Using Model Reduction in Data Assimilation

Nancy Nichols, Amos Lawless
The University of Reading

Caroline Boess, Angelika Bunse-Gerstner
Cerfacs & The University of Bremen

Outline

• Incremental 4D variational assimilation
• Model reduction in incremental 4DVar
• Oblique projection using balanced truncation
• Numerical experiments
• Conclusions
4D-Var Nonlinear Problem

\[
J[\mathbf{x}_{0j}] = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_b)^T \mathbf{B}_0^{-1} (\mathbf{x}_0 - \mathbf{x}_b) \\
+ \sum_{i=0}^{n} (H_i[\mathbf{x}_i] - \mathbf{y}_i^o)^T \mathbf{R}_i^{-1} (H_i[\mathbf{x}_i] - \mathbf{y}_i^o)
\]

subject to \(\mathbf{x}_i = S(t_i, t_0, \mathbf{x}_0) \)

- \(\mathbf{x}_b \) - Background state (prior)
- \(\mathbf{y}_i^o \) - Observations
- \(H_i \) - Observation operator
- \(\mathbf{B}_0 \) - Background error covariance matrix
- \(\mathbf{R}_i \) - Observation error covariance matrix

Incremental 4D-Var

Solve by iteration a sequence of linear least squares problems that approximate the nonlinear problem.
Incremental 4D-Var

Set \(x_0^{(0)} \) (usually equal to background)

For \(k = 0, \ldots, K \) find:

\[x_i^{(k)} = S(t_i, t_0, x_0^{(k)}) \]

Solve inner loop linear minimization problem:

\[
\min J^{(k)}[\delta x_0^{(k)}] = (\delta x_0^{(k)} - \delta x_b^{(k)})^T B_0^{-1} (\delta x_0^{(k)} - \delta x_b^{(k)}) \\
+ \sum_{i=0}^n (H_i \delta x_i^{(k)} - d_i^o)^T R_i^{-1} (H_i \delta x_i^{(k)} - d_i^o)
\]

subject to

\[
\delta x_i^{(k+1)} = M_i \delta x_i^{(k)}, \quad d_i^o = y_i - H_i[x_i^{(k)}]
\]

Update:

\[x_0^{(k+1)} = x_0^{(k)} + \delta x_0^{(k)} \]

On each outer iteration the linear least squares problem is solved subject to the linearized dynamical system

\[
\delta x_i^{(k+1)} = M_i \delta x_i^{(k)} \\
d_i = H_i \delta x_i^{(k)}
\]

\[\delta x_i \in \mathbb{R}^N \\
M_i \in \mathbb{R}^{N \times N} \\
H_i \in \mathbb{R}^{p \times N} \]

In practice this problem is too computationally expensive to solve. Approximations to the inner minimization problem are therefore used.
Previous Results

• Incremental 4D-Var without approximations is equivalent to a Gauss-Newton iteration for nonlinear least squares problems.
• In operational implementation the solution procedure is approximated:
 – Truncate inner loop iterations
 – Use an approximate linear system model
• Theoretical convergence results obtained by reference to Gauss-Newton method (QJRMS, SIOPT).

Low order incremental 4D-Var

Aim: approximate the linearized system by a low order inner problem of size $r \ll N$.

Define:
Linear restriction operators $U^T_i \in \mathbb{R}^{r \times N}$
Low order variables $\delta \hat{x}_i = U^T_i \delta x_i$
Prolongation operators $V_i \in \mathbb{R}^{N \times r}$

where $U^T_i V_i = I_r$ and $V_i U^T_i$ is a projection operator.
A restricted version of the dynamical linear system is then given by

$$
\delta \hat{x}_{i+1} = \hat{M}_i \delta \hat{x}_i, \quad \delta \hat{x} \in \mathbb{R}^r \\
d_{i+1} = \hat{H}_i \delta \hat{x}_{i+1}, \quad \hat{H} \in \mathbb{R}^{p \times r}
$$

where $V_i \hat{M}_i U_i^T$ approximates M_i and $\hat{H}_i U_i^T$ approximates H_i.

Then a low order inner minimization is solved subject to the low order linear system.

Low Order Assimilation Problem

Set $x_0^{(0)}$ (usually equal to background)

For $k = 0, \ldots, K$ find: $x_i^{(k)} = S(t_i, t_0, x_0^{(k)})$

Solve low order inner loop minimization problem:

$$
\min J^{(k)}[\delta \hat{x}^{(k)}] = \left(\delta \hat{x}_0^{(k)} - U_0^T \delta \hat{x}_b^{(k)}\right)^T \hat{B}_0^{-1} \left(\delta \hat{x}_0^{(k)} - U_0^T \delta \hat{x}_b^{(k)}\right) \\
+ \sum_{i=0}^n \left(\hat{H}_i \delta \hat{x}_i^{(k)} - d_i^o\right)^T R_i^{-1} \left(\hat{H}_i \delta \hat{x}_i^{(k)} - d_i^o\right)
$$

with

$$
\delta \hat{x}_{i+1} = \hat{M}_i \delta \hat{x}_i, \quad d_i^o = y_i - H_i[x_i^{(k)}]
$$

Update: $x_0^{(k+1)} = x_0^{(k)} + V_0 \delta \hat{x}_0^{(k)}$
How are the operators U_i^T and V_i chosen so that the solution of the reduced problem is accurate?

Two approaches:

1. **Standard operational technique:** The restriction U_i^T is a low resolution spatial operator and the prolongation operator V_i represents spatial interpolation.

2. **New method:** The projections are based on optimal model reduction techniques.

Optimal Reduced Order Models

Aim:

- Find approximate linear system models using optimal reduced order modeling techniques from control theory to improve the efficiency of the incremental 4DVar method.

- Test feasibility of approach in comparison with low resolution models using a simple shallow water flow model.
Model Reduction via Oblique Projections

Given: \[
\delta x_{i+1} = M\delta x_i + u_i, \quad u_i \sim \mathcal{N}(0, B_0)
\]
\[
d_i = H\delta x_i
\]

Find: projections \(U, V \) with \(U^T V = I_r \), \(r << N \), such that the output of the reduced order system

\[
\delta \hat{x}_{i+1} = U^T M V \delta \hat{x}_i + u_i,
\]
\[
\hat{d}_i = H V \delta \hat{x}_i
\]

minimizes:

\[
\lim_{i \to \infty} \mathcal{E} \left\{ \left[\hat{d}_i - d_i \right]^T R^{-1} \left[\hat{d}_i - d_i \right] \right\}
\]

(over all inputs with expected norm equal to a constant)

Balanced truncation

Balanced truncation removes states that are least affected by inputs and that have least effect on outputs (in a statistical sense).

There are 2 steps:
1. **Balancing** – Transform system to one in which these states are the same.
2. **Truncation** – Truncate states related to the smallest singular values of the transformed covariance matrices (Hankel singular values).

Projected system exactly matches the largest Hankel singular values of the full system.
Balanced Truncation

Find: \(\Psi \) such that \(\Psi^{-1}PQ\Psi = \Sigma^2 \)

where \(\Sigma \) is diagonal and
\[
P = MPM^T + B_0
\]
\[
Q = M^TQM + H^TR^{-1}H
\]

Then: near optimal projections are given by

\[
U^T = [I_r, 0] \Psi^{-1}, \quad V = \Psi \begin{bmatrix} I_r \\ 0 \end{bmatrix}
\]

Reduced Order Assimilation Problem

The reduced order inner loop problem is to minimize

\[
\tilde{J}^{(k)}[\delta \hat{x}_0^{(k)}] = \frac{1}{2}(\delta \hat{x}_0^{(k)} - U^T[x^b - x_0^{(k)}])^T(U^T B_0 U)^{-1}(\delta \hat{x}_0^{(k)} - U^T[x^b - x_0^{(k)}])
+ \frac{1}{2} \sum_{i=0}^N (HV\delta \hat{x}_i^{(k)} - d_i^{(k)})^T R^{-1} (HV\delta \hat{x}_i^{(k)} - d_i^{(k)})
\]

subject to
\[
\delta \hat{x}_{i+1}^{(k)} = U^T MV \delta \hat{x}_i^{(k)},
\]
\[
\delta \hat{x}_i^{(k)} = HV\delta \hat{x}_i^{(k)}
\]
and set
\[
\delta x_0^{(k)} = V \delta \hat{x}_0^{(k)}
\]
Why might we expect a benefit?

- The model reduction approach tries to match the input-output response of the whole system, allowing for the system dynamics, the observations and the error covariances.
- The use of a low resolution model ignores some of this information.

Does this help in the data assimilation problem?

1D Shallow Water Model

Nonlinear continuous equations

\[
\begin{align*}
\frac{Du}{Dt} + \frac{\partial \varphi}{\partial x} &= -g \frac{\partial h}{\partial x} \\
\frac{D(\ln \varphi)}{Dt} + \frac{\partial u}{\partial x} &= 0
\end{align*}
\]

with

\[
\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x}
\]

We discretize using a semi-implicit semi-Lagrangian scheme and linearize to get linear model (TLM).
Methodology

• Define an initial random perturbation δx_0 from a distribution B_0.
• Calculate ‘true’ solution by solving full linear least squares problem.
• Calculate ‘observations’ $d_i = H \delta x_i$ for 5 steps (t=0 to t=5)
• Compare solutions solving with
 – Low resolution linear model.
 – Reduced order model.
• Size of full dimension is 400.

Numerical Experiments - Error Norms

Test matrices:

$M \in \mathbb{R}^{400 \times 400}$ from TLM model
$H \in \mathbb{R}^{200 \times 400}$ observations at every other point
$B_0 \in \mathbb{R}^{400 \times 400}$ quite realistic covariance matrix

Error norm $nrm = \frac{\| \delta x_0 - \delta x_0^{(\text{lift})} \|_2}{\| \delta x_0 \|_2}$, $\delta x_0^{(\text{lift})} := V \delta \tilde{x}_0$.
Error between exact and approximate analysis for 1-D SWE model

Low Res Model of order = 200 vs Reduced Model of order = 200
vs Reduced Model of order = 80

Component of state

Red (dotted) = Low Res Model
Green (dashed) = Reduced Rank Model

Comparison of Error Norms
Low resolution vs Reduced order models

<table>
<thead>
<tr>
<th>l</th>
<th>reduced order</th>
<th>low resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.0027</td>
<td>0.2110</td>
</tr>
<tr>
<td>150</td>
<td>0.0134</td>
<td>—</td>
</tr>
<tr>
<td>100</td>
<td>0.0623</td>
<td>—</td>
</tr>
<tr>
<td>90</td>
<td>0.1015</td>
<td>—</td>
</tr>
<tr>
<td>80</td>
<td>0.1726</td>
<td>—</td>
</tr>
<tr>
<td>70</td>
<td>0.2327</td>
<td>—</td>
</tr>
</tbody>
</table>
Comparison of Error Norms
Low resolution vs Reduced order models

<table>
<thead>
<tr>
<th>l</th>
<th>reduced order</th>
<th>low resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.0027</td>
<td>0.2110</td>
</tr>
<tr>
<td>150</td>
<td>0.0134</td>
<td>—</td>
</tr>
<tr>
<td>100</td>
<td>0.0623</td>
<td>—</td>
</tr>
<tr>
<td>90</td>
<td>0.1015</td>
<td>—</td>
</tr>
<tr>
<td>80</td>
<td>0.1726</td>
<td>—</td>
</tr>
<tr>
<td>70</td>
<td>0.2327</td>
<td>—</td>
</tr>
</tbody>
</table>
Comparison of Model Eigenvalues

Eigenvalues plotted on the complex plane for (a) full resolution model; (b) low resolution model of order 200; (c) reduced rank model of order 200.

Importance of B Matrix

Errors where covariance B_0 is not used in model reduction

Low Res Model of order = 200 vs Reduced Model of order = 200

Red (dotted) = Low Res Model Green (dashed) = Reduced Rank Model
Conclusions

- Reduced rank linear models obtained by optimal reduction techniques give more accurate analyses than low resolution linear models that are currently used in practice.
Conclusions

- Reduced rank linear models obtained by optimal reduction techniques give more accurate analyses than low resolution linear models that are currently used in practice.
- Incorporating the background and observation error covariance information is necessary to achieve good results.
- Reduced order systems capture the optimal growth behaviour of the model more accurately than low resolution models.
Work in progress:

- to obtain **efficient model reduction techniques** for use in data assimilation
- to demonstrate **convergence** of the Incremental 4DVar method using low order models.

Future Work:

- Ensemble Square Root Filters
- Conservation of Dynamical Properties
- High Resolution Local Area Models
- Multiple Timescales / Coupled Systems
- Correlated Observations
- Multi-scale 4DVar Optimization

http://www.maths.rdg.ac.uk/

Department of Mathematics