cloud side effect 

until mutual shading occurs. At the zenith, the PCLOS = (1 - N), here N is the absolute 

cloud fraction. 

The PCLOS is a property of 3D cloud field. Its involvement in the longwave 3D 
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effect is very complicated, but correctly specifying the PCLOS in a parameterization 

scheme for longwave radiative transfer through 3D cloud field is very important. Most 

previous research focused on theoretical calculations and a variety of PCLOS models 

have been suggested, based on different assumptions concerning the cloud field 

properties and different approaches of modeling (Kauth and Penquite 1967; 

Niylisk 1972; Ellingson 1982; Naber and Weinman 1984; Killen and Ellingson 1994; 

Han and Ellingson 1999). Few efforts have been spent on the validation of the various 

models. It is not clear which if any represents real clouds. 

Although there are some observational investigations in the literature (Lund and 

Shanklin 1972, 1973; Rapp et al. 1973; Yu et al. 1986), they were aimed at obtaining 

the climatic value of the PCLOS and did not have detailed information about the cloud 

field properties available. For example, the PCLOS data from Lund and Shanklin (1972, 

1973) was an average of three years of summer-season observations taken at 

Columbia Mo. It ignored variations caused by diurnal cycles, weather conditions and 

cloud altitudes, and did not have detailed cloud morphological information available. 

As such they are not useable for validating the PCLOS models we address in this study. 

The experimental data from the ARM program (Stokes and Schwartz 1994) has a 

detailed description of the clouds and radiation field over its CART sites. This enables 

us to extract the PCLOS and the variables that were not available before but are 

necessary for calculating the PCLOS from models, and hence makes the validation of 

the PCLOS models feasible. 
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1.3 Study objective and outline 

To contribute to the goal of improving parameterization of longwave radiative 

transfer through 3D clouds, this study has three objectives:  

(1)  Give a systematic discussion of the PCLOS models and make extensions based on 

increased understanding of the morphological properties of cloud fields (Chapter 3).  

The PCLOS models used by previous researchers are scattered in various papers. A 

systematic discussion will enhance our understanding of the various PCLOS models 

and facilitate the testing process. The PCLOS models will be grouped based on 

different modeling approaches and basic assumptions. Besides detailing the 

previous derivations, several improvements and extensions will also be attempted.  

(2)  Develop a method to investigate the sampling issue that arises from attempting to 

obtain area-averaged information from time series of observations at one location 

(Chapter4). 

Most of the ARM cloud observation instruments are fixed at the ground and detect 

the clouds only in the zenith direction. Continuously operated instruments generate 

time series of cloud observations. The desired spatially averaged quantities are 

usually obtained by averaging the series over a period of time (assuming the frozen 

turbulence approximation, that is, the statistical properties of the cloud field do not 

change as the clouds advect with the mean wind speed or develop over the site). 

Issues that are very important to our testing work, and also to anyone who wants to 

infer spatially averaged variables from time series observations, are the length of the 

time series and the frequency of the observations within the series. Over how long a 
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time period should the average be taken? How do observation frequencies of the 

different instruments affect the result? How well does the time-averaged value 

represent the area-averaged value? In this study, a random field approach will be 

taken to address the problem. The method evaluates the accuracy of various 

averaging schemes by making use of the variance and auto-correlation function of 

the field. The method will also be tested using several cloud fields generated by 

cloud resolving or large eddy simulation models.  

(3) Extract the various cloud variables from the ARM observations and test the PCLOS 

models (Chapter 5).  

For the purpose of testing the PCLOS models, cases with broken clouds present are 

desired. In this study, we concentrate on cumulus cloud fields to test the PCLOS 

models because they tend to have the most apparent bulk properties; they have 

significant frequency of occurrence and spatial coverage especially over low and 

middle latitudes (Hahn and Warren 1999), and they are also difficult to be 

represented in large-scale models. To avoid the complexity of overlapping cloud 

layers, only single layer cumulus cloud fields are selected from the comprehensive 

observations and used in the testing. Comparisons will be made between model 

calculated PCLOS and values determined from a variety of ground-based 

instruments including sky dome images, cloud radar, lidar, radar wind profiler and a 

narrow field-of-view radiometer.  

Current GCMs do not explicitly account for 3D radiative effects. As an 

important parameter for longwave radiative transfer through 3D cloud fields, the 

PCLOS has the potential to be used in future radiation parameterization schemes. In this 
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study, through the systematic discussion of various PCLOS models, we explicitly point 

out the needed variables for various PCLOS models, that is, the physical parameters 

necessary to make use of the PCLOS in the parameterizations. Also, through the 

comparison of models with the ARM observations, the performance of the models and 

the validity of the various assumptions used by the models can be tested. This will 

facilitate the selection of the models for eventual use in climate simulations. In the long 

run, the results from this study will be useful to the development of better GCM 

parameterizations of radiative transfer in cloudy atmospheres, which in turn will 

contribute to improved climate simulations.  

Chapter 2 gives background descriptions concerning 3D cloud effects on 

longwave radiative transfer and the ARM cloud observing instruments that are relevant 

to testing the PCLOS models. Chapter 6 summarizes and concludes the research and 

gives directions for future work. 

 



 12

Chapter 2 

3D cloud effects on longwave radiative transfer and the ARM 

cloud observations 

 

2.1 3D cloud effects on longwave radiative transfer 

Three characteristics of 3D clouds have been found to be significant to 

longwave radiative transfer and have drawn much attention in the literature. They are 

(1) the 3D geometric shape of clouds, (2) the horizontal variation of the cloud optical 

depth, and (3) the vertical variation of cloud temperature. (Ellingson 1982; Harvandhan 

and Weinman 1982; Takara and Ellingson 1996; Barker and Wielicki 1997; Han and 

Ellingson 1999, 2000; Masunaga and Nakajima 2001).  

The most apparent effect due to the 3D shape of the clouds is the increase of the 

probability of seeing a cloud when the line of sight goes from the zenith to horizon. 

This influences the effective cloud fraction and hence the radiation fluxes under the 

cloudy condition.  

That the variable optical depth can affect the longwave radiative transfer is a 

result of the nonlinear dependence of the longwave transmittance on the optical depth. 

The cloud temperature links directly to the longwave radiation through the 

Planck function. However, it is the brokenness of the cloud field or the presence of non-

opaque clouds that allows the vertical temperature variation to alter the longwave 

radiation under cloudy condition. Details will be given in the following sections. 
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Figure 2.1 gives an illustration of the 3D cloud effect on longwave radiative transfer 

due to the three characteristics of the clouds.   

To help explain the 3D cloud effect, consider a quasi-3D cloudy atmosphere 

(Fig. 2.2) comprised of a horizontally homogeneous atmosphere with a layer of 

azimuthally averaged clouds in it. All quantities are azimuthally averaged values. There 

is only one layer of clouds and all clouds are constrained in the layer between zb and zt, 

denoting cloud base height and cloud top height, respectively. Scattering is neglected. 

We consider the area-averaged downward longwave radiation flux at a level z under the 

cloud layer. Following Niylisk (1972) and Ellingson (1982), 

∫ ∫∫ +=
1

0
)( 3,

1

0

003 ),,,(
2

)(),(2)(
µ

µµµπµµµµπ
cA DcD dxdyyxzId

A
dPzIzF         (2.1) 

where I0(z,µ) and Ic,3D(z,x,y,µ) are the radiances received at level z from the clear and 

cloudy portions of the sky above, respectively. Since the atmosphere is horizontally 

homogeneous, I0(z,µ) is independent of horizontal position, while Ic,3D(z,x,y,µ) is a 

function of horizontal position, because of the inhomogeneity of the cloud field. P0(µ) is 

the azimuthally averaged probability of a clear line of sight. µ is the cosine of zenith 

angle. Ac(µ) is the projection area of the clouds at direction µ. A is the total area of the 

domain. 

Using the same form as Eq 2.1, the area-averaged flux for the PPH 

approximation can be written as  
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where N is the absolute cloud fraction and Ic,PPH(z,µ) is the radiance coming from a PPH 

cloud. Since N is independent of µ, and since 
�������

= � π � �	


∫

��� µ � µ µ , Eq 2.2 reduces to 

Eq 1.1.  

We are interested in the difference between the area-averaged fluxes from the 

PPH approximation and the 3D clouds. 
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 In the above equation, the pencil of radiance passing through the 3D cloud field 

and reaching on level z may be written as  
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where 0 – zt denotes the mass along a slant path at a direction µ between the top of 

atmosphere and the level zt. Thus, I0(0 – zt, µ) denotes the radiance incident at zt in 

direction µ generated by atmosphere above the cloud layer, and I0(zb – z, µ) is the 

radiance at z in direction µ generated by atmosphere below the cloud layer. T0(zb – z, µ) 

is the transmissivity of the atmosphere below the cloud layer along µ. In the following, 

we will ignore the absorption by atmospheric gases within the cloud layer for discussion 

purposes. Thus, zt – zb denotes only the cloud mass. Tc(zt – zb, x,y,µ) is the cloud 

transmissivity through the cloud layer in direction µ corresponding to a horizontal 
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position denoted as (x, y). Ic,3D(zt – zb, x,y, µ) is the radiance at z  in direction µ from the 

clouds. Ic,PPH(z,µ) would have the same form as Eq 2.4, only the transmissivity and the 

radiance from the cloud are independent of horizontal positions.  

 

2.1.1 Geometrical effect 

Consider the 3D clouds to be isothermal blackbodies. This will eliminate the 

optical depth and temperature variations. Only the cloud bulk geometric property can 

contribute to this 3D effect. The cloud layer transmissivity Tc,PPH = Tc,3D = 0. The PPH 

cloud is assumed to be a black plane-parallel cloud. Under these assumptions, the flux 

difference at level z may be written as 

[ ]
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where ),(, µbtPPHc zzI − and ),(3, µbtDc zzI − are downward radiance at level zb from the 

PPH cloud and 3D black clouds, respectively. If the PPH cloud takes the same 

temperature at the 3D isothermal black clouds, ),(),( 3,, µµ btDcbtPPHc zzIzzI −=− . 

Thus the difference between the PPH approximation and 3D black clouds can be 

rewritten as  
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[ ] µµµµµπ dPNzIzIzF c ))(1(),(),(2)( 0

1

0

0 −−−=∆ ∫                      (2.6) 

Eq. (2.6) shows that, for isothermal black clouds, the difference between the 

area-averaged fluxes from the PPH approximation and 3D black clouds is caused by the 

difference between NP −= 1)0(0  and P0(µ). Note that )()1( 0 µPN ≥− for all µ, and on 

the other hand, since the atmosphere temperature generally decreases with height, the 

clear-sky radiance is usually less than that from the cloudy-sky, i.e. 

0),(),(0 ≤− µµ zIzI c . Thus, the PPH approximation would underestimate the 

downward flux at level z. 

Referring to Fig. 2.1, the geometric effect can also be described intuitively. The 

PPH approximation uses the absolute cloud fraction N as a weighting factor to calculate 

the domain-averaged fluxes. N is the fractional cloud cover projected vertically 

downward on the ground. It is equivalent to say that the PPH approximation uses this 

same cloud fraction for all zenith angles to count the radiance from clouds. No matter 

the zenith angle, only those beams that fall in the N portion of the cloud projection (the 

homogeneous rectangular boxes in the figure) are counted as the beams from clouds 

(beam (B) for example). Whereas in a broken cloud field, the existence of spacing 

between clouds allows radiation from cloud sides to reach at level z as well (beam (A) 

in Fig. 2.1). However, since these beams fall outside the PPH cloud vertical projection, 

they will be neglected by the PPH approximation and instead be counted as clear. 

When clouds are broken and have vertical dimensions, viewed at any angle 

θ > 0, the clouds will expose a larger area to an observer than that from the PPH 



 17

approximation. A larger projection area means a larger fraction of sky being obscured 

by clouds. That is, there is an increment in N. Since the increment will always be 

positive, if clouds are assumed as blackbodies, compared to the PPH approximation, the 

brokenness of the cloud field will increase the downward flux under the clouds and 

decrease the upward flux above the clouds.  

The extent of the longwave geometric effect depends on the vertical dimension 

of the clouds, the distribution of the spacing between clouds and the shape of the 

clouds. The larger the vertical extent of the clouds and the spacing between clouds, the 

larger the geometric effect of the clouds. The spacing between clouds closely relates to 

the cloud fraction. As the cloud fraction becomes larger and larger, the spacing between 

clouds becomes smaller and smaller. This will depress the geometric effect because of 

the increase in the mutual obscuration. The shape of the clouds also has an impact on 

the geometric effects. Given a same vertical extent, a cloud with a large, flat top tends 

to obscure more sky than a cloud with a small, round top, and thus will have more 

pronounced geometric effect. 

 From Eq. (2.6) we notice that there is another term that also controls the impact 

of clouds on a level outside the cloud layer. The term ),(),(0 µµ zIzI c− is the 

difference between clear and cloudy radiance at level z, and 

[ ] ),(),(),(),(),( 000 µµµµµ zzTzIzIzIzI bbcbc −−=− ,  

where [ ]),(),(0 µµ bcb zIzI −  is the difference between clear and cloudy radiance at 

cloud base level zb. The transmissivity T0(zb – z, µ) represents the attenuation by the 

atmosphere between the cloud base zb and the level z. If the intervening atmosphere is 
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very opaque, the 3D cloud effect or any cloud effects at level z will be largely 

attenuated. This implies two consequences. First, especially at lower levels of the 

atmosphere, due to the large amount of absorbing gases, the 3D effects will mostly 

affect the layers that are close to the cloud layer. Second, the 3D cloud effect will be 

more significant in the window region because there is a large difference between 

Io(zb, µ) and Ic(zb, µ) and To(zb – z, µ) is close to 1. These are actually general properties 

of longwave radiative transfer in a cloudy atmosphere and are not limited to the 3D 

cloud effect. 

 

2.1.2 Variable cloud optical depth effect 

Liquid water clouds are not always black, as there may be a substantial amount 

of thin clouds present in a broken cloud field. The optical depth may span a wide 

spectrum of values. Due to the nonlinear dependence of the cloud transmission and 

emission on the optical depth, neglecting the inhomogeneity in the optical depth may be 

another source of bias in the PPH approximation (Barker and Wielicki 1997). 

To illustrate the impact of the variable optical depth, assume the 3D clouds are 

non-black and isothermal, and for simplicity also ignore the geometric effect, i.e., 

P0(µ) = 1 - N.  The PPH cloud is assumed to be a non-black plane-parallel 

homogeneous cloud. The flux difference between the PPH approximation and 3D 

clouds at level z can be written as 

[ ]∫ −∆+∆−=∆
1

0

00 ),()()(),0(2)( µµµµµµπ dzzTITzINzF bcct                (2.7) 
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where     
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are the transmissivity and radiance differences between the PPH approximation and the 

3D clouds for the cloud layer. The area averages have been replaced by averages over 

the optical depth ensemble, i.e., 
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τc
µ is the cloud optical depth measured along the slant path described by µ. )|( µτ µ

cp  is 

the probability distribution of the slant path optical depth conditional upon µ (Barker 

and Wielicki 1997). Again for discussion purposes we neglect the absorption by 

atmospheric gases within the cloud layer. Note that with the isothermal assumption, the 

radiance difference may be further written as  

          
[ ]
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where Bc is the Planck function at the cloud temperature. ),(, µε btPPHc zz −  and 

),,(3, µτε µ
cbtDc zz −  are the slant path emissivities for the PPH cloud and 3D clouds, 

respectively. The flux difference (Eq. (2.7)) can be rewritten as  

[ ]∫ −∆−−=∆
1

0

00 ),()(),0(2)( µµµµµπ dzzTTBzINzF bcct                         (2.8) 

Where 
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 The manifestation of the effect of neglecting the horizontal variation of the 

optical depth in the PPH approximation is through the transmission (or emission) 

difference between the PPH approximation and 3D clouds. The difference results from 

the nonlinear dependence of the transmission on the optical depth. The transmission at 

the average optical depth may not equal the average transmission, i.e., 

∫ −− ≠ µµµτµτ τµτ
µ

cc dpee cPPHc )|()(, . The sign and size of the effect due to the variable 

optical depth depend on the choice of PPHc,τ  and the distribution of τc
µ(µ). It has been 

shown that if PPHc,τ  takes the mean of τc
µ(1), i.e. the mean value of the vertical optical 

depth, the PPH approximation will overestimate the downward flux at the surface. 

The expression for the flux difference due to the variable optical depth 

(Eq. (2.8)) is similar to that due to the geometric effect (Eq. (2.6)). Both of them imply 

that the state of the atmosphere above the cloud layer or intervening the cloud layer and 

level z will also affect the 3D cloud effect observed at level z.  For example, consider 

the [ ]ct BzI −− ),0(0 µ  term in Eq. (2.8). For downward longwave radiation, if the 

absorbing gases above the cloud layer are so dense that they emit radiation at a 

temperature close to the cloud temperature, there will be little contrast between the 

clouds and their background. Neither the geometric change nor the optical depth 

variation will have much impact on the downward flux at level z for this condition. This 

is an important consideration away from the window regions; however, the atmosphere 
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is always sufficiently transparent that there is a spectrally integrated difference between 

the emission from the clear and overcast portions of the sky. 

 

2.1.3 Variable temperature effect 

 The third aspect of the longwave 3D cloud effect is due to the non-uniform 

temperature within the cloud layer. To simplify the explanation of the effect, assume the 

3D clouds are non-isothermal and opaque, and ignore the geometric effect, i.e. 

P0(µ) = 1 - N. Only the vertical variation of temperature is considered. The PPH cloud 

is assumed to be a black plane-parallel plate. The downward flux difference between the 

PPH approximation and 3D cloud may be written as  

[ ] µµµµµπ

µµµµµπ
µ

dzzTzdzpzBBN

dzzTdxdyyxzzI
A
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 −−−=∆

∫ ∫
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(2.9) 

where Bc,PPH  is the Planck function for the PPH cloud. Bc,3D(z’,µ) is the Planck function 

for the 3D clouds at altitude z′ . z′  is the height of the location on the cloud side from 

where a pencil of radiance emits downward to level z at direction µ. z′  ranges from the 

cloud base height, zb, to the cloud top height, zt. )|( µzp ′  denotes the probability 

distribution of z′  conditional on µ. Like that in Eq. (2.7), the ensemble average over z′  

has been substituted for the average over area. The size and sign of the flux difference 

depend on the choice of the temperature of the PPH cloud and the distribution of 
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)|( µzp ′ . Since the temperature of a real cloud will usually decrease with increasing 

altitude, if the PPH cloud is set at the cloud base temperature, the PPH cloud will 

overestimate the downward flux, as has been shown by Ellingson (1982). The reason 

for this is because the portion of radiation from cloud sides is emitted at a temperature 

that is lower than the cloud base temperature, which is the one the PPH cloud assumed. 

For upward flux, the PPH approximation usually emits radiation at the cloud top 

temperature. This may underestimate the upwelling flux. Compared with the geometric 

effect, the impact of the variable temperature is of opposite sign.  

 In the above discussions, the three aspects of the 3D effects were addressed 

separately, but in reality, the three aspects act simultaneously. That is, a real cloud field 

may have simultaneous variations in the cloud vertical dimension, optical depth and 

vertical temperature gradient. The longwave fluxes though the 3D cloud field is a 

combined result of all three aspects of the 3D effects. The PCLOS plays a major role in 

determining the radiative transfer through the broken cloud field for each effect, 

although it is primarily connected with the geometrical effect. The effective cloud 

fraction, suggested by some researchers to address the geometrical effect, is almost 

solely dependent on the PCLOS. Nonetheless, the PCLOS is an important modulating 

factor for the longwave 3D cloud effects. Thus, a close study of the PCLOS of broken 

cloud fields will surely contribute to the general understanding of the longwave 3D 

radiative transfer. 
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2.2     The ARM cloud observation instruments. 

The Central Facility (CF) of the ARM SGP CART site is located between 

Lamont and Billings, Oklahoma (36.61N, 97.49W, 315 m above sea level). A variety of 

instruments have been deployed at the site aimed for mapping the three-dimensional 

structure of the atmosphere, cloud and radiation field in a continuously and automated 

fashion. In the following, a brief description will be given for several instruments that 

are relevant to our goal of testing the PCLOS models. Detailed information can be 

found at http://www.arm.gov. Table 2.1 lists the desired cloud field properties and the 

instruments from which the properties will be determined in this study.  

Table 2.1: The desired cloud properties and the instruments used to measure or infer them. 

 

   Variable    Instruments 

   PCLOS(θ)    TSI, WSI 

   Absolute cloud fraction    NFOV, TSI, Lidar/Ceilometers, MMCR, ARSCL 

   Cloud spacing distribution    NFOV, Lidar/Ceilometers, MMCR, ARSCL 

   Cloud horizontal size distribution    NFOV, Lidar/Ceilometers, MMCR, ARSCL 

   Cloud base height    Lidar/Ceilometers, MMCR, ARSCL 

   Cloud top height    MMCR, Lidar, BBSS 

   Wind speed    RWP915, BBSS 

 

TSI – Total Sky Imager 

WSI – Whole Sky Imager 

NFOV – Narrow Field of View Sensor 

MMCR – Millimeter wave Cloud Radar 

RWP915 – 915-Mhz Radar Wind Profiler and radio acoustic sounding system 

BBSS – Balloon-Borne Sounding System 

ARSCL - Active Remotely-Sensed Clouds Locations 
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The all sky images taken by the Total Sky Imager (TSI) and Whole Sky Imager 

(WSI) will be used to infer the PCLOS as a function of zenith angle. The TSI is an 

automatic, full-color sky imager system. It records visual images of the sky dome from 

a heated, rotating hemispherical mirror at an adjustable sampling rate, which is set at 

one per 20 seconds at the SGP site. The field of view of the TSI is about 160o. The 

resolution of the output image is 352x288 pixels. The TSI data available at the ARM 

data archive starts in July 2000 and includes the raw sky images and classified ‘cloud 

decision’  images. The availability of the classified images greatly facilitates our 

retrieval of the PCLOS. Detailed information on inferring the PCLOS from the TSI and 

WSI is presented in Chapter 5. 

The WSI is a ground based imaging system that monitors the upper hemisphere 

using a fisheye lens and four spectral filters (near IR, red, blue and neutral). Besides the 

cloud presence and distribution, the WSI can also measure the radiance in an 

approximately 1/3o increment over the entire sky dome (180o). The chief advantage of 

the TSI compared to WSI is its higher time resolution. The time interval between 

images for the TSI is 20 seconds, whereas for the WSI, it is 6 minutes. The WSI is 

capable of acquiring images under daylight, moonlight, and starlight conditions. The 

data has been available from the SGP site since 1995.  

The Narrow Field of View Zenith Radiometer (NFOV) is a ground-based 

radiometer that looks vertically upward. It operates at a wavelength of 869 nm and 

senses a spectral interval that has a Full Width at Half Maximum (FWHM) of 10 nm. 

The field of view of the instrument is 5.7o.  The output of the instrument is a time series 

of 1-sec observations of the downwelling spectral radiance at the zenith. Two main 
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features of the NFOV pertinent to our study are its high sampling rate and narrow field 

of view. These features enable us to precisely measure the horizontal sizes of the clouds 

and spacing between clouds as will be discussed in detail in Chapter 5.  

Since the horizontal size and spacing are inferred using the frozen turbulence 

assumption, wind speed is a must for this study. It is obtained from the 915-Mhz Radar 

Wind Profiler (RWP915).  The RWP915 makes observations in a cyclic sequence of 

five pointing directions, one in vertical and four in near-vertical directions (two in the 

north-south vertical plane, and two in the east-west vertical plane). The radial 

components of the wind speed are determined for each of the directions from Doppler-

shifted return signals. Horizontal wind speed and direction are then obtained by 

combining the radial components. Profiling is achieved by measuring the time delay of 

the radar pulses. The measurement range of the RWP915 at the SGP site is 0.1 – 5 km. 

The wind speed data from the radar is a 50-minute averaged value with an accuracy of 

about 1 m/s. 

The Millimeter wave Cloud Radar (MMCR) is a 35 GHz zenith-pointing cloud 

profiling radar. It measures the radar reflectivity (dBZ) of the atmosphere up to 20 km 

at a time resolution of 10s. Its Doppler capability also allows the measurement of the 

vertical velocities of cloud constituents. The main purpose of this radar is to determine 

cloud boundaries (e.g., cloud bottoms and tops). Although the short operating 

wavelength gives the MMCR the capability of observing almost all clouds including the 

non-precipitating clouds, large amounts of non-hydrometeor particulates over the SGP 

CART site, such as insects and bits of vegetation, make the radar difficult to use for 

detecting lower lever clouds during the warm seasons.  
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Information from various laser instruments can be used to complement the 

MMCR cloud detection. Several Lidars relevant to this study are the Micropulse Lidar 

(MPL), the Vaisala Laser Ceilometer (VCEIL) and the Raman Lidar (RL). These 

instruments emit short, powerful laser pulses in the vertical direction, and measure the 

light intensity backscattered by haze, fog, clouds and atmospheric molecules (RL only) 

as the laser pulses traverse the sky. The MPL and VCEIL are elastic backscatter 

systems that measure the return signal at the same wavelength as the transmitted beam. 

Based on the delay time between the transmitted pulse and the returned scattering signal 

the MPL and VCEIL can detect the cloud base height and, for some thin clouds, the top 

height. The RL measures the Raman scattering signals at 387 and 408 nm due to 

nitrogen and water vapor molecules, respectively. A range-resolved water vapor mixing 

ratio can then be deduced from the ratio of the water vapor signal to the nitrogen signal. 

The water vapor mixing ratio profiles may help us to determine the availability of the 

water vapor to cloud formation at the cloud top level and thus acts as a complementary 

information source for the determination of the cloud top height. 

The Active Remotely-Sensed Clouds Locations (ARSCL) is ARM’ s attempt to 

produce an objective determination of hydrometeor height distributions, their radar 

reflectivities, vertical velocities, and Doppler spectral widths from the combination of 

data from the various remote sensing instruments including the MMCR, the Lidars and 

a Microwave Radiometer (MWR) (Clothiaux et al. 2001). It contains information about 

the cloud boundary heights (cloud base and cloud top) for each cloud layer detected, as 

a function of time. However, due to the lack of a satisfactory solution to the airborne 

clutter problem at the present, the cloud top data from the ARSCL is in its tentative 
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state, especially for those boundary clouds that occur with the clutter layer present and 

extended to above the cloud top. 

 Table 2.2 summarizes specifications of the various cloud observation 

instruments that are relevant to our work of testing the PCLOS models.  

 

Table 2.2  The ARM cloud observation instruments and their specifications. 
(More details concerning the above instruments can be found at:  
http://www.arm.gov) 

 
 
Instrument 

 
Primary quantities 
obtained  
 

 
Spectral 
characteristic 

 
Field of 
View 

 
Temporal 
resolution 

 
Vertical 
resolution 

 
Measurement 
Accuracy 

Total Sky Imager 
(TSI) 

Time series of 
hemisphere sky 
images. 

Full color visible 160o 
(352 x 288 
pixels) 

20 sec.   

Whole Sky Imager 
(WSI) 

Sky radiance; 
Cloud cover. 

650 nm,  
(FWHM = 70nm);  
450 nm, 
(FWHM = 70nm); 
800 nm, 
(FWHM = 70nm); 
400 – 900 nm. 

180o  
(34 mrad 
Angular 
resolution) 

1 – 10 min. 
(6 min at 
SGP) 

 ±5% (radiance) 

Narrow Field of 
View Sensor  
(NFOV) 

Zenith spectral 
radiance.  

869 nm 
(FWHM = 10nm) 

5.7o 1 sec.  ±15% (radiance) 

915-MHz Radar 
Wind Profiler and 
Radio Acoustic 
Sounding System  
(RWP915) 

Wind profiles  
(0.1 – 5 km); 
Virtual temperature 
(0.1 – 1.5 km). 
 

915 MHz  60 min. 0.06 – 
 1 km 

1 m/s (wind 
speed) 

Millimeter Wave 
Cloud Radar 
(MMCR) 

Radar reflectivity; 
Doppler spectra; 
Cloud boundaries; 
Cloud constituent 
vertical velocity.  
(0.1 – 15 km) 

35 GHz 0.2o 10 sec. 45 m, 
90 m  

0.1 m/s (vertical 
velocity) 
0.5 dB 
(reflectivity) 

Micropulse Lidar 
(MPL) 

Cloud boundary. 
(0.12 – 20 km) 

523 nm 0.1 mrad.  
(beam 
divergence) 

1 min. 300 m,  
75 m  

 

Vaisala 
Ceilometer 
(VCEIL) 

Cloud base height. 
(0.2 – 7.5 km) 

905 nm 0.66 mrad  
(beam 
divergence) 

15 sec. 15 m  

Raman Lidar  
(RL) 

Vertical profiles of 
water vapor mixing 
ratio or aerosol 
scattering ratio. 

408 nm (H2O) 
355 nm (aerosol) 
387 nm (N2) 

0.1 mrad 
(beam 
divergence) 

10 min. 78 m  

Balloon-Borne 
Sounding System 
(BBSS) 

Vertical profiles of 
temperature, 
relative humidity, 
wind speed and 
direction. 

  Every 6 
hours at 
0530, 1130, 
1730, 2330  

2 s 
(sampling 
rate) 

0.3oc (temp.) 
%1 (R.H.) 
0.5m/s (wind) 
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Chapter 3 

Formulation of the PCLOS Models 

 

The PCLOS is the probability of a clear line of sight through a cloud field at a 

given zenith angle. Assuming the cloud field is isotropic in horizontal directions, the 

PCLOS is not a function of azimuth. We will address three ways to model the PCLOS. 

(1) Since the PCLOS is equivalent to 1 - N(θ), where N(θ) is the cloud fraction seen at 

zenith angle θ or the fractional projection area projected at θ onto a horizontal plane, 

finding N(θ) is equivalent to determining the PCLOS. (2) Following the definition of 

“PCLOS”, one can trace a line of sight to determine its chance of passing through a 

clear section of the cloud field, provided that one has statistical information concerning 

the cloud field along the line of sight. (3) Following Han and Ellingson (1999), PCLOS 

can be modeled as the fractional number of cloud pairs that are separated from each 

other by a critical distance.  

For each method mentioned above, depending on the assumptions made about 

the cloud field, there are differences among various PCLOS models. For example, for 

the method of calculating N(θ), if we assume clouds are regularly distributed on a plane, 

we obtain one model of the PCLOS. Or if we assume clouds are randomly distributed 

on a plane, we get another model of the PCLOS. In this chapter, we will discuss the 

three methods of modeling the PCLOS and give expressions for the various models. 
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3.1   Modeling the PCLOS by computing N( � ) 

 Depending on the method of describing a cloud field, three methods of modeling 

N(θ) will be addressed in this section. The first method describes the cloud field by 

explicitly specifying cloud size and spacing distributions. The second method assumes 

the clouds with arbitrary sizes are randomly distributed on a horizontal plane. The third 

method arranges the clouds regularly on a horizontal plane. 

 

 

3.1.1 Given cloud size and spacing distributions 

This type of model was first used by Niylisk (1972), and latter by Killen and 

Ellingson (1994) and Han and Ellingson (1999). Here we will give a systematic 

discussion of the model. The model infers N(θ) from a vertical section of a cloud field. 

Fig. 3.1 illustrate such a section of a cloud field. For such a 2D cloud field, 1-N(θ), 

which is equivalent to the PCLOS, is given by  

elementcloudtheoflengthmean

s

linedomaintheoflengthtotal

s
Np cc )()(

)(1)(
θθ

θθ ==−= ∑

(3.1) 

where sc(θ) represents a clear section on a horizontal line parallel to the line of the cloud 

base that is not covered by the projections of the clouds at zenith angle θ. 

As seen from Fig. 3.1, a feature of this 2D cloud field is that for every cloud 

there is a corresponding spacing associated with it. The number of clouds is the same as 

the number of spacings. We may define a combination of a cloud and the spacing to its 
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left as a cloud element. A cloud field consists of many such cloud elements. Fig. 3.2 

illustrates a single cloud element.  

The absolute cloud fraction N, which by definition is the fraction of the total 

lengths occupied by the vertical projections of clouds for such a 2D cloud field, may be 

given as  

sd

d

sd

d
N

+
=

+
=

∑∑
∑

                                                (3.2) 

where )0(css = , and sd +  is the mean length of the cloud elements. Eq. (3.2) connects 

the mean cloud horizontal size to the mean cloud spacing through the absolute cloud 

fraction. With a given N, p(θ) can be written as 

s

s
Np c )(

)1()(
θθ −=                                                      (3.3) 

Eq. (3.3) indicates that when the line of sight is in the zenith direction,  )(θcs  equals s  

and the PCLOS becomes (1-N). When the zenith angle of the line of sight approaches 

90o, (the horizontal), )(θcs  goes to zero and PCLOS approaches zero. 

Given a zenith angle θ, every cloud element has a corresponding sc(θ) which is 

the portion of s uncovered by the projection of the cloud on the horizontal line at θ. 

Assuming the cloud elements are independent of each other, the mean sc(θ) can be 

given by 

∫∫
>

=
)0(

),(),,()(
cswithelementscloudall

cc dhdshsphsss θθ                                 (3.4) 

where p(s, h)dsdh is the joint probability of a cloud element with its spacing lies in 

],[ dsss +  and height in ],[ dhhh + . If we further assume that the cloud spacing and 
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size are independent of each other, in other word, )()(),( hpsphsp = , then the mean 

sc(θ) can be written as 

∫∫
>

=
)0(

)()(),,()(
cswithelementscloudall

cc dhdshpsphsss θθ                             (3.5) 

In the above discussion, the three characteristic parameters of a cloud element s, 

d and h are all independent of each other. There is no restrictive relations among them, 

except Eq. (3.2).  

Plank (1969) found that the cloud height and the cloud diameter for fair weather 

cumulus may be fitted to a function of the form 

a

d

d

d

h








=

max

β  

where d is the cloud diameter, dmax is the maximum diameter of the clouds, and a and β 

are fitting parameters. He also found that the average value of a is close to 0.0. Thus, 

the cloud height can be related to cloud diameter simply by dh β= , i.e., a fixed aspect 

ratio. This result has been used by several other authors (Han and Ellingson 2000; 

Killen and Ellingson 1994). The simple linear relationship between the h and d qualifies 

them to have a same distribution. That is p(h) and p(d) will have same functional form 

and parameters. Instead of using ),( hs , we use ),( βhds =  to characterize a cloud 

element. Eq. (3.5) can be rewritten as 
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cc dddsdpspdsss θθ                            (3.6) 

Now a general form of PCLOS for the 2D cloud field can be given as  
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So far our discussion is in a general sense. No specific form of p(s), p(d) and 

cloud shape have been assumed. There can be various combinations of p(s), p(d) and 

cloud shapes. The power law distribution, Weibull distribution, exponential distribution 

and the lognormal distribution are four theoretical distributions that have been used to 

model cloud size and/or cloud spacing distributions (Plank 1969; Lopez 1977; Joseph 

and Cahalan 1990; Zhu et al. 1992; Han and Ellingson 1999). The cloud shapes that 

have been used by various authors include right-cylinder, semi-ellipse, isosceles-

trapezoid and so on. In the following sections we will discuss some combinations of the 

aforementioned distributions and cloud shapes.  

To facilitate the following discussion, we give a naming convention for the 

various PCLOS models according to the different p(s), p(d) and cloud shape each model 

employed. All the PCLOS models will be named in the form of  

 

“Domain Dimension _ (sd/xd/cd) _ Type of p(s) _ Type of p(d) _ Cloud Shape” 

 

where the domain dimension, 1D or 2D, indicates the dimension of the space that the 

cloud bases occupy. A 1D domain is a horizontal line, and every cloud is assumed to be 

a 2D geometric object that lies on the line. “sd/xd/cd” indicates the type of cloud 

spacings (see Fig. 3.3). ‘sd’  denotes that the cloud spacing is defined as the distance 

between the edges of two adjacent clouds.  “xd/cd” type of cloud spacing will be 

mentioned in the following sections. As an example of the naming convention, 

“1D_sd_Power_Power_IsoscelesTrapezoid” means a PCLOS model which assumes an 
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one dimensional cloud base domain, ‘sd’  type of the cloud spacing, power-law 

distributions for both the cloud size and spacing, and an isosceles-trapezoidal cloud 

shape. 

 

 

3.1.1.a   1D_sd_Power_Power_IsoscelesTrapezoid 

For an isosceles trapezoidal cloud, sc(θ) can be written as  

)tan(tan),,( ηθβθ −−= dsdssc                                                 (3.8) 

where s is the cloud spacing, d is the cloud size and β is the aspect ratio (= h/d). The 

angle η is the inclination angle of the isosceles trapezoidal cloud. To compute the 

PCLOS we need to calculate the mean sc as shown in Eq. (3.7). When performing the 

integration, one should pay attention to the integration limits in Eq. (3.7), as some 

combinations of s and d may generate unrealistic negative values of sc.  As seen from 

Fig. 3.2, sc is the clear section of s at zenith angle θ. It decreases with increasing θ, but 

should not be less than 0. The zero value occurs when the spacing is totally covered by 

the cloud projection. Thus, one has to carefully select the limits of the integration to 

fulfill the condition sc ≥ 0. This condition implies )tan(tan ηθβ −≥ ds or 

)tan(tan ηθβ −≤ sd . Another condition for Eq. (3.8) is that the equation applies only 

when θ > η. Note that, when a line of sight is at a zenith angle θ < η, it will either see 

the clear sky or be blocked by the cloud base, but not see the cloud side.  

If there exist minimum values for the cloud size and spacing, the integral 

domain will have different shapes for θ greater or less than )tan(tan minmin
1 ηθ += − hsc , 



 34

where smin and dmin ( = hmin/β) denote the minimum spacing and size, respectively. All 

these conditions combined to determine the integral domain for )(θcs , as illustrated in 

Fig. 3.4. 

When θ > θc, the shadow of the cloud with any height will be greater than smin. 

Thus the integral domain is  
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When θ < θc, the shadow of a cloud is very short, and even the cloud elements 

with smallest spacing will have sc > 0. Thus the integral domain is  







∞→
−

→

min

min

:

)tan(tan
:

ss

s
dd

ηθβ  

Considering the appropriate integral domain, Eq. (3.7) for isosceles trapezoidal 

clouds can be rewritten as 
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Assume the cloud spacing and horizontal size both have power law distributions 

given as,  
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where u and v are parameters, and smin and dmin denote the minimum values of s and d, 

respectively. The PCLOS for a 1D domain, isosceles trapezoidal shape and power law 

distributions for both cloud spacing and size may be written as 

 

( )

( ) [ ]

( ) [ ]












>+−−

≤<+−−

≤−

=

−

−

c
u

c
v

FbaN

bFaFN

N

p

θθθ

θθηθθ

ηθ

θ

for)(11

for1)()(1

for1

)(

2

1                     (3.11) 
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When θ approaches η, PCLOS goes to (1-N). When θ approaches 90o, PCLOS 

approaches zero. Please note that the above equations implicitly assume 

2,1,3,2 ≠≠>+> vvvuu .  

  

 

3.1.1.b   1D_sd_Power_Power_SemiEllipse 

In this section we address a model that is different from the above one only with 

the cloud shape changed to a semi-ellipse. Cloud shape is incorporated into the model 

by giving different sc and limits to the integrals in Eq. (3.7). The derivation of the sc for 
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a semi-ellipse cloud is illustrated in Fig. 3.5. In the figure, a cloud is placed in an x-y 

plane with the cloud base centered at the origin of the coordinates. The cloud horizontal 

size is d. A line of sight that is tangent to the cloud is written as  

)tan41(
tan2tan

22 θβ
θθ

++= dx
y                                       (3.12) 

By setting x = 0 in Eq. (3.12), we can obtain sc(θ) for a semi-ellipse cloud as 

)1tan41(
2

)( 22 −+−= θβθ d
ssc                                      (3.13) 

where β is the aspect ratio ( = h/d ). By the same arguments as for the isosceles-

trapezoid clouds, one can determine the integration limits for s and d for the semi-

ellipse clouds 
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Assuming the same power law distributions as Eq. (3.10) for both cloud spacing and 

cloud size, Eq. (3.7) yields p(θ) for the “ 1D_sd_Power_Power_SemiEllipse”  model 
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where   
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As seen, it has the same form as Eq. (3.11), except the different form for F(θ) and tanθc. 

Since a semicircle is a special case of a semi-ellipse, we can obtain p(θ) for 

“ 1D_sd_Power_Power_Semicircle”  model by setting β = 0.5.  

 

 

3.1.1.c   1D_sd_Exp_Exp_SemiEllipse and 1D_sd_Exp_Exp_IsoscelesTrapezoid 

 In addition to the power law distribution one may also assume other 

distributions for cloud spacing and size distributions. Here we assume exponential 

distributions for both the spacing and size, 
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                                                      (3.15) 

where µ and ν are distribution parameters. These yield the formulas for p(θ) as  
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where    
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The expression for p(θ) obtained by assuming the exponential distributions is 

relatively simple compared with the one assuming the power law distributions. For the 

power law distributions, due to the requirement of the existence of minimum values for 

the cloud spacing and size, p(θ) has to be divided into two parts, one for θ > θc and one 

for θ < θc, while for the exponential distributions, there is no such inconvenience. 

 

 

3.1.2 Poisson distributed Clouds 

The aforementioned models explicitly specify the cloud size distribution (by 

giving p(d)) and characterize the cloud spatial distribution using the distance between 

clouds. Another way to describe a cloud field is to assume that clouds of arbitrary sizes 

are randomly placed on a 1D or 2D domain according to a Poisson law. Use of the 

Poisson distribution in PCLOS modeling was seen in the work of Kauth and 

Penquite (1967), where he derived a PCLOS model for a cloud field consisting of 

randomly distributed ellipsoidal clouds. In this section we will use his method for both 

1D and 2D domains and consider cloud shapes of semi-ellipses, isosceles-trapezoids 

and truncated-cones, not necessarily because these shapes are better but because they 

yield results comparable to other PCLOS models we address in this work. 
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Consider a 1D domain cloud field. Each cloud in the field will cover a certain 

part of the domain. Assuming the domain is infinite in length, the increment in the total 

fractional length by adding a new cloud would be an infinitesimal dt(θ), where t(θ) is 

the total fractional length covered by the projections of the clouds at angle θ, which is 

computed by summing the fractional length contributed by every cloud and multiply-

covered lengths would be counted multiply. As more clouds are added onto the line, a 

greater chance for overlap will occur. When overlapping cases occur, the increment in 

cloud cover at θ, or the increment in the probability of observing a cloud in the line of 

sight at θ, will be  

[ ] )()(1)( θθθ dtNdN −=                                            (3.17) 

Taking the initial condition N(θ) = t(θ) = 0, rearranging and integrating (3.17), yields 

)(1)( θθ teN −−=  

Since )(1)( θθ pN −= , p(θ) is given as  

)()( θθ tep −=                                                     (3.18) 

Defining )0()()( ttf θθ = , and noting that  (1-N) = )0()0( tep −=  enables p(θ) to be 

written as  

)()1()( θθ fNp −=                                              (3.19) 

Since a PCLOS model of this kind assumes a Poisson distribution for the cloud 

spatial distribution and does not explicitly incorporate cloud size distribution, the only 

variable factor that can lead to variant forms of p(θ) is the cloud shape. This can be seen 

from Eq. (3.19) as well, where only f(θ) is unspecified.  
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According to the definition, f(θ) is a function of only cloud shape and should be 

calculated as  

∫
∫=

...,...),(,...),,0(

...,...),(,...),,(
)(

dhdrhrphra

dhdrhrphra
f

θ
θ                              (3.20) 

where r is the radius of the cloud base and h the cloud height. a(θ, r, h, …) is the 

shadow area of a single cloud with the characteristic parameters r, h, and any other 

parameters. p(r, h, …)drdh… is the probability of a cloud with r lying between r and 

r+dr, h between h and h+dh, and so on.  

If a cloud shape can be described by solely specifying r and h, like the simple 

shapes as semi-ellipse, right cylinder, et al., then f(θ) can be written as  

drdrppra

drdrppra
f
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βββ
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)()(),,0(

)()(),,(
)(  

Here we have introduced the aspect ratio, which is defined as rh 2/=β . In practice, we 

may further assume β is a constant. That is, all clouds can vary in their size but will 

keep their aspect ratio fixed. With this further assumption, f(θ) can be further simplified 

as 

∫
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drrpra

drrpra
f
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)(),(
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θ
θ                                                  (3.21) 
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3.1.2.a   1D_Poisson_IsoscelesTrapezoid and 1D_Poisson_SemiEllipse 

Here we follow a naming convention similar to that described in section 3.1.1. 

The cloud domain can be 1D or 2D. There is no need to specify the “ sd/xd/cd”  term, 

since the cloud positions are assumed to be distributed according to a Poisson 

distribution. Also, there is no explicit specification of the cloud size distribution for this 

type of PCLOS models. 

Using Eq. (3.21), f(θ) for isosceles trapezoidal clouds may be written as  
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where d is the cloud horizontal size and p(d) is probability density function for d. For 

semi-ellipse clouds (see Fig. 3.5), f(θ) is given as  
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Thus, p(θ) for the 1D Poisson distributed isosceles-trapezoid clouds, denoted as 

“ 1D_Poisson_IsoscelesTrapezoid” , may be written as  

)tan(tan1)1()( ηθβθ −+−= Np                                           (3.22) 

and for the “ 1D_Poisson_SemiEllipse”  model, 




 ++
−=

1tan41
2

1 22

)1()(
θβ

θ Np                                        (3.23) 
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 When β = 1/2, a semi-ellipse cloud reduces to a semicircle.  

 

 

3.1.2.b   2D_Poisson_TruncatedCone and 2D_Poisson_Ellipsoid 

The above derivation for a 1D domain also applies to a 2D domain. In this 

section we derive p(θ) for truncated-cone clouds randomly distributed on a 2D plane. 

For a truncated-cone cloud (Fig. 3.6), the shadow can be seen as a set of circles aligned 

along a straight line, which is the projection of the central-symmetrical axis of the 

truncated cone. The area of the shadow is the area within the circumference of the set of 

circles and can be given as 
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where rcb and rct are the radii of the base and top of the truncated cone, respectively. H 

is the height of the cone before being truncated, h the height of the truncated cone and δ 

the projection of the top angle of the cone. Rearranging the expression, noting that 

ηtancbrH = , and substituting a(θ) in Eq. (3.21), f(θ) may be written as  
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(3.24) 
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To describe a truncated cone we need three parameters, (rcb, rct, h) or (rcb, η, β). 

We have set the β as a constant. Further assume η is also a constant for a given cloud 

field. With these assumptions and noting that cbcbct rhhrr βθ 2and,tan =−=  Eq. (3.24) 

can be written as  
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(3.25) 

Substituting Eq. (3.25) into Eq. (3.19), one will obtain p(θ) for the 

“ 2D_Poisson_TruncatedCone”  model. 

As a special case, when cbct rr = , η = δ = 0, the truncated cone transforms to a 

right cylinder, and f(θ) becomes 

θβ
π

θ tan
4

1)( +=f                                                   (3.26) 

Thus, one can obtain 

 
θβ

πθ
tan

4
1

)1()(
+

−= Np                                                (3.27) 

for right cylinder clouds, where rh 2/=β , r is the radius of the cylinder. If we define 

rh /=β , Eq. (3.27) is exactly the same as the PCLOS model used by Avaste et al. 

(1974) and Ellingson (1982). 
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p(θ) for the “ 2D_Poisson_Ellipsoid”  and “ 2D_Poisson_SemiEllipsoid”  models 

were given by Kauth and Penquite (1967) as 

( ) clouds lellipsoidafor        1)(
22 tan1 θβθ +−= Np                                  (3.28) 

( ) clouds lellipsoida-semifor        1)( 1tan41
2

1 22 


 ++−= θβθ Np                 (3.29) 

Eq. (3.29) is coincidently the same as Eq. (3.23) for semi-ellipse clouds in a 1D domain. 

 

 

3.1.3 Regularly distributed clouds (Naber and Weinman model) 

This model (Naber and Weinman 1984) is a modification of the regular 

distribution model proposed by Harshvandhan and Weinman (1982). Instead of a 

completely regular distribution, the model allows each row of clouds to be shifted a 

fixed distance with respect to the adjacent row (see Fig. 3.8). Here we present their 

resulting equations, namely 
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where N0 = absolute cloud fraction, 05.001 ±=± NN , 1.002 ±=± NN , 25.010 == ±ww  

and 125.02 =±w ; β is the aspect ratio; dxf = , x is the shift distance of a row with 

respect to the adjacent row, and d is the side length of the cuboidal clouds. 
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3.2   Modeling the PCLOS by tracing a line of sight 

This method models the PCLOS by following a beam of light randomly incident 

on a cloud field. The PCLOS is the probability that the beam will pass through the 

cloud field without touching any clouds. In order to pass through the cloud field clearly, 

the beam first has to reach the cloud base level at the (1-N) portion of the sky, where N 

is the absolute cloud fraction.  Within the (1-N) portion of the sky, the beam may fall at 

any point of the gap between clouds. Not all beams arriving at the (1-N) portion of the 

sky will pass through the entire cloud field. The factors determining whether the beam 

will pass the cloud field depend on the height of the nearest cloud to the right of the gap 

(we assume the beam direction is toward the upper right and only the nearest cloud can 

block the beam, see Fig. 3.7) and the horizontal distance to the cloud. Let us denote x as 

the distance between the beam and its nearest cloud measured on the cloud base level. 

Note that max0 sx ≤≤ , where smax is the maximum cloud spacing in the cloud field. 

Given distributions for x and the cloud height h and assuming β = h/d, where d 

represents the cloud horizontal size, the PCLOS can be expressed as  
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where F(θ) depends on cloud shape, as different cloud shapes yield different forms of 

F(θ). For example:  
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The integral in Eq. (3.31) is different from that in Eq. (3.7). The integral in 

Eq. (3.7) computes the cloud coverage seen at zenith angle θ, while the one in 

Eq. (3.31) computes the probability that a line of sight will meet a cloud that is either 

high or near enough to block the sight. The two models require different information 

about the cloud spatial distribution. Eq. (3.7) requires p(s) – the distribution of the 

spacing distance s between two neighboring clouds, while Eq. (3.31) requires p(x) – the 

distribution of the distance x between an arbitrary point on the line of the cloud base 

level and its nearest cloud (in the half plane formed by the line of sight and its vertical 

projection). 

 

 

3.2.1 1D_xd_Weib_Power_SemiEllipse and 1D_xd_Weib_Power_IsoscelesTrapezoid  

The naming convention used here is the same as that in section 3.1.1, but here 

we use “ xd”  instead of “ sd”  or “ cd”  to denote different methods of specifying the cloud 

spacing distribution (refer to Fig. 3.3).  

Since x can take any value from 0 to smax and its minimum is 0, we cannot 

assume a power law distribution for x, because the probability density function of a 

power law distribution goes to infinity at x = 0.  The Weibull and exponential 

distributions do not have this restriction, so in this and the next section, we will derive 

p(θ) by using only the Weibull and exponential distributions to model the cloud spatial 

distribution. The Weibull distribution is given as  (MATLAB statistics toolbox) 

baxb eabxxp −−= 1)(                                                      (3.33) 
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Assuming the Weibull distribution for x and the power law distribution for cloud 

size, using Eq. (3.31), p(θ) for the “ 1D_xd_Weib_Power_SemiEllipse”  model and the 

“ 1D_xd_Weib_Power_IsosceleTrapezoid”  model may be written as  
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(3.34) 

where 
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incomplete gamma function. F(θ) is as defined in Eq. (3.32). The incomplete gamma 

function requires 1−> vb . 

 

 

3.2.2 1D_xd_Exp_Exp_SemiEllipse and 1D_xd_Exp_Exp_IsoscelesTrapezoid 

Assuming exponential distributions for both spacing and size and given as 
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where µ and ν are distribution parameters, p(θ) may be written as  
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where F(θ) is as defined in Eq. (3.32). Eq. (3.36) has the same form as Eq. (3.16). 

However, since we have assumed different methods of specifying the cloud spacing 
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distribution, i.e., the meaning of x is different from s, the value of µ in Eq. (3.36) may 

be different from the one in Eq. (3.16).  
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3.3   The Han model 

Killen and Ellingson (1994) and Han and Ellingson (1999) proposed a PCLOS 

model given as  

∫ ∫=
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dsdrrpspp θ                                         (3.37) 

where  

θβηγβγ tantan2
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+−
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s  

s represents the cloud spacing measured between the centers of two neighboring clouds 

(see Fig. 3.3), r represents the larger radius of either the cloud top or base of a truncated 

cone cloud, γ is a parameter used to integrate the truncated cone and truncated square 

pyramid into one form. 4/πγ = for a truncated cone and πγ 22= for a truncated 

square pyramid. η is the inclination angle. The cloud aspect ratio β is defined as β = h/r.  

 Eq. (3.37) is in fact the probability of occurrence of a pair of adjacent clouds 

with spacing )tantan2( θβηγβγ +−≥ rs . Han and Ellingson (1999) scale the value of 

p(θ) at θ  = 0 to (1-N) and uses it to model the PCLOS. Their final expression for p(θ) is 

given as 
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When obtaining Eq. (3.38), the power law distributions were assumed for both 

the cloud spacing and radius, i.e.,  
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                                            (3.39) 

These have the same form as Eq. (3.10). However, the spacing s in the Han model is 

defined differently from the spacing in Eq. (3.10), where the spacing is measured 

between the cloud edges, not the cloud centers. This is different when modeling the 

PCLOS, as measuring between cloud edges in fact makes the spacing independent of 

the cloud horizontal size, while measuring between centers implicitly restricted the 

maximum cloud size. For a given cloud spacing s, the cloud radius r has to be r < s/2. 

The Han model makes use of the same type of information about the cloud field 

as the models we discussed in section 3.1, i.e. the spacing distribution, the size 

distribution and cloud shape. To keep naming uniformity, in the following we will refer 

it as the “ 1D_cd_Power_Power_VariableShape (Han)”  model.  
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3.4   Chapter Summary 

In this chapter, we discussed three methods of modeling the PCLOS, i.e., by 

computing N(θ), tracing a line of sight and the Han’ s method. A variety of PCLOS 

models were presented.  All these models require geometrical information about the 

cloud fields. Required information includes cloud spatial distribution, cloud shape 

distribution, cloud size distribution (those models assuming the Poisson distribution for 

cloud locations do not require the specification of the cloud size distribution) and cloud 

shape. The cloud shapes we assumed in this chapter include: 

• Isosceles-trapezoid (rectangle as a special case) 

• Semi-ellipse (semi-circle) 

• Truncated-cone (right-cylinder) 

• Semi-ellipsoid (hemisphere) 

• Ellipsoid 

• Cuboidal. 

In this study, all clouds in a same cloud field are assumed to have a fixed aspect 

ratio. Thus the cloud size distribution can be specified by the distribution of the cloud 

horizontal size. Assumed cloud horizontal size distributions include the power law, 

exponential and the Weibull distribution.  

The cloud spacial distribution is specified either by the distribution of cloud 

locations or by the distribution of the distances between clouds (the cloud spacings). 

Assumed distributions include the Poisson (for cloud locations), power law (for 

distances), exponential  (for distances) and the Weibull (for distances) distribution. 

Different models use different definitions of the cloud spacing. Three types of spacing 
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used in this study are shown in Fig. 3.3. The following is a list of the PCLOS models 

we addressed in this chapter.  

 

1D_sd_Exp_Exp_SemiEllipse   Eq.(3.16) 

1D_sd_Exp_Exp_IsoscelesTrapezoid  Eq.(3.16) 

1D_sd_Power_Power_SemiEllipse    Eq.(3.14) 

1D_sd_Power_Power_IsoscelesTrapezoid  Eq.(3.11) 

1D_xd_Exp_Exp_SemiEllipse    Eq.(3.36) 

1D_xd_Exp_Exp_IsosecelesTrapezoid   Eq.(3.36) 

1D_xd_Weib_Power_SemiEllipse    Eq.(3.34) 

1D_xd_Weib_Power_IsoscelesTrpezoid   Eq.(3.34) 

1D_cd_Power_Power_VariableShape(Han)   Eq.(3.38) 

1D_Poisson_SemiEllipse    Eq.(3.23) 

1D_Poisson_IsoscelesTrpezoid    Eq.(3.22) 

2D_Poisson_SemiEllisoid    Eq.(3.29) 

2D_Poisson_TruncatedCone   Eq.(3.24) 

2D_Poisson_Ellipsoid    Eq.(3.28) 

2D_Poisson_Hemisphere    Eq.(3.29) 

2D_Poisson_RightCylinder    Eq.(3.27) 

2D_ShiftRegular_Cuboidal    Eq.(3.30) 
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Chapter 4 

Sampling Strategy 

 
In Chapter 3, during the development of the PCLOS models, several cloud 

parameters were introduced to summarize the properties of the cloud field or cloud 

population. All these parameters are domain-averaged or population-averaged 

quantities.  For example, the absolute cloud fraction is a domain-averaged cloud 

fraction. The PCLOS is a domain-averaged value for every zenith angle. The 

parameters µ, ν, a, b (Chapter 3) are population-averaged values used to characterize 

the cloud size and spacing distributions. Thus, when estimating these parameters, one 

must take some sort of average, either over a large area or over a collection of 

individual clouds. However, the ARM cloud sensing instruments are fixed at the surface 

at the ARM CART site, and most can only sample the cloud field in the zenith 

direction. In order to estimate the appropriate spatially averaged values from these 

fixed-point observations, one has to assume a space-time relationship. Here it is 

assumed that the cloud field statistical properties do not change as the clouds move with 

the mean wind (the frozen turbulence approximation). Under this assumption, the 

appropriate domain averaged properties can be inferred from a time sequence of 

observations. This brings two questions: (1) For a given wind condition, over how long 

a period or over how many individual clouds does one need to average? (2) What 

sampling rate will give the most accurate estimate? In other words, given a time series 

of observations of a known length and sampling rate, how accurately does the average 

over this time series represent the domain-averaged or population-averaged value? 
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Answering these questions is critical to the use and interpretation of the ARM 

data. In previous work, Han and Ellingson (2000) assumed a 10-minute sampling 

period. His justification for the 10-minute averaging period was his observation of the 

relative consistency between two absolute cloud fraction estimates sampled using two 

different period lengths.  Here we will investigate these questions in more depth and 

will attempt to establish criteria based on sampling theory. In section 4.1, a random 

field approach is taken to evaluate the accuracy of the measurement of the absolute 

cloud fraction and the PCLOS. The results are also tested with cloud fields generated by 

a Large Eddy Simulation (LES) or Cloud Resolving Model (CRM). Section 4.2 

discusses the sampling problem of the cloud size and spacing. 
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4.1 The absolute cloud fraction and the PCLOS 

 

4.1.1 A Random Field approach 

As we mentioned earlier, we rely on the time sequence of vertical observations 

to infer the domain-averaged values of the cloud field parameters. For the cloud 

fraction, the ARM CART observations yield the presence or absence of clouds at the 

zenith. Given a series of n observations, the average cloud fraction may be estimated as  

∑
=

=
n

i
iN

n
N

1

1ˆ                                                         (4.1) 

where Ni is an indictor function which equals 1 if a cloud is observed or 0 if clear sky is 

observed at observation i and i is the index of the observations. Based on the 

assumption of the frozen turbulence, the series of Ni’ s in Eq. (4.1) can be seen as a 

series of observations taken along a single sampling line drawn randomly on the cloud 

field. Our question is how many Ni do we need and what is the sampling error. To 

address the problem, we follow the random field approach used by Kagan (1997), 

Matern (1986) and Bell et al. (2001).  A systematic investigation of the random field 

approach can be found in the monograph written by Kagan (1997). 

The random field approach models a cloud field as a random process. The cloud 

field one actually observed is a realization of the process. When making a measurement 

at a point in the cloud field, one may get an ensemble of values, each corresponding to a 

particular realization. With this model, the mean-squared error of the estimate N̂  

(Eq. (4.1)) may be expressed as  

22 )ˆ( aNNED −=                                                    (4.2) 
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where Na denotes the average cloud fraction for a domain of a given size. E denotes 

taking the average over the ensemble. For a 2D domain with area A, Na may be 

expressed as  

    ∫∫=
A

a dxdyyxN
A

N ),(
1

                                               (4.3) 

Assuming the cloud field is homogeneous and isotropic, i.e. the mean of the 

field is constant everywhere and the covariance depends only on the distance between 

the two points not on their absolute positions and orientations. Neglecting measurement 

error, Eq. (4.2) can be written as 

),ˆcov(222
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aNN

NND
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−+= σσ                                        (4.4) 

where 2
N̂

σ  is the variance of the N̂ , which is a function of the length of sampling line 

and the number of sample points; 2

aNσ is the variance of the average over the target 

domain, i.e. the area for which we intend to estimate the mean using Eq. (4.1) 

),ˆcov( aNN  represents the covariance between the averages over the sampling points 

and the one over the target domain. Kagan (1997) defined a quantity 2ε  to measure the 

relative error (relative to variance of the field) of representing the domain average with 

the sample mean, given as 
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where 22
ˆˆ NNN

u σσ= , 22
NNN aa

u σσ= , 2
Nσ  denotes the variance of the cloud field.  

Using a cloud classification algorithm, a 2D cloud field can be converted into a 

binary image with 1 representing cloud and 0 representing clear sky. For such a binary 
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cloud field, the variance 2
Nσ  is simply N (1-N), here N is the cloud fraction. The 

maximum variance occurs at N = 0.5, and the variance decreases with N departing 

from 0.5.  

Equation 4.5 needs information about the arrangement of the sampling points 

and the size and shape of the target domain. For simplicity, we assume the target 

domain to be a rectangular area, with the sampling line located at the center of the area 

along the longer side of the area (Fig. 4.1). For this sampling arrangement, 
N

u ˆ, 
aNu  and 

),̂( aNNw  may be expressed as  
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where n is the total number of the observations made along the sampling line; r denotes 

the correlation function of the cloud field; ∆l is the interval between two consecutive 

observations; L and W are the length and width of the target area, respectively;  xi is the 

coordinate of the observation point i (see Fig. 4.1).  
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NNN
u ˆ

22
ˆ σσ =  (Eq. (4.6)) actually gives the variance of the average of n random 

variables with the relation between variables specified by correlation function r(ρ). The 

continuous version of Eq. (4.6) has been give by Matern (1986) 

∫=
sl

N
df

0

2
ˆ )()cov( ρρρσ                                           (4.9) 

where ∫=
Cs

dlyxN
l

N ),(
1ˆ , is the estimate of the domain mean by averaging over a curve 

C of length ls. N(x, y) is a realization of the random field in a 2-D plane, i.e. an isotropic 

cloud field. dl is the element of arc length measured along C. cov(ρ) is the covariance 

function of the cloud field. ρ is the distance between two points chosen independently 

on the curve C. If C is a line segment of length ls, the frequency function of the distance 

ρ is 2/)(2)( ss llf ρρ −= where sl<< ρ0 .   

The most important item in Eqs. (4.6) – (4.8) is the correlation function, which 

describe the statistical spatial structure of the cloud field. If r = 0, i.e., the cloud 

properties at different locations are totally independent of each other, then n12 =ε . 

This is the well-known result for the average of n independent random variables.  

Usually the cloud properties are not spatially independent. This spatial dependence is 

taken into account in the above equations by the correlation function. The effects of the 

arrangement of the sample points and the interval between sample points enter into the 

above equations through the formation of the integrand.  

In the above discussions it is assumed that the observations are taken on a set of 

points along a straight line centered in the domain. This sampling arrangement applies 

to the measurement of the absolute cloud fraction. Later we will give equations for the 
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average over a set of circles, which applies to the estimation of the PCLOS as a function 

of the zenith angle. 

The correlation function r(ρ) has the following properties: (1) 1)0( =r ; (2) 

)()( ρρ −= rr , i.e., r(ρ) is an even function; and (3) )0()( rr ≤ρ , i.e., the maximum of 

r(ρ) occurs at r(0). For a truly random process, r(ρ) will usually decay to zero with 

increasing ρ. The shape and the rate of the decay depend on the underlying processes. 

Various forms of correlation functions have been suggested. Matern (1986) and 

Vanmarke (1983) gave some detailed discussions about the choice of the correlation 

function for a random field. In this study, as justified below, we assume a negative 

exponential form of correlation function  

0)( ρ
ρ

ρ
−

= er                                                        (4.10) 

where ρ denotes the distance between two points, ρ0 is a parameter which characterizes 

the decay rate of the correlation. 

 The estimated correlation functions for the cumulus cloud fields over the ARM 

CART site is shown in Fig. 4.2. The correlation function was estimated from the 

Narrow Field Of View Sensor (NFOV) data (details about the processing of the NFOV 

data are discussed in Chapter 5). In all, 45 days with single layer cumulus clouds 

present were selected from July 2000 through October 2001. The correlation functions 

were estimated for each of the 45 days. The mean correlation function and its standard 

deviation (the shadowed area in Fig. 4.2) together with the fitted correlation model 

(Eq. (4.10)) are shown in the figure. As seen, the observed correlation function does not 

approach zeros at the same rate as the negative exponential model. This may be an 
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indication of the existence of large-scale components in some of the cloud fields. For 

our intent of obtaining a directional hint on the sampling strategy, we ignore the 

complexity of the multi-scale structure of the cloud field, but simply assume a single-

scale correlation function represented by Eq. (4.10) with ρ0 = 1267 m. This value is 

obtained by fitting the model (Eq. (4.10)) to the mean correlation function.  If the model 

were fit to each of the 45 cases, the average and standard deviation of ρ0 are 1300 m and 

670 m, respectively. 

The standard deviation of 670 m shows the dispersion of the estimated ρ0 for the 

cumulus cloud fields over the SGP. Note that there may also be errors in the estimated 

ρ0. Thus, it is necessary to assess the sensitivity of the mean-squared error D2 

(Eq. (4.4)) or Root-Mean-Squared error (RMS;  = 2D ) to the uncertainties associated 

with ρ0. Later we will show that the variance of the average, 2
N̂

σ  ( = 
NN u ˆ

2σ ; Eq. (4.6)), 

is the dominant term in the expressions for 2ε  and D2  for a long-sampling-line 

measurement. Thus, we will focus on this term to address the sensitivity problem. 

Substituting the correlation function (Eq. (4.10)) into Eq. (4.9), one obtain  
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where N is the absolute cloud fraction; ls is the length of the sampling line. The 

sensitivity coefficient which is defined as the derivative of the RMS ( �
N̂

σ ) with respect 

to ρ0 can be written as  
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where ),( 0 NlK s ρ  is a function of  the scaled sampling line length and the cloud 

fraction. It can be seen that for a given length of the sampling line (scaled by ρ0) the 

sensitivity of the RMS ( �
N̂

σ ) is inversely proportional to ρ0.  

Figure 4.3 illustrates the dependence of ),( 0 NlK s ρ  on the scaled sampling line 

length, 0ρsl  and N. The largest value of ),( 0 NlK s ρ  occurs when N = 0.5. For 

sampling lines longer than 50ρ0, the values of ),( 0 NlK s ρ  are less than 0.05 (in the 

unit of the cloud fraction). A 670 m standard deviation is about half the ρ0 estimated for 

the cumulus cloud field over the ARM CART site. Hence, the error of 
N̂

σ  due to the 

uncertainties in ρ0 will be about or less than 0.025, if one take a sampling line longer 

than 50ρ0. 

 Figure 4.4 shows an example of 2ε , 
N

u ˆ, 
aNu  and ),̂( aNNw as functions of the 

length of the sampling line. In this example all dimensions have been scaled by ρ0. The 

size of the domain is set to 1000 =ρW , 1000 =ρL . The sampling line is located 

along L at the center of the domain. As seen from the figure, 2ε  decreases as the length 

of the sampling line increases. Among the three terms in the right-hand side of 

Eq. (4.5), 
N

u ˆ is the dominant quantity. 
aNu and ),̂( aNNw are very small and contribute 

little to 2ε . Thus we may use Eq. (4.6) alone to evaluate the accuracy of the 

observations.  
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Please note that using 
N

u ˆ to approximate 2ε  only applies when the size of the 

target domain is much larger than the ‘size’  of the sampling line. Here the ‘size’  of the 

line may be thought of as the small neighborhood area around the line. Figure 4.5 shows 

the ratio between ),̂(2 aN NNwu
a

−  and 
N

u ˆ, which is obtained when the target domain 

is set to be a square and the length of the sampling line is the same as the domain side. 

As can be seen from the figure, when the size of the square is larger than 30ρ0 x 30ρ0, 

the error resulting from the use of 
N

u ˆ to approximate 2ε  will be less than 10%.  

 2ε  gives the amount of the mean-squared error D2  relative to the variance of the 

cloud field. To be more specific for our goal of estimating the cloud fraction, we may 

define a Relative Root-Mean-Squared error (RRMS) as  

N

u

NN
NNN
2
ˆ

222
RMS

RRMS
σεσ

≈==                                      (4.13) 

where N is the cloud fraction, RMS is the root-mean-squared error. The RRMS is a 

function not only of the cloud field variance, shape and size of the target domain, length 

of the sampling line, but also of the cloud fraction, since )1(2 NNN −=σ  for a binary 

cloud field. Figure 4.6 illustrates the RRMS as functions of the various parameters. 

Given a sampling line of a known length, the larger the cloud fraction, the less the 

RRMS will be. In other words, to achieve the same relative accuracy, one may need a 

longer time of observations for a cloud field with smaller cloud fraction than for a cloud 

field with larger cloud fraction. Please note that this statement is for the RRMS. An 

absolute error of 0.1 for a cloud field with N = 0.1 will give a RRMS of 100%, while for 
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a cloud field of N = 0.9, it will be only 11%.  If we are interested in the absolute error, 

then the maximum will occur at N = 0.5.  

From Fig. 4.6 one may notice that, for a cloud field with very small cloud 

fraction, for example N = 0.1, even if one uses a sampling line of 100ρ0, the RRMS of 

representing the domain mean by this line average will be as large as 40%, assuming the 

size of the domain is 100ρ0 x100ρ0. As we will see later, the most frequent cloud 

fraction of the fair weather cumulus fields over the SGP is between 0.3 and 0.5. Thus, if 

we make an observation length of 50ρ0, we may expect a RRMS of about 30%. 

The above discussion is about the length of the sampling line, and addressed the 

question of the accuracy one may expect for a given length of observation. Another 

question that needs to be addressed is the frequency of the observations. How does the 

sampling rate affect the accuracy of the cloud parameters? The real observations are 

made in a discrete fashion, and different instruments have different sampling rates. 

Additional observations may bring in more information about the cloud field. However, 

due to the correlation structure of the field, points close to each other will be not 

independent from each other. That is, they will contain much redundant information.  

Figure 4.7 shows the RRMS as a function of the number of observations for 

various cloud fractions when the domain size is 100ρ0 x100ρ0. The length of the 

sampling line is 100ρ0 and is located at the center of the domain. Observation points are 

regularly distributed on the sampling line with an interval ∆l = n0100ρ , where n 

denotes the total number of observation points. As shown in the figure, the error 

decreases as the number of the observations increases, i.e., as the sampling rate 

increases. However, for a sampling line of a given length, the accuracy improvement 
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resulting from increasing n has its limit. As the observation points become closer and 

closer, the decrease of the RRMS becomes slower and slower. The limiting value 

occurs when n → ∞. However, when n > 100, or when the interval becomes less than 

ρ0, the improvement of accuracy by adding more points becomes less and less 

noticeable.  

It is well known that the variance of the average of n independent random 

variables with the same individual variance is given by  

n

2
2 ξ
ξ

σ
σ =                                                           (4.14) 

where ξ denotes the average of n independent random variables and 2
ξσ is the variance 

of  the variables being averaged. Analogous to Eq. (4.14), an effective number of 

observations may be defined as  
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ne gives an indication of the number of the independent measurements needed to 

achieve the same accuracy as using n correlated measurements and using Eq. (4.1) as 

the estimator. Figure 4.8 illustrates the relation between ne and n. The domain size, the 

length and the position of the sampling line and the arrangement of the observation 

points is the same as that for Fig. 4.7. When n < 30, or the interval greater than 3ρ0, the 

linear relation roughly holds between ne and n, which means that two observations made 

3ρ0 apart may be considered as independent of each other. When the interval between 

observations become less than ρ0, adding more observations in a given length of 

sampling line leads to no significant increase in ne. Please note that this statement only 
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applies to the measurement of the quantities like N, PCLOS or other cloud field 

properties that can be assumed as functions of spatial position. For the measurement of 

the cloud horizontal size or spacing, the higher the sampling rate the better the 

measurement accuracy. (see the next section). 

The PCLOS is measured from whole sky images taken at a fixed surface 

location. Like the absolute cloud fraction, we still have to employ the frozen turbulence 

approximation and rely on the horizontal advection of the cloud field to obtain an 

estimate of the large area average. The PCLOS is a function of the zenith angle and 

PCLOS(0) = (1 – N). For a certain zenith angle θ, PCLOS can be estimated from 

observations on a set of circles with their centers regularly aligned on the sampling line. 

If the PCLOS(θ) can be seen as the complementary fraction of the projections of the 

clouds on the cloud base plane at zenith angle θ, then the radius of the circles is 

R = H tanθ, where H denotes the cloud base height (Fig. 4.9).  

Assuming the same correlation function given by Eq. (4.10), and all distances 

scaled by ρ0, the expressions for 
P

u ˆ and ),̂( aPPw for PCLOS measurement may be 

written as 
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where n is the total number of circles along the sampling line. ∆l is the interval between 

two consecutive centers. L and W are the length and width of the target rectangle, 

respectively. xi is the coordinate of the observation point i. di and d-i represent the 

distances between two points positioned on two circles with the coordinates 

(x+ρcosθ1, ρsinθ1) and (x+k∆l +ρcosθ2, ρsinθ2), where k∆l is the distance between two 

circle centers. d0 represents the distance between two points positioned on the same 

circle. si represents the distance between two points, one on the circle i and the other 

within the domain with coordinates being (x,y), L/2 ≥ x ≥ -L/2 and W/2 ≥ y ≥ -W/2. The 

shape of the domain is the same as that for N, thus 
aPu takes the same form as Eq. (4.7). 

Also like that for N, Eq. (4.16) and Eq. (4.17) can only be evaluated numerically.  

Given the same number of observations (number of circles), one should expect a 

higher accuracy for the PCLOS than that for N, since the PCLOS is averaged over a 

circle that contains more observations than a single point. Figure 4.10 gives an example 

of the accuracy of the PCLOS. The domain size is once again 100ρ0 x 100ρ0. Circles 

with radius R = ρ0, which corresponds to a zenith angle of 45o for a cloud base height 

ρ0, are regularly lined along the centerline of the domain with interval ∆l = 0.6ρ0. 

Comparing with Fig. 4.6, we notice that for a 50ρ0 long sampling line, for the case of 

the PCLOS(0) equals 0.4, the RRMS of the PCLOS averaged over circles of radius 

0ρ=R  is about 5% less than the that for N.  

Figure 4.11 shows that the RRMS decreases with increasing circle radius (i.e., 

increasing zenith angle). From θ  = 0o to θ  = 80o (cloud base height equals ρ0), an 
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accuracy increase of about 15% can be seen for PCLOS(0) = 0.4. The accuracy change 

for the smaller PCLOS(0) is more significant than for the larger PCLOS(0). For 

example, the change for PCLOS(0) = 0.2 is about 20%, while for the PCLOS(0) = 0.8 it 

is only 5%.  

In the above discussions we ignored a factor that will also affect the accuracy of 

the measurement of the PCLOS.  In practice, the PCLOS is estimated by averaging over 

an annular ring but not a circular line. This is because the whole sky pictures consist of 

pixels having finite angular resolution. Every pixel has a finite field-of-view. This field-

of-view will generate a finite “ foot print”  on the cloud field. Thus when taking an 

average over a ring of pixels, we are actually averaging over a ring-shaped area on the 

cloud field. This means that we may get a more accurate measurement than just 

averaging over a circular line as modeled above. On the other hand, the size of the “ foot 

print”  varies with the zenith angles of the pixels. A larger zenith angle corresponds to a 

larger “ foot print” . As the zenith angle approaches 90o, the corresponding “ foot print”  

approaches infinity. Thus, when measuring the PCLOS, we may expect a higher 

accuracy at larger zenith angles than around the zenith. 

 

 

 4.1.2 Application to LES/CRM simulated cloud fields 

To test its validity, the technique developed above was applied to cloud fields 

generated by a Cloud Resolving Model (CRM) or a Large Eddy Simulation (LES) 

model. Four cloud fields are illustrated on Fig. 4.12. These are cloud fields selected for 

use in the Intercomparison of Radiation Codes in Climate Models (ICRCCM) phase III 
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(http://reef.atmos.colostate.edu/icrccm/). In the figure, (a) is a shallow sparse cumulus 

field simulated using data from the Barbados Oceanographic and Meteorological 

Experiment (BOMEX) by Siebesma and Cuijpers (1995). The domain size is  

6.8 km2 and the horizontal grid-spacing is 0.05 km. The cloud fraction is 0.16; (b) is a 

cloud field simulated by Bjorn Stevens (refer to the ICRCCM homepage) using 

observations made during the Atlantic Tradewind Experiment (ATEX). The domain 

size is 6.8 km2, the horizontal grid-spacing is 0.1 km and the cloud fraction is 0.57; (c) 

is from Vanda Grubisic’s (refer to the ICRCCM homepage) simulation of open cellular 

clouds. The Domain size is 50 km2 with 0.4 km horizontal grid-spacing. The cloud 

fraction is about 0.92; (d) is from Grabowski et al.’s (1998) simulation of phase III of 

the Global Atmospheric Research Programme Atlantic Tropical Experiment (GATE), 

which contains very deep convective clouds and extensive anvils. The domain size is 

400 km2 with 2 km horizontal grid-spacing and the cloud fraction is about 0.46.  

Figure 4.13 shows the simulated root-mean-square error, RMS*(ls), and relative 

root-mean-square error, RRMS*(ls), as function of the sampling line length and the 

cloud fraction N. The RMS*(ls) and RRMS*(ls) were evaluated in the following way: 

First, for each of the above four cases, the cloud field was extended by cyclically 

repeating it in both x and y directions. Then, for each length from a set of lengths 

ranging from 1 to 600 (in the unit of point) at a step-length of 5 points, we made n 

simulated single-line measurements.  These n single-line measurements yield n 

estimates of the cloud fraction ils
N ,
ˆ (i = 1, n), where ls (= 1, 600) is the length of the n 

sampling lines. The RMS*(ls) and RRMS*(ls) based on these n estimates of the cloud 

fraction were then calculated for each length as 



 69

Nll

NN
n

l

ss

n

i
ils s

/)(RMS)(RRMS

)ˆ(
1

)(RMS

**

1

2
,

*

=

−= ∑
=

 

where N is the desired domain-averaged cloud fraction. This procedure was repeated 

until the sampling line length reached 600 points. Also shown in the figure is the 

modeled RMS ( ≈ 2
ˆ

2

NN uσ  ) and RRMS (≈ Nu
NN
2
ˆ

2σ  ), assuming the correlation 

function with the negative exponential form as given in Eq. (4.10).  The parameters of 

the correlation functions were estimated by fitting Eq. (4.10) to the mean 

autocorrelations of the cloud fields. The mean autocorrelation of a cloud field was 

obtained by averaging over 1000 autocorrelations estimated from 1000 sampling lines 

of 3000 points long and being randomly placed on the cloud field with random starting 

points and orientations. It is seen from Fig. 4.13 that, given the appropriate value of the 

parameter of the correlation function, the sampling error estimated using Eq. (4.13) 

agrees well with the simulated one.  

The above calculations are based on the unit of point, i.e. the length is measured 

in the unit of grid point. If we take into account the size of the grid box, the same 

number of points will correspond to different physical length. For example the same 

100 points will be translated to 5, 10, 40 and 200 km for the BOMEX, ATEX, 

OPENCELL, and the GATE clouds, respectively. This implies that the length of the 

sampling line needed to achieve certain accuracy depends on the scale of the pattern. 

The scale may be defined as ∫
∞

=
0

)(2 ρρ drS  (Vanmarcke 1983; Taylor 1922), where, 

r(ρ) is the correlation function. Among the four simulated cloud fields shown in 
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Fig. 4.12, the BOMEX field has the finest scale with S ≈ 0.32 km. By extending the 

cloud field cyclically in both the x and y directions, we actually constructed a 

homogeneous cloud field of scale S ≈ 0.32 km.  For this cloud field, a sampling line of 

30 km (= 600 x 0.05) can achieve a RRMS of 20%, given the cloud fraction N = 0.16 

(Fig. 4.13). On the other hand, the GATE cloud field is a simulation of a deep 

convective cloud system over the Atlantic. The simulated domain is 400 km2. The scale 

of the constructed homogeneous cloud field is S ≈ 24 km. Provided the existence of the 

so constructed homogeneous cloud field, to achieve the same accuracy as for the 

BOMEX cloud field, one needs a sampling line of length equaling 600 km (= 300 x 2). 
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4.2 The cloud horizontal size and spacing 

 All models developed in Chapter 3 need a value for the cloud horizontal size. 

Some models also need a value for cloud spacing. For the 2D models, the horizontal 

size is defined as the diameter of the cloud base; for the 1D models, the horizontal size 

is the length of the cloud base in a vertical cross section. The spacing is used in the 1D 

models and is also measured in a vertical cross section (or a x-z plane). Different models 

have different definitions of the cloud spacing (see Chapter 3).  

The 1D version of the cloud size can be measured directly from the 

observations, as can the spacing. Error arises from two primary sources, (1) the limited 

sampling rate of the instruments, and (2) the limited number of clouds or spacings 

observed. The first error is analogous to that of measuring the length of a line using a 

ruler with a limited resolution. A ruler tells the integer part of the length, which is an 

integer increment of the ruler, but will round off the decimal part of the length and thus 

cause measurement error.  The only difference here is that the “ ruler”  (the sampling 

line) is randomly placed on the cloud field, thus the starting edge of a cloud or a space 

between clouds could be at any position within a sampling interval (Fig. 4.14).  

In a paper addressing the accuracy of one-dimensional systematic sampling 

(sampling design with random start and with equally spaced measurement along a 

spatial or temporal axis) and its application to the estimation of the volume of rat hearts, 

Mattfeldt (1989) gives an expression for the precision of the “ Cavalieri estimation of 

the volume of a set with constant cross-sectional area” . That is, estimating the volume 

of an object by integrating the profile areas of the object on a series of equally spaced 

cut sections. 
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Appling the same ideas to our cloud size and spacing measurement, the RRMS 

error of measuring a cloud base size or spacing using the periodic sampling method may 

be written as 

[ ]
D

dDremdDremd

D
RRMS D ),(),(−

==
σ

                                      (4.18) 

where Dσ  is the standard deviation of the cloud size. D is the real length of the cloud 

base or spacing between clouds. d is the sampling interval. “ rem”  denotes the remainder 

of D divided by d. If the cloud size is exactly an integer times the interval, the error will 

be zero. This is illustrated in Fig. 4.15, where the RRMS is plotted as a function of D, 

with the interval d set to 25. Also shown on the figure is the upper limit of RRMS, 

which is 

D

d
RRMS

2
≤                                                           (4.19)  

Eq. (4.19) indicates that the error is proportional to the interval distance, or 

inverse of the sampling rate. Thus for the measurement of the cloud size or spacing, the 

higher the sampling rate the less the sampling error. At the ARM CART site, the Micro-

Pulse Lidar (MPL) has a sampling interval of 20 seconds. If we assume the wind speed 

is 10 m/s, then the standard error (standard deviation) of the MPL due to the limited 

sampling rate will be less than d/2 = 100 m. The sampling interval of the NFOV is 1 

second, thus the standard error of the NFOV due to the limited sampling rate will less 

than 5 m for a 10 m/s wind speed. 

The second error is connected to the number of clouds or spacings observed. 

The variance of the mean of n independent samples is n
D

D

2
2 σσ = , which depends on 
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the population variance 2
Dσ  and n. Noting that the RRMS can be written as 

D
RRMS D

σ= , then n can be related to RRMS by 
2





⋅=
RRMSD

n Dσ . For the 

cumulus clouds over the SGP, the standard deviation of the cloud size Dσ  is about 

1500 m (Chapter 5) and D  is about 1000 m, thus to achieve a RRMS less than 20% one 

needs n ≥ 57. That is, at least 57 cloud samples are needed to achieve 20% accuracy in 

measurement of the mean cloud size. 

For the 2D version of the cloud size, beside the aforementioned two errors, there 

is another source of error when inferring the cloud size from the observations made on a 

line. Because the observations only yield a set of chord lengths, one has to derive the 

cloud base size from the chord lengths. This process will induce new uncertainties into 

the estimated cloud size. The problem turns out to be very complicated, and the same 

problem is the subject of the study in  “ stereology” , which by definition is “ a body of 

mathematical methods relating three-dimensional parameters defining the structure to 

two-dimensional measurements obtainable on sections of the structure”  (DeHoff & 

Rhines 1968; Weibel 1979). Although a few methods for such estimates have been 

developed, at least at present, all the methods are based on an assumption that the 

objects, for which we intend to obtain the parameters, are of simple shape, like spheres, 

ellipsoids or at least convex solids. A convex solid is a solid for which any line segment 

connecting any two points in the solid lie totally within the solid. In other words, a line 

traversing the solid forms only one chord or intercept. This is the main difficulty when 

trying to apply the methods to measurement of the cloud size, since the shapes of the 

cloud base are not convex. This is a very complex problem that requires much more 
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work. In this study, we simply approximate the cloud diameters with the observed chord 

lengths. The mean of the cloud diameters is approximated by the mean of the chord 

lengths and the distributions of the cloud diameters are also approximated by the 

distributions of the cloud chord lengths (see Chapter 5).  
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4.3 Chapter summary 

In this chapter, we discussed methods of assessing measurement accuracy of the 

various cloud field properties. For cloud fraction, a random field approach was used to 

address the sampling problem. A cloud field is modeled as a homogeneous random 

process. Assuming the frozen turbulence approximation, a time series of observations 

can be considered as a series of observations taken along a spatial line randomly drawn 

in the cloud field. The accuracy of the estimation of the domain average from the 

average of observations on the sampling line can be expressed as a function of the 

correlation function of the cloud field, the length of the sampling line and the cloud 

fraction.  

The correlation function is the key factor in the assessment of the measurement 

accuracy. It gives information about the spatial structure and the scale of the cloud field. 

A negative exponential form of correlation function is assumed in this study. Using the 

NFOV observations, the correlation functions for the cumulus cloud field over the 

ARM CART site were estimated and a model correlation function was obtained by 

fitting to the mean of these correlation functions. The e-folding parameter of the 

correlation function was estimated to be ρ0 = 1267 m. For a long-sampling-line 

measurement, given the relative length of the sampling line with respect to ρ0, the 

sensitivity of the predicted measurement error is inversely proportional to the scale of 

the cloud field. For our case i.e., the cumulus cloud field over the SGP, a 50% 

uncertainty in the estimated ρ0 may result in an error of about 0.025 (cloud fraction 

unit) in the predicted measurement error, which is negligible for most of the cases 

except for cloud fields with N ≤ 0.1.  
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Given the form of the correlation function and the value of ρ0, for the most 

frequent shallow cumulus fields (N = 0.3 to 0.5) over the ARM CART site, one may 

expect a RRMS of about 30%, for an observation length of about 60 km (≈50ρ0). 

Assuming a 10 m/s wind speed, the spatial length of 60 km corresponds to a time span 

of 100 minutes. Due to the limited life span of the shallow cumulus clouds and 

requirement of the frozen turbulence approximation i.e., the statistical properties of the 

cloud fields do not change with the advection of the cloud field, 100 minutes may be a 

practical compromise between the accuracy and the changing characteristics of the 

cloud field with time. 

Also defined in this chapter is the effective number of observations. It gives the 

number of independent observations that would yield the same accuracy as a number of 

correlated observations. Its counterpart in the time domain is the effective sampling 

rate. 

The absolute cloud fraction N is a special case of the 1 - PCLOS(θ), which 

occurred when θ  = 0o. The sampling problem of the PCLOS can be addressed using the 

same technique developed for N. For any θ  > 0o, there are more sampling points 

available for the estimation of the PCLOS than for the absolute cloud fraction, since the 

PCLOS is estimated by averaging over the circumference of a circle. Thus, one may 

expect a higher accuracy for the PCLOS than for N, given that the two were sampled at 

the same rate.  

The technique was tested on four LES/CRM generated cloud fields. Given the 

appropriate estimates of the parameter of the correlation function, the technique can 

yield reasonable predictions of the measurement error. 
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The cloud size and spacing need a different approach to assess their 

measurement errors. For a single cloud, the error in measurement of the horizontal size 

through randomly started periodic sampling is less than 2d , where d is the spatial 

interval corresponding to a time step of the sampling instrument. To assess the accuracy 

of the estimated mean of the cloud base size and spacing, one may employ the central 

limit theorem and the number of clouds observed can be related to the RRMS by 

2





⋅=
RRMSD

n Dσ . The problem of inferring the cloud diameter from the 

measurements of the cloud chord lengths is important but is not addressed in detail in 

this study, due to the complexity of cloud shapes. Here the average cloud diameter and 

the diameter distribution are approximated by the mean of the observed chord lengths 

and their distribution, respectively.  
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Chapter 5 

Extraction of Cloud Parameters and Comparison between 

Models and Observations 

 

To determine whether the PCLOS models are valid for an actual cloud field, we 

need to extract the necessary model parameters from observations and compare the 

model PCLOS with the observed PCLOS. Table 5.1 summarizes the various parameters 

used by the PCLOS models we consider in this study. Each model has different 

parameters. The number of parameters ranges from one for the 

“ 2D_Poisson_Hemisphere”  model to eight for the Han and Ellingson (1999) model (the 

“ 1D_cd_Power_Power_VariableShape”  model). To facilitate the following discussion, 

we group the models into two groups based on the information required by the models: 

Group-1: Models require the cloud spatial distributions to be specified by the 

distribution of the distances between clouds or the distances between an arbitrary 

point to its nearest cloud. The cloud size distribution is also explicitly required. All 

Group-1 models are 1D model. Examples are: 

• 1D_xd_Weib_Power_SemiEllipse, 

• 1D_sd_Exp_Exp_IsoscelesTrapezoid, and 

• 1D_cd_Power_Power_VariableShape(Han). 

Group-2: Models assume clouds are randomly or regularly distributed in a cloud field. 

The cloud size can be arbitrary. The domain can be 1D or 2D. Examples are: 

• 1D_Poisson_IsoscelesTrapizoid, 

• 2D_Poisson_Hemisphere, and 
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• 2D_ShiftRegular_Cuboidal (uniform cloud size) 

 

The Group-1 models explicitly specify the cloud size distributions; hence they 

usually need more parameters than the Group-2 models (see Table 5.1). Those models 

which assume the cloud shape as truncated-cone or isosceles-trapezoid have one more 

parameter, η, the inclination angle, than the other models.  

In this chapter, we will first develop a technique to obtain the PCLOS using the 

time series of sky images taken at the ARM CART site. We will also derive the various 

cloud parameters listed in Table 5.1 from the ARM surface cloud observations and 

make a comparison of the model PCLOSs with the observed PCLOS. 
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Table 5.1 PCLOS Model Parameters. 
 
2D_Poisson_Hemisphere N 
1D_Poisson_SemiEllipse 
2D_Poisson_SemiEllipsoid 
2D_Poisson_Ellipsoid 
2D_Poisson_RightCylinder 

N, 
�

 

1D_Poisson_IsoscelesTrapizoid 
2D_Poisson_TruncatedCone 

N, 
�

, �  

2D_ShiftedRegular_Cuboidal N, 
�

, f 
1D_xd_Exp_Exp_SemiEllipse  
1D_sd_Exp_Exp_SemiEllipse 

N, 
�

, � , �  ; 
�  : parameter of the Exponential distribution for 

cloud spacing. 
�  : parameter of the Exponential distribution for 

cloud size. 
1D_xd_Exp_Exp_IsoscelesTrapezoid 
1D_sd_Exp_Exp_IsoscelesTrapezoid 

N, 
�

, � , � , �  ; 
� , �  : same as the Exp-Exp-SemiEllipse model. 

1D_xd_Weib_Power_SemiEllipse N, 
�

, a, b, � , dmin ; 
a, b : parameters of the Weibull distribution for 

cloud spacing 
�  : parameter of the Power Law distribution for 

cloud size. 
1D_xd_Weib_Power_IsoscelesTrapezoid N, 

�
, a, b, � , dmin, �  ; 

a, b, �  : same as  the Weibull-Power-SemiEllipse 
model. 

1D_sd_Power_Power_SemiEllipse N, 
�

, � , � , smin, dmin ; 
�  : parameter of the Power Law distribution for 

cloud spacing. 
�  : parameter of the Power Law distribution for 

cloud size. 
1D_sd_Power_Power_IsoscelesTrapezoid N, 

�
, � , � , smin, dmin, �  ; 

� , �  : same as the Power-Power-SemiEllipse 
model 

1D_cd_Power_Power_VariableShape (Han) N, 
�

, � , � , � , smin, dmin, �  ; 
� , �  : same as the Power-Power-SemiEllipse 
model. 

�  : parameter control the shape of the cloud. 
 

Where N is the absolute cloud fraction; β is the cloud aspect ratio; η is the inclination angle of the cloud; 

smin and dmin are the minimum cloud size and cloud spacing, respectively. Models are named with the 

pattern (1D/2D)_E_C or (1D/2D)_(xd/sd/cd)_A_B_C, where E represents the spatial distribution of the 

clouds; C represents the assumed cloud shape; A represents the cloud spacing distribution; B represents 

cloud size distribution. ‘sd’  means the spacing distribution is specified for, s, the distance between two 

clouds measured between the edges of two adjacent clouds(refer to Fig. 3.3). ‘xd’  means the spacing 

distribution is specified for, x, the distance from an arbitrary point to it nearest cloud to the right. ‘cd’  

means the cloud spacing is measured between centers of two adjacent clouds. 
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5.1 Determining the PCLOS from the Time Series of Sky Images 

The PCLOS is by definition the probability of a line of sight passing through a 

cloud field at a certain zenith and azimuth angle without being blocked by any clouds. 

Assuming an isotropic cloud field, the PCLOS is a function of only zenith angle, θ. A 

whole sky image can give us a snap shot of the sky condition at all zenith angles from 

the zenith to the instrument horizon. If we have simultaneous whole sky images at many 

different locations over a large area, the PCLOS as a function of θ can be estimated by 

taking an average over these images. Since at the ARM CART site, we only have one 

site with images of the sky condition, we use a time average to replace the area average 

That is, we approximate the spatial average by taking an average over a time series of 

whole sky images at one location to infer the PCLOS(θ). 

There are two whole-sky-imaging instruments available at the ARM CART site, 

a Total Sky imager (TSI) and a Whole Sky Imager (WSI). Fig. 5.1 shows an example of 

the TSI and WSI cloud decision images. The horizontal area of the cloudy sky seen by 

the imager’ s FOV is a function of the cloud height: 




=

2
tan2

FOV
HD , where D is the 

diameter of the cloudy sky within the FOV and H is the cloud height. As an example, 

assuming the cloud height is 1.5 km, a 160o FOV imager can see a patch of cloud field 

with a diameter of 17 km.  

Estimation of the PCLOS requires a mapping function that relates the zenith 

angle to the radial distance of an image point away from the picture center. The WSI 

function was determined by ARM personnel as part of its calibration. We make use of 

the sun’ s position to estimate this function for the TSI. During the summer, at the ARM 
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SGP site, the solar zenith angle approaches 10o at solar noon, Thus it is possible to 

calibrate the TSI mapping function by using solar position information on clear days. 

To perform the TSI calibration, we selected seven clear days in May and June, 2001. 

For each day, the sun’ s zenith angles and the corresponding pixel positions were 

recorded from the time-lapse TSI images.  The mapping function was obtained by 

fitting a cubic curve to the data from the seven-day period. Fig. 5.2 shows the mapping 

function for the TSI. The fitted curve is slightly diverging from a linear relationship. 

Using the time-lapse TSI images for a sampling period of about 100 minutes, the 

temporal fraction of the occurrence of clear sky for every pixel position was estimated. 

This estimates the PCLOS at all azimuth and zenith angle within the instrument FOV. 

PCLOS(θ) is obtained by averaging over azimuth angle within each 1° annular ring 

from zenith to the instrument horizon. The same processes were also applied on the 

WSI images.  

Figure 5.3 shows the differences between the PCLOS estimated from the WSI 

and the TSI. When estimating the PCLOS, the images from the TSI and the WSI are 

taken from the same sampling period but with different sampling rates. The result is an 

average of 77 cases of single layer fair weather cumulus cloud fields obtained over the 

ARM CART site (there are 86 cases when TSI data are available, but the WSI data are 

available for only 77 of these). From the figure, we notice that below 60o the 

PCLOSWSI agree well with the PCLOSTSI with a standard deviation of about 0.07 (in 

cloud fraction unit). While above 60o, the WSI tends to give larger cloud fraction (or 

smaller PCLOS).  This may be caused by the classification of heavily loaded haze or 
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dust into cloud by the WSI’ s cloud classification algorithms. (private communication 

with Chuck Long, Pacific Northwest National Laboratory (PNNL)). 

The standard deviation (the width of the grey stripe along the blue line) is 

mainly caused by the different temporal resolutions of the TSI and the WSI. The time-

lapse images are taken every 6 minutes by the WSI and every 20 seconds by the TSI. 

For a one-hour time interval, one may get 180 TSI images, but only 10 WSI images. 

This makes the PCLOSTSI smoother than the PCLOSWSI. From the figure we also notice 

that the standard deviation decreases slightly with the zenith angle increasing from 

0 to 35o, this is expected, since the zenith-angle rings at small angles cover less sky area 

than at larger zenith angles. However, above the 35o, this decreasing trend doesn’ t 

continue. This is probably because the differences between the cloud decision 

algorithms used by the TSI and the WSI. 

Figure 5.4 shows )1()( Np −θ  for the 86 cases derived from the TSI data. This 

normalized PCLOS is the conditional probability of a clear line of sight given that the 

line of sight reaches the cloud base level in the (1-N) portion of the cloud field. 

Alternatively, )1()(1 Np −− θ  is the probability of seeing cloud sides at an angle θ 

given that the line of sight reaches the cloud base level in the (1-N) portion of the cloud 

field. The curve changes from 1 as the zenith angle increases depending on the fraction, 

distribution, size and shape of the clouds as was discussed in Chapter 3. Note that some 

cases have the conditional probability larger than 1 at some angles.  This is likely 

caused by the presence of a cloud streak or an inhomogeneity in the cloud field.  
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5.2 Determining the Absolute Cloud Fraction 

The absolute cloud fraction, N, is defined as the fractional area of the vertical 

projections of the clouds on the surface. Without large area imagery data over the ARM 

CART site, we infer the absolute fraction by applying the frozen turbulence assumption 

to the zenith pointing instruments. In other words, we assume the cloud field properties 

do not change significantly as the clouds advect over the site with the mean wind speed. 

The absolute cloud fraction is estimated as N = Lc/Ltot, where Ltot is the total length of a 

time series of observations and Lc is the summation of the lengths of the cloud 

segments. If wind speed does not change during the observation time, the above 

equation is equivalent to  

tot

c

M

M
N =                                                              (5.1) 

where Mc is the number of times when the instrument see the clouds and the Mtot is the 

total number of observations during the period. 

Several instruments at the ARM CART site have the potential to be used to infer 

N  because they are sensitive to the presence of clouds and they generate time series of 

observations. These instruments include the TSI, WSI and a Narrow Field Of View 

sensor (NFOV). When using TSI and WSI data, N is estimated as the fractional number 

of cloudy pixels within the 20o circle around the zenith during the observation period. 

Details concerning the NFOV data processing are given in the following section. 

Eq. (5.1) was used when inferring N from the NFOV data. 

Besides these three instruments, there is also an ARM value-added data product, 

the Active Remotely-Sensed Clouds Locations (ARSCL), that can be used to obtain N.  
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The ARSCL product contains a time series of estimates of the cloud base height, which 

are generated by ARM from ceilometer and Micro-Pause Lidar (MPL) data following a 

technique developed by Clothiaux et al. (2001). For every times in the ARSCL time 

series, if there is one or more clouds detected, a positive value denotes the lowest cloud 

base height observed; otherwise, a negative value marks the clear condition at the time 

of observation. Like that for the NFOV, N is estimated from the ARSCL cloud base 

data by using Eq. (5.1).  

Figure 5.5 shows a comparison of the N’ s estimated from the four techniques 

(NTSI, NWSI, NNFOV, NARSCL). As seen in the plot, NWSI agrees well with NTSI. The 

variance between NTSI and NWSI is mainly due to the different sampling rates of the two 

instruments, as noted previously. Among the four methods of inferring N,  NNFOV and 

the NARSCL tend to overestimate the cloud fraction by about 20% relative to NTSI or 

NWSI. The cause of these biases may be due to the sensitivity of the instruments to the 

various clouds and the cloud decision algorithms used to infer cloudiness. The TSI and 

the WSI detect only visible and relatively thick clouds, while the NFOV and the laser 

instruments are sensitive to thin and sub-visible high clouds. This can also explain the 

trend that is illustrated in the histograms of the N’ s (Fig. 5.6), where the NFOV and 

ARSCL tend to have more occurrences of larger cloud fraction. Since our interest is on 

checking models of near opaque clouds, we are most interested in occurrences of 

thicker clouds. Furthermore, by using the TSI we can get a wider field-of-view and 

higher time resolution than with the other instruments. Thus, in this study, we will take 

the NTSI as our best estimate of the absolute cloud fraction.  
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5.3 Determining the Cloud Thickness 

There are three instruments, a Microwave Millimeter Cloud Radar (MMCR), the 

MPL and a Vaisala Ceilometer (VCEIL), at the ARM CART site that were designed to 

profile the cloud field with high temporal and spatial resolutions. The laser instruments 

infer the cloud variables from measuring the backscattered laser energy. The cloud 

height is determined from the time delay between the transmitted pulse and the 

backscattered signal. The MMCR has the same physical principle except it employs 

microwave energy.  

Each type of instrument has advantages and limitations. The laser instruments 

are capable of detecting almost all clouds, thin or thick, high or low, water or ice, if 

only the clouds are in the detection range of the instruments. However, the laser energy 

is easily attenuated by the cloud droplets, hence, they are usually unable to penetrate the 

cloud and detect the cloud top.  

The strength of the MMCR is its ability to penetrate clouds and detect multiple 

cloud layers aloft, but it is not very sensitive to clouds composed of small 

hydrometeors. At the ARM CART site, there is also a special MMCR problem that is 

caused by large amounts of nonhydrometeor particulates, such as insects and bits of 

vegetation, suspended in the atmosphere. Since the MMCR is very sensitive to these 

relatively large particulates and this airborne clutter may reach as high as 3 km during 

summer season, the real hydrometeor returns from lower clouds may be totally hidden 

by noise from the clutter and thus make the low clouds that are immersed in the clutter 

practically undetectable.  
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In addition to the cloud base data mentioned in the previous section, the ARSCL 

product also contains estimates of cloud top which were obtained by combining the data 

from the MMCR, laser ceilometer, micro-pulse lidar, and microwave radiometer, 

although they are labeled as “ More work may need to be done here, so be very careful 

with this variable”  (Clothiaux et al. 2001). An example of the ARSCL cloud height data 

is shown in Fig. 5.7. In the figure, the upper panel shows the cloud bases and tops, and 

the lower panel shows the histogram of the cloud thicknesses corresponding to the 

upper panel. The thicknesses are evaluated for every observation moment by subtracting 

the cloud base heights from the corresponding top heights. The mean thickness for this 

case is 475 m and the standard deviation is 205 m.  

When clutter is present, the ARSCAL data may report an incorrect cloud top. 

Figure 5.8 gives an example. In addition to the ARSCL cloud base and top data shown 

in panel (c), panels (a) and (b) show the relative humidity profiles from the Raman 

Lidar (RL) and radiosondes, respectively. Panel (d) shows the MMCR reflectivity data 

obtained during the same period as the profiles. The ARSCL cloud top is around 

3600 m, which matches the MMCR reflectivity top. While the RL or the radiosonde 

relative humidity profiles show that, around 2300 m, there is a rapid decrease of the 

relative humidity and, above 2500 m, the relative humidity has decreased to lower than 

40%. Under this circumstance, we assume the cloud top is no higher than the level 

where the relative humidity decreased to 60%. This method is based on Slingo’ s 

research (1980, 1987) and has been used by Han and Ellingson (1999).  In this study, 

we first use the ARSCL cloud top data to calculate a first guess of the cloud thickness, 

and then, this thickness is checked with the relative humidity profiles if available. If the 
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relative humidity profiles do show a rapid decrease, i.e., the relative humidity decreases 

more than 40% within a 500 m height, and if the level where this decease occurs is very 

different from the ARSCL cloud top (>300 m), then we take the level where the relative 

humidity decreases to about 60% as the final cloud top. 

The histograms of the cloud thicknesses obtained before and after taking into 

account the relative humidity information (Fig. 5.9) show that the correction based on 

the relative humidity profiles mainly eliminates some larger cloud thicknesses reported 

by the ARSCL data, which we think are mainly caused by the submersion of the clouds 

in a large amount of nonhydrometeor particulates. Also seen from Fig. 5.9 is that for the 

fair weather cumulus over the SGP site, the most frequently occurring cloud thickness is 

less than 500 m.  

Since for many cases we have to rely on the relative humidity profiles to infer 

the cloud thicknesses, we lose detailed information about each cloud and cannot obtain 

the distribution of the cloud thickness for each selected cloud field. To give a rough 

picture of the range of variation of the cloud thickness, we use either the standard 

deviation, if the thickness is calculated solely using the ARSCL data, or half of the 

changing-range of the heights of the 60% relative humidity, if the thickness is inferred 

from the relative humidity profiles, as a measure of the cloud thickness variation. 

Fig. 5.10 illustrates the histogram of the relative thickness variation (thickness variation 

to cloud thickness). The mode is around 40%, which may be taken as the uncertainty of 

characterizing the thickness population of a cloud field using the average value.  

Most PCLOS models require the cloud aspect ratio, which by definition is the 

ratio of the cloud thickness to its horizontal size. The aspect ratio is a characteristic 
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quantity of each individual cloud, and has its own distribution for a given cloud field. 

However, not only is it impossible, under current conditions, to obtain the detailed 

distribution of the aspect ratio, but PCLOS models have yet to take this into account. 

That is, all of them assume the aspect ratio to be a constant for a given cloud field. In 

this study, for each case, the aspect ratio is estimated as the ratio of average cloud 

thickness to average cloud horizontal size. Fig. 5.11 shows the histogram of the so 

obtained aspect ratios. Most cases have β < 1. The mean and median values are 0.65 

and 0.43, respectively. The fair weather cumulus over the SGP are relatively thin 

compared with those over Florida (Plank 1969), where Plank observed a typical aspect 

ratio of 1 to 2. This is quite likely due to the differences in surface forcing and water 

content of the atmosphere between two locations 
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5.4 Determining the Cloud Spacing and Horizontal Size Distribution 

The requirement of information about cloud sizes and spacings is one of the 

main differences between the broken and the unbroken-plane-parallel cloud radiation 

problems. In this study, assuming that the cloud field properties do not change 

significantly as they move at mean wind speed, the spacings and horizontal sizes are 

estimated as the products of wind speed and time lengths of observations. This is a one-

dimensional estimate of the cloud horizontal sizes and spacings. 

Observational issues are the sampling rate and the field-of-view (FOV) of the 

instruments. Too small a sampling rate may cause the instrument to miss small clouds 

or cloud spaces, whereas too wide FOV will smear the cloud boundaries. As seen from 

Table 2.1, the NFOV has a relatively high sampling rate (1 measurement per second) 

and a narrow FOV (5.7o). Thus, the NFOV was chosen to measure the cloud horizontal 

sizes and spacings in this study. The step length between sampling points is a function 

of wind speed. For typical conditions at the CART site, the wind speed is about 10m/s, 

which corresponds to a step length of 10 m. The size of viewing area within the FOV is 

a function of height. For a cloud base of 1.5 km, the aperture diameter of the area is 

about 150 m.  Fig. 5.12 gives an example of the NFOV data, which is a time series of 

downward diffuse spectral radiance at a wavelength of 869 nm. 

For a time interval of less than two hours, the clear sky solar diffuse radiance at 

869 nm can be assumed to be a constant or only change linearly with time. This greatly 

simplifies our determination of the threshold for identifying the cloud segment of the 

signal. To determine the threshold, we first use the VCEIL data to find the times when 

the VCEIL doesn’ t see any cloud. A first-guess threshold for the clear-sky NFOV 
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radiance data is determined by fitting a line to the NFOV data corresponding to the 

clear VCEIL periods. 

Because the two instruments are not located at exactly the same point on the 

ground and may not be synchronized well with each other, the VCEIL and NFOV don’ t 

see exactly the same volume and may report different sky conditions on some 

occasions. In other words, at some moments the VCEIL reported clear sky but the 

NFOV gave cloudy radiances. When this occurs, the aforesaid method cannot find the 

real clear sky radiance (the green signal shown in Fig. 5.12), but will generate a 

threshold that is higher than the clear-sky radiance. The real clear-sky radiance will lie 

between this fist-guess threshold line and zero radiance. In order to get a better estimate 

of the clear-sky background, our algorithm allows the aforesaid first-guess threshold 

line to move between the VCEIL-determined threshold and zero radiance. 

As mentioned earlier, for a period of one or two hours, the clear-sky solar 

diffuse radiance is almost constant or changes linearly with time. Also, at 869 nm, the 

diffuse radiance from a cloud is quite different from that from the clear background. 

That means, when a cloud moves into the FOV of the NFOV, there will be a big jump 

in the time series of radiance data. If the clear-sky radiance is really constant, when 

moving the threshold line in a small neighborhood around the clear-sky radiance value, 

the number of the points located on the threshold line, i.e., with their radiance equal to 

the threshold value, will be always be zero unless the threshold line is placed exactly on 

the value of the clear sky radiance. This way we can find the desired clear background 

radiance value. 
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In practice, the clear-sky radiance is not a constant. When moving the threshold, 

the number of points on the line will be a function of the threshold value. However 

there must be a maximum between zero and the first-guess threshold. In our algorithm, 

this position is defined as the clear-sky background. The new threshold line is then set 

at a position where it is 0.015 w/m2/nm/sr above the clear-sky background. This is the 

red line shown in Fig. 5.12. Values greater than the threshold are counted as from cloud. 

If the clear-sky radiance changes with time, a slope is determined from the data and the 

slope is taken into account in the aforementioned process of finding the clear sky 

radiance. 

The wind speed at the height of the cloud layer is obtained from measurements 

by the ARM 915 MHz Radar Wind Profiler (RWP915). The radar data provide 1-hour 

averaged wind profiles from 0.1 km to 5 km with accuracy of 1 m/s compared with the 

winds from the balloon borne sounding system. The time-nearest available radar wind 

profile is used to estimate the wind speed. Fig. 5.13 shows the histogram of the wind 

speeds obtained for all 93 selected cases. In general, the wind speed is between 1 and 

20 m/s. The mode is about 7 m/s. 

It should be noted that the sizes and spacings obtained by the above technique 

are only the cloud chord and gap lengths from a one-dimensional transect of the cloud 

field. Thus, when we say ‘cloud size’  in the text, we actually mean the so obtained 

chord length. Figure 5.14 (a) and (b) show the distributions of the inferred cloud 

spacings and horizontal sizes, respectively, for all cases. The stair step line in the figure 

is the histogram of the spacings and sizes. Cloud sizes and spacings are grouped in a set 

of log-scale bins. In Fig. 5.14, the ordinate values of the histogram have been scaled to 
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the number of counts per unit length (= Number of counts in a bin / Bin width).  When 

estimating the cloud size and spacing, we have neglected those segments less than 50 m.  

Thus the minimum value in the figure is 50 m for both the size and spacing. 

As seen in the figure, both the size and spacing distributions are asymmetric and 

have long tails. Also shown in the figure are four maximum-likelihood-fitted theoretical 

distributions including the power law distribution, the Weibull distribution, the 

exponential distribution and the lognormal distribution. The power law distribution 

appears as a straight line in the log-log plots. It doesn’ t fit the observed cloud size and 

spacing distributions very well. The Weibull distribution works fine in the range from 

600 – 3000 m. Since the exponential distribution is a special case of the Weibull 

distribution, it has roughly the same performance as the Weibull distribution. Generally, 

the lognormal distribution gives the best overall fit. 

Figure 5.15 shows the cloud size histogram for cloud fractions grouped into 

three groups, 0 – 0.3, 0.3 – 0.6 and 0.6 – 1. Here the y-axis is a linear scale. The area 

under the histogram corresponds to the total number of cases in the cloud-fraction 

group. From the figure, we may notice a slight mode at around 100 – 200 m for the 

cloud size distributions, especially for small cloud amount cases. Since we obtained the 

chord length, the real cloud horizontal scale may be different. A relationship between 

the chord length and a characteristic horizontal scale only exists for very simple 

geometrical shapes, such as a circle. If we assume the cloud base is a circle and define 

the diameter, D, as the characteristic scale of the circle, then, the average of the 

randomly selected chord lengths, L, can be related to D by D = 1.5L (Mathai 1999). 
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Thus, the most frequently occurring fair weather cumulus over the ARM SGP site have 

horizontal sizes in the range of about 200-300 m. 

To obtain information about the range of variation of the cloud size and spacing 

for every case, we calculated the median and the 20th and 80th percentile values for 

every case and display them in Fig. 5.16 and Fig. 5.17. For most selected fair weather 

cumulus cases, the average (median value) cloud sizes and cloud spacings are less than 

1000 m and 2000 m, respectively. Like the population for all the selected cases, the 

populations of the size and spacing for every individual case also have the asymmetric 

distributions (refer to Fig. 5.14), which are indicated in the upper panels in Fig. 5.16 and 

Fig. 5.17 by the unequal whisker lengths for the 20th and 80th percentiles, respectively. 

The average ranges between the 20th and the 80th percentiles for the cloud size and 

spacing are 1000 m and 2000 m, respectively, which are the same order of magnitude as 

the values of themselves. 

Finally we will estimate the spacing and size distribution parameters for every 

case. These parameters are closely associated with the theoretical distributions used to 

model the cloud spacings and sizes. Different theoretical distributions have different 

parameters (refer to Table 5.1). Among the four theoretical distributions mentioned in 

the preceding text, we use three of them in this study. They are the exponential, the 

power law and the Weibull distributions. Although it may fit the data better, the 

lognormal distribution was disregarded because it is difficult to use in a PCLOS model. 

As discussed in chapter 3, we addressed three types of cloud spacings in a 1D 

section of the cloud field (refer to Fig. 3.3). These are: (1) spacing is measured between 

the edges of two adjacent clouds, i.e., the “ sd”  type; (2) spacing is measured between an 
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arbitrary point and its nearest cloud in the view direction, i.e., the “ xd”  type; and (3) 

spacing is measured between cloud centers of two adjacent clouds, i.e., the “ cd”  type. 

Each may assume various distributions, the possible combinations of which are shown 

in Table 5.2. 

 

Table 5.2   Combinations of types of the cloud spacing and their assumed 
distributions. Where ‘X’  means a possible combination.  For example, the 
“ sd”  type of spacing may assume the exponential, the power law and the 
Weibull distributions. 
 

 Exponential 
xexp µµ −=)(  

Power law 
µµµ −−−= xxxp 1

min)1()(  

Weibull 
baxb eabxxp −−= 1)(  

“ sd”  X X X 

“ xd”  X  X 

“ cd”  X X X 

 

As seen from the Table 5.2, for cloud spacing, we may have eight combinations. 

Each exponential or power law distribution has one parameter, and each Weibull 

distribution has two parameters. Thus, for cloud spacing, there are 11 parameters. 

Counting the 4 parameters for the cloud size distributions (two for exponential and 

power law and two for Weibull), there are 15 parameters in total that need to be 

estimated from the data. 

The “ cd”  type spacing is measured between an arbitrary point and its nearest 

cloud. When inferring its distribution, a random number was first generated in the range 

from 0 to the length of the NFOV observation interval. If the point corresponding the 

random number lies within a spacing then the distance between the point and the cloud 

to its left is taken as a sample of the “ cd”  type spacing.  This process was repeated until 
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we obtained 200 samples or the iteration number exceeds 5000. The results are used as 

the sample space to estimate the parameters of the various assumed distributions. 

Following the conventions in Chapter 3, we denote µ as the parameter of the 

exponential and the power law distributions for the cloud spacing, and ν for the cloud 

size. For the Weibull distribution, a, b are used for both cloud spacing and size. 

Figures 5.18 - 5.21 show the maximum likelihood estimates of the various distribution 

parameters for the cloud size distributions (Fig. 5.18), the cloud spacing distributions of 

the “ sd”  type (Fig. 5.19), the cloud spacing distributions of the “ cd”  type (Fig. 5.20), 

and the cloud spacing distributions of the “ xd”  type (Fig. 5.21). Also shown in the 

figures are 95% confidence intervals. 

 From the figures, we notice that some cases ( case #: 7, 8, 9, 27, 28, 29, 34, 37, 

42, 53, 70, 92) tend to generate “ outlier”  estimates or “ abnormal”  (too wide or zero 

wide) confidence intervals. Except cases 8 and 9, all of them are due to the very low 

cloud amount (< 0.1). The low cloud amount makes it difficult for the surface 

instruments to capture enough cloud samples to infer reliable values for the parameters.  

Cases 8 and 9 are sampled on the same day when the wind speed is only 1 m/s, which is 

the minimum among all cases. Remember, we rely on advection of the clouds with wind 

to infer cloud size and spacing. A low wind speed means few cloud samples can be 

obtained during a finite period. Like the low cloud amount, this will also lead to low-

quality estimates. 

Table 5.3 lists the means and ranges for the various parameters (µ, ν, a and b). 

The exponential parameter (µ for cloud spacing and ν for cloud size) is the inverse of 

the mean of population. Thus, the mean cloud size for our cases is about 700 m. Please 
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note that due to the positive skewness of the cloud size distribution, the most frequently 

occurred cloud size will be smaller than the value estimated in preceding section. The 

mean spacing between two adjacent cloud centers ( “ cd”  ), cloud edges ( “ sd”  ) and a 

random point to a cloud ( “ xd”  ) are estimated as 2500 m, 1100 m and 1400 m, 

respectively.  

 

Table 5.3   Means and ranges of the estimated distribution parameters for the 
various combinations of the cloud size or spacing for the three distributions. 

 
 Exponential Power law Weibull 

 
 µ or ν        Range 

(x 10-3) (1/m) 

µ or ν      Range 
(pure No.) 

   a        Range 
(x 10-3) (1/mb) 

b        Range 
(pure No.) 

 
Spacing, “ sd”  0.9 0.06 – 3.8 1.5 1.3 – 3.4 3.5 0 – 17 1.0 0.5 – 4.4 
 
Spacing, “ xd”  0.7 0.07 – 3.0   1.6 0 – 12 1.0 0.7 – 1.5 
 
Spacing, “ cd”  0.4 0.06 – 0.8 1.8 1.3 – 5.2 0.2 0 – 3 1.5 0.7 – 8.1 
 
Size 1.4 0.3 – 5.2 1.6 1.3 – 3.7 1.4 0 – 12 1.2 0.6 – 4.9 

 
 
 

The Weibull distribution is a generalization of the exponential distribution. 

When b = 1, a Weibull distribution reduce to an exponential distribution. As seen from 

Figs. 5.18 – 5.21, the values of b is close to 1 for the cloud size and spacings of the “ sd”  

and “ xd”  types. This indicates that the three distributions do not depart much from the 

exponential distribution.  

The power law slope of the cloud size distribution has drawn a lot attention in 

recent decades, because it relates to the fractal property of the clouds (Lovejoy 1982; 

Cahalan and Joseph 1989; Sengupta et al. 1990; Joseph and Cahalan 1990). Cahalan 

and Joseph (1989) concluded that the cumulus cloud size distribution is best represented 
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by a double power law distribution. For fair weather cumulus the break point is around 

500 m. With the cloud base diameters less than 500 m their estimate of the power law 

slope ν = 0.6, and for cloud diameters larger than 500 m, ν = 2.3. In this study, we did 

not break the cloud sizes into two groups. The mean of our estimates of ν is 1.6, which 

is in between the above results. Our value also agrees with the results from Sengupta 

et al. (1990). They found the power law slopes for small cumulus are ranging from 

ν = 1.4 to ν = 2.35.  It should be mentioned that the results in this study are based on 

chord lengths obtained in vertical cross sections of the cloud fields, provided the frozen 

turbulence assumption is valid. They are different from the effective cloud base 

diameters used by the aforementioned researchers, although the two quantities may 

closely relate to each other. Here the effective cloud base diameter is the diameter of a 

circle that has the same area as the cloud base. 

 In the derivation of the p(θ) for the “ 1D_sd_Power_Power_SemiEllipse”  and 

“ 1D_sd_Power_Power_IsoscelesTrapezoid” , we have shown that the models require 

2>µ . (refer to Chapter 3). From Fig. 5.20 we find that for most of the cases, 2<µ . 

This means that, for this model, our assumption that the cloud spacing can range from 

smin to infinity is inappropriate. If we define the cloud spacing as the “ sd”  type and want 

to model its distribution with the power law distribution, we have to assume the spacing 

has finite lower and upper limits, i.e., maxmin sss ≤≤ . This was not done in the present 

study. Hence the above two models are not used in the comparisons presented in the 

next section.  

 



 99

5.5 Comparison of the model PCLOS’s with the observations 

Knowing the parameters listed in Table 5.1, we can calculate the PCLOS using 

the models (PCLOSmodel) and compare them with the PCLOS measured from the TSI 

(PCLOSTSI). Figures 5.22(a, b) and 5.23(a, b) show comparisons of observations with 

Group-1 and Group-2 model calculations, respectively. In panels (a) of Fig. 5.22 and 

Fig. 5.23, PCLOSmodel/(1-N) is compared with PCLOSTSI/(1-N)  (denoted as CPCLOS  

in the following ). As mentioned in section 5.1, )1/()(PCLOS1 N−− θ  gives the 

conditional probability of seeing a cloud side in clear regions of the sky. Panels (b) of 

Fig. 5.22 and Fig. 5.23 show the differences between the PCLOSmodel and PCLOSTSI 

(denoted as ���������  in the following). All curves in the figures are averages over 38 

cases (these 38 cases are the non- streak cases whose cloud thicknesses were confirmed 

with the relative humidity data): 

 

esNo. of Cas

caseN
case

all cases
∑

=
))(-(1

),PCLOS(

  )CPCLOS(

θ

θ              for panels (a), or 

esNo. of Cas

casecase
all cases
∑

=∆
),(PCLOS-),(PCLOS

  )PCLOS(
TSImodel θθ

θ           for panels (b). 

 

The various model calculations were performed using the values of the 

parameters N, β, µ, ν, a, b  (refer to Table 5.1 for definitions of the parameters) inferred 

from the observations using the techniques discussed in the preceding sections. The 

minimum cloud spacing and cloud size required by the power low distributions are set 
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to 50 m. The Shift Regular-Cuboidal model has a parameter f that is the shift distance of 

a row with respect to its adjacent rows (see Table 5.1). Its value is set to 0.2/N, which is 

the value used by Naber and Weinman (1984).  

The models that assume the cloud shape to be truncated-cones or isosceles-

trapezoids require, η, the inclination angle as an additional parameter. As η varies from 

0 to ηmax, the cloud shape changes from right-cylinders or rectangles to right-cones or 

isosceles triangles. ηmax is the maximum value that an inclination angle may assume. 

Keeping the aspect ratio as a constant, the maximum η occurs when the top length of an 

isosceles trapezoid or the top diameter of a truncated cone equals zero. Thus 

)
2

1
(tan)

2
(tan 11

max β
η −− ==

H

D
. For example, for the fair weather cumulus over the 

ARM CART site, the mean aspect ratio is 0.65 (see section 5.3), which translates to 

ηmax = 38o.  

At present, there is no information available for η from the ARM observations, 

except ηmax, which can be inferred from the cloud aspect ratio as mentioned above. In 

this study, η was specified using the following considerations. To facilitate the 

description, the “ 2D_Poisson_SemiEllipsoid”  and “ 2D_Poisson_TruncatedCone”  

models are used as examples. The two models differ only in their assumptions about the 

cloud shape. The latter has one additional adjustable parameter, the inclination angle. 

Giving an arbitrary value to η will induce additional uncertainty in the comparison of 

the two models. To minimize the uncertainty, we set η to the value at which the two 

models have the least average difference in the predicted PCLOS over the selected 38 

cases. In other words, we fix the truncated-cone model to have the same or close 
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performance as the semi-ellipsoid model in this comparison. But keep in mind that the 

truncated-cone model has one more parameter that can be adjusted to fit the more 

general conditions. 

There are six models that require a value for η. Except for the Han model, all η 

values are determined using the above considerations. The Han model does not have a 

counterpart of a round-top cloud shape. Its value of η is set to be the average of the 

other values listed in Table 5.4.  The values listed in Table 5.4 are relative factors that 

range from 0 to 1, with 0 corresponding to �0=η  and 1 to maxηη = . For example, when 

max53.0 ηη = , the “ 2D_Poisson_TruncatedCone”  model is roughly equivalent to the 

“ 2D_Poisson_SemiEllipse”  model for the cases we selected over the ARM CART site.  

 

Table 5.4 Values for the inclination angle, η. 

Model Value for η ( x ηmax) 

1D_Poisson_IsoscelesTrapizoid 0.74 

2D_Poisson_TruncatedCone 0.53 

1D_xd_Exp_Exp_IsoscelesTrapezoid 0.68 

1D_sd_Exp_Exp_IsoscelesTrapezoid 0.68 

1D_xd_Weib_Power_IsoscelesTrapezoid 0.47 

1D_cd_Power_Power_VariableShape (Han) 0.62 

 
 

In figures 5.22 and 5.23, all model PCLOSs, except the Han model, tend to 

decrease more rapidly for θ < 50o and more slowly for θ > 60o. Both groups of models 

tend to underestimate the PCLOS in the middle range of the zenith angles 

(30o < θ < 70o), although the Group-2 models give better results than the Group-1 
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models. For all Group-2 models, except the “ 2D_Poisson_RightCylinder”  model and 

the “ 2D_ShiftRegular_Cuboidoal”  model, the average PCLOSmodel/(1-N) agrees with 

the TSI observations within about ±0.1 of the cloud fraction unit (panel (a) in the 

Fig. 5.23).  

The average (PCLOSmodel-PCLOSTSI) curves disperse with increasing zenith 

angle ( Fig. 5.22(b) and Fig. 5.23(b) ). The fact that all the curves start from zero at 0o is 

simply because we have set the parameter N = NTSI, thereby forcing the models to have 

zero difference with the TSI observations at θ  = 0. Assuming the TSI inferences of the 

PCLOS are accurate, the dispersion of the curves at larger zenith angles reflects the 

different performance of the various models, which depends on the validity of the 

model assumptions and the accuracy of the various model parameters, including N. As 

seen, for most of the zenith angles the dispersion is less than 0.15 (in units of cloud 

fraction).  

Also noticed from the figures is the big difference between the 

“ 2D_Poisson_RightCylinder”  model and the “ 2D_Poisson_TruncatedCone”  model, 

although the former is just a special case of the latter. The only difference between these 

two models is the different cloud shapes. This indicates that the cloud shape (inclination 

angle in this case) may be an important factor when modeling the PCLOS. 

Figure 5.24 shows the standard deviation of the difference between the models 

and the TSI observations as a function of zenith angle for the different models. For most 

models, the maximum standard deviation of (PCLOSmodel -PCLOSTSI) is less than 0.2 

(in cloud fraction units), except the “ 1D_cd_Power_Power_VariableShape (Han)”  and 
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“ 2D_ShiftRegular_Cuboidal”  models. Among the models, the 

“ 2D_Poisson_Hemisphere”  model tends to have the smallest bias and variance. 

To further compare the performance of the various PCLOS models, we define a 

quantity,  

[ ] µµµ dPCLOSNCSE ∫ −−=
1

0

)(12  

where µ = cos(θ), and the PCLOS(µ) is the probability of a clear line of sight at angle θ. 

The CSE denotes the Cloud Side Effect, which represents the contribution of the cloud 

sides to the effective cloud fraction Ne. In fact, NNCSE e −=  for isothermal black 

clouds. The factor CSE can be viewed as a summary quantity that provides us an overall 

measure of the cloud side effect on the cloud coverage. Figure 5.25 shows summary 

statistics of the model predictions of CSE and those inferred from the TSI observations. 

In the figure, the bottom and the top of the box give the 25th and 75th percentiles of the 

sample. The line in the middle of the box is the sample median. The plus signs are 

outliers in the data (i.e, values that are more than 1.5 times the box length away from 

the top or bottom of the box). The last column in the figure is CSE computed from the 

TSI observations. CSE has units of cloud fraction.  

As we mentioned before, CSE denotes the contribution from cloud sides to the 

effective cloud fraction. This part of the effective cloud fraction increases the radiation 

fluxes from the cloud field relative to flat plates. The y-axis on the right-hand side of the 

figure gives the estimated value of the increase of downward flux at the surface due to 

the cloud side effect. Since )( clrcldeclr FFNFF −+=  and Ne = N + CSE, 

CSEFFF clrcld ⋅−= )(δ , where Fclr and Fcld denote the fluxes under clear and overcast 
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conditions, respectively.  The Fclr and Fcld are calculated using MDTERP (Ellingson and 

Gille 1978; Takara and Ellingson 2000). The McClatchey midlatitude summer profile is 

used in the calculation and the cloud base height is assumed to be 1.5 km. The TSI 

column (the last column in the figure) shows that, for those the fair weather cumulus 

over the ARM CART site, the mean flux departure at the surface due to the cloud side 

effect is about 3.7 W/m2. Table 5.5 lists the mean and standard deviation of the CSE 

values estimated from the various models and the one from the TSI. 

 

Table 5.5 The mean and standard deviation of the CSE values estimated from the 
various models and the one from the TSI. Where STD. denotes standard deviation. 
 

CSE δF (W/m2) 

Model or TSI Mean STD. Mean STD. 

1D_sd_Exp_Expl_IsoscelesTrapezoid 0.111 0.094  6.9  5.9 

1D_sd_Exp_Exp_SemiEllipse 0.111 0.093  6.9  5.8 

1D_xd_Exp_Exp_IsoscelesTrapezoid 0.096 0.089  6.0  5.6 

1D_xd_Exp_Exp_SemiEllipse  0.095 0.087  5.9  5.5 

1D_xd_Weib_Power_IsoscelesTrapezoid 0.102 0.061  6.3  3.8 

1D_xd_Weib_Power_SemiEllipse 0.094 0.059  5.9  3.7 

1D_cd_Power_Power_VariableShape (Han) 0.068 0.148  4.2  9.3 

1D_Poisson_IsoscelesTrapezoid 0.092 0.092  5.7  5.7 

1D_Poisson_SemiEllipse 0.093 0.090  5.8  5.6 

2D_Poisson_TruncatedCone 0.092 0.087  5.7  5.4 

2D_Poisson_SemiEllipsoid 0.093 0.090  5.8  5.6 

2D_Poisson_Hemisphere 0.057 0.029  3.6  1.8 

2D_Poisson-Ellipsoid 0.074 0.082  4.6  5.1 

2D_Poisson-RightCylinder 0.156 0.112  9.8  7.0 

2D_ShiftedRegular _Cuboidal 0.20 0.182  12.9  11.4 

TSI observation 0.059 0.040  3.7  2.5 
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 Figure 5.26 shows box plots of the differences between the CSE predicted by 

the models and that from the TSI. Corresponding mean and standard deviation of the 

differences are listed in Table 5.6. All Group-1 models tend to have positive biases. The 

“ 2D_Poisson_Hemisphere”  model is a special case of the “ 2D_Poisson_SemiEllipsoid”  

model, as the hemisphere model sets the aspect ratio to be a constant, while the semi-

ellipsoid model uses the observed aspect ratio. Interestingly, the former gives a better 

result than the latter. The range of the differences for the hemisphere model is less than 

that for the semi-ellipsoid model. This might indicate that our estimates of the aspect 

ratio are slightly positively biased, at least for some of the cases. 

Once again, we see a difference between the “ 2D_Poisson_TruncatedCone”  

model and the “ 2D_Poisson_RightCylinder”  model. The only difference between the 

two models is the inclination angle, but they yield quite different predictions of CSE. 

The “ 2D_Poisson_RightCylinder”  model apparently overestimates the cloud side effect.  

Among all models, the “ 2D_Poisson-Hemisphere”  generates the best results. 

However, because the “ 2D_Poisson-TruncatedCone”  model has been fixed to its semi-

ellipsoid counterpart and the semi-ellipsoid model is a general case of the hemisphere 

model, we expect that given appropriate values for the aspect ratio and inclination 

angle, the “ 2D_Poisson_TruncatedCone”  model and the “ 2D_Poisson_SemiEllipsoid”  

model have the potential to generate the same result as the “ 2D_Poisson_Hemisphere”  

model. 
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Table 5.6 The means and standard deviations of the differences between the CSE predicted 
by the models (CSEmodel) and those obtained from TSI (CSETSI). Where STD. denotes 
standard deviation. 
 

CSEmodel- CSETSI δFmodel-δFTSI (W/m2) 

Model or TSI Mean STD. Mean STD. 

1D_sd_Exp_Expl_IsoscelesTrapezoid 0.052 0.088  3.3  5.5 

1D_sd_Exp_Exp_SemiEllipse 0.052 0.087  3.3  5.4 

1D_xd_Exp_Exp_IsoscelesTrapezoid 0.037 0.085  2.3  5.3 

1D_xd_Exp_Exp_SemiEllipse  0.036 0.084  2.3  5.2 

1D_xd_Weib_Power_IsoscelesTrapezoid 0.041 0.067  2.6  4.2 

1D_xd_Weib_Power_SemiEllipse 0.034 0.065  2.1  4.1 

1D_cd_Power_Power_VariableShape (Han) 0.009 0.162  0.6  10.1 

1D_Poisson_IsoscelesTrapezoid 0.033 0.082  2.1  5.1 

1D_Poisson_SemiEllipse 0.034 0.080  2.1  5.0 

2D_Poisson_TruncatedCone 0.033 0.077  2.1  4.8 

2D_Poisson_SemiEllipsoid 0.034 0.080  2.1  5.0 

2D_Poisson_Hemisphere -0.002 0.042 -0.1  2.7 

2D_Poisson-Ellipsoid 0.016 0.073  1.0  4.5 

2D_Poisson-RightCylinder 0.098 0.098  6.1  6.2 

2D_ShiftedRegular _Cuboidal 0.141 0.165  8.8  10.3 
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5.6 Chapter Summary 

The parameters required by the PCLOS models are the absolute cloud fraction 

N, the aspect ratio β, the parameters characterizing the cloud spacing and size 

distributions µ, ν, a, b, and the cloud inclination angle η. In this chapter, methods have 

been developed to infer these parameters from the ARM cloud observations (not 

including the inclination angle). The absolute cloud fraction is estimated as the 

frequency of the central portion of the TSI image being covered by clouds.  Among all 

93 cases, most are fair weather cumulus fields and have N < 0.7. The aspect ratio is 

theoretically defined for every cloud, but we cannot obtain such detailed observations of 

the clouds in practice. Thus, in this study, β is estimated for every case as the ratio of 

the average cloud thickness to the median cloud horizontal size. The median is used 

instead of the mean because the cloud horizontal size is highly asymmetrically 

distributed. Among all 93 cases, more than 80% have β < 1, (β = H/D). The mean value 

equals 0.65 and the median is 0.43. 

Three theoretical distributions, the exponential, the Weibull and the power law 

distributions are used to model the cloud spacing and size distributions. The distribution 

parameters for the three distributions are inferred for every case from the time series of 

the NFOV observations. Several models need the inclination angle η as a model 

parameter. Without observational information about η, these models are set to have the 

same performance as their round-top-shape counterparts by specifying a value for η so 

that the pair (the η-adjustable model and its round-top-shape counterpart) has minimum 

average difference in the predicted PCLOSs. 
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We also developed a method to estimate the PCLOS using time series of images 

from the TSI.  Based on this TSI observed PCLOS, the cloud side effect on the 

downward longwave radiation flux is estimated. For the fair weather cumulus clouds 

over the ARM CART site, the mean flux departure at the surface due to the cloud side 

effect is about 3.7 W/m2 (assuming the cloud height is 1.5 km). The standard deviation 

among various cases is about 2.5 W/m2.  

Model calculated PCLOS values were compared with those obtained from the 

TSI.  Based on the obtained parameters, the models that assume the clouds are Poisson 

distributed give better result than those that specify cloud distribution by explicitly 

specifying the cloud spacing and size distributions. Most PCLOSmodel’ s agree with the 

observations within ±0.2 (Fig. 5.24). All models, especially those models that assume 

the cloud shape as right cylinder or cuboidal and 1D models tend to underestimate the 

PCLOS (or overestimate the cloud side effect). This may partly due to the incorrect 

information about the cloud aspect ratio and inclination angle. For example, the cloud 

base diameter was assumed to be the measured chord length. This may result in an 

underestimate of the cloud base diameter and hence an overestimate of the aspect ratio. 

For a circular cloud base, the real diameter may be 1.5 times longer than the average 

chord length (Mathai 1999). However, due to the complicated nature of the cloud base 

shape, there is no exact relationship between the diameter and chord length available. 

Hence, there is not a good way to correct this bias at present 

Among the models listed in Table 5.1, the “ 2D_Poission_Hemisphere”  model 

generates the best average results for the cases selected in the present study. The 

“ 2D_Poisson_Hemisphere”  model is a special case of the “ 2D_Poisson_SemiEllipsoid”  
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model when β = 0.5. This may indicate that the aspect ratio of the fair weather cumulus 

cloud over the ARM CART site is most probably around 0.5. However, since the 

hemisphere model assumes a constant aspect ratio, it may not work for other type of 

clouds or clouds at different geographical locations. The “ 2D_Poisson_Ellipsoid”  model 

and the “ 2D_Poisson_TruncatedCone”  model are generalizations of the hemisphere 

model. They may be used in broader conditions.  

The cloud aspect ratio and the inclination angle can largely affect the modeled 

PCLOS. The differences due to the three theoretical distributions used to model the 

cloud spatial and size distributions are no greater than the differences resulting from the 

different cloud inclination angles.  

Finally, it should be noted that since the fair weather cumulus clouds over the 

SGP region are relatively small, the cloud side effect is relatively weak. For these small 

clouds, the goodness of the model results is largely limited by the accuracy of the 

estimates of the model parameters. As illustrated in Fig. 5.26 and Table 5.6, although 

some models achieve zero bias, their dispersion is of the same order of magnitude of the 

CSE value itself. We expect that this situation may improve when dealing with cumulus 

clouds over the ARM Tropical Western Pacific (TWP) site. 
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Chapter 6 

Summary, Conclusion, Discussion and Future work 

 

The Probability of Clear Line Of Sight (PCLOS) is a basic property of 3D cloud 

fields and is important to the understanding and parameterization of longwave radiative 

transfer in climate models. One way to incorporate the 3D geometrical effects in the 

parameterization is through the use of an effective cloud fraction, for which a major 

component is the PCLOS of the cloud field. The PCLOS also plays an important role in 

accounting for longwave 3D effects caused by variations of horizontal optical depth and 

the vertical temperature gradient in heterogeneous cloud fields. Aimed at improving the 

understanding and parameterization of longwave radiative transfer under cloudy 

conditions in climate models, this study addressed the formulation, measurement and 

testing of the PCLOS. 

 

(1) Formulation of the PCLOS 

Theoretical formulation of PCLOS models was addressed in a systematic way in 

the study. Several extensions and improvements were made. Three approaches for 

modeling the PCLOS were discussed in Chapter 3. They are: (1) computing the ratio of 

the projected clear area to the total domain area on a horizontal plane; (2) tracing a line 

of sight through a cloud field; and (3) modeling the PCLOS as the probability of 

occurrence of a pair of clouds having spacing larger than a threshold value (Han’ s 

method). In all, 17 models based on different formulation approaches and different 
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assumptions about the cloud shape, spatial and size distributions were discussed 

(Table 6.1).  

Table 6.1. The PCLOS models used in this study. Among them 9 are new and 
the others are revisions or extensions of the previous studies. Also shown in the 
table are the equation numbers that appear in the text. 
 

1D_sd_Exp_Exp_SemiEllipse   New Eq. (3.16) 

1D_sd_Exp_Exp_IsoscelesTrapezoid  New Eq. (3.16) 

1D_sd_Power_Power_SemiEllipse    New Eq. (3.14) 

1D_sd_Power_Power_IsoscelesTrapezoid  Revision of the Han and 

Ellingson (1999) model 

Eq. (3.11) 

1D_xd_Exp_Exp_SemiEllipse    New Eq. (3.36) 

1D_xd_Exp_Exp_IsosecelesTrapezoid   New Eq. (3.36) 

1D_xd_Weib_Power_SemiEllipse    New Eq. (3.34) 

1D_xd_Weib_Power_IsoscelesTrpezoid   Revision of the Han and 

Ellingson (1999) model 

Eq. (3.34) 

1D_cd_Power_Power_VariableShape(Han)   Han and Ellingson (1999) Eq. (3.38) 

1D_Poisson_SemiEllipse    Extension of the Kauth and 

Penquite (1967) model 

Eq. (3.23) 

1D_Poisson_IsoscelesTrpezoid    New Eq. (3.22) 

2D_Poisson_SemiEllisoid    Kauth and Penquite (1967) Eq. (3.29) 

2D_Poisson_TruncatedCone   New Eq. (3.24) 

2D_Poisson_Ellipsoid    Kauth and Penquite (1967) Eq. (3.28) 

2D_Poisson_Hemisphere    Kauth and Penquite (1967) Eq. (3.29) 

2D_Poisson_RightCylinder    New Eq. (3.27) 

2D_ShiftRegular_Cuboidal    Naber and Weinman (1984) Eq. (3.30) 

 

 

(2) Sampling Strategy 

In order to determine an objective sampling strategy and place uncertainty limits 

on the inference of the PCLOS and other cloud field parameters, an evaluation method 

was developed and tested with CRM/LES model data. The method is an extension of 

the one used in geostatistics (Cochran 1977; Matern 1986), stereology (Stoyan et al. 
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1987) and meteorology (Kagan 1997). It not only applies to the measurement of the 

cloud parameters at the ARM site, but also has general significance for evaluating the 

sampling error when one wants to extend local measurements to a larger domain. 

 The ARM cloud observations produce time series of measurements of the 

directly overhead cloud field. Area-averaged quantities are inferred from time average 

ones from a series of data by assuming the frozen turbulence approximation. Under the 

assumption, a time series of data can be interpreted as a spatial series of observations 

taken along a single sampling line (a transect) in the cloud field. Depending on the 

sampling rate, the observations may not be independent of each other. To evaluate the 

spatial representativeness of the measurement from the line of observations, a random 

field approach is taken in this study. The approach assumes the cloud field is a 

homogeneous and isotropic random field. Given the covariance function (= variance × 

correlation function), the sampling error of the area-averaged quantities can be 

estimated.  

The approach was applied to the measurement of the cloud fraction.  A 

correlation function with a negative exponential form was assumed for the cloud 

fraction field. The investigation indicates that the sampling error is dependent on 

several parameters including the covariance function of the cloud fraction field, size of 

the target area, length of the sampling line, sampling rate of the observations and the 

position of the sampling line. The e-folding parameter, ρ0, of the correlation function is 

an important quantity when evaluating the sampling strategy, as it is a measure of the 

correlation scale of the random field. Using the data from the NFOV, the average ρ0 for 

the fair weather cumulus cloud fields over the ARM SGP site is estimated as 1267 m. 
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For a large target area (the dimensions of the area being larger than 30ρ0) with a 

given ρ0, the sampling error decreases monotonically with increasing length of the 

sampling line and sampling rate. The accuracy improvement resulting from increasing 

the sampling rate is limited because the observations taken within the distance of the 

correlation scale are not independent. Given a sampling line of 50ρ0 in the middle of the 

target area, one may expect a sampling error of about 30%, assuming a cloud fraction 

of 0.4.  

Please note that, when determining the averaging time, considerations should 

also be given to such factors as wind speed, cloud development and life span of the 

cloud field, because these factors affect the validity of the frozen turbulence 

approximation. The approximation requires statistical properties of the cloud field not to 

change as the cloud field advects over the observation site.  

 

(3) Measurement of the cloud parameters and test of the PCLOS models  

Part of this study was directed at developing a set of automated techniques for 

estimating PCLOS from the ARM sky imagers and for a variety of important cloud field 

properties from ARM observational data or previously established cloud products. As 

such, these techniques may be employed on more extensive cloud data sets to further 

enhance our understanding the longwave 3D effects for a wider range of cloudiness 

conditions. The data from these techniques, combined with the sampling strategy 

outlined above, allow a major extension of previous PCLOS studies, namely the testing 

of PCLOS models with data with realistic confidence limits. 
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93 cases of single layer broken cloud fields at the ARM SGP CART site during 

the period from July 2000 though October 2001 were selected for inferring various 

cloud field parameters and testing PCLOS models, but only 38 non-streak cases whose 

cloud thickness has been confirmed with the relative humidity data were used in the 

comparisons of the modeled with the observed PCLOS. The absolute cloud fraction, 

cloud thickness, cloud size and spacing distributions were extracted from the TSI, 

NFOV, RWP915, MMCR, MPL, RL, BBSS and the ARSCL data using the techniques 

mentioned above. Time series of total sky images were used to infer the PCLOS and its 

uncertainty for the individual cases. 

The absolute cloud fraction of the selected cases ranges from 0.1 to 0.9 with the 

mode around 0.4. The cloud thickness ranges from 100 m to 3000 m, but most of cases 

have the thicknesses less than 500 m. For each case, the cloud thickness was taken to be 

the mean value for a whole field. Thus there is a variation in the thickness for each case. 

The most frequent size of the variation is about a half of the mean cloud thickness. The 

aspect ratio ranges from 0.1 to 4 with most less than 1. For most of the cases, the 

median cloud horizontal size and spacing are less than 1000 m and 2000 m, 

respectively. The cloud spacing tends to have greater case-to-case variation than the 

cloud horizontal size. 

In all, 15 PCLOS models were compared with the observations. Based on the 

parameters obtained, most models yield PCLOS values that agree with the observations 

within ±0.2 for the zenith angle range from 10o to 80o. All models tend to slightly 

underestimate the PCLOS within the 30o to 70o zenith angle range, but the models that 

assume the clouds are Poisson distributed give better results than those that explicitly 
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specify the cloud spacing and size distributions. 

Cloud aspect ratio and inclination angle have large impacts on the modeled 

PCLOS, but the inclination angle is not an observable quantity. Among the models, the 

“ 2D_Poisson_Hemisphere”  model has the best average performance. Since the 

“ 2D_Poisson_SemiEllisoid”  and the “ 2D_Poisson_TruncatedCone”  models are 

generalizations of the hemisphere model, we expect that they may have at least the 

same performance as the hemisphere model if given accurate cloud parameters. 

The geometrical effect of 3D clouds on the downward longwave radiation flux 

at the surface was estimated using both PCLOS model calculations and the TSI 

observations. Based on the observations, the mean departure from plane-parallel clouds 

at the surface due to the geometrical effect (CSE) of the clouds is about 3.7 ± 2.5 Wm-2 

for a cloud height of 1.5 km. Given the obtained cloud parameters, most model 

estimates tend to overestimate the effect and have standard deviations of the same order 

as the mean values. This indicates that, confined by the uncertainties in the cloud 

parameters obtained to date, most models may not be able to generate reliable estimates 

of the geometrical effect of fair weather cumulus over the SGP site. One exception is 

the “ 2D_Poisson_Hemisphere”  model, which gives reasonable estimates 

(CSE = 3.6 ± 1.8 Wm-2). It is interesting to note that the hemisphere model requires the 

least number of cloud parameters but generates better results than its generalizations, 

such as the “ 2D_Poisson_SemiEllipsoid”  model and the “ 2D_Poisson_TruncatedCone”  

model. This is another indication that the confining factor may be the quality of the 

cloud parameters. 
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(4) Future work 

 All the cases we selected in this study are non-precipitating fair weather 

cumulus fields. The clouds are relatively small and they are members of a special 

category of broken cloud fields. To more thoroughly investigate the validity of the 

PCLOS models and study the impact of the 3D clouds on longwave radiative transfer, it 

will be necessary to consider more categories of broken clouds in future studies. Such 

studies are now possible with data from the ARM Tropical Western Pacific (TWP) site.  

The airborne clutter problem at the ARM SPG site greatly limits our ability to 

precisely infer the cloud thickness from the MMCR data. Since the total sky imager is 

also planned for the TWP site where there is no clutter problem, one may expect a 

better data set and thus a more solid test of the PCLOS models. In addition, using the 

TWP data will also give us a chance to test with a new category of broken clouds – 

tropical fair weather cumulus. 

The PCLOS models addressed in this study are all based on Euclidean geometric 

models of the cloud field. The clouds are modeled as geometric objects with simple 

shapes and distributed on a common cloud base line or plane regularly or randomly 

according to relatively simple distribution laws. Recently, some researchers have been 

modeling the cloud field using the fractal technique. The method generates, at least 

from the morphological perspective, more realistic cloud fields. Since the PCLOS is 

mainly a morphological property of the cloud field, a PCLOS model based on fractal 

theory may be an attractive choice for future studies. 
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The observations at the ARM CART site can yield empirical PCLOS functions 

for individual periods. This leads to the question of the sensitivity of climate studies to 

PCLOS models. Should we use a theoretical or an empirical PCLOS model or any such 

model at all? Should people place more effort into improving the PCLOS models or 

observations? To answer the questions one will need more information about the 

PCLOS and cloud field parameters in various climate regions, seasons and cloud 

categories. If the PCLOS has large variations at different locations and times, then one 

may have to put more effort on the models. Otherwise, if the PCLOS doesn’ t change 

very rapidly with location and time, or the PCLOS variations are not significant to 

climate model studies, then an empirical PCLOS may be good enough. Answering these 

questions is another possible direction for future work. 
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Fig. 1.1    Examples of the Probability of Clear Line Of Sight (PCLOS) for 

randomly distributed semi-ellipsoids and right-cylinders. Due to the cloud side 

effect, the PCLOS decreases with increasing zenith angle. Given the same cloud 

fraction and distribution, the greater the cloud vertical dimensions, the larger the 

cloud side effect until mutual shading occurs. At the zenith, the PCLOS = (1 - N), 

where N is the absolute cloud fraction. The inclination angle of the clouds has large 

impact on the PCLOS. 
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Fig. 2.1 An illustration of three aspects of 3D cloud effects.  
 

(1) Geometric effect. When viewed at a zenith angle θ, vertically extended clouds will project 
greater lengths than the PPH clouds. The PPH cloud lengths were obtained by projecting the 
clouds vertically downward and have been displaced here to coincide with the start of the 
projections of the vertically extended clouds. 

(2) Variable optical depth effect: Due to the 3D structure of the cloud field and variation of the 
optical properties within the clouds, the optical depth seen at an angle θ may vary horizontally. 
Because of the highly non-linear dependence of the cloud transmission or emission on the 
cloud optical depth, the domain-averaged radiance may be significantly different from the 
radiance at the average cloud optical depth. 

(3) Non-isothermal cloud effect: Clouds are not isothermal. Temperature may very with height. 
Due to the existence of brokenness and non-opaque clouds, radiation from the cloud layer may 
be emitted from various heights and thus from various temperatures. 

In the figure: 
The pencil of beam (A): Radiance from cloud side, which is neglected by PPH approximation. 
The pencil of beam (B): Radiance from PPH approximation. 

Radiation from plane parallel 
clouds with homogeneous 
optical depth at a level Z and 
angle θ 

Radiation from vertically extended clouds with variable optical depth at a level Z and 
angle θ 

θ 

Non-isothermal cloud, cloud 
temperature decreases with 

B 

A 



 121 

zt 

zb 

z 

Tc(zt,zb, τ(µ), µ) 

Fig. 2.2 A quasi-3D cloud field. 

The atmosphere is horizontally homogeneous. All clouds properties are 

azimuthally averaged values. There is only one layer of clouds and all clouds 

are constrained in the layer between zb and zt, which denote the cloud base and 

top height, respectively. Scattering is neglected. 
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A single cloud element 

sc sc sc 

Fig.3.1 A vertical section of a hypothetical cloud field. 

sc is a clear section of the horizontal line (parallel to the line of the cloud base) 

that is not covered by the projection of the cloud projected at zenith angle θ. A 

cloud element consists of a cloud and a spacing associated with it. 
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A line of sight 

   sc 

θ
η 

h 

s d 

Fig.3.2 Geometrical features associated with a cloud element. In the figure, 

d is the length of the vertical projection of the cloud on the horizontal line; 

s is the spacing between two adjacent vertical projections; h is the cloud 

thickness; η is the inclination angle of the cloud side relative to the zenith.  
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Fig.3.3 Three types of cloud spacing. Different PCLOS 

models use different definitions of the cloud spacing.  

x

s

s

‘sd’  type of spacing is defined 
as the distance between the two 
nearest edges of two adjacent 
clouds. 

‘cd’  type of spacing is defined 
as the distance between two 
cloud centers of two adjacent 
clouds. 

‘xd’  type of spacing is defined 
as the distance between an 
arbitrary point and its nearest 
cloud to the right. 
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Fig.3.4   Integral domain of )(θcs . The valid domain is shown in the figure as the shaded area.  
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Where s denotes the cloud spacing, d denotes the cloud horizontal size, β is the aspect ratio, 

dβ = h. The angle η is the slant angle of the isosceles trapezoid cloud.  

)tan(tan 1 ηθβ −= ds

)tan(tan 2 ηθβ −= ds

θ2  > θc > θ1 
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Fig.3.5 sc(θ) for a semi-ellipse cloud. The cloud is placed in an x-y plane with the base 

center located at the origin of the coordinates. The cloud horizontal size is d=a(0). A 

line of sight tangent to the cloud is also shown on the plot. By setting x = 0 in the line 

equation, we can obtain sc(θ). (refer to Eq.(3.13)).  

a(θ) = t(θ), a(0) = t(0) for a single cloud (refer to Eq.(3.23)). 
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Fig.3.6. a(θ) for a truncated cone cloud. The shaded area can be seen as a set of circles 

aligned along a straight line, which is the projection of the central-symmetrical axis of the 

truncated cone. The area of the shadow is the area within the circumference of the set of 

circles and can be given as 
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Fig.3.7 Modeling the PCLOS by tracing a line of sight. To pass the cloud 

field clearly, a line of sight has to penetrate the cloud base in the (1-N) 

portion of the cloud base plane and the cloud in front of the line has to be 

far enough away or short enough to not block the line of sight. Note the 

distance x is measured on the cloud base level between the penetrating point 

and the nearest cloud to its right. 
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Fig.3.8 Naber and Weinman’ s ShiftedRegular_Cuboidal model 

(After Naber and Weinman 1984). Every row is shifted a distance of x with 

respect to the adjacent row. Eq. (3.30) applies to the view direction shown in 

the figure. 
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Fig. 4.1 Sampling arrangement for the measurement of the absolute cloud 

fraction N. Based on the frozen turbulence approximation, observations can be 

seen as taken along a straight line placed on the center of the domain. In the 

figure, the domain size is WxL. The length of the sampling line is ls. Sampling 

points are regularly spaced on the sampling line.  
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Fig. 4.2, Observed and model correlation functions for cumulus cloud fields over 

the ARM CART site, derived from 45 days of NFOV data during the spring and 

summer seasons in the years of 2000 and 2001. Also shown in the figure is the 

modeled correlation function, 0)( ρ
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represents the standard deviation of the correlation functions. 



 132 

0 20 40 60 80 100
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

 l
s
/ρ

0

K
(l s/ρ

o, N
)

N=0.1
N=0.2
N=0.3
N=0.4
N=0.5
N=0.6
N=0.7
N=0.8
N=0.9

Fig. 4.3. ),(
0

NK sl

ρ
 as a function of 

0ρ
sl  and N. 

0ρ
sl  is the relative length of the 

sampling line. The sensitivity coefficient is written as  

 
00

ˆ

0

1
),(

)RMS(
0 ρρ

σ
ρ ρ NK

d

d

d

d
slN =≈ .  

),(
0

NK sl

ρ
 has units of cloud fraction and its maximum value occurs when N = 0.5. 

 

 



 133 

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

Length of the  sampling line (x ρ
0
) 

ε2  , 
  u

N
∧ 

,  
 u

N
a , 

  2
*w

(N
∧ , N

a)

ε2

u
N

∧

u
N

a

2*w(N∧, N
a
)

 

Fig.4.4 2ε , 
N

u ˆ, 
aNu  and ),̂( aNNw as functions of the length of the sampling 

line, for a domain of 1000 =ρW , 1000 =ρL . The sampling line is located 

along L at the center of the domain.  
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Fig.4.6 The RRMS as a function of the length of the sampling line for 

different cloud fractions. The domain size is 0100ρ== LW . The sampling 

line is located at the center of the domain.  
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Fig.4.7 Sampling error as a function of the number of observations. Upper panel: 2ε , 

N
u ˆ, 

aNu  and ),̂( aNNw  as functions of the number of observations. Lower panel: 

RRMS as a function of the number of observations for various cloud fractions. The 

domain size is 0100ρ== LW . The sampling line is positioned at the center of the 

domain and its length is the same as L. The observation points are regularly 

distributed on the sampling line with interval ∆l = n0100ρ , where n denotes the 

number of observations. 
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Fig. 4.8 The relationship between the effective number of random 

observations and the actual number of observations. The effective number is 

defined as 
22

2 1

ε
σ

==
D

n N
e  (Eq. (4.15)). 
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Fig. 4.9  Sampling arrangement for the PCLOS. The PCLOS is a function of, θ, 

the zenith angle. The estimation of the PCLOS(θ) is made by averaging over a 

set of circles centered on the sampling line. The sampling error here refers to 

the difference between the domain (W × L) averaged PCLOS(θ) and the one 

averaged over the set of circles.  
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Fig. 4.10 Samping error for the measurement of PCLOS for a 100ρ0×100ρ0 

domain. The circle radius R = ρ0, which corresponds to a zenith angle of 45o for a 

cloud base of height ρ0. The set of circles are regularly aligned along the centerline 

of the domain with interval ∆l =0.6ρ0.  Upper panel: 2ε , 
N

u ˆ, 
aNu  and ),̂( aNNw as 

functions of the length of the sampling line. Lower panel: the RRMS as a function 

of the length of the sampling line. 
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Fig. 4.11. Upper panel: model parameters 2ε , 
N

u ˆ, 
aNu  and ),̂( aNNw  as functions of 

zenith angle. Lower panel:  the relationship between the RRMS and the zenith angles for 

the cloud base height H = ρ0. The set of circles are regularly spaced along a sampling 

line of length ls= 50ρ0, and with the interval ∆l =0.6ρ0. 
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Fig. 4.12. The LES/CRM simulated cloud fields. (a) BOMEX; (b) ATEX; 

(c) OPENCELL; (d) GATE.  The color scales shown in the figure represent 

the Liquid Water Path (LWP) of the fields in the unit of g/m2. 
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Fig. 4.13. Application to four LES/CRM generated cloud fields. Upper panel: RMS* and RMS 

changing with the length of the sampling line and the cloud fraction N. Lower panel: RRMS* 

and RRMS changing with the length of the sampling line and N. The RMS and the RRMS are 

calculated as: 
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where, N is the desired domain-averaged cloud fraction, n is the number of simulations for 

each sampling line length ls. ils
N ,
ˆ (i=1, n; ls=1, 600) is the estimated cloud fraction from the ith 

single-line measurement of length ls. 
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Fig. 4.14 Illustrations of the terms associated with the measurement of the cloud 

horizontal size or spacing with limited sampling rate. Only the integer part of D 

will be reported by the instrument. In the above case, the instrument will report 

the cloud size to be D̂ =3. Randomly placing the “ ruler”  with respect to the 

position of the cloud, the variance of the measurement would be 

[ ] ),(),(2 dDremdDremd −=σ , where rem(D,d) represents the remainder of D 

divided by d. 
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Fig. 4.15 Relative error due to the limited sampling rate when measuring the 

cloud base length. d denotes the sampling interval and D is the real length of the 

cloud base. 
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Fig. 5.1 The TSI (a) and the WSI (b) cloud decision images.  

Zenith is at the picture center.  

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7

1: clear sky, 
2: thin cloud, 
3: thick (opaque) cloud, 
4: ignored (masked) pixels. 

(b) 

(a) 

1: clear (spectral and density); 
2: aerosol (spectral); 
3: mixed aerosol and cloud (spectral); 
4: bright cloud (spectral); 
5: intermediate cloud (spectral); 
6: dark cloud (spectral); 
7: translucent (density); 
8: opaque (density); 
9: indeterminate (spectral and density); 
10: undefined. 
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Fig. 5.2 Mapping function between the zenith angle and the radial 

distance of a TSI pixel. 
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Fig. 5.3 The difference between the PCLOS values estimated from the WSI 

and the TSI. The blue line is the average of (PCLOSWSI – PCLOSTSI) over 77 

cases. The shadowed region represents the standard deviation of the 

differences.  
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Fig. 5.4 The PCLOS inferred from the TSI. The curves have been normalized as  

PCLOS(θ)/(1-N), which represents the conditional probability of a clear line of 

sight given the line of sight starting from the (1-N) portion of the cloud base 

plane. 

10 20 30 40 50 60 70 80
0

0.5

1

1.5

Zenith Angle

P
(θ

)/
 (

1−
N

)



 149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.5  A comparison of the absolute cloud fractions estimated from the TSI, 

WSI, NFOV and the ARSCL cloud base data. (86 cases for the TSI, NFOV and 

ARSCL; 77 cases for the WSI.)  
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Fig. 5.6 Histogram of the absolute cloud amount, N, from different instruments for 

cases selected during the spring and summer seasons in 2000 and 2001. (86 cases 

for the TSI, NFOV and ARSCL; 77 cases for the WSI.)  
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Fig. 5.7 An example of ARSCL cloud thickness data from 23 July 2001. 

The upper panel: cloud base and top height from the MPL, VCEIL, and 

MMCR. The lower panel: histogram of the cloud thickness, which is 

evaluated by subtracting the base heights from the corresponding top 

heights for every observation moment. 
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Fig.5.8   Determining the cloud thickness with the aid of relative humidity profiles from 

Raman Lidar (RL) and soundings. Panel (a) and (b) are relative humidity (R.H.) profiles 

from the RL and soundings. Panel (c) is the cloud base and top heights from the ARSCL 

data. Panel (d) is the MMCR reflectivity data obtained at the same period as the profiles. 
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Fig.5.9 Histograms of the cloud thicknesses determined 

before and after taking into account the relative humidity 

information, for all 93 cases. 
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Fig. 5.10 Histogram of the relative cloud thickness variation 

(thickness variation to cloud thickness) for all 93 cases selected 

from July 2000 to 2001. 
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Fig. 5.11 Histogram of the aspect ratios ( = cloud thickness over 

cloud diameter) for all 93 cases selected from July 2000 through 

2001. 
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Fig. 5.12 A time series of NFOV radiance data at 869 nm for 22 

July 2000. The red line is the threshold.  
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Fig. 5.13 Histogram of the wind speeds obtained from the 

915 MHz Radar Wind Profiler (RWP915) for all 93 cases 

selected from July 2000 to October 2001. 
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Fig. 5.14  The cloud spacing (a) and cloud size (b) distributions for all 

cases selected from July 2000 through October 2001. The spacing and 

size are inferred from the NFOV data. Also shown in the figures are 

four theoretical distributions.  
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Fig.5.15, Histograms of cloud size distributions as a 

function of the cloud fraction. The cloud fractions are 

grouped into three groups, 0 – 0.3, 0.3 – 0.6, 0.6 – 1. 

10
2

10
3

10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cloud Size (m)

N
um

be
r 

of
 o

cc
ur

re
nc

es
 / 

pe
r 

un
it 

le
ng

th
N <= 0.3 
 0.3< N < =0.6 
N>0.6



 160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.16 The range of variation of the cloud spacings for the data used in this 

study. The upper panel shows the range of variations of the cloud spacings; 

The lower panel is the histogram of the obtained cloud spacings. The red line 

in the upper panel represents the median values of the cloud spacing. 
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Fig. 5.17 The range of variation of the cloud horizontal sizes. The upper 

panel shows the range of variations of the cloud sizes; the lower panel is 

the histogram of the obtained cloud sizes. The red line in the upper panel 

represents the median values of the cloud size. 
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Fig. 5.18 Estimates of the cloud size distribution parameters.  

(a) Parameter ν for the exponential distribution: dedp νν −=)(  

(b) Parameter ν for the power law distribution: ννν −−−= dddp 1
min)1()(  

(c) and (d) Parameters a and b, respectively, for the Weibull distribution: 
badb eabddp −−= 1)(  

where d denotes the cloud horizontal size. 
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Fig. 5.19 Estimates of the cloud spacing distribution parameters for “ sd”  type.  

(a) Parameter µ for the exponential distribution: sesp µµ −=)(  

(b) Parameter µ for the power law distribution: µµµ −−−= sssp 1
min)1()(  

(c) and (d) Parameters a and b, respectively, for the Weibull distribution: 
basb eabssp −−= 1)(  

where s denotes the cloud spacing of the “ sd”  type. 
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Fig. 5.20 Estimates of the cloud spacing distribution parameters for “ cd”  type.  

(a) Parameter µ for the exponential distribution: sesp µµ −=)(  

(b) Parameter µ for the power law distribution: µµµ −−−= sssp 1
min)1()(  

(c) and (d) Parameters a and b, respectively, for the Weibull distribution: 
basb eabssp −−= 1)(  

where s denotes the cloud spacing of the “ cd”  type. 
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Fig. 5.21 Estimates of the cloud spacing distribution parameters for the “ xd”  type.  

(a) Parameter µ for the Exponential distribution: xexp µµ −=)(  

(b) and  (c) Parameters a and b, respectively, for the Weibull distribution: 
baxb eabxxp −−= 1)(  

where x denotes the cloud spacing of the “ xd”  type. 
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 Fig. 5.22 (a) PCLOSmodel/(1-N) compared with PCLOSTSI/(1-N); 

(b) PCLOSmodel – PCLOSTSI; for group-1 models. The results are the 

averages over 38 non-streak cases whose cloud thicknesses were 

confirmed with the relative humidity data.  
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Fig. 5.23 (a) PCLOSmodel/(1-N) compared with PCLOSTSI/(1-N); 

(b) PCLOSmodel - PCLOSTSI; for group-2 models. The results are the 

averages over 38 cases.  
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Fig. 5.24 Standard deviation of the difference between the models and the TSI observations as a function 

of zenith angle. The various panels are as follows: 
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Fig. 5.25 Statistics of the model predictions of the CSE values and those inferred from the TSI 

observations. In the figure, the bottom and the top of the box indicated the 25th and 75th percentiles of the 

sample. The line in the middle of the box is the sample median. The plus sign in the figure is an indication 

of an outlier in the data. An outlier is a value that is more than 1.5 times the box length away from the top 

or bottom of the box. The last column in the figure is the CSE computed using the TSI observations. 
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Fig. 5.26 Differences between the CSE values predicted by the models and those obtained from TSI. 

Box plot properties follow those in Fig 5.25. The individual boxes correspond as follows: 
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